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Abstract

We present an introduction to data analysis in Experimental High
Energy Physics, and some concepts and useful tools are discussed. To
illustrate, we use the data of E-791, a fixed target experiment recently
realized at Fermilab. In particular, we analyse decay modes of Dt
meson with three charged particles in the final state.
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Introduction

After 21 years of experimental research on charm particles, most of their char-
acteristics like quantum numbers, lifetimes, dominant decay modes, excited
states and production mechanisms are well established. For charm mesons,
even rare decay modes like Doubly Cabibbo Supressed decays have been ob-
served. For charm baryons, however, there is less information. For example,
for the most studied charm baryon, A, the sum of all observed partial decay
widths is less than half of the total width. Thus, many of its decay modes are
still not observed.

But why there is particular interest in the study of charm particles? The
most general answer to this question cannot be different from the answer of
why we study elementary particles: the study of the elementary particles is
the study of the fundamental interactions of nature.

Based on this context, the study of charm particles is particularly privi-
leged. Their masses, around 2 GeV, allow a treatement based on assymptotic
freedom, as for B mesons; on the other hand, there are still non-pertubative
effects, as for strange mesons. As we know, non-pertubative effects represent
one of the greatest difficulties of QCD in the study of strong interactions. One
possible way to deal with these difficulties is to use charm mesons as a “lab-
oratory”, based precisely on their “semi-pertubative” features: simplicity of
the pertubative treatement and at the same time the presence of some non-
pertubative effects.

As an illustration of this fact, let’s observe the differencies of the lifetimes
for mesons of the same family:

T(K*) ~ 640 7(K,) mass(K's) ~ 0.5GeV
7(DT) ~ 2.5 7(D") mass(D's) ~ 2GeV (1)
7(B*) ~ 7(B°) mass(B's) ~ 5GeV .

The energy range that distinguishes between the distinct meson families
varies from the non-pertubative region (strange meson masses) to the pertuba-
tive region (B meson masses). One very possible explanation for the difference
on the lifetimes is due to non-pertubative effects. In equation (1) we can have
an idea of the influence of these effects comparing the difference of the mean
lifetimes and masses for each family. As we said before, charm mesons are in
a range of transition between non-pertubative and pertubative regions.

There are two other important features in the study of charm particles as
“laboratory” for the interactions: a high diversity of decay modes and also a
small multiplicity for these channels. In fact, an expressive part of hadronic
decays has two bodies at the final state. The first feature allows a variety
of possible channels to be studied and the second allows experimentally these
studies, since it is easier to observe decays with a few particles in the final
state.

The semi-pertubative features and the high diversity of channels with low
multiplicity allow, for example, theoretical studies of non-leptonic decays.
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Due to the semi-pertubative nature, it is possible to use factorization for a
“current-current” matrix element, based on Valence Quark Approximation
(VQA) model [1], while a two body decay can be parametrized with known
matrix elements. With over than 50 observed two-body decay channels for the
D*, D° and D] pseudo-scalar mesons, any theoretical model has, with this
experimental information, a good place to test the validity of its ideas [2].

Aside from the good reasons to study charm particles we already listed
above, we have also to mention the possible tests of the Standard Model (SM).
Effects like D° — D° Mixing, Flavor Changing Neutral Currents (FCNC), Ra-
diative decays and so on, which are allowed only in second order by the SM,
have experimental upper limits still very distant from the theoretical predic-
tions. Thus, the charm sector is also a good laboratory to perform searches
for effects beyond the Standard Model [3].

Here, we present a basic introduction to the experimental data analysis
involving charm decays in fixed target experiments. Although sometimes we
present very specific methods, it doesn’t mean that they can not be applied for
non-charm decays or collider experiments. Since it is an introductory course,
we limit ourselves to the study of one of the simpliest and more general kinds
of decay, where a charm meson decays into few charged particles, allowing
the final state to be totally reconstructed. In the next section, we discuss the
method to observe charm particles, from the basic concepts to event selection.
Then, we present the fundamental steps of data analysis, first for a high sta-
tistical channel and then following to channels with lower statistics. Finally,
we present some conclusions.

Observation of Charm Particles

Mean Free Path

The lifetime 7 is related to the predominant kind of interaction suffered by
the decaying particle. Particles which decay through strong interactions, for
example, have small lifetimes (~ 1072%s). For particles decaying through weak
interactions, the lifetimes are in general greater and can vary significantly, as
can be seen in Table 1.

The lifetime is not Lorentz invariant, thus it depends on the frame where
it is measured. By convention, it is defined in the particle rest frame. So, if
we say that the pion has a lifetime 7 = 2.6 x 107%s, we are referring to the
lifetime measured in the rest frame of this meson.

The mean free path of a particle in the laboratory is obtained by the
product of its velocity v and the lifetime at the laboratory frame, 77, where
v = E/m and E and m are the particle energy and mass, respectively. The
mean free path of a particle in the laboratory is, then, given by:

< AZ >=c17, (2)

where c is the light velocity, which is a good approximation for the particle
velocity at high energy.
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Table 1: Mass, lifetime and mean free path for some known particles.

Particle 7(s) Mass(GeV) | < AZ > at 30GeV
7t (ud) 2.6 x 1078 0.14 1.5km
K¥(us) | 1.24x 105 | 0.494 220m
pluud) | > 10% yrs 0.938 > 10%3 light yrs
e~ > 10% yrs 0.0005 > 10%" light yrs
o 2.2 x 107° 0.106 200km
S (dds) | 15x10 0 | 1.197 m
D*cd) [1.06x 102 |  1.869 0.5cm
D(ca) | 42x10°® | 1865 0.2cm
Di(cs) | 45x10-% | 1.970 0.20m
Af(ude) | 2.0 x 10713 2.285 0.1cm

In Table 1 we list some known particles with their lifetimes, masses, and the
mean free path for 30GeV. For a 20 meters long detector, almost all charged
particles like pions, kaons, protons, electrons and muons can cross it. Thus,
with an appropriate detector, we can get their trajectories, momenta, energy
and nature.

Charm particles, however, have smaller lifetime and higher mass, which
implies that tipically they can travel distances of the order of centimeters,
depending on the energy. That means that in general they cannot be observed
directly and thus indirect measurements are needed.

Invariant Mass

Usually, charm particles are observed detecting their decay products. From
the conservation of 4-momentum and relativistic rest mass invariance, we can
associate the decay products with the original particle.

Let us take a simple example of the decay D° — K~n*. As we know,
the square of the 4-momentum vector is equal to the square of the mass,
P? = E? — |P|2 = M?. By 4-momentum conservation we have:

M} = (P§ + P¥)* = P2 + P2 + 2PLP;, . (3)
Thus,
M} =m% +m2 + 2(P2 + m2) V3 (P? + m2)V? — 2P P, . (4)

From this equation, we see the necessary information that a detector must
give to perform a spectroscopy analysis: i) the momentum vectors of the pro-
duced particles; ii) nature of these particles, to correctly assign their masses
in the above equation.
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Figure 1: The E-791 Spectrometer.

Detectors

Let us take as an example the detector used by E-791, a fixed target hadro-
production experiment at Fermilab. The detector is shown in figure 1. To
determine the momentum vector of the particles, Silicon Microstrip Detectors
(SMD), drift-chambers and magnets are used. To determine the nature of the
particles, calorimeters, Cerenkov counters and muon counters are used. We
briefly describe these detectors below.

Tracking System and Momentum Determination

At the front end of the spectrometer, just after the target foils, there is a set
of SMD'’s, solid-state detectors with excellent spacial resolution (~ 1073cm).
They constitute the first information for the tracking system and, because of
the good resolution, they can separate very well the point where the charm
particle is produced and the point where it decays. This information is crucial
for charm analysis in fixed target experiments.

The spectrometer has four stations of drift-chambers used to complete
the tracking information. They are made with a ionizing gas and negatively
charged wires. When a charged particle crosses the detector, it can ionize
the gas and the free electrons produced then drift creating an avalanche of
electrons near the collecting wire. Each station has a set of drift-chambers
with the wire planes oriented in different directions, in order to have all the
coordinates of the particle with a resolution of about 1mm.

Two magnets, one between the first and second drift-chamber stations and
the other between the second and third ones, are used to deflect the particle
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trajectories. The angle of deflection dependes on the momentum by:

~ JEBQ) dl
7% T3y )

where B is the magnetic filed, p is the momentum of the particle, [ is the

position along the trajectory in the magnet and L is the length of the magnet.
Thus, from the deflection angle § the momentum of the charged particle is
obtained.

Particle Identification

Cerenkov counters and calorimeters are widely used in particle physics to iden-
tify particles. The E-791 experiment has 2 Cerenkov detectors, hadronic and
electromagnetic calorimeters. At the back end of the spectrometer, there are
also scintillators to detect muons.

The Cerenkov detectors can give information on the particle nature based
on the fact that a particle with velocity greater than the light velocity in a
given medium emits photons. The number of emited photons depends on the
momentum and mass of the particle !. A Cerenkov counter is constituted of a
gas path where the Cerenkov light is produced and spherical mirrors aimed at
photomultipliers which focus and count the photons, respectively.

The electromagnetic calorimeter is composed of a series of lead foils inter-
laced with liquid scintillator. The lead foils act as radiators, electrons deposite
their energy by Bremsstrahlung and photons by pair creation, producing a
cascade mechanism, which can be detected by the scintillator.

The hadronic calorimeter is made with steel and plastic scintillators, with
structure very similar to the electromagnetic calorimeter, and located just
after it. Hadrons deposit their energy by hadronic interactions. This detector
is particularly useful to identify neutral particles, which are invisible for the
most part of the spectrometer.

After the hadronic calorimeter, there is a steel absorber wall to prevent any
other particles but muons to arrive at the scintillators located behind it. So,
detecting a particle by one of these scintillators is a positive indication of the
presence of a muon.

Event Selection

From hadron-nucleon inelastic interactions, just one in 10% events has charm
particles. So, critera to select charm candidate events are needed. A typical
charm event has the following features:

e The ¢ — ¢ pairs are produced with higher tranverse momentum relative
to lighter quarks. Thus, a first selection made by E-791 is to ask for
events with high “transverse energy” (E7r), that is, from the data of the
calorimeters, a weighted sum of the deposited energies is made favoring
signals more distant from the beam line.

'For a more detailed discussion on this subject, see reference [4].
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e It has a clear interacting point, called primary vertex. The primary
vertex is determined by the point where a number of charged tracks
converge inside the target.

o It has one (or two) secondary vertices, that is, probably points of charm
particle decays.

A very illustrative example of a charm event production is shown in figure
2. This event is from E-687, a fixed target photo-production experiment at
Fermilab. We can clearly see the primary vertex - the first point at the left
(formed by tracks 1, 3, 8, 10 and 11) and then two secondary vertices. The
first one (formed by tracks 2 and 6) is a good D° —+ K~7+ candidate, while
the second (formed by tracks 4, 5, 7 and 12) is a D° = K*t7t7~ 7~ candidate.
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Figure 2: Double Charm Event in Experiment E-687.

In general, a charm decay has the primary and secondary vertices well
separated. Thus, another selection can be made using this feature. In E-791,
a first selection of this kind was made during data reconstruction; for example,
for secondary vertices formed by three charged tracks it was required that:

Zsec — Zpri > 4\/0§r,~ + 02, , (6)

where Z.. and Z,,; are the z coordinates of secondary and primary vertices
respectively and o,,; and o, are the associated errors. This first selection
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could reduced the original E-791 sample of 20 billion recorded events to 2
billion.

DATA ANALYSIS

After the general charm decay selection, based on event tranverse energy and
separation of primary and secondary vertices, new selections based now on
specific decay modes are required. For example, when performing an D° —
K~n" analysis, it is necessary to ask, among other things, for a secondary
vertex formed by two and only two charged tracks, one compatible with a
kaon candidate and the other a pion candidate.

Here, we are going to exemplify an analysis process using three body charm
decays. We begin with a high statistics decay mode, D* — K~n*7* | and
then follow with medium and low statistics decay modes.

The Dt —- K~ ntn* Analysis

Figure 3: First order diagram of D™ — K~n" 7t decay.

The Dt — K~7ntx" is the most abundant D+ channel decaying to three
charged particles. In first order, it is represented by the diagram in figure 3.
As we can see, both weak vertices are Cabibbo favored, that is, the amplitudes
are proportional to the cosine of the Cabibbo angle. Its branching ratio is [5]:

BR(D* = K~ ntrt) = (9.1 £ 0.6)% . (7)

To select possible Dt — K~ ntn* decays, we begin asking for events with:
e Secondary vertex with three charged tracks.
e Absolute sum of the three charges equal to one.

e Invariant Mass from 1.75 to 2.0 GeV, since D' mass is 1.869 GeV. Here,
the mass is evaluated associating the opposite charge track to kaon and
the other two to pions.

2
1 Zsec - Zpri >3 Upri + O-Eec :
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For each D* — K n*rnt candidate event passed by these criteria, the
invariant mass found is plotted. In figure 4, we show this spectrum for about
15% of E-791 data sample, using bins of 10 MeV. We can see that in the D+
mass region between 1.84 and 1.89 GeV there is a big enhancement in the
number of events. This peak represents the D¥ — K~ntx+ signal, while the
remaining events are background.
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Figure 4: Dt — K~ nt7t signal with 15% of E-791 data.

In order to quantify the number of D* — K~ n*n™" events, it is necessary
to fit the obtained spectrum to a function, which has to take into account the
signal and background contributions. In this case, we can fit the signal to a
gaussian distribution and the background to a linear function. The gaussian
distribution is given by:

N M — Mp)?
F(M,N,MD,U)ZMUGXP( 202 D) 3 (8)

where Mp, the mass of D*, is the mean value of the gaussian, o is the width,
related to the momentum and angle resolution of the detector, and N is the
number of events in the distribution, since the gaussian is normalized to unity.

The fit results (also shown in figure 4) give 6956 4= 182 of Dt — K~ n*x+t
events (value of P3 in the histogram), while under the signal (from 1.84 to
1.9 GeV there are about 34500 (P1) background events. Thus, the signal over
background ratio is S/B = 1/5.

Thus, the next analysis step is the attempt to reject the background, while
mantaining the signal events as much as possible. To do this most effectively, it
1s necessary to understand the background sources and look for features that
can distinguish these events from good D™ — K~nnt* candidates. In the
next subsection, we briefly describe the most common types of background in
a fixed target experiment like E-791.
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Background

In general, we can distinguish between three sources of background: combi-
natorial background, rescattering and reflections. The last one becomes more
important for medium and low statistics channels, so it will be explained later.

The combinatorial background comes from the reconstruction of a fake se-
condary vertex, that is, three tracks that do not come from a single charm
decay can form a vertex accidentally. In general, this happens due to bad
track and vertex reconstruction.

The second type of background, rescattering, occurs when a particle pro-
duced by the beam-target interaction suffers a new interaction with a nucleon,
probably producing new particles. This process can also simulate a secondary
vertex.

The combinatorial background and rescattering are in general parametri-
zed by a straight line or an exponential function, since they have a random
distribution governed only by phase space limitations.

The Set of Cuts

As we said before, it is necessary to adopt selection criteria - usually called
a set of “cuts” - in order to reject as many background events as possible,
without loosing too much signal.

In fixed target experiments, in general the cuts can be divided in two
classes: identification cuts and vertex/track cuts. The first one uses informa-
tion on the particle nature and the last is based on the quality of the vertices
or tracks.

Vertex Cuts. Let’s begin exemplifying useful vertex cuts. The first and
maybe the most important of them is related to the distance between primary
and secondary vertices, like in equation (6). In fact, we can define a scaled
delta Z variable, SDZ, given by:

Zsec - Zpri

2 2
Upri + Osec

SDZ = (9)

This variable measures the distance between primary and secondary vertices

in terms of the associated errors on these variables. Since both the distance
and the errors depend on the momentum of the charm particle, the SDZ
variable is nearly momentum independent. In figure 5 we can see typical
SDZ distributions (up to SDZ = 50) for D* — K—ntrt signal events? and
background (taken outside D* mass region). Clearly, background events are
concentrated at low SDZ values.

In fact, a cut on SDZ > 20, for example, rejects 62% of background,
retaining 77% of D* — K~ n*n* signal events. The resulting mass spectrum
after this cut is shown in figure 6. Now, the signal/background ratio is about
1/2, that is, 2.5 times bigger than the one with SDZ > 8 (figure 4).

?In fact, the SDZ distribution shown in figure 5(a) is from simulated Monte Carlo events,
as will be discussed later. From here on, when we refer to the signal distribution of a given
variable, we will be using Monte Carlo data.
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Another useful variable to discard background is the impact parameter
of the reconstructed momentum of the charm particle with respect to the
primary vertex - DIP. Since the charm particle is produced in the primary
vertex, it is expected the DIP variable to be very small for signal events. For
the combinatorial background, a random distribution is expected. In figure 7
we shown signal and background distributions for this variable. If we choose
to cut on DIP < 30um, for example, we retain 84% of the signal and reject
62% of background.

Up to now, the two variables defined are specially useful against combina-
torial background. In the case of rescattering, we can make use of the fact that
in E-791 the targets were segmented. In figure 8 we show the distribution of
the reconstructed primary vertex positions - we can see clearly the different po-
sition of each target. Thus, a very good way to avoid events with a secondary
interaction faking a decay vertex is eliminating events for which the secondary
vertex is located inside one of the targets. The variable SIGMA measures, in
units of oy, the distance of the secondary vertex from the closest target edge.
For SIGM A < 0, the secondary vertex is located inside the target. In figure 9
we show the SIGM A distribution for D* — K77 signal and background,
where the cut SIGM A > 0 is already imposed.

Identification Cuts. To distinguish between protons, kaons and pions, two
Cerenkov detectors - C1 and C2 - were used in E-791, with different gas mix-
tures. The expected distribution of the number of photons produced as a
function of momentum for each of these particles is shown in figure 10 for both
counters C1 and C2. If we observe, for example, that a particle with 30 GeV
produced photons in C1 but not in C2, it means it is a good kaon candidate. In
general, however, the Cerenkov detectors cannot define precisely the particle
nature. What they can give us is the probability of a given particle to be a
pion, or a proton, etc, depending of the number of photons produced in each
Cerenkov detector and the particle momentum . Sometimes, actually, they
just have no information at all, meaning that the particle was not detected or
the information is confused. In these cases, there is associated to this particle
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the a priori probability, related to the percentage of kaons, pions, protons,
etc, produced by the experiment. For example, 84% of the hadrons produced
are pions, 12% are kaons and 4% are protons; thus, these will be the proba-
bilities the Cerenkov detector software will give when the detectors have no
information.

10 30 20 <40 5D 0 0
ftéevrel

Figure 10: Number of emited photons per unit length of the counters C1 and
C2 as a function of momentum .

In figure 11(a) we show the kaon probability distribution for the opposite
charge track® of each D — K~7tn* event and the analogous for background
in figure 11(b). Both have a peak at 12%, which is the kaon a priori probability,
but the signal events have also a clear peak at 75%. This peak is the response
of the Cerenkov counters when they can affirm that the particle is not a pion,
thus it can be a kaon with 75% of probability or a proton with 25%. The
peak in zero occurs when the Cerenkov can say that the particle is not a kaon
and the peak near 1 is when they can assure the particle is a kaon. For the
same events shown in figure 11, there are analogous distributions for pion and
proton probabilities.

If we cut, for example, on kaon Cerenkov probability PK > 0.2, we eli-
minate the events with a priori probability, representing 84% of background
events.

First Results

When we apply our first and intuitive set of cuts SDZ > 20, DIP < 30um
and Cerenkov identification for kaon track PK > 0.2, we obtain the spectrum

3Note that the opposite charge track of the decay Dt — K~n*x* is naturally the kaon
candidate.
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Figure 11: Cerenkov Probability Distribution of the kaon candidate for (a)
D* — K~n*tx* Signal; (b) Background events.

shown in figure 12. We can see that the background under the signal drops
from the original 34500 events of figure 4 to about 400 events, while the signal
falls from 6956 &= 182 to 2513 &= 54. Thus, the signal/background ratio is now
S/B = 6, 30 times bigger than the one obtained in figure 4.

Statistical Significance

In the previous subsection, we have shown the resulting D* — K~n*7r ™ spec-
trum after the application of a set of cuts chosen based on a qualitative com-
parison between the signal and background. However, to establish a final and
trustworthy set of cuts, a less subjective method is required.

As we said before, when we choose a set of cuts, we want to keep the
signal events and have the minimum number of background events. The last
condition is important for a small statistical error. The main goal is, in fact,
try to find a selection criterium that can give the best statistical significance,
that is, the best signal/error ratio. The statistical error associated with the
number of signal events is given by the possibility of signal and background
fluctuation, i.e., it is obtained by the square root of the sum of signal and
background (under the signal) events (assuming a poisson distribution). Thus,
the best set of cuts is the one which maximizes the relation:

Signi ficance = _5 (10)

VS+ B’

where S is the number of signal events and B is the number of background
events?.

“When B >> S, it is also very common to maximize % instead of \/S_S+—1§‘
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Figure 12: D* — K~n*n% signal with SDZ > 20, DIP < 30um and PK >
0.2.

In general, the error on the signal events represents one stardard deviation.
This value covers 68% of the signal for a gaussian distribution. Two and
three standard deviation cover 95% and 99.7% respectively. These numbers
are associated with the probability of fluctuation. Thus, if we have a signal
for which the number of events is three times the associated error, or in other
words, a signal with statistical significance of three stardard deviations, the
probability that this signal is just a background fluctuation is less than 0.3%.
By convention, in general a signal has credibility if the statistical significance
is greater than three standard deviations.

Thus, the higher the statistical significance of the signal, the higher is the
reliability of the results, since the less is the probability of fluctuation. One
of the important parts of an analysis is, in fact, to obtain a set of selection
criteria with the highest statistical significance.

When analysing a high statistics channel like as D* — K-ntnt | even
with loose cuts it is clearly possible to distinguish between signal and back-
ground and the possible fluctuations on the number of events in the signal are
small. In this case, it is possible to determine the best set of cuts from the
number of events in the signal and background, maximizing the significance
using equation (10).

However, for medium or low statistics channels, the number of events in
the signal is smaller. The background level can be much higher than the signal
and can even impede its observation. Nowadays, for example, the number of
events for singly and doubly Cabibbo supressed decays can vary from 10 to
103.

In these cases, it is very difficult to perform an optimization of the cuts
using the number of events in the actual signal, since possible fluctuations can
change significantly the results, sometimes incorrectly favoring a given set of
cuts. Thus, another optmization criterion is necessary for medium and low
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statistics channels.

Monte Carlo

To solve the question raised in the previous section, a very important tool,
widely used in high energy physics, is the simulation of signal events. The
main goal is to reproduce by computation the interaction between beam and
target producing new particles, as in real data events. In particular, we can
generate events containing a specific charm particle decaying in a given decay
mode. We can generate as many events as we wish, independent of whether
the decay mode is favored or highly supressed.

Simulated events are created by a generator of random numbers which
uses all the knowledge we have about production (Lund Model) and decay
properties of the known particles, and also relativistic kinematics, which is
very important for the behavior of the particles inside the detector. These
events are called Monte Carlo events. After generation, the next stage is the
simulation the detector, that is, the simulation of all detector responses to the
produced particles. This stage is called digitization, and it has to reproduce
all the details of the each detector, including the inefficiencies and electronic
noise.

After generation and digitization, Monte Carlo events are as equal as pos-
sible to real events. As we said before, since they are simulated events, we can
choose the decay modes we want to have in a particular Monte Carlo sample
and also the quantity. For example, we can produce 50,000 events demanding
that each event produce a D and that all D* decay into K~ n+7n*+. Due to
this feature, Monte Carlo (MC) samples are almost free from background.

In figure 13 we show the spectrum of a MC sample of the decay Dt —
K~7*7" , using the same cuts used for data events (fig.12). We can see that
the background level is below 10 events per bin, completely different from the
spectrum of figure 12. In fact, here the S/B ratio is about 65.

With a clean sample like this, reproducing all the features of a real event,
it is possible to:

e Study the behavior of particular channels, without background, whether
they are Cabibbo supressed, Cabibbo allowed or even forbidden decays.
In particular, we can study the distribution of the analysis variables for
a given decay mode, as we did before using the D* — K~7t7* channel.

e Find the efficiency of each of the cuts on the variables and the global
efficiency for a given set of cuts. For example, if we produce 100,000
D* — K~ntx* MC events and, after applying the set of cuts SDZ > 20,
PK > 0.2, DIP < 30pm there are 2000 left, we know that the global
efficiency, including geometrical acceptance and reconstruction efficiency,
is 2%.

e Optimization of the cuts for medium and low statistical channels. In
these cases, to maximize the statistical significance, we substitute the
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Figure 13: D* — K~ nt7n* Monte Carlo signal with SDZ > 20, DIP < 30um
and PK > 0.2.

number signal events in the numerator of equation (10) by the number
of MC events:
Suc

T (11)

Note that using the number of MC events is equivalent to using the
number of real events since they shall have, in principle, the same position
for the maximum of the significance, with the advantage of the first being
numerically bigger. In the denominator, however, we still use the number
of signal events, since the relation is not linear. It is associated with the
expected error and, thus depends fundamentaly on the statistics of the
real data sample.

Significance =

The last item above is particularly important and Monte Carlo simulation
can really be very advantageous. In fact, we have a sample free from statistical
fluctuations, since we can generate an arbitrary number of events - Sy is as
big as we desire. We also have, in this way, an independent sample.

Cuts Optimization

In this section, we are going to perform, in a simplified way, the optimization
of the cuts SDZ, DIP, PK and SIGM A for the D¥ — K~ rnt7* analysis.
That is, we’ll search for the values of these variables which produce the best
statistical significance, maximizing the significance in equation (11). For D+ —
K~n*n* analysis which has high statistics, as we said before, it is not necessary
to use MC to optimize the cuts, but here we are going to use it to illustrate
the method.

We begin with loose cuts, SDZ > 8, DIP < 60um, PK > 0and SIGMA >
0. We obtain the number of MC signal events, Sy, and the total number of
data events from 1.85 and 1.89 GeV (this will give S+ B). Thus, we obtain the
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statistical significance for this first choice of cuts. Then, we begin to vary the
SDZ variable, for example, keeping the other ones fixed at the original value.
For each SDZ value, we obtain the statistical significance by equation (11).
The resulting curve is shown in figure 14(a). We repeat this process for the
three other variables, DIP, PK and SIGM A and obtain the curves shown in
figures 14(b), 14(c) and 14(d), respectively.
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Figure 14: Statistical Significance distribution for (a) SDZ; (b) DIP; (c) PK;
(d) SIGMA.

From the results, we got the best values as SDZ > 15, DIP < 30um and
PK > 0.5 and SIGM A > 15. However, if we begin this process again with one
of the variables, but now fixing the others by the optimized values, we get a
different value, showing that we can not optimize the variables independently.
In fact, we show in figure 15 the new distribution for SIGM A, taking SDZ >
15, DIP < 30pum and PK > 0.5. Now, the optimum value is SIGMA > 0
instead of SIGM A > 15.

To find the best set of cuts, an iterative process of optimization is thus
required. We begin with a given and reazonable set of cuts, maximize the
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Figure 15: Statistical Significance distribution for SIGM A. The dashed points
are the same shown before and the solid points were get with the first opti-
mization results for the other variables.

significance for each of the cuts, then repeat the process with the new values
until a stability for the cuts is achieved. At this point, the final set of cuts
gives the best statistical significance for the signal.

Optimization Results

After performing the optimization process described in the previous section
for the DT — K-ntznt signal, we got the following values: SDZ > 14,
DIP < 35um, PK > 0.3 and SIGM A > 2. The resulting spectrum for data
events is shown in figure 16(a). We obtained 2810+58 D — K~nt7* events,
corresponding to an statistical significance of 48 stardard deviations.

Using the same set of cuts for a D* — K~7t7t Monte Carlo sample, we
found 2116 + 47 events for the signal. Since originally 100,000 events were
produced, the overall efficiency for this set of cuts is 2.1%. From this number,
we obtain the number of D* — K~ n*nr" data events produced for 15% of
E-791 data: about 140, 000.
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Figure 16: D* — K~ ntx™* signal with SDZ > 14, DIP < 35um, PK > 0.15
and SIGMA > 2.
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Reflections

Up to now, we have been analysing the D* — K-n*x*t channel, which is
the most abundant three body decay mode of the meson Dt. As we said
before, this channel is Cabibbo favored, the two couplings with the W boson
are proportional to the cosine of the Cabibbo angle.

Now, we’ll begin to see how an analysis can change when treating chan-
nels with lower statistics. In this case, the number of signal events is much
smaller and the combinatorial background level can make the observation of
the channel difficult. Besides, other charm decay modes, different from the
one we want to analyse, can interfere with the results - we call this effect the
“reflection” of one channel in the spectrum of another one of interest. This is
a very important source of background, as we’re going to see below.

The Singly Cabibbo Supressed Decay Dt — 7~ ntnt

Figure 17: First order diagrams of Dt — 7~x*7+ decay.

The decay mode D* — n~7tznt is singly Cabibbo supressed, that is,
the amplitude is proportional to sinf. as can be seen in figure 17. In a
qualitative approach, the ratio between the branching ratio of this channel
and Dt — K~7n"r* may be naively expected to be of the order of the ra-
tio sin?6./cos®d, ~ 1/20. In fact, the measured DT — 7 xt7+ BR is
(3.240.6) x 1072 or 30 times smaller than DT — K~-ntnt BR, a little lower
than the above value. If we don’t take into account the experimental efficiency
difference for these two channels, we can say that the D* — 7~ 7*7* signal
will be about 30 times smaller than D* — K~n 7t signal.

Since the Cerenkov detectors are not perfect, it is possible that they misiden-
tify a kaon as a pion. Let’s imagine that, for a given value of the Cerenkov
probability, the possibility of misidentifying a kaon as a pion is about 10%.
In this case, for each real D* — 7~ 7txt decay, there will be three events
of D¥ — K~7nt7n* where the kaon was identified as pion. These events will
appear in the 7~7*t#x* spectrum.

But, for D* — K~n"n* | since the faked pion is actually a kaon, we would
be attributing the mass of a pion to a kaon, as can be seen in the expression
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for the #~7T7* invariant mass:
Mp = mi+2mg+ 2P+ m2) V(P + m3)'
2(P2 +m2)Y2 (P2, + m2)Y/2 + 2(P2 + m2)Y/2(P2, + m2)"/>~

2P;.Pyy — 2P . Pry — 2P,y . Py .

(12)
This change will produce a shift of the D¥ — K~ntn™ events - they will not
be centered around D' mass anymore, but will be reflected in the 77tz +
spectrum below the Dt mass, since the pion mass is less than the kaon mass. In
figure 18 we show the 7~ 77" spectrum®. We clearly see the D — 7—nt7t
signal centered at the D* mass; there is also the Cabibbo favored decay D —
7-ntwt around 1.97 GeV, which is the D} mass, and we see near 1.75 GeV
a broad peak, which comes from D* — K-7n+n* decays.
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Figure 18: 7~ nt7*+ Mass spectrum.

To extract quantitative information from the 7#~nT7™ spectrum, like the
numbers of D* — 7~ 77t and D} — 7~nt7rT events, we have to fit the data
to a sum of functions. Thus, we have to parametrize also the D* — K—ngtnt
reflection. To do this, we need two kinds of informations: the position and
shape of the reflection and the expected number of reflected events.

The position of the reflection we can get from Monte Carlo, since it is
a clean sample. The Dt — K~nTn* events are projected in the 7~ n*7™*
spectrum, that is, we atribute to the kaon candidate the pion mass. The

resulting spectrum is shown in figure 19(a). To fit the distribution, we used a
modified gaussian:

—B%(z) x (z — %)*

202 ’

F(x,n,T,0) = Nkexp

B(z) = =2 (13)

5This spectrum was obtained with an optimized set of cuts for this case, with other
variables which were not introduced before. The statistics is also different from the one we
were presenting for D* — K~ 7 xt - now we have about 40% of E-791 data sample.
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which has four parameters: the number of events N, the mass central value
Z, the width o and the parameter A, which provides the assymetric shape for
the reflection. The constant k¥ normalizes the modified gaussian to unity. The
last three parameters, after the fit, fix the shape and position of the reflection.

The second kind of information, the number of reflected events, is obtained
from real data by simply projecting the events in K~ 7+7* spectrum and fitting
the D* — K~nt7™ signal, as can be seen in figure 19(b). In this way, we get
N.

Now, we have the four parameters which characterize the DT — K-tz t
reflection. To fit the 7#~7n*#* histogram, we fix these parameters and also
add two gaussians for the contributions of the signals DT — 7~7t7* and
D} — n~x*7* and an exponential for the smooth background. The resulting
spectrum with the total fit function is shown in figure 20. From the fit results,
we got 190 £+ 18 events for the decay D — 7~n*7T and 132 £ 15 events of
Df - nm=ntnt.
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Figure 19: (a) 77" 7t Spectrum for MC D* — K~n " events ; (b) D* —
K~n*txt Events cointained in w77 spectrum.
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Figure 20: #~n*7* Spectrum with the fit function.
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Figure 21: First order diagrams of Dt — K*rt 71~ decay.

The Doubly Cabibbo Supressed Decay DT — K*ntr~

In general, the smaller the branching ratio of the channel, the larger is the num-
ber of expected reflections on its spectrum and thus more complex is the anal-
ysis involved. This is precisely what happens for the decay D* — K*ntn—,
with double Cabibbo supression, which were recently observed [6, 7]. The two
couplings with the W boson have amplitudes proportional to the sine of the
Cabibbo angle, as can be seen in figure 21.

In the study performed using E-791 data [7], the most important reflections
detected in KTnTn~ spectrum were four three body channels, two of them
Singly Cabibbo Supressed decays of D™:

-Dt - K—gtgt
-Dt - K-Ktgt
-Dt sttt

-Df - K-K*rn*

In figure 22(a) we show the contributions of each of these reflections (po-
sition, shape and number of events) in the K*7¥7~ spectrum with the full
E971 data sample. We can clearly see that there are two other peaks in this
spectrum: one around 1.87 GeV, which corresponds to the D* — Ktgtg—
decay and the other around 1.97 GeV, corresponding to the singly Cabibbo
supressed decay D — K*nxt7~. In figure 22(b) we show the same spectrum
with the final fit function, which is the sum of the above contributions with
two gaussians functions for D and D} signals.

CONCLUSIONS

In this course, we presented in an introductory way the main elements of an
analysis of experimental data for the observation of charm particle decays in
fixed target experiments. As we said in the Introduction, the method used
here is quite general, many of the concepts can be applied for collider experi-
ments or non-charm decays. In fact, except for specific topics like the detector
and the variables used to select the events, the other concepts discussed like
invariant mass, background, statistical significance, Monte Carlo, efficiency,
cuts optimization and reflections are used by different experiments and in any
kind of accelerator and detector.
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Figure 22: (a) K*7Tn~ Spectrum with the following contributions: 1- Back-
ground, 2- D* — K- K*zt, 3- D} - K-K*rt, 4- D* — K—n*tnt | 5-
Dt —» n=n*xt; (b) Ktrtn~ Spectrum with the final fit function.

However, there is a number of different techniques which were not discussed
here. To present all of them would be an impossible task, because in high
energy physics each experiment and each observation has its own particula-
rities. In fact, in general an experimental research can bring not only a new
physical measurement or a better statistical significance of the result but also
the originality of the method employed on the observation. This can be done
in many distint ways, introducing new cuts, defining new variables, creating
new constraints, etc. The important point here is that, to begin an analysis,
it is necessary to know the physics involved, how does the detector work, and
all possible knowlegde about similar analysis made in other experiments.

It is important to stress that even the subjects presented here were not
exhaustely discussed. For those who want to have more information on data
analysis on High Energy Physics, we recomend books like the ones listed in
reference [8].
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