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Foreword

The idea of making these Lecture Notes had a series of motivations, associated
to four different occasions. The starting point was a very simplified Mini-Course,
lectured by A. G. Gomes, around 1981 at the Solid State Physics Department of the
Universidade Federal do Rio do Janeiro, on basic aspects of metal physics.

Later on, these previous notes together with some introduced improvements,
were used to give a Metal Physics Course in the Centro Brasileiro de Pesquisas F́ısicas,
around 1982. The main motivation at that moment were to present a series of the-
oretical lectures, emphasizing the close connection to experimental facts. In that
occasion it was born the idea of working, in close collaboration with students in ex-
perimental Solid State Physics at the Universidade Federal do Rio Grande do Sul.
The idea was to introduce, in their scientific formation, a clear difference between the
use by experimental people, of theory and formalism. Such a clear distinction, turns
out to be essential for a good development of the experimental work.

During a three years stay in the Institute of Physics of the Universidade Federal
do Rio Grande do Sul, at least three PhD thesis were supervised and the beginning
of the work started always with the study of the 1982 version of these Metal Physics
Lectures. It became very clear in this supervising work, in particular with C. M.
da Silva and R. L. Sommer, that perfectioning the 1982 version of these Lectures
were fundamental. Concerning the discussed subjects, it turned out the need of
two distinct series of Lectures. One on Metal Physics, including recent results and
methods like the Recursive and LMTO. The other important series of Lectures should
consider the macroscopic properties and microscopic theories of Magnetism. In this
third occasion, besides their thesis work, the development of these Lectures Notes
constituted part of the work of C. M. da Silva and R. L. Sommer.

The idea of producing these Notes, in a more complete form and in the most
self contained way as possible, was devised in order to simplify the beginning of the
work of young students. This fourth and the more important step is associated to
the decision of the Physics Department of the Universidade Federal de Santa Maria,
to start a MSc degree.

The absence of specific standard text books, necessary for the future research
of the MSc starting students, pushed us, C. M. da Silva, R. L. Sommer and A. G.
Gomes, to increase substantially the content of these Lectures and presented in the
form of two complementary text books.

Having ensured the strategical support of the Centro Brasileiro de Pesquisas
F́ısicas, through the Monografias de F́isica, made available to the authors in 1992,
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this work has been started. In the present volume, considering the Physics of Metallic
Systems, the authors tried to overview the basic fundamental ideas and also recent
aspects of modern electronic structure theory. Together with the magnetism theory
volume, we hope that the students can have a basic text to start their research work.

The authors would like to thank Prof. Delmar Brandão, Professor of Physics
at the Instituto de F́ısica of the Universidade Federal do Rio Grande do Sul, for a
detailed and careful revision of the manuscript. One of the authors (AGG) would
like to thank the CNPq for a grant covering his travel expenses to Santa Maria. The
authors thank the Universidade Federal de Santa Maria for the continuous support
during the time these notes are written.
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Chapter 1

GENERAL CONSIDERATIONS

The physics of metallic materials is an extensive subject. In this course we have tried
to synthesize some aspects in these series of lectures. We started in a very fundamental
level discussing the elements of the description of the electronic structure, since this
course is expected to be self-contained.

As it will be stressed in all chapters a great emphasis will be given in the
description of the experimental aspects and for that we follow closely the classification
of the metals as given by the Periodic Table. Examples are the following three large
groups. In the first group let us quote the transition ferromagnetic metals like Fe,
Co and Ni; paramagnetic metals like Pd and Pt; the noble metals Cu, Ag and Au;
and the s − p metals like Cd, In and Sb. The rare earth group is subdivided into
two subgroups: the stable rare earths like Gd, Tb and Dy and the unstable ones like
Ce, Eu and Sm. Finally the third group is composed by the actinide metals which
in certain aspects exhibit close similarities with the anomalous rare earths. These
are the pure metals and now we should mention typical examples of their alloys or
intermetallics. Since this is a very extensive subject, we will restrict ourselves to
examples close to our experience in the description of their electronic structure.

Among the transition metal intermetallics let us quote the Laves phase ones
and the Heusler alloys, thus materials exhibiting a two sub lattice structure. Ex-
amples of transition metal intermetallics are ZrFe2, Y Fe2, HfFe2, LuFe2. These
materials are ferrimagnetic, since besides the large magnetic moment at the Fe atoms
of the B sub lattice, a small moment anti parallel to the total magnetization, exists
in the A sub lattice, as detected by neutron diffraction techniques. In contrast to
these ferrimagnetic materials, Y Co2, Y Al2 are paramagnetic materials, requiring the
application of external magnetic fields to produce a non zero magnetization. The
Laves phase structure produces a very rich collection of materials since the atoms at
the A sub lattice can also be rare earths. Compounds like GdAl2, GdCo2, GdFe2, are
examples of these materials, again with very interesting magnetic properties. Mostly
interesting, this Laves structure has selective properties in producing alloys or more
precisely, pseudo binary compounds. The term selective means that impurities can be
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introduced only in a preferred sub lattice. Examples are Al or Si impurities dissolved
in the B sub lattice, replacing Fe for example. In general these compounds have the
general form (A1−xA′

x)(B1−yB′
y)2, where B and B′ are transition metals and A, A′

can be transition metals or rare earths. This shows the great richness of these com-
pounds with a large variety of electronic structures and magnetic properties. Along
these lectures, such materials will be quoted as examples for the applications of the
theories presented.

Another class of compounds can be mentioned is the Heusler alloys. Exam-
ples of these compounds, which exhibit a large list of possibilities are among the most
classical are Co2MnAl and Pd2MnAl. These materials show almost all possible com-
binations of elements: transition metals, rare earths, actinides and sp metals. Then
the models and theories presented below will certainly be useful in the description of
this collection of compounds.

In the first chapter we follow closely the very simple Mott’s version of the Tight
Binding (TB) description of the electronic structure, starting with a non degenerate
picture. The so derived bands are supposed to be non hybridized sp, d, or f character.
This provides a first description of the pure metals. After that, the Friedel’s version of
the TB approximation is presented including degeneracy, and this is very important to
describe pure transition metals and actinides. Next we introduce some fundamental
concepts like densities of states, the imaginary part theorem and Friedel’s version of
the cohesion energy of metals. In particular the important theorem associating the
maximum of the cohesive energy to the half of the 3d transition series is presented
together with the concept of bonding and anti-bonding states, as borrowed from
chemistry and applied to itinerant states.

The study of the electronic structure has been made, among other ways, by
probing the electron states introducing impurities in the dilute limit. Historically
this study started with normal metal - normal metal alloys, and after that, involving
transition metal alloys. This order was dictated mainly by metallurgical problems
suggested by technological activities.

The question of a dilute impurity in a TB host was firstly considered by Slater
and Koster. Historically these impurity problems were considered also by Friedel
starting from a free electron gas and describing the impurity perturbation through a
square well potential. In these lectures however we give more emphasis to the Slater-
Koster (SK) problem in order to establish notation and to introduce the solution
of Dyson’s equation for a localized potential. We discuss also the cases where the
impurity potential is constituted of two terms, the solution of the problem involving
the first term being exactly known. With this formalism, the effect of an extended
potential with low strengths of the ”wings”, can be made using the Born series.
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The important concepts introduced by Friedel, like the phase shifts, as applied
to the impurity problem and the sum rule connecting these to the excess charge, are
then introduced within the SK picture. The existence of bound states above or
below the conduction band, their amplitude at the impurity site or outside it, their
connection to the electronic structure of the host metal are also discussed. These
topics give a rather general and complete view of the SK problem.

Starting again from the free electron gas and a localized potential well, Friedel
was also able to introduce, together with the phase shifts, a particular behavior
of the l = 2 phase shift. The resonating level was then introduced in the dilute
impurity scenario, his properties studied and applied to transition impurities in simple
hosts. Later the same problem was considered by P. W. Anderson, using the Green’s
function method. The possibility of magnetic moment formation was then discussed
within the one-electron Hartree-Fock approximation. Later the same problem was
reconsidered by Moriya, extending the way of treating the electronic structure of the
host. We thus call the Section dedicated to this problem the Friedel-Anderson-Moriya
problem. Still later this formalism was applied to the case of rare earths by Coqblin
and Blandin, following the ideas developed by Rocher, which in turn were based in
Friedel’s description of these rare earths.

The reason for beginning with an extensive discussion of the SK problem is
to provide the mathematical basis to the deal with a Green’s function approach for
these two problems. Finally the third problem considered in this dilute limit is how
to extend the SK problem to transition metal hosts including explicitly the existence
of s− d bands in a non hybridized limit. The scattering problem involves now three
matrix elements, namely the d − d, the s − s and the s − d or d − s elements. The
solution is again very similar to the original SK problem, but in terms of effective
matrix elements which are expressed in terms of the starting ones and the suitable
resolvents describing the electron propagation in unhybridized bands.

In a later Section the dilute limit is extended to consider the case of concen-
trated alloys of A and B elements. The Coherent Potential Approximation (CPA)
enables one to interpolate the electronic structure from pure elements to concentrated
alloys. Two cases are considered: the simplest diagonal disorder (only the values of
the energy band centers are different for A and B metals) and the off-diagonal case
including different band widths.

In the next Chapter we consider the magnetic properties of the pure met-
als for which the electronic structure was presented in the first chapter. We start
discussing the simplest case namely that of the localized states carrying a magnetic
moment. Two different classes are considered separately: the metallic cases and the
insulating ones. We firstly derived the Zener interaction between the localized and
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itinerant spins and emphasize the Pauli principle origin of the exchange interaction.
Next we derive the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between lo-
calized magnetic moments. We then turn to the opposite limit of itinerant electrons,
including the Pauli principle and the Coulomb interaction among pairs of electrons.
We derived the so-called Hubbard Hamiltonian and then discussed the Hartree-Fock
approximation. We recover the same previous comments about the origin of the mag-
netic moment formation in the impurity problem case. Remarks are then made about
the difficulties involved in the solution of the Hubbard model due to the competition
between kinetic effects and the local electron-electron interaction. In that Chapter,
both in the derivation of the RKKY interaction and for applications of the itinerant
model, the important concept of generalized susceptibility is presented. This is the
response of an applied field at the site Ri, measured by the magnetization induced at
site Rj. In these cases we use the formulation introduced by Gautier.

In the next Chapter we generalize, via the CPA approximation, the impurity
description in alloys including the magnetic properties. It is shown in detail that
this approximation interpolates between pure metals A and B in these simple AB
alloys. Some remarks are also presented for the application of the CPA pseudo binary
compounds, where a two sub-lattice scenario is clearly identified. These remarks are
motivated by the Laves phase or Heusler compounds mentioned before.

We want to emphasize that up to this lecture the densities of states invoked in
the description of these materials in the dilute limit are model density of states. The
magnetic properties of the concentrated alloys can be discussed within the Hartree-
Fock approximation including only the spin dependence of the band centers, which in
turn are self-consistently determined in terms of the occupation numbers as extracted
from the perturbed densities of states. The entry data of all these calculations are
the host density of states, the total number of electrons and the Coulomb interaction
parameters. Clearly, the obtained results are model dependent, these parameters
being fitted to experimental data.

The one electron structure can however be determined in a quite independent
and rigorous way in terms of the crystalline structure and some TB parameters, as
introduced in the classical paper by Slater and Koster. Given these parameters, a
closed and well defined quantum mechanical problem determines the local density
of states, through the calculation of the resolvent function. A very general method
to solve this problem, the recursive or Lanczos method, is presented in the next
Chapter. Initially conceived to be applied for the atomic function TB method, these
calculations suffer from the drawbacks of the classical TB method.

Because of that, in the following Chapter we introduce the Linear Muffin
Tin Orbitals (LMTO) Method which after Andersen and Jepsen, provides a rigorous
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foundation for the TB approach, and its drawbacks are thus removed. With this
Chapter, the one electron view of these pure metals and alloys have been presented
in a quite completely way.

Some other problems must be considered separately due to their many body
character. These are the Kondo effect, the intermediary valence problem and finally
the heavy fermions and the exotic superconductivity. These are much more complex
problems and will be discussed only in a very simplified way in the last Chapter.



Chapter 2

ELEMENTARY DESCRIPTION OF THE ELECTRONIC
STRUCTURE

2.1 Tight binding: Mott’s formulation

First of all a brief recall of Bloch’s theorem is important. This theorem concerns the
motion of electrons in periodic potentials. Thus this theorem is useful to describe
pure materials, where translation invariance is present:

ψk(r) = µk(r)eikr; µk(r + a) = µk(r), (2.1)

Bloch theorem states that the µk(r) is a periodic function. We want to emphasize
that no degeneracy is present in this formulation, this being valid strictly only for s
states. Later on we will introduce explicitly degeneracy, for example, in the case of
d wave functions. Since we intent to describe a linear combination of atomic orbitals
(LCAO), let us first define Rλ the positions of the atoms in the lattice. Introduce
now φ(r − Rλ), the non degenerate atomic wave functions centered at the sites Rλ,
see fig. 2.1.

We adopt to the wave function, in this periodic lattice, the following combi-
nation:

ψk(r) =
1

N1/2

∑

λ

aλ(k)φ(r −Rλ), (2.2)

where we take for the coefficients the values aλ(k) = eikRλ and N is the number of

Figure 2.1 Atomic wave functions centered at sites Rλ.
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atoms. Let us verify that such combination satisfies Bloch’s theorem; in fact:

ψk(r) =
1

N1/2

∑

λ

eikre−ik(r−Rλ)φ(r −Rλ)

= eikr 1
N1/2

∑

λ

e−ik(r−Rλ)φ(r −Rλ). (2.3)

Note that the wave function obtained summing over λ is periodic, thus this function
correspond µk(r + a) = µk(r) in Bloch theorem. Then:

ψk(r) =
1

N1/2

∑

λ

eikRλφ(r −Rλ). (2.4)

Let now introduce the following hypothesis:

< φ(r −Rλ) | φ(r −Rλ′) >= δλλ′ , (2.5)

which implies:

< ψk | ψk >=
1
N

∑

λλ′
eik(Rλ−Rλ′ ) < λ|λ′ >= 1. (2.6)

The one electron periodic Hamiltonian is:

H = T + V(~r) (2.7)

where V9~r) is a periodic potential function and the kinetic energy operator is given
by:

T = − h̄2

2m
∇2. (2.8)

The expectation value of the Hamiltonian is then given by:

Ek =< ψk | H | ψk >, (2.9)

where
H | ψk >=

1
N1/2

∑

λ

eikRλH | φ(r −Rλ) > . (2.10)

Let rewrite the Hamiltonian as:

H = T + v(r −Rλ) + V(r)− v(r −Rλ), (2.11)

where v(r−Rλ) is the atomic potential as obtained in any Table for atomic functions,
illustrated in fig. 2.2.

Since v(r −Rλ) is the atomic potential one has:

(T + v(r −Rλ)) |φ(r −Rλ)〉 = E0 |φ(r −Rλ)〉 , (2.12)
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Figure 2.2 The atomic potential functions in the sites Rλ

this following from the atomic function construction. Thus the effect of acting the
Hamiltonian on the TB function, implies:

H |ψk〉 =
1

N1/2

∑

λ

eikRλE0 |φ(r −Rλ)〉+
1

N1/2

∑

λ

eikRλ (V(~r)− v) |φ(r −Rλ)〉 (2.13)

and the expectation value Ek becomes:

Ek = 〈ψk |H|ψk〉 = E0
1
N

∑

λλ′
eik(Rλ′−Rλ) 〈λ′|λ〉

+
1
N

∑

λλ′
eik(Rλ′−Rλ) 〈φ(r −Rλ′) |V(~r)− v|φ(r −Rλ)〉 (2.14)

Using (2.6), one gets:

Ek = E0 +
1
N

∑

λλ′
eik(Rλ−Rλ′ ) 〈φ(r −Rλ′) |V~r)− v|φ(r −Rλ)〉 . (2.15)

By geometry considerations Rλ′ = Rλ +∆Rλ′ , ∆Rλ′ being the vector connect-
ing the neighboring atoms. Using symmetry considerations the sum over λ can be
performed giving a factor N ; one finally gets:

Ek = E0 +
∑

λ′
eik∆Rλ′ 〈φ(r −∆Rλ′) |V(~r)− v|φ(r)〉 (2.16)

In figure 2.3 we illustrate the contribution to V(~r)− v, overlapping with the atomic
functions.

Introducing the following two terms with usual notation:

α = −
∫

φ∗(r) (V(r)− v(r)) φ(r)dr (2.17)

where we have considered the case ∆Rλ′ = 0, and

β = −
∫

φ∗(r −∆R0) (V(r)− v(r)) φ(r)dr (2.18)
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Figure 2.3 Wave functions and the V(~r)− v potentials

Figure 2.4 (a) Illustration of the three terms of the energy levels. (b) The Sketch of
the energy curves

where we only included the nearest neighbors. Usually one has α and β > 0. If ∆R0

is the position of any of next neighbors, one gets for the energy:

Ek = E0 − α− β
∑

∆R

eik∆R0 . (2.19)

If we apply this results to simple cubic lattice, one gets:

∆R0 ≡ (±a, 0, 0), (0,±a, 0), (0, 0,±a), (2.20)

in this way
Ek = E0 − α− 2β(coskxa + coskya + coskza). (2.21)

If the ~k = 0 the energy is given by

Ek = E0 − α− 6β, (2.22)

but if ~k = π
a~n, ~n is a vector with integer components, the energy is:

Ek = E0 − α + 6β. (2.23)

The effect of these three terms of (2.19) are illustrated in fig. 2.4a.
For small values of ki the cosine is cos kia ∼= 1− 1

2k
2
i a

2, one gets:

Ek = E0 − α− 2β
(

3− 1
2
a2(k2

x + k2
y + k2

z)
)

= E0 − α− 6β + βa2k2 (2.24)
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For ki near the π
a , cos(kia ∼= −

(

1− 1
2k

2
i a

2
)

. In the same form, one gets:

Ek = E0 − α− 2β
(

−3 +
1
2
a2(k2

x + k2
y + k2

z)
)

= E0 − α + 6β − βa2k2. (2.25)

A sketch of the constant energy curves for this simple case is shown if fig. 2.4b.
To illustrate the use of the simple Mott’s picture to understand four different

types of metals in the Periodic Table we have presented figures 2.5. In the left side
of the figures we present the expected form of the density of states. In figure 2.5a we
illustrate the situation for transition metals. In figure 2.5b the case of noble metals
is presented. As compared with the transition metal case, the main difference is the
complete filling of the d band. In figure 2.5c we show the case of sp metals. Again a
completely filled d band is shown, but the p band are explicitly shown. Finally in fig.
2.5d the case of normal rare earth is presented. Note the existence of the 4f localized
level at the low energy part of the figure.

2.2 Density of states

The definition of the density of states (DOS), N(ε), between ε and ε + dε is given by:

N(ε)dε =
Ω

(2π)3

∫

d~k, (2.26)

where the integrations are over ~k values such that the corresponding energies lie in the
interval between ε and ε+dε, and Ω is the unit cell volume. To obtain the traditional
form of the density of states, let us start from:

d~k = dSkdk⊥, (2.27)

where dSk and dk⊥ are indicated in figure 2.6. In this way:

dε = |∇kεk| dk⊥ −→ dk⊥ =
dε

|∇kεk|
→ d~k = dε

dSk

|∇kεk|
, (2.28)

then,

N(ε) =
Ω

(2π)3

∫

S(ε)

dSk

|∇kεk|
. (2.29)

Additional remarks on the density of states; let us start from:

∑

k

δ(ε− εk) =
Ω

(2π)3

∫

d~kδ(ε− εk), (2.30)
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Figure 2.5 Sketch of the energy bands for several materials
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Figure 2.6 Elementary volume for the calculation of the DOS

using the previous representation for the d~k,

∑

k

δ(ε− εk) =
Ω

(2π)3

∫

dε′
∫

S(ε′)

dSk

|∇kεk|
δ(ε− ε′)

=
∫

dε′δ(ε− ε′)
Ω

(2π)3

∫

S(ε′)

dSk

|∇kεk|ε′

=
Ω

(2π)3

∫

S(ε)

dSk

|∇kεk|ε
. (2.31)

Then we have verified that:

N(ε) =
∑

k

δ(ε− εk). (2.32)

The imaginary theorem Let us start from the classical Cauchy formula:

lim
δ→0+

1
ε− εk + iδ

= P
{ 1

ε− εk

}

− iπδ(ε− εk) (2.33)

where P is the principal part.
Let us first give the definition of the resolvent G(z). For a given complex

number z we define the resolvent by:

G(z) = (z −H)−1, (2.34)

where H is the Hamiltonian. Let |k > be an eigenstate of H, defined by:

H|k >= εk|k > . (2.35)

The states | k > are given, for example, by the TB approximation. The matrix
elements of G(z) are then:

< k | G(z) | k >=
1

z − εk
. (2.36)
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Let us take z = ε + iδ and let us make δ → 0+. Then

− 1
π

Im [TrkG(z)] = − 1
π

∑

k

Im < k | G(z) | k >= − 1
π

∑

k

Im
1

ε− εk + iδ
. (2.37)

Then,

− 1
π

Im [TrkG(z)] =
∑

k

δ(ε− εk) = N(ε). (2.38)

Thus the theorem, which from now on will be called the imaginary theorem valid for
an arbitrary resolvent G(z) with z = ε + iδ, connects the imaginary part of the trace
of G(z) with the density of states N(ε):

N(ε) = − 1
π

Im [TrkG(z)] . (2.39)

2.3 Tight-binding: Friedel’s formulation

The principles of the calculation are the following: (a) consider the superpositions
of the atomic potentials V ' ∑

i vi where vi is the Hartree potential centered at the
site i; (b) taking into account the degeneracy one should consider the atomic states
| im >,m = 1 . . . 2l + 1, for each site i; the angular momentum l takes the values
l = 0 (s), l = 1 (p), l = 2 (d), . . .. By construction these atomic states satisfy:

(T + vi) | im >= E0 | im > . (2.40)

The states {| im >} form a complete and orthonormal set,

< im | jm′ >= δijδmm′ . (2.41)

Let us search a solution for the problem in terms of an expansion in terms of the
atomic orbitals:

|ψ(ε) >=
∑

i,m
aim | im >, (2.42)

i corresponds to the sites and the degeneracy is given by m = 1, . . . 2l + 1, and ε is
the energy of the state. The condition for normalization, in this case is:

< ψ(ε) | ψ(ε) > =
∑

i,j

∑

m,m′
a∗imajm′ < im | jm′ >

=
∑

i,j

∑

m,m′
a∗imajm′δijδmm′ =

∑

i,m
|aim|2 = 1. (2.43)

In the matrix elements < im | vl | jm′ > we retain only contributions from
near neighbors, vl being the atomic potential at the site l. The crystalline potential
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V(~r) is taken as a superposition of atomic potentials V(~r) =
∑

l vl, as stated in (a).
The problem to be solved is

(T + V(~r)) | ψ(ε) >= ε | ψ(ε) >, (2.44)

or alternatively:

∑

i′m′
ai′m′ (T + V(~r)) |i′m′ >=

∑

i′m′
ai′m′ε | i′m′ >, (2.45)

Multiply in the left by < im | to get:

∑

i′m′
ai′m′ < im | (T + V(~r)) | i′m′ >= aimε. (2.46)

Now it remains to calculate < im | (T +
∑

l vl) | i′m′ >:
〈

im | T +
∑

l

vl | i′m′
〉

= < im | T + vi +
∑

l 6=i

vl | i′m′ >

= < im | T + vi | i′m′ > +
∑

l 6=i

< im | vl | i′m′ >

= E0δii′δmm′ +
∑

l 6=i

< im | vl | i′m′ > . (2.47)

From the matrix elements
∑

l 6=i < im | vl | i′m′ > we retain only the following terms:

δii′δmm′ < im|
∑

l 6=i

vl|im >= δii′δmm′αim (2.48)

and
βjm′

im =
∑

j 6=i

< im|vj|jm′ > . (2.49)

We get then the set of (2l + 1)N coupled linear equations, where N is the number of
sites:

(E(l)
0 + αim − ε)aim +

∑

m′

∑

j 6=i

βjm′

im ajm′ = 0 (2.50)

which is the general solution for our problem. Note that αim is the crystal field
contribution associated to the neighbor atoms to a site i, whereas βjm′

im is the tunneling
between sites i, j and states m and m′. Equating to zero the determinant of the
coefficients of the linear equations fixes the energy ε; a systematic way to solve the
equations like (2.50) is discussed in detail within the recursive method in Chapter 4.

Let us now calculate the expectation value of the energy:

E =
< ψ |H|ψ >
< ψ | ψ >

=< ψ | H | ψ >
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Figure 2.7 Bonding and anti-bonding orbitals

=
∑

i,i′

∑

mm′
< im | T + V(~r) | i′m′ > a∗imai′m′

=
∑

i,i′

∑

mm′
< im | T + vi′ +

∑

l 6=i′
vl | i′m′ > a∗imai′m′

=
∑

i,i′

∑

mm′
E0δii′δmm′a∗imai′m′ +

∑

ii′

∑

mm′

∑

l 6=i′
< im | vl | i′m′ > a∗imai′m′ (2.51)

= E0
∑

i,m
|aim|2 +

∑

i,m
| aim |2< im |

∑

l 6=i

vl|im > +
∑

imm′

∑

j 6=i

< im|vj|jm′ > a∗imajm.

Recalling the definitions of the crystal fields and the tunneling contribution, one
finally gets:

E = E0 +
∑

i,m
| aim|2αi,m +

∑

i,m

∑

j 6=i,m′
a∗imajm′βjm′

im . (2.52)

At this point let us introduce the bonding and anti-bonding orbitals, as illus-
trated in figure (2.7). For bonding orbitals the coefficients βjm

im are negative due to
the potential V(~r). On the contrary the anti-bonding states are positive due to the
combined effect of the potential V(~r) and the plus or minus signs of the angular lobes
of the function.

2.4 The cohesion energy: Friedel’s version

Let us start by defining the cohesion energy through the expression

Ec = nE0 − 2
∫ εf

εbot

εN(ε)dε. (2.53)

Here E0 is the atomic levels at infinite separation, n is the total number of electrons,
N(ε) the density of states per spin direction (then the factor 2 in the definition) and
εbot is the lowest energy of the band. We note that for infinite separation the density of
states reduces to a delta function at energy E0; the second term cancels then exactly
the first one, that means there is no cohesion. The Fermi level is determined through
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Figure 2.8 Constant density of states

the following equations:
n = 2

∫ εF

εbot

N(ε)dε. (2.54)

For a constant density of states, figure (2.8), of width ∆, one obtains for a band
normalized to 1, that N(ε) is equal to 1

∆ and the occupation number is given by:

n =
2
∆

εF , (2.55)

then εF = n∆
2 .

Using this result in the definition above one has:

Ec = nE0 − 2
∫ εF

εbot

ε
1
∆

dε = nE0 −
ε2
F

∆
, (2.56)

Neglecting crystal field effects we can take the center of the band at E0 = ∆/2:

Ec

∆
=

n
2
− n2

4
. (2.57)

We have then obtained the cohesion energy (in units of the band width) in terms of
the occupation number.

Several limits can be thus obtained: for an empty band (n = 0, Ec = 0), for
completely filed band, n = 2 again Ec = 0. Finally the maximum cohesion energy is
obtained for n = 1, that means a half filled band. This results suggest to interpret the
lowest half of band states to be of bonding nature and the second half of anti-bonding
nature, this is illustrated in fig. 2.9.

2.5 The Slater-Koster problem

The Slater-Koster (SK) problem concerns the calculation of the resolvent for a system
in presence of a localized perturbation. Applications of these results will be presented
in following paragraphs, in particular Section 2.7.
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Figure 2.9 Cohesion energy as a function of the occupation number.

First of all let us derive a general equation for the resolvent in presence of a
perturbation. The resolvent for a general Hamiltonian is given by:

G(z) = (z −H)−1. (2.58)

We start from H = H0 + V , where V is a general perturbation and H0 is the
Hamiltonian for the pure metal. The idea is to obtain an identity separating the
terms of the pure systems (resolvent of the pure system) and the perturbation. The
simple proof is:

G = (z −H)−1 = (z −H0 − V )−1 = (z −H0)−1(z −H0)(z −H0 − V )−1

= (z −H0)−1(z −H0 − V + V )(z −H0 − V )−1

= (z −H0)−1 [(z −H0 − V ) + V ] (z −H0 − V )−1

= (z −H0)−1 + (z −H0)−1V (z −H0 − V )−1. (2.59)

Defining g0 = (z −H0)−1, the above equation becomes:

G = g0 + g0V G. (2.60)

This is Dyson’s equation in a operator form.
Let define now the matrix elements associated to sites i and j, in a TB repre-

sentation:
Gij(z) =< i | 1

z −H0 − V
| j > (2.61)

and
gij(z) =< i | 1

z −H0
| j > . (2.62)

The Lipmann-Schwinger version of this equation can be written then

Gij(z) = gij(z)+ < i | gV G | j > . (2.63)
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Introducing the complete and orthonormal set
∑

l | l >< l |= 1, one obtains:

Gij(z) = gij(z) +
∑

l,m

< i | g | l >< l | V | m >< m | G | j >

= gij(z) +
∑

lm

gil(z)VlmGmj(z), (2.64)

this is the general solution of the perturbation problem using that basis set.
The resolvent for the pure metal

gij(z) =< i | 1
z −H0

| j >, (2.65)

is calculated by using of the non-degenerated TB method:

H0 | k >= εk | k > | k >=
∑

l

ei~k. ~Rl | l > . (2.66)

Introducing the complete set in the definition of gij(z), one has:

gij(z) =
∑

k

< i| 1
z −H0

|k >< k|j >=
∑

k

< i|k >< k|j >
z − εk

(2.67)

using
< i|k >= ei~k. ~Ri and < k|j >= e−i~k. ~Rj , (2.68)

one gets:

gij(z) =
∑

k

eik(Ri−Rj)

z − εk
. (2.69)

As a particular case, let us calculate the local propagator:

gii =
∑

k

1
z − εk

. (2.70)

Using the imaginary theorem, remembering that z = ε + iδ, one gets for the density
of states of the pure metals the following expression:

ρ(E) = − 1
π

Im (gii(E)) (2.71)

In the case of localized potential at the origin, let us come back to the general
equation (2.64) and take the particular case:

Vlm =< l |V |m >= δlmδl0V0, (2.72)

then

Gij(z) = gij(z) +
∑

l,m

gil(z)δlmδl0V0Gmj(z)

= gij(z) + gi0(z)V0G0j(z). (2.73)
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To solve this system of equations let us first take i = 0, then:

G0j(z) = g0j(z) + g00(z)V0G0j(z), (2.74)

or
[1− g00V0]G0j(z) = g0j(z), (2.75)

then:
G0j(z) =

1
1− V0g00(z)

g0j(z) (2.76)

and the final result is:

Gij(z) = gij(z) + gi0(z)
V0

1− V0g00(z)
g0j(z). (2.77)

Given a value for V0 ( its determination will be made in 2.7) and given the band
structure εk, and the result of (2.69) the resolvent Gij(z) is completely determined.
Using the imaginary theorem it is then possible to calculate the density of states as
perturbed by the potential V0. To make contact with the usual scattering theory let
us introduce the T matrix as defined by the formula:

T (z) =
V0

1− V0g00(z)
(2.78)

and consequently:
Gij(z) = gij(z) + gi0(z)T (z)g0j(z). (2.79)

To the case of the perturbation with two potentials, let us suppose that per-
turbation V can be written as a sum of two terms

V = V1 + V2. (2.80)

An interesting way to solve the problem is the following: introduce the resolvent g̃
which includes only the effect of the perturbation V1:

g̃ = g + gV1g̃ (2.81)

g̃ is then the complete solution for the scattering by the potential V1. The complete
resolvent should then satisfy:

G = g̃ + g̃V2G. (2.82)

To prove this statement from the first equation one gets:

(1− gV1)g̃ = g, (2.83)

multiply to the left the equation (2.82) by (1− gV1) to get:

(1− gV1)G = (1− gV1)g̃ + (1− gV1)g̃V2G, (2.84)
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using (2.83), one gets:
(1− gV1)G = g + gV2G, (2.85)

then:
G = g + g(V1 + V2)G. (2.86)

Let us show that from this equation it follows the previous (2.81) involving
only the potential V1 and the equation (2.82):

G = g + gV1G + gV2G; (1− gV1)G = g + gV2G. (2.87)

Defining:
g̃ = (1− gV1)−1g, (2.88)

or
(1− gV1)g̃ = g, (2.89)

alternatively
g̃ − gV1g̃ = g, (2.90)

from which we recover equation (2.81:

g̃ = g + gV1g̃ (2.91)

and from (2.87):
G = (1− gV1)−1g + (1− gV1)−1gV2G, (2.92)

or finally using (2.88), one comes back to equation (2.82)

G = g̃ + g̃V2G. (2.93)

An application of this theorem is suppose that V2 is a small perturbation and
also that one can exactly solve the equation

g̃ = g + gV1g̃. (2.94)

The complete equation for G can be solved formally within the Born approximation:

G = g̃ + g̃V2G ∼= g̃ + g̃V2g̃. (2.95)

Note that the Born series can be written as:

G = g̃ + g̃V2g̃ + g̃V2g̃V2g̃ . . . , (2.96)

the above approximation corresponds to stop the Born series at the first term, which
is justified in certain cases. A very concrete and useful applications of this theorem
is the scattering by a central potential and the next neighbor sites, as in moderately
concentrated systems and in view of applications to hyperfine interactions.
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2.5.1 More details about the SK problem and Friedel sum rule

In this paragraph we discuss the important point of the one electron impurity problem,
namely the Friedel’s rule. Let us start calculating the total change in electronic
density of states as a function of energy. Beginning with the general solution of the
SK problem for one localized potential at the origin, where the energy ω contains a
small positive imaginary part, (ω = ε + iδ):

Gij(ω) = gij(ω) + gi0(ω)
V0

1− V0g00(ω)
g0i(ω), (2.97)

in particular

∑

i
Gii(ω) =

∑

i
gii(ω) +

∑

i
gi0(ω)

V0

1− V0g00(ω)
g0i(ω). (2.98)

The variation in the density of states induced by the impurity as a function of the
energy ω can be calculated from:

∑

i
[Gii(ω)− gii(ω)] =

V0

1− V0g00(ω)

∑

i
gi0(ω)g0i(ω). (2.99)

Using the general result for the resolvent gij(ω) one has

gi0(ω) =
∑

k

eik.Ri

ω − εk
, end g0i(ω) =

∑

k′

e−ik′.Ri

ω − εk′
, (2.100)

this follows that:

∑

i
gi0(ω)g0i(ω) =

∑

k,k′

1
(ω − εk)(ω − εk′)

∑

i
ei(k−k′)Ri

=
∑

k,k′

1
(ω − εk)(ω − εk′)

δk,k′ =
∑

k

1
(ω − εk)2 . (2.101)

Remembering that:

g00(ω) =
∑

k

1
ω − εk

, (2.102)

then
∂
∂ω

g00(ω) = −
∑

k

1
(ω − εk)2 . (2.103)

In this way:
∑

i
gi0(ω)g0i(ω) = − ∂

∂ω
g00(ω), (2.104)

then:

∑

i
(Gii(ω)− gii(ω)) =

−V0
∂

∂ωg00(ω)
1− V0g00(ω)

=
∂
∂ω

log (1− V0g00(ω)) (2.105)
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It is easily proved from (2.33) that:

lim
δ→0+

g00(ω) = F00(ε)− iπρ(ε), (2.106)

where
F00(ε) = P

∫

dε′ρ(ε′)
1

ε− ε′
, (2.107)

is the Cauchy principal part and ρ(ω) is the pure metal density of states. Let us
define the complex number Z by:

Z = 1− V0g00 = ZR + iZI , (2.108)

where
ZR = 1− V0F00(ε) and ZI = πV0ρ(ε). (2.109)

Let us call Z1 = logZ and introduce Z1 = ZR
1 + iZI

1 . This implies that Z = eZ1 =
eZR

1 +iZI
1 = eZR

1 (cosZI
1 + isinZI

1 ) = ZR + iZI , consequently one obtain the following
results:

ZR = eZR
1 cos(ZI

1 ) and ZI = eZR
1 sin(ZI

1 ) (2.110)

and

tg(ZI
1 ) =

ZI

ZR =
πV0ρ(ε)

1− V0F00(ε)
. (2.111)

Finally:

ZI
1 = arctg

{

πV0ρ(ε)
1− V0F00(ε)

}

. (2.112)

On the other hand one knows from the imaginary theorem:

∆ρ(ε) = − 1
π

Im
∑

i
(Gii(ω)− gii(ω)) = − 1

π
Im

∂
∂ω

log (1− V0g00(ω))

= − 1
π

Im
∂
∂ω

log(Z). (2.113)

In the limδ→00 , one gets:

∆ρ(ε) = − 1
π

Im
∂
∂ε

log(Z) = − 1
π

Im
∂
∂ε

Z1, (2.114)

then:

∆ρ(ε) = − 1
π

∂ZI
1

∂ε
. (2.115)

In conclusion, the change in density of states is given by:

∆ρ(ε) = − 1
π

∂
∂ε

(

arctg
πV0ρ(ε)

1− V0F00(ε)

)

. (2.116)
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At this point we introduce the important concept of phase shift defined by:

δ(ε) = − 1
π
arctg

πV0ρ(ε)
1− V0F00(ε)

. (2.117)

With a convenient choice of the definition range of the arc tangent we can write

| δ(ε) |= 1
π
arctg

πV0ρ(ε)
1− V0F00(ε)

. (2.118)

From these phase shifts one finally gets the famous Friedel’s theorem:

∆ρ(ε) =
∂
∂ε

δ(ε). (2.119)

More explicitly indicating its dependence on the potential strength V0:

∆ρ(ε, V0) =
∂
∂ε

δ(ε, V0) (2.120)

This theorem states that, giving only the density of states ρ(ε), characterizing
the pure metal in consideration, it is possible to describe the perturbation intro-
duced by the impurities in the metal only by the knowledge of the phase shift (via
its derivative). See figure (2.10) for illustration, for several values of the potential
strength V0.

In figure (2.10b), the phase shift is shown as a function of the energy E and for
several strengths of the impurity potential. This curve is constructed using (2.118)
from the density of states and its Hilbert transform shown in figure (2.10a). From
these schematic results, using (2.119) we can describe qualitatively the effect on the
electronic structure of increasingly strong repulsive potential.

From figure (2.10b) one sees that, for impurity potentials less strong than
V crit

0 = 1/F (εt), the derivativ of the phase shift change sign as a function of the
energy. This corresponds physically to the piling-up of states at the high energy
side of the band, that means positive values of ∆ρ(ε). The negative values, at lower
energies correspond to the extracted states which a piled-up above.

However, if a bound state exists above the top of the band, a monotonous
behaviour of the phase shift is observed. The slope is always negative, meaning that
states are extracted from the band in order to build-up the bound state. This follows
from the completeness of the set of states: perturbed extended and localized.

2.5.2 Existence of bound states in the SK problem

Let us start from the general solution of the problem of one localized potential at the
origin. Again ω includes a small imaginary part. The resolvent is given by:

Gij(ω) = gij(ω) + gi0(ω)
V0

1− V0g00(ω)
g0i(ω), (2.121)
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Figure 2.10 (a) Density of states (ρ(ε)) and its Hilbert transform (F0(ε)). (b) Phase
shift as a function of the energy. (c) Derivative of the phase shift respect to energy.
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in the particular case of the same site

Gii(ω) = gii(ω) + gi0(ω)
V0

1− V0g00(ω)
g0i(ω). (2.122)

For ω values outside the unperturbed band, the imaginary part of gii(ω) vanishes
according with (2.71). We thus discuss, for these energies, the following propagator:

Gii(ω) = gi0(ω)
V0

1− V0g00(ω)
g0i(ω). (2.123)

Let us start from gii(ω) in the limit δ ← 0+:

gii(ω) = P
∫

dε′
ρ(ε′)
ε− ε′

− iπρ(ε) = F00(ε)− iπρ(ε). (2.124)

For the considered energies since the density of states vanishes, one has: g00(ω) =
F00(ε). Consequently 1− V00F00(ε) may vanish for a given energy εbs, outside of the
electron band.

Consider a metal with a band width 2∆ and suppose that ω is higher than
the energy of the top of the band (or conversely lower than the botton). Let us study
the properties of the following general propagator:

Gii(ω) =
V0gi0(ω)g0i(ω)
1− V0F00(ε)

(2.125)

Let us first consider the case of the resolvent at the origin:

G00(ω) =
V0g2

00(ω)
1− V0F00(ε)

=
V0F 2

00(ε)
1− V0F00(ε)

. (2.126)

For energies close to εbs it is possible to write

G00(ε) =
V0F 2

00(ε)
1− V0F00(ε)

=
A

ε− εbs
. (2.127)

The value of A, the amplitude at the origin for the propagator, is given by:

A00 = lim
ε→εbs

(ε− εbs)V0F 2
00(ε)

1− V0F00(ε)
. (2.128)

Using L’Hospital rule one finally gets:

A00 =
F 2

00
∣

∣

∣

∂F00
∂ε

∣

∣

∣

εbs

. (2.129)

The amplitude of the bound state at the origin is then easily calculated in terms of
the band quantities. The next step is to prove that the total amplitude of the bound
state including all sites is one, that is the bound state is normalized.
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Let us come back to equation (2.125) and sum over all sites i

∑

i
Gii =

V0

1− V0g00

∑

i
gi0g0i =

−V0∂g00/∂ω
1− V0g00(ω)

=
−V0∂F00(ε)/∂ε
1− V0F00(ε)(ε)

. (2.130)

Again we study the bahaviour of
∑

i Gii near the bound state energy, and similarly
to the case of the origin we write:

∑

i
Aii = lim

ε→εbs
−

(ε− εbs)V0
∂F00
∂ε

1− V0F00
. (2.131)

Using again L’Hospital, one gets:
∑

i
Aii = 1, (2.132)

thus the bound state is normalized, as we indeed expected.
For a general site i, one gets:

Gii =
V0g0igi0

1− V0F00
. (2.133)

Using the general formula for g0i one has:

g0i =
∑

k

e−ik.Ri

ω − εk
=

∑

k

eik.Ri

ω − εk
=

Ω
(2π)3

∫

d~k
e−ik.Ri

ω − εk
, (2.134)

also

g0i =
Ω

(2π)3

∫

dε′
∫

S(ε′)

dSk

| ∇kεk |
eik.Ri

ω − ε′
=

∫

dε′
1

ω − ε′
Ω

(2π)3

∫

S(ε′)

dSkeik.Ri

| ∇kεk |
. (2.135)

This suggests the definition of a “generalized density of states ”:

ρ(ε′, Ri) =
Ω

(2π)3

∫

S(ε′)

dSkeik.Ri

| ∇kεk |
, (2.136)

then
gi0 =

∫ dε′ρ(ε′, Ri)
ω − ε′

.

Introducing the small imaginary part(ω = ε + iδ), one has:

gi0(ω) = P
∫ dε′ρ(ε′, Ri)

ε− ε′
− iπρ(ε, Ri)

= F (ε, Ri)− iπρ(ε, Ri). (2.137)

For energies larger than the top of the band it is reasonable to take ρ(ε, Ri) ∼= 0. One
gets for the Gii amplitude (like in (2.127) to (2.129):

Aii =
V0F 2(ε, Ri)
−V0

∂F00
∂ε

=
F 2(ε, Ri)

∣

∣

∣

∂F00
∂ε

∣

∣

∣

. (2.138)

Again the amplitude of the bound state at the general site i can be calculated provided
one can perform the integration in (2.136).
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2.6 The Friedel-Anderson-Moriya model

2.6.1 The classical version

In order to give the first approach to the magnetism of impurities in metals, let us
start with the classical Friedel-Anderson-Moriya model. The advantage of this picture
is that two kinds of states are present: the localized states in space and energy, the
conduction states and mixing between them. This contrasts with the previously
discussed SK model where only itinerant states were present and the magnetism is
associated to spin dependent scattering at the impurity site.

The ingredients of this model are:
i) The free electron gas, usually s or sp states describing a simple metal like

Al or Cu. This subsystem is described by the Hamiltonian:

H =
∑

i,j,σ
Tijc+

iσcjσ, (2.139)

where c+
iσ (cjσ) are the creation (annihilation) operators for electron in sites i and j

respectively and Tij is the hopping between this sites, corresponding to an energy band
εk. For such system the resolvent gij is given by (2.69, gij(ω) =

∑

k

(

eik.(Ri−Rj)/ω − εk

)

.
This resolvent is supposed to be known from the beginning.

ii) The impurity introduces a localized level that we call hereafter a d state,
and this is described by the following Hamiltonian:

Himp =
∑

σ
εdd+

0σd0σ + Uddn
(d)
0↑ n(d)

0↓ . (2.140)

In this Hamiltonian d+
0σ and d0σ are respectively the creates/annihilates operators

of the one electron in the localized d states at the origin; the position in energy
of the localized level is given by εd; Udd corresponds to the Coulomb interaction
between electrons at the same site. This localized Hamiltonian, involving a electron-
electron interaction can be solved exactly only in the limit where the hybridization
with conducting states is completely disregarded. The simplest approximation one
can make is to use the Hartree-Fock approximation:

Himp
∼=

∑

σ
εdd+

0σd0σ + Udd

〈

n(d)
0↑

〉

n(d)
0↓ + Udd

〈

n(d)
0↓

〉

n(d)
0↑

=
∑

σ

(

εdd+
0σd0σ + Udd < n(d)

0−σ > n(d)
0σ

)

. (2.141)

Let us introduce the Hartree-Fock renormalized energy of the d level:

εdσ = εd + Udd < n(d)
0−σ >, (2.142)

then approximately:
Himp

∼=
∑

σ
εdσd+

0σd0σ. (2.143)
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iii) Let us introduce finally the possibility of mixing the localized states with
the conduction states; we thus take the hybridization term:

Hhib =
∑

σ
(Vcdc+

0σd0σ + Vdcd+
0σc0σ). (2.144)

Then the Anderson Hamiltonian in its one electron version can be written:

H =
∑

i,j,σ
Tijc+

iσciσ +
∑

σ
εdσd+

0σd0σ +
∑

σ
(Vcdc+

0σd0σ + Vdcd+
0σc0σ). (2.145)

The Hartree-Fock approximation reduced the complex Anderson Hamiltonian to a
one electron problem. We can introduce alternatively a state vector representation
for the itinerant and localized states instead of creation and annihilation operators.
This is

H =
∑

i,j,σ
Tij | ciσ >< cjσ | +

∑

σ
εdσ | d0σ >< d0σ | +

∑

σ
(Vcd | c0σ >< d0σ | +Vdc | d0σ >< c0σ |). (2.146)

The general Dyson equation can be again invoked to calculate the complete
problem; one has:

G = g + gV G. (2.147)

Contrary to the SK problem now we have matrix elements between localized states
d and the itinerant ones c. For the pure metal gcd

ij = gdc
ij = 0, since there is no

hybridization between d and c states in the pure metal. Therefore:

Gdd
00 =< d0 | G | d0 >= gdd

00+ < d0 | gV G|d0 >, (2.148)

where
gdd
00 =< d0 |

1
ω −Himp

| d0 >=
1

ω − εdσ
. (2.149)

The last term for Gdd
00 can be transformed introducing the unit operator:

< d0 | gVG | d0 >=< d0 | g | d0 >< d0 | V | c0 >< c0 | G | d0 >, (2.150)

since the mixing potential V has only matrix elements between d and c states. We
get then:

Gdd
00(ω) = gdd

00(ω) + gdd
00(ω)VdcGcd

00(ω). (2.151)

The hybridization has introduced a new matrix element for the resolvent, namely the
last one, it is then necessary to obtain this new element in terms of the diagonal ones.
To do that, again we introduce the unit operator to get:

Gcd
00(ω) =< c0 | g | d0 > + < c0 | g | c0 >< c0 | V | d0 >< d0 | G | d0 >, (2.152)
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the first term of the right hand site is equal to zero in the absence of hybridization
in the pure host, one then gets:

Gcd
00(ω) = gcc

00(ω)VcdGdd
00(ω). (2.153)

Recall the resolvent for the pure metal:

gcc
ij (ω) =

∑

k

eik(Ri−Rj)

ω − εk
.

Combining these equations one has:

Gdd
00(ω) = gdd

00(ω) + gdd
00(ω) | Vcd |2 gcc

00(ω)Gdd
00(ω)

=
gdd
00(ω)

1− gdd
00(ω) | Vcd |2 gcc

00(ω)
=

1
ω − εdσ− | Vcd |2 gcc

00(ω)
. (2.154)

In terms of the band structure εk for the conduction states c one has:

gcc
00(ω) =

∑

k

1
ω − εk

.

In summary: the dd resolvent is given by:

Gdd
00σ(ω) =

1
ω − εdσ− | Vcd |2 gcc

00(ω)
. (2.155)

From this equation we can extract all the relevant information for the localized d
state. Let us now proceed to determine the resolvent Gcc

ij (ω). Again we start from
Dyson’s equation and introduce the unit operator; one gets then:

Gcc
ij (ω) = < ci | g | cj > + < ci | gVG | cj >

= < ci | g | cj > + < ci | g | c0 > Vcd < d0 | G | cj >, (2.156)

or
Gcc

ij (ω) = gcc
ij (ω) + gcc

i0(ω)VcdGds
0j(ω). (2.157)

Again a new matrix element is generated by ds hybridization namely Gds
0j(ω). Intro-

ducing the unit operator one has:

Gds
0j(ω) =< d0 | g | cj > + < d0 | g | d0 >< c0 | G | cj >, (2.158)

or
Gds

ij (ω) = gdd
00(ω)VdcGcc

0j(ω). (2.159)

Combining these equations one obtains:

Gcc
ij (ω) = gcc

ij (ω) + gcc
i0(ω) | Vcd |2 gdd

00(ω)Gcc
0j(ω). (2.160)
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In a quite similar way to the SK problem we first take site i at the origin, obtaining:

Gcc
0j(ω) = gcc

0j(ω) + gcc
00(ω) | Vcd |2 gdd

00(ω)Gcc
0j(ω), (2.161)

or

Gcc
0j(ω) =

gcc
0j(ω)

1− gdd
00(ω) | Vcd |2 gcc

00(ω)
. (2.162)

Then the complete solution for the conduction electron resolvent is:

Gcc
ijσ(ω) = gcc

ij (ω) + gcc
i0(ω)

| Vcd |2

ω − εdσ− | Vcd |2 gcc
00(ω)

gcc
0j(ω). (2.163)

This equation together with the result for Gdd
ijσ are the complete and exact solution

within Hartree-Fock approximation of the Friedel-Anderson-Moriya model.

2.6.2 More about Anderson model

In order to obtain a more systematic way to fix the parameters involved in the An-
derson model, is is necessary to know in detail the occupation number of the local
state and the changes in the conduction bands as induced by the hybridization. The
following results can be easily obtained from the resolvent matrix elements:

Gdd
00σ(ω) =

1
ω − εdσ− | Vcd |2 gcc

00(ω)
(2.164)

and

Gcc
ijσ(ω) = gcc

ij (ω) + gcc
i0(ω)

| Vcd |2

ω − εdσ− | Vcd |2 gcc
00(ω)

gcc
0j(ω). (2.165)

Firstly we will discuss a sum rule in the same way as in the SK problem. To do this
we begin in the above equation with i = j:

∑

i
(Gcc

iiσ(ω)− gcc
ii (ω)) =

| Vcd |2

ω − εdσ− | Vcd |2 gcc
00(ω)

∑

i
gcc

i0(ω)gcc
0i(ω)

=
− | Vcd |2 ∂gcc

00
∂ω

ω − εdσ− | Vcd |2 gcc
00(ω)

=
1− | Vcd |2 ∂gcc

00
∂ω − 1

ω − εdσ− | Vcd |2 gcc
00(ω)

. (2.166)

In this way:

∑

i

(

Gcc
ii (ω)− gcc

ii (ω)
)

=
∂
∂ω

log
(

ω − εdσ− | Vcd |2 gcc
00(ω)

)

− 1
ω − εdσ− | Vcd |2 gcc

00(ω)
. (2.167)

This result combining with (2.164) implies in the first sum rule:

Gdd
00σ(ω) +

∑

i

(

Gcc
iiσ(ω)− gcc

ii (ω)
)

=
∂
∂ω

log
(

ω − εdσ− | Vcd |2 gcc
00(ω)

)

. (2.168)
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The first term describe the density of states associated to the d hump, the second
term is the variation of the density of states in the conduction states as a consequence
of the hybridization with the d level. Using the imaginary theorem, one gets:

∆ρσ(ε) =
∂
∂ε

δσ(ε), (2.169)

where

δσ(ε) =
1
π

arctg
(

π | Vcd |2 ρc(ε)
ε− εdσ− | Vcd |2 F00(ε)

)

, (2.170)

in this case ∆ρ(ε) is the total variation of the density of states. Remembering that
εdσ = εd+Vddn

(d)
0−σ it is possible to fix εd given the number of d electrons introduced by

the impurity and via the self-consistent solution of the problem in the non magnetic
or magnetic cases.

2.6.3 The Breit-Wigner approximation in the Anderson model

The discussion above is made for a general density of states and the calculations are
necessarily of numerical nature. However a simpler calculation of analytical nature
can be made for a constant density of states for the host. Let us first introduce the
following hypothesis:

i) The conduction band has constant and wide density of states; this implies
in F0(ε) is approximately equal to zero.

ii) If F0(ε) ' 0 then is possible to disregard this function and its derivative.
In this conditions (gcc

00(ω) ' −iπρ(ε)), one gets:

Gdd
00σ(ω) =

1
ω − εdσ + iπ | Vcd |2 ρ(ε)

(2.171)

In this equation ρ(ε) is assumed to be a constant function; we can then intro-
duce the width of the resonance (in the sense of Breit-Wigner)

∆ = π|Vcd|2ρ, (2.172)

then
Gdd

00σ(ω) =
1

ω − εdσ + i∆
= Gdd

00σ(ω) =
ω − εdσ − i∆

(ω − εdσ)2 + ∆2 . (2.173)

Using the imaginary theorem:

ρdσ(ε) = − 1
π

ImGdd
00σ(ε) =

1
π

∆
(ε− εdσ)2 + ∆2 . (2.174)

Clearly one can verify that
∫ +∞

−∞
dερdσ(ε) = 1 (2.175)
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Figure 2.11 The d “hump” density of states.

This simply means that the d hump contains exactly one electron, fig. 2.11. It remains
now to compute the change in the conduction band as induced by the hybridization.
The result of this calculation is known as the Anderson-Clogston theorem.

Let us start from the expression:

∑

i
Gcc

ii (ω)− gcc
ii (ω) =

− | Vcd |2 ∂gcc
00

∂ω

ω − εdσ− | Vcd |2 gcc
00

. (2.176)

Within the above hypothesis, that is constant density of states the ∂ρ
∂ω = 0. Also for

large conduction bands again we suppose F0(ε) ' 0 and consequently ∂F
∂ω ' 0. In

consequence the numerator vanishes and

∑

i
(Gcc

ii (ω)− gcc
ii (ω)) = 0. (2.177)

Then the theorem: for a constant density of states the effect of the hybridiza-
tion in modifying its density of states is zero. It should be emphasized that this
theorem in not valid for more complex bands like the Moriya band, the Kanamori
model bands or any linear interpolation of first principles bands.

Let us illustrate, for the constant host density of states, some solutions of the
Anderson model. We show three possibilities in fig. 2.12: the maximum value for the
magnetic moment, intermediate moment and non magnetic solution.

2.7 Example of a simple description of transition impurities in transition
hosts

Since we want to study transition impurities in transition hosts, the first step is to
adopt a convenient description of the magnetic properties of the hosts. In order
to simplify the formulation let us assume that the matrix is not magnetic like Zr,
Nb, Mo, Re, Rh and Pd. The difficulty of including electron-electron interaction in
the host is that at the impurity site it exists already a perturbation V0 that breaks
translational invariance. We restrict ourselves to that systems where the following
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Figure 2.12 Examples of solutions of the Anderson model

Hamiltonian (the Wolff-Clogston Hamiltonian) applies:

H =
∑

i,j,σ
T (d)

ij d+
iσdjσ + V0

∑

σ
d+

0σd0σ + ∆Un0↑n0↓, (2.178)

where ∆U is the local change in Coulomb interaction at the impurity site.
In this Hamiltonian only one band is considered, in other terms: since the

host is a transition metal, one has five identical sub bands. Using the Hartree-Fock
approximation, as it was done in the case of Anderson model, one gets:

HHF
∼=

∑

i,j,σ
T (d)

ij d+
iσdjσ + V0

∑

σ
d+

0σd0σ + ∆U
∑

σ
< n0−σ > n0σ, (2.179)

this is the well known Wolff-Clogston model.
The solution of this problem can be trivially obtained using the results of the

SK model. Introducing the localized potential at the origin given by:

V σ
0 = V0 + ∆U < n0−σ >, (2.180)

the problem reduces to:

HHF
∼=

∑

i,j,σ
T (d)

ij d+
iσdjσ +

∑

σ
V σ

0 d+
0σd0σ. (2.181)
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The solution is very simple and one gets:

Gσ
ij(ω) = gij(ω) + gi0(ω)

V σ
0

1− V σ
0 g00(ω)

g0j(ω). (2.182)

As before, we calculate now
∑

i(G
σ
ii − gii) and we obtain the Friedel rule generalized

to magnetic impurities:

∆ρσ(ε) =
∂
∂ε

δσ(ε). (2.183)

The generalized spin dependent phase shift is given by:

δσ(ε) = − 1
π

arctg
πV σ

0 ρ0(ε)
1− V σ

0 F0(ε)
, (2.184)

or more explicitly:

δσ(ε) = − 1
π

arctg
π(V0 + ∆U < n0−σ >)ρ0(ε)

1− (V0 + ∆U < n0−σ >)F0(ε)
. (2.185)

If we integrate Friedel rule up to the Fermi level, one obtains:

∆Z = δ↑(εF ) + δ↓(εF )

= − 5
π

arctg
π(V0 + ∆Un0↓)ρ0(εF )

1− (V0 + ∆Un0↓)F0(εF )
+

− 5
π
arctg

π(V0 + ∆Un0↑)ρ0(εF )
1− (V0 + ∆Un0↑)F0(εF )

. (2.186)

The factor 5 takes into account the degeneracy of the d band (five identical sub
bands). This equation in not enough to completely determine V0 as a function of
∆Z, since the occupation numbers n0σ are explicitly included in the screening sum
rule. It is important then to obtain an expression relating the occupation numbers
with the potential V σ

0 .
Starting from the general solution of the Wolff-Clogston model one calculates:

Gσ
00(ω) = g00(ω) + g00(ω)

V σ
0

1− V σ
0 g00(ω)

g00(ω)

= g00(ω)
(

1 +
V σ

0 g00(ω)
1− V σ

0 g00(ω)

)

, (2.187)

then
Gσ

00(ω) =
g00(ω)

1− V σ
0 g00(ω)

, (2.188)

using
g00(ε + iδ) = F0(ε)− iπρ0(ε), (2.189)
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one gets

Gσ
00(ε + iδ) =

F0(ε)− iπρ0(ε)
1− V σ

0 F0(ε) + iπV σ
0 ρ0(ε)

=
(1− V σ

0 F0)F0 − π2V σ
0 ρ2

0 − iπρ0

(1− V σ
0 F0)2 + (πV σ

0 ρ0)2 . (2.190)

Consequently (in the limit δ → 0+):

− 1
π

ImG00(ε + iδ) =
ρ0(ε)

( 1− V σ
0 F0(ε) )2 + ( πV σ

0 ρ0(ε) )2 . (2.191)

The total number of electrons with σ spin at the origin is given by:

n0σ = 5
∫ εF

εb

ρ0(ε)
( 1− V σ

0 F0(ε) )2 + ( πV σ
0 ρ0(ε) )2 dε. (2.192)

Clearly if one takes V σ
0 = 0 this implies that n0σ =

∫ εF
εb

dερ0(ε). This is the number of
electrons of the pure host; given the density of state ρ0(ε) one can extract the value
of the Fermi level. The paramagnetic solution (absence of magnetic moment at the
impurity sites) that is n0↑ = n0↓ = n̄0 is trivially obtained. In fact defining

V̄0 = V0 + ∆Un̄0, (2.193)

where n̄0 is not known from the beginning, from Friedel sum rule one gets:

∆Z = −10
π

arctg
πV̄0ρ0(εF )

1− V̄0F0(εF )
. (2.194)

Given the charge difference ∆Z and for a given density of states one gets a relation
between V0 and n̄0. Then from the equation for the occupation number at the ori-
gin one extracts another relation between V0 and n̄0 and this solves completely the
paramagnetic case.

The self consistent solution for the general case can be also obtained numeri-
cally. From equation (2.186) one can obtain, by imposing charge neutrality, V0↑ as a
function of V0↓. We can find a function f such that:

V0↑ = f(V0↓). (2.195)

From the definition of the Hartree-Fock potentials, one has:

V0↑ = V0 + ∆Un0↓ and V0↓ = V0 + ∆Un0↑. (2.196)

Subtracting these equations one obtains:

V0↑ − V0↓ = −∆U(n0↑ − n0↓). (2.197)
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Figure 2.13 Fe magnetic moment in 4d hosts

From equation (2.192) one can write in general n0σ = g(V0σ), always with the same
function g. Then

V0↑ − V0↓ = −∆U (g(V0↑)− g(V0↓)) , (2.198)

but using Friedel screening condition(2.195), one can obtain :

f(V0↓)− V0↓ = −∆U (g (f(V0↓))− g(V0↓)) . (2.199)

This equation depends only of the down spin potential and the value that
satisfies it is called V c

0↓; if this number is known one calculates V c
0↑ = f(V c

0↓). This
last equation defines the self consistent potential for both spins. From that we can
calculate the occupation numbers:

n0σ = g(V c
0σ), (2.200)

and from the difference of occupation numbers one derives the magnetization. In
figure 2.13 we illustrate the situation of Fe impurities in 4d metal hosts.

2.8 A two band system (s and d)

In this paragraph we extend the previous one considering the existence, in a transition
host, of two sub bands mainly the s and d bands, adopting the simplest model.

The system is described by the following Hamiltonian:

H0 =
∑

i,j,σ
T (s)

ij c+
iσcjσ +

∑

i,j,σ
T (d)

ij d+
iσdjσ, (2.201)

the impurity induces three different effects: firstly the scattering of d electrons,

H(d)
imp = V dd

0

∑

σ
d+

0σd0σ; (2.202)
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secondly, the hybridization introduced by impurity,

Hhib
imp =

∑

σ

[

Vsdc+
0σd0σ + Vdsd+

0σc0σ

]

, (2.203)

where Vsd is a parameter describing the effective impurity induced hybridization;
finally, the Coulomb interaction is treated within the Hartree-Fock approximation,

HCoul
imp = ∆U

∑

σ

〈

n(d)
0−σ

〉

n(d)
0σ , (2.204)

then:
H = H0 + H(d)

imp + Hhib
imp + HCoul

imp , (2.205)

explicitly:

H =
∑

i,j,σ
T (s)

ij c+
iσcjσ +

∑

i,j,σ
T (d)

ij d+
iσdjσ +

∑

σ
V dd

0σ d+
0σd0σ +

+
∑

σ

[

Vsdc+
0σd0σ + Vdsd+

0σc0σ

]

, (2.206)

where the complete potential acting on d-states is:

V dd
0σ = V dd

0 + ∆U
〈

n(d)
0−σ

〉

. (2.207)

The solution of the problem follows the habitual way, beginning with the
calculation of the d− d propagator and then the s− s propagator.

2.8.1 The d− d propagator

To calculate this propagator we begin with:

Gdd
ijσ(ω) = gdd

ij (ω) + gdd
i0 (ω)V dd

0σ Gdd
0jσ(ω) + gdd

i0 (ω)VdsGsd
0jσ(ω). (2.208)

For the elements of the Gsd
ijσ matrix we have the equation:

Gsd
ijσ(ω) = gss

i0 (ω)VsdGdd
0jσ(ω), (2.209)

this equation does not have elements like gsd
ij (ω) since hybridization in the host is

neglected. Substituting Gsd
0jσ(ω) in (2.208) one gets:

Gdd
ijσ(ω) = gdd

ij (ω) + gdd
i0 (ω)

[

V dd
0σ + Vdsgss

00(ω)Vsd

]

Gdd
0jσ(ω). (2.210)

This propagator cam be represented in figure 2.14.
Introducing the potential:

Udd
0σ = V dd

0σ + |Vds|2 gss
00(ω), (2.211)
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Figure 2.14 Graphic representation of the propagator Gdd
ijσ.

one gets:
Gdd

ijσ(ω) = gdd
ij (ω) + gdd

i0 (ω)Udd
0σGdd

0jσ(ω). (2.212)

This equation has the simple solution in the form of a pure SK solution:

Gdd
ijσ(ω) = gdd

ij (ω) + gdd
i0 (ω)

Udd
0σ

1− Udd
0σgdd

00(ω)
gdd
0jσ(ω) (2.213)

or, in the other way:

Gdd
ijσ(ω) = gdd

ij (ω) + gdd
i0 (ω)T dd

σ (ω)gdd
0j (ω) (2.214)

where

T dd
σ (ω) =

Udd
0σ

1− Udd
0σgdd

00(ω)
. (2.215)

This formula determines completely the d − d propagator. The effective potential
V dd

0σ includes the base direct d − d scattering, corrected by impurity induced s − d
hybridization.

2.8.2 The s− s propagator

To calculate the s− s propagator we begin with:

Gss
ijσ(ω) = gss

ij (ω) + gss
i0 (ω)VsdGds

0jσ(ω) (2.216)

and

Gds
ijσ(ω) = gdd

i0 (ω)V dd
0σ Gds

0jσ + gdd
i0 (ω)V ds(ω)Gss

0jσ(ω)

Gds
0jσ(ω) =

1
1− V dd

0σ gdd
00(ω)

gdd
00(ω)V dsGss

0j(ω). (2.217)

Combining equations (2.216) and (2.217), we get:

Gss
ijσ(ω) = gss

ij (ω) + gss
i0 (ω)

| Vsd |2 gdd
00(ω)

1− V dd
0σ gdd

00(ω)
Gss

0jσ(ω), (2.218)
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or taking i = 0:

Gss
0jσ(ω) = gss

0j(ω) +
| Vsd |2 gdd

00g
ss
00

1− V dd
0σ gdd

00
Gss

0jσ(ω). (2.219)

Solving for Gss
0jσ(ω) we obtain:

Gss
0jσ(ω) =

1− V dd
0σ gdd

00

1− V dd
0σ gdd

00− | Vsd |2 gdd
00gss

00
gss
0j , (2.220)

therefore

Gss
ijσ(ω) = gss

ij (ω) + gss
i0 (ω)

|Vsd|2 gdd
00(ω)

1−
[

V dd
0σ − |Vsd|2 gss

00(ω)
]

gdd
00(ω)

gss
0j(ω), (2.221)

remembering the definition:

Udd
0σ = V dd

0σ− | Vsd |2 gss
00(ω) (2.222)

and defining the T ss
σ (ω) matrix:

T ss
σ (ω) =

| Vsd |2 gdd
00(ω)

1− Udd
0σgdd

00(ω)
, (2.223)

one gets:
Gss

ijσ(ω) = gss
ij (ω) + gss

i0 (ω)T ss
σ (ω)gss

0j(ω). (2.224)

To be used later in the calculation of the local susceptibility, let us calculate
the off diagonal matrix elements: Gds

ijσ(ω) and Gsd
ijσ(ω).

Calculation of Gds
ijσ(ω)

Gds
ijσ(ω) = gdd

i0 (ω)V dd
0σ Gds

0jσ(ω) + gdd
i0 (ω)V dsGss

0jσ(ω)

= gdd
i0 (ω)V dd

0σ
1

1− V dd
0σ gdd

00
gdd
00(ω)V dsGss

0jσ(ω) + gdd
i0 (ω)V dsGss

0jσ(ω),(2.225)

where we have used equation (2.217), then:

Gds
ijσ(ω) = gdd

i0

[

1 +
V dd

0σ gdd
00

1− V dd
0σ gdd

00

]

V dsGss
0jσ = gdd

i0
1

1− V dd
0σ gdd

00
V dsGss

0jσ, (2.226)

finally

Gds
ijσ(ω) = gdd

i0 (ω)
1

1− V dd
0σ gdd

00(ω)
V dsGss

0jσ(ω). (2.227)

Substituting the result (2.220) for Gss
0jσ(ω), one has:

Gds
ijσ(ω) = gdd

i0 (ω)
1

1− V dd
0σ gdd

00(ω)
V ds 1− V dd

0σ gdd
00(ω)

1− V dd
0σ gdd

00− | Vsd |2 gdd
00gss

00
gss
0j(ω) (2.228)

Defining the off diagonal T ds matrix:

T ds(ω) =
Vds

1− V dd
0σ gdd

00− | Vsd |2 gdd
00gss

00
=

Vds

1− Udd
0σgdd

00(ω)
, (2.229)

therefore:
Gds

ijσ(ω) = gdd
i0 (ω)T ds(ω)gss

0j(ω). (2.230)
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Figure 2.15 Graphic representation of several the propagators

Calculation of Gsd
ijσ(ω)

Gsd
ijσ(ω) = gss

i0 (ω)VsdGdd
0jσ(ω) (2.231)

From the (2.212), one gets:

Gdd
0jσ(ω) =

1
1− Udd

0σgdd
00(ω)

gdd
0j (ω) (2.232)

Defining:

T sd(ω) =
Vsd

1− Udd
0σgdd

00(ω)
(2.233)

finally, one gets:
Gsd

ijσ(ω) = gss
i0 (ω)T sd(ω)gdd

0j (ω). (2.234)

The main advantage of (2.230) and (2.234) is that the incoming and outcoming
propagators are the base ones in the corresponding s− d channels, the hybridization
effects acting only at the impurity site.

The equations (2.215), (2.224), (2.230) and (2.234) have their graphical rep-
resentations in the figure 2.15:
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2.9 The coherent potential approximation

The coherent potential approximation (CPA) is used as a good approximation to
solve the problem of the substitutional alloys. Let us begin with the simplest case of
disordered binary alloys where the atoms A and B are distributed randomly in the
lattice sites. To describe the system is only necessary to compute averaged physical
quantities over the configurations of the alloy.

This averaging process is difficult to perform. It was then suggested to intro-
duce the concept of effective medium σ. To understand the idea behind this, let us
begin with the Hamiltonian of the system, written in the TB formalism:

H =
∑

i
εi | i >< i | +

∑

i,j
| i > tij < j |, (2.235)

where εi = εA or εB and the tij is the hopping between the sites i or j. We have used
the atomic states |i > as the TB basis to write the Hamiltonian. In the approximation
called by diagonal disorder, the hoppings tij are independent of the occupations of
the sites by atoms A or B, the disorder is present only in the diagonal terms of the
Hamiltonian. On the other hand, if the hopping term is different from one site to the
other, the disorder is called off diagonal.

2.9.1 Diagonal disorder

The effective medium, σ, that is energy dependent σ(ω), with ω = ε+ iδ, replaces the
A and B atoms by an effective atom characterized by the effective energy σ(ω), the
hopping tij being independent of the occupation of the site by atoms A or B, that is
tAA
ij = tAB

ij = tBA
ij = tBB

ij . The effective Hamiltonian is then given by:

Hef =
∑

i
σ(ω) | i >< i | +

∑

ij
| i > tij < i | . (2.236)

The construction of the effective medium is schematically represented by:

〈









A B B B
B A B A
A B B A









〉

≡









⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗









,

where ⊗ are the effective atoms; at this point the translation symmetry is recov-
ered. In conclusion, the effective hamiltoniam Hef preserves all the symmetries of
the pure material and the coherent potential approximation is the adopted procedure
to determine the effective medium σ(ω).

Let us substitute a given atom placed at origin of the effective medium by
an A atom (with probability 1 − x) or by a B atom ( with probability x), where x
is the B concentration. The definition of concentration for a lattice of N atoms is
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x = NB
N and 1− x = NA

N = N−NB
N . Since the alloy is assumed to be completely disor-

dered, the occupation probabilities are given by the concentrations. This procedure
is represented by:

〈









⊗ ⊗ ⊗ ⊗
⊗ A,B ⊗ ⊗
⊗ ⊗ ⊗ ⊗









〉

= (1− x)









⊗ ⊗ ⊗ ⊗
⊗ A ⊗ ⊗
⊗ ⊗ ⊗ ⊗









+ x









⊗ ⊗ ⊗ ⊗
⊗ B ⊗ ⊗
⊗ ⊗ ⊗ ⊗









,

the left hand side is necessarily equal to:

〈









⊗ ⊗ ⊗ ⊗
⊗ A,B ⊗ ⊗
⊗ ⊗ ⊗ ⊗









〉

=









⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗
⊗ ⊗ ⊗ ⊗









.

Now let us put the above scheme in mathematical terms. The problem is
equivalent to one impurity, A or B embedded in a metal characterized by the effective
medium σ. If the resolvents are defined in an adequate way, this problem may be
seen to be again a Slater-Koster problem.

The potential of the impurity atom, A or B, dissolved in a effective medium
is given by:

Vimp = εi − σ, with εi = εA or εB (2.237)

The resolvent G to the SK problem is then defined by:

G = g + gVimpG, (2.238)

where g is the resolvent of the effective medium. The potential Vimp is localized at
the origin and one gets:

GQ
ij = gij + gi0

V Q
imp

1− V Q
impg00

g0j

= gij + gi0
εQ − σ

1− (εQ − σ)g0
g0j, (2.239)

where Q is A or B. The configuration average of the resolvent is necessarily equal to
the effective medium resolvent < GQ

ij >= gij, then:

gij = gij + gi0

〈

εQ − σ
1− (εQ − σ)g00

〉

g0j, (2.240)

from this equation one has:
〈

εQ − σ
1− (εQ − σ)g00

〉

= 0 (2.241)
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or in a more explicit way:

(1− x)
εA − σ

1− (εA − σ)g00
+ x

εB − σ
1− (εB − σ)g00

= 0. (2.242)

Considering that g00 = g00(σ) = F (ω − σ), where

F (ω) =
∫

dε
ρ(ε)
ω − ε

, (2.243)

the equation (2.242) fixes the value of σ(ω).
Some classical results like the virtual crystal approximation (VCA) are re-

covered from equation (2.242). In fact for energies εA end εB close together the
denominators of (2.242) are almost equal and one obtains:

σ = (1− x)εA + xεB. (2.244)

2.9.2 Off diagonal disorder

In this case we include both disorder in the energy, which is diagonal, and in the
hopping, which is off diagonal. The system is again described by the following Hamil-
tonian:

H =
∑

i
|i > εi < i|+

∑

i,j
|i > tij < j|. (2.245)

We include the following hypothesis: a) εi = εA or εB; b) Shiba’s approximation for
the site dependence of the hopping, given by tij = ξitξj. In the last expression t is a
reference hopping and ξi = ξA or ξB account for the site dependence of the hopping.
In this way:

H =
∑

i
|i > εi < i|+

∑

i,j
|i > ξitξj < j|, (2.246)

or alternativelly

ω −H =
∑

i
|i > (ω − εi) < i| −

∑

i,j
|i > ξitξj < j|. (2.247)

To define effective energy levels, let us introduce the useful quantity:

[ξ] =
∑

i′
|i′ > ξi′ < i′|.

Using this quantity, it is possible to demonstrate the possibility of introducing “ef-
fective” diagonal energy levels, having the form:

ω −H = [ξ]
[

∑

i
|i >

ω − εi

ξ2
i

< i| −H0

]

[ξ], (2.248)
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where H0 =
∑

ij |i > t < j|. In fact start from (2.248):

ω −H =
∑

i′,i′′
|i′ > ξi′ < i′|

[

∑

i
|i >

ω − εi

ξ2
i

< i| −H0

]

|i′′ > ξi′′ < i′′|

=
∑

i′i′′i

|i′ > ξi′ < i′|i >
ω − εi

ξ2
i

< i|i′′ > ξi′′ < i′′| −
∑

i′i′′
|i′ > ξi′ < i′|H0|i′′ > ξi′′ < i′′|

=
∑

i
|i > (ω − εi) < i| −

∑

ij
|i > ξitξj < j|. (2.249)

We thus recovered the starting Hamiltonian including both disorders. Following
Shiba’s approach, let us introduce the locators Li = (ω − εi)/ξ2

i in (2.248), getting:

ω −H = [ξ]
[

∑

i
|i > Li < i| −H0

]

[ξ]. (2.250)

In this way, the resolvent function:

G(ω) = [ω −H]−1 = [ξ]−1GS(ω)[ξ]−1, (2.251)

where

GS(ω) =
[

∑

i
|i > L〉 < i| −H0

]−1

. (2.252)

If the origin is occupied by an atom Q (= A or B):

ρQ
0 (ε) = − 1

π
Im

[

ξ−2
Q (GQ

S )00(E)
]

, (2.253)

where the resolvent is rewritten:

GS =





∑

i6=0

|i > Li < i|+ |0 > LQ < 0| −H0





−1

. (2.254)

The averaged medium enabling the calculation of < (GQ
S )00(E) >, is defined by:

< GQ
S >=





∑

i6=0

|i >< L >< i|+ |0 > LQ < 0| −H0





−1

. (2.255)

The local densities of states are given by:

< ρQ
0 (E) >= − 1

π
Im

[

ξ−2
Q < (GQ

S )00 >
]

. (2.256)

The unknown < L > is defined by the condition:

(1− x)
〈

GA
S

〉

+ x
〈

GB
S

〉

= 〈GS〉 , (2.257)
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where the averaged resolvent is:

< GS >=
[

∑

i
|i >< L >< i| −H0

]−1

. (2.258)

In the site representation:

(1− x)(GA
S )ij + x(GB

S )ij = 〈(GS)ij〉 . (2.259)

The calculation of < GQ
S > follows the steps:

〈

GQ
S

〉

=
[

∑

i
|i >< L >< i|+ | 0 > (LQ− < L >< 0 | −H0

]−1

=
[

∑

i
|i >< L >< i| −H0+ | 0 > (LQ− < L >) < 0 |

]−1

. (2.260)

Using the inverse of (2.258), one has:
〈

GQ
S

〉

=
[

< GS >−1 + | 0 > (LQ − L) < 0 |
]−1

, (2.261)

or multiplying to the left by the inverse of the right hand side:
[

< GS >−1 + | 0 > (LQ − L) < 0 |
] 〈

GQ
S

〉

= 1. (2.262)

Multiplying on the left by 〈GS〉 we get:

[1+ < GS >| 0 > (LQ − L) < 0 |]
〈

GQ
S

〉

= 〈GS〉 . (2.263)

After rearranging the terms:
〈

GQ
S

〉

= 〈GS〉+ 〈GS〉 | 0 > (LQ − L) < 0 |
〈

GQ
S

〉

. (2.264)

In the site representation the above equation may be written in the form:
〈

(GQ
S )ij

〉

= 〈(GS)ij〉+ 〈(GS)i0〉 (L − LQ)
〈

(GQ
S )0j

〉

, (2.265)

solving this equation of the SK form:

〈

(GQ
S )ij

〉

= 〈(GS)ij〉+
〈

(GQ
S )i0

〉 L − LQ

1− (L − LQ) 〈(GS)00〉
〈(GS)0j〉 (2.266)

Performing now the average, the left hand side becomes equal to the first term.
Since < (GS)i0 > and < (GS)0j > depend only on the effective locator, one gets for
the self consistent equation:

(1− x)
L − LA

1− (L − LA)F (L)
+ x

L − LB

1− (L − LB)F (L)
= 0, (2.267)
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where
F (L) = 〈G00〉 (L), (2.268)

and also
< (GQ

S )00 >=
F (L)

1− (L − LQ)F (L)
. (2.269)

Then for the local density of states one obtains:

〈

ρQ(E)
〉

=
1
π

Im
[

ε−2
Q

F (L)
1− (L − LQ)F (L)

]

(2.270)

and for the averaged density of states,

〈ρ(E)〉 = (1− x)
〈

ρ(A)(E)
〉

+ x
〈

ρ(B)(E)
〉

. (2.271)

This formalism shows that the general case, including both disorders, shows a
great similarity to the diagonal disorder case.



Chapter 3

ELEMENTARY DESCRIPTION OF THE MAGNETIC
PROPERTIES

The magnetic materials may be classified in three large groups: the first considers
the systems with localized spins, for example: the non conductor MnO and rare
earths metals like Gd, Tb, Eu, and others; the second contemplates the pure metal-
lic systems like Fe, Co and Ni, and the last one is devoted to the ferromagnetic
intermetallics like ZrZn2, HfFe2, ZrFe2, the paramagnetic intermetallics LuCo2,
Y Co2, the disordered alloys Fe1−xCox, Fe1−xNix, Pd1−xFex, the compounds Pd3Fe,
FeNi, the mixed magnetic systems like magnetic Laves phases involving rare earths
and transition metals like GdCo2, GdFe2, HoFe2.

3.1 Magnetic susceptibility

The magnetic susceptibility χ is defined as the magnetic response to an applied
external magnetic fields H. In the absence of H the magnetization m is zero for
a large class of paramagnetic materials. The concept of linear response, in a more
simple way, is m = χH. The generalization to a locally applied magnetic field, using
a TB spirit, is given by:

m(Rλ) =
∑

λ′
χ(Rλ, Rλ′)H(Rλ′), (3.1)

where H(Rλ′) is the magnetic fields at the site Rλ′ . If the system is translation
invariant, we have:

χ(Rλ, Rλ′) = χ(Rλ −Rλ′). (3.2)

Examples of the such systems are: the pure metals like Pd and Pt, the intermetallics
LuCo2, Y Co2. The coordinate Rλ is the position of the unitary cell and if this cell
has more than one atom, the position is described by Rλ + σ, where σ is the position
of the different atoms in the cell.

The wave vector dependence of the H(Rλ) magnetic fields is determined by
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the Fourier transform and it is defined by:

H(q) =
∑

λ

eiqRλH(Rλ) and H(Rλ) =
∑

q
e−iqRλH(q). (3.3)

To illustrate the definition we calculate three cases:
i. the uniform field H(Rλ) = H0

H(q) = H0
∑

λ

eiqRλ = H0δq,0, (3.4)

where we have used
∑

λ eiqRλ = δq,0;
ii. field at origin: H(Rλ) = H0δλ0 or H(q) = H0;
iii. magnetic field with wave vector q0:

H(Rλ) = H0e−iq0Rλ + c.c.. (3.5)

The magnetization with a q dependence can be expressed by:

m(Rλ) =
∑

λ′
χ(Rλ, Rλ′)

∑

q′
e−iq′Rλ′H(q′)

=
∑

λ′q′
X(Rλ, Rλ′)e−iq′Rλ′H(q′) (3.6)

and

m(q) =
∑

λ

eiqRλm(Rλ)

=
∑

λ,λ′,q′
χ(Rλ, Rλ′)eiqRλe−iq′Rλ′H(q′). (3.7)

The susceptibility is defined by:

χ(q, q′) =
∑

λ′,λ

χ(Rλ, Rλ′)eiqRλe−iq′Rλ′ (3.8)

m(q) =
∑

q′
χ(q, q′)H(q′). (3.9)

If the system is translation invariant we may write the susceptibility in the form:

χ(q, q′) =
∑

λ′,λ

χ(Rλ −Rλ′)eiqRλe−iq′Rλ′

=
∑

λ′,λ

χ(Rλ −Rλ′)ei(q−q′)Rλe−iq′(Rλ−Rλ′ )

=
∑

λ

ei(q−q′)Rλ
∑

∆R

eiq′∆Rχ(∆R). (3.10)

The last factor gives χ(q′) and the first one introduces δqq′ ; then one has:

χ(q, q′) = χ(q)δqq′ . (3.11)
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For these systems, an applied field H(q0) induces:

m(q) = χ(q, q0)H(q0) = δqq0χ(q0)H(q0) (3.12)

Thus the resulting magnetization contains only the q0 component, that is the mag-
netization has the same spatial variation as the field:

m(Rλ) =
∑

q
e−iqRλm(q) =

∑

q
e−iqRλχ(q0)H(q0)δqq0

= e−iq0Rλχ(q0)H(q0). (3.13)

The existence of impurities destroy the translational invariance, that is:

m(q) = χ(q, q0)H(q0), with q 6= q0, (3.14)

which means that different modulations do appear. The magnetization at the origin
induced by a field applied also at the origin is given by:

m(Rλ) =
∑

q
e−iqRλm(q); m(0) =

∑

q
m(q) =

∑

qq′
χ(q, q′)H(q′). (3.15)

in this case H(q′) = H0, then:

m(0) = H0
∑

qq′
χ(q, q′) (3.16)

or for systems with translation invariance: m(0) = H0
∑

q χ(q).

3.1.1 The Pauli susceptibility

For fermions, the occupation number for particles with dispersion relation εk, spin σ
and applied field H is given by:

nσ =
∑

k

f0
[εk − µ− σµ0H

kT

]

. (3.17)

In terms of the density of states, one has:

nσ =
∫ ∞

εb

1
2
ρ(ε)f 0

[ε− µ− σµ0H
kT

]

dε, (3.18)

where ρ(ε) is the density of states for both spins and thus the factor 1/2. The spin
dependent energy ε, is given by:

εkσ = εk − σµ0H, with σ =↑ or ↓ . (3.19)

The magnetic field splitting of the up and down spin bands is illustrated in figure 3.1.
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Figure 3.1 Schematic splitting of the up and down spin bands

The Fermi-Dirac distribution function f0 is defined by:

f0(ε) =
1

e(ε−µ)/kT + 1
= f0

[ε− µ
kT

]

= f 0(x), (3.20)

µ being the chemical potential. The first order expansion of the f 0 in powers of the
magnetic field (remember that µ0H � kT ):

f 0
[ε− µ

kT
− σ

µ0H
kT

]

= f 0
[

x− σ
µ0H
kT

]

= f 0(x)− σµ0H
kT

∂f 0

∂x
, (3.21)

and
∂f 0

∂ε
=

∂f0

∂x
∂x
∂ε

=
1

kT
∂f 0

∂x
, (3.22)

then:

f 0
[ε− µ

kT
− σ

µ0H
kT

]

= f 0
[ε− µ

kT

]

− σµ0H
∂f0

∂ε
. (3.23)

The occupation number can be written as:

nσ =
1
2

∫ ∞

εb

ρ(ε)f0
[ε− µ

kT

]

dε− 1
2
σµ0H

∫ ∞

εb

ρ(ε)
∂f 0

∂ε
dε. (3.24)

The chemical potential (µ = εF ) is determined via the total number of electrons n,

n = n↑ + n↓ =
∫ µ

εb

ρ(ε)f0
[ε− µ

kT

]

dε. (3.25)

Given n, this equation defines the chemical potential µ. The magnetic moment is
given from (3.24) by:

m = µ0(n↑ − n↓) = −µ2
0H

∫ ∞

εb

ρ(ε)
∂f 0

∂ε
dε. (3.26)

In figure 3.2 we illustrate the Fermi distribution function and its energy derivative
for zero and finite temperatures.
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Figure 3.2 Fermi distribution and its energy derivative.

From the definition of the susceptibility we have:

m = χH, (3.27)

then:

χ(T ) = −µ2
0

∫ ∞

εb

ρ(ε)
∂f0

∂ε
dε. (3.28)

It should be remembered that the derivative of the Fermi function is negative, thus
χ(T ) > 0 at low temperatures the derivative of the Fermi function reduces to a
δ-function centered at µ = εF ; thus:

χ = µ2
0ρ(εF ). (3.29)

The electronic structure through the density of states completely defines the suscep-
tibility of a paramagnetic metal.

3.2 First approach to itinerant magnetism

In the electron gas Hamiltonian it is included, besides the kinetic energy term, a term
that describes the interaction between electrons with opposite spins, the Coulomb
repulsion term:

H = Hkinetic + Hrepulsion (3.30)

where the Hrepulsion ' U
∑

i ni↑ni↓ and U is the Coulomb interaction parameter.
Let us compare the stability of paramagnetic phase as compared to the for-

mation of magnetic order.
The paramagnetic phase is characterized by n0↑ = n0↓ = n/2. If a charge δn is

transferred from the down sub band to the up sub band, the variation of the kinetic
energy is:
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Figure 3.3 Electron transfer between spin sub bands

∆T = δε× δn = δε× ρ(εF )× δε = ρ(εF )(δε)2, (3.31)

this term is positive il all cases, see figure 3.3. The variation of the interaction energy
after and before the transfer, is given by:

∆Hint = U(n0 + δn)(n0 − δn)−Un2
0 = −Uδn2 = −Uρ2(εF )(δε)2. (3.32)

It should be noted that the change in interaction energy is always negative. The total
variation is:

∆Etot = ∆T + ∆Hint = ρ(εF )(δε)2 −Uρ2(εF )(δε)2 = ρ(εF )(δε)2[1−Uρ(εF )]. (3.33)

If the ∆Etot > 0 the paramagnetic phase is stable, in the other case, if ∆Etot < 0
the ferromagnetic phase is preferred. The condition to the ferromagnetic stability is
then:

1−Uρ(εF ) < 0 or Uρ(εF ) > 1. (3.34)

In conclusion: for a given value of the Coulomb interaction parameter U, the ferro-
magnetic phase is preferred, if the density of states ρ(εF ) is large enough.

The molecular fields: an introduction

In systems without interaction between “moments” the magnetization is given by:

m = χ0hext, (3.35)

where the χ0 is the response of an isolated moment to an applied field or of a non
interacting electron gas. Examples are: the Curie susceptibility for localized spins and
the Pauli susceptibility for a non interacting electron gas. The interaction between
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“moments” may be described qualitatively introducing effective fields proportional to
the magnetization:

heff = λm, h = hext + heff (3.36)

m = χ0(hext + λm), m(1− λχ0) = χ0hext (3.37)

or
m = χhext with χ =

χ0

1− λχ0
. (3.38)

For example: in the case of insulators or local moments χ0 = C
T and χ = C

T−λC ; in the
case of metallic interacting electrons: χ0 = glµ2

Bρ(εF ) and χ = glµ2
Bρ(εF )/ [1− glµ2

Bλρ(εF )].
In this case defining λ as:

λ =
U

glµ2
B

, (3.39)

one obtains

χ =
glµ2

Bρ(εF )
1−Uρ(εF )

. (3.40)

We finally have for the magnetization:

m =
glµ2

Bρ(εF )
1−Uρ(εF )

hext. (3.41)

If Uρ(εF ) = 1, it is possible to have finite m even for hext → 0.
Thus the study of the ferromagnetic instability is reduced, given a reliable

estimate of the electron-electron interaction parameter U, to the analysis of the den-
sity of states near the Fermi level. The present simplified discussion, holds not only
for pure transition metals, but it applies also to intermetallic compounds. Thus the
difference in magnetic behavior of Y Co2 and Y Fe2 can be understood in terms of
(3.34); Y Co2 is paramagnetic since near the Fermi level Uρ(εF ) < 1, in contrast to
Y Fe2 where the opposite occurs.

3.3 A simple application of the molecular field approach

It is considered the effect of dilute isoeletronic impurities, which present different
local Coulomb interaction, like Ni in Pd, PdNi and Co in Y Rh2, Y (Rh1−xCox)2. In
these cases one has a high susceptibility host, doped with isoeletronic impurities.

The susceptibility of pure metal is χ0(R, R′) = χ0(R − R′). The externally
applied magnetic field is Hext(R′); including now the molecular field corrections ∆λ
due to the impurity, the total field acting on the system, is:

H(R′) = Hext(R′) + ∆λm(0)δR′0. (3.42)
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The magnetization at the R site is:

m(R) =
∑

R′
χ0(R, R′)H(R′)

=
∑

R′
χ0(R,R′)Hext(R′) +

∑

R′
χ0(R, R′)∆λm(0)δR′0

=
∑

R′
χ0(R, R′)Hext(R′) + χ0(R, 0)∆λm(0), (3.43)

to R = 0 one has:

m(0) =
∑

R′
χ0(0, R′)Hext(R′) + χ0(0, 0)∆λm(0). (3.44)

Solving for m(0), one gets:

m(0) =
1

1−∆λχ0(0, 0)

∑

R′
χ0(0, R′)Hext(R′), (3.45)

then:

m(R) =
∑

R′
χ0(R, R′)Hext(R′) + χ0(R, 0)

∆λ
1−∆λχ0(0, 0)

∑

R′
χ0(0, R′)Hext(R′)

=
∑

R′

[

χ0(R,R′) + χ0(R, 0)
∆λ

1−∆λχ0(0, 0)
χ0(0, R′)

]

Hext(R′). (3.46)

By definition of the susceptibility of the perturbed system:

m(R) =
∑

R′
χ(R,R′)Hext(R′). (3.47)

In this way:

χ(R, R′) = χ0(R, R′) + χ0(R, 0)
∆λ

1−∆λχ0(0, 0)
χ0(0, R′). (3.48)

Equation (3.48) in Fourier transform version reads:

χ(q, q′) = χ0(q, q′) +
∑

q1

∑

q2

χ0(q, q1)
∆λ

1−∆λ
∑

q1q2
χ(q1, q2)

χ0(q2, q′). (3.49)

If the ∆λ is the only perturbation acting on the system and we approximately assume
that besides the ∆λ term the system is translational invariant, one gets:

χ(q, q′) = χ0(q)δqq′ +
∑

q1q2

χ0(q)δqq1

∆λ
1−∆λ

∑

q1,q2
χ0(q1)δq1q2

χ0(q′)δq2q′

= χ0(q)δqq′ + χ0(q)
∆λ

1−∆λ
∑

q1
χ(q1)

χ0(q′). (3.50)

This formula has a direct application on the NiPd Knight shift (see later) and the
T 2 term in the resistivity of these strongly exchange enhanced materials.



The localized spins: origin of the Zener interaction 61

3.4 The localized spins: origin of the Zener interaction

The interaction between the localized (~SRλ) and itinerant spin (~s) is given by the
Zener model,

Hint = −J~s.~SRλ , (3.51)

where J is the exchange interaction.
To obtain this Hamiltonian we will follow the Casper method. Beginning with

the conduction (ψk(r)) and the localized states (ϕβ(r)),

(T + V )ψk(r) = Ekψk(r), (T + V )ϕβ(r) = Eβϕβ(r). (3.52)

Since the localized states lie outside the conduction band the states are orthogonal:
< ϕβ | ψk >= 0.

The wave function of this pair of electrons (localized and itinerant) is given
by:

Ψ(±)
k,β,M(r1, r2) =

1
21/2 [ψk(r1)ϕβ(r2)± ψk(r2)ϕβ(r1)]

∣

∣

∣S±,M
〉

(3.53)

where ± correspond to singlet and triplet states, the normalized function | S±,M >
are the spin functions correspondent to +, M = 0 and − with M = −1, 0, 1.

The electron pair Hamiltonian is given by:

H = T (r1) + V (r1) + T (r2) + V (r2) + H ′
12, H ′

12 =
e2

| r1 − r2 |
. (3.54)

The idea is using the wave functions Ψ±
k,β,M to calculate the matrix elements and

to find the approximate solution of the problem. However using these symmetrized
functions the calculations become very complicated. The idea is then to find an
effective Hamiltonian H̃ such that the matrix elements of H̃ between non-symmetrized
functions is identical to that of H between symmetrized functions. Then the Pauli
principle is automatically included.

The non-symmetrized wave function are given by:

Ψ̃(±)
k,β,M(r1, r2) = ψk(r1)ϕβ(r2) | S(±),M > . (3.55)

The effective Hamiltonian H̃ is defined by:
〈

Ψ(±)
k′β′M ′

∣

∣

∣ H
∣

∣

∣Ψ(±)
kβM

〉

=
〈

Ψ̃(±)
k′β′M ′

∣

∣

∣ H̃
∣

∣

∣Ψ̃(±)
kβM

〉

. (3.56)

To use in the proof we define the operators P r
12 and P S′

12 , acting respectively is space
variables and in spin variables, one has:

P (r)
12 ψ(r1, r2) = ψ(r2, r1) (3.57)

P (S)
12

∣

∣

∣S(±), M
〉

= ±
∣

∣

∣S(±),M
〉

, (3.58)
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where
P (S)

12 =
1
2

+ 2~s1.~s2 =
1
2

+ (~s1 + ~s2)2 − (~s)2
1 − (~s)2

2 (3.59)

and the ψ(r1, r2) is a general function of space variables. Therefore for our specific
case:

Ψ(±)
k,β,M =

1
21/2

(

1− P (r)
12 P (S)

12

)

Ψ̃(±)
kβM(r1, r2). (3.60)

In conclusion: An equivalent formulation to the above problem is:

Ψλ(r1, r2) =
(

1− P (r)
12 P (S)

12

)

Ψ̃λ(r1, r2) (3.61)

where Ψλ is the linear combination of the Ψ(±)
kβM and Ψ̃λ is a linear combination of

the Ψ̃(±)
k,βM . Thus the diagonalization of the Hamiltonian can be made.
To do the explicit calculation of the matrix elements of H̃ we proceed as

follows:

H = H0 + H12 and H0 = T (r1) + V (r1) + T (r2) + V (r2)(3.62)

H0Ψ
(±)
k,β,M = (Ek + Eβ)Ψ(±)

k,β,M (3.63)

HΨ(±)
kβM =

[

(Ek + Eβ)
(

1− P (r)
12 P (S)

12

)

+ H ′
12

(

1− P (r)
12 P (S)

12

)] 1
21/2 Ψ̄(±)

kβM .(3.64)

Now it is necessary to calculate:

< Ψ(±)
k′,β′M ′ | H | Ψ(±)

k,β,M > = δMM ′ [(Ek + Eβ)δkk′δββ′ +

+
∫

ψ∗k′(r1)ψk(r1)
e2

| r1 − r2 |
ϕ∗β′(r2)ϕβ(r2)dr1dr2 ±

±
∫

ψ∗k′(r1)ϕ∗β′(r2)
e2

| r1 − r2 |
ψk(r2)ϕβ(r1)dr1dr2

]

,(3.65)

the last two terms may be written as:

∫

ψ∗k′(r1)ϕ∗β′(r2)
e2

| r1 − r2 |
ψk(r1)ϕβ(r2)dr1dr2 ±

±
∫

ψ∗k′(r1)ϕ∗β′(r2)
e2

| r1 − r2 |
P (r)

12 ψk(r1)ϕβ(r2)dr1dr2 =

=< Ψ̃(±)
k′β′M | H ′

12 | Ψ̃
(±)
k,β,M > − < Ψ̃(±)

k′β′M | H ′
12P

(r)
12 P (S)

12 | Ψ̃(±)
kβM >=

=
〈

Ψ̃(±)
k′β′M

∣

∣

∣ H ′
12

(

1− P (r)
12 P (S)

12

) ∣

∣

∣Ψ̃(±)
kβM

〉

. (3.66)

Finally:
〈

Ψ(±)
k′β′M

∣

∣

∣ H
∣

∣

∣Ψ(±)
kβM

〉

=
〈

Ψ̃(±)
k′β′M

∣

∣

∣ H0 + H ′
12

(

1− P (r)
12 P (s)

12

) ∣

∣

∣Ψ̃(±)
kβM

〉

, (3.67)
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then using the definition of the effective Hamiltonian:

H̃ = H0 + H ′
12

(

1− P (r)
12 P (S)

12

)

= H0 + H ′
12

[

1− P (r)
12

(1
2

+ 2~s1.~s2

)]

= H0 + H ′
12

[

1− 1
2
P (r)

12

]

− 2H ′
12P

(r)
12 ~s1.~s2. (3.68)

The effective Hamiltonian has then two terms: the last one is of the Zener
form and couples itinerant and local spins, respectively ~s1 and ~s2. Note that in
this simplified approach, ~s2 is the spin of a localized state. The first term of (3.68)
introduces correction to the spin independent part of the problem. This term is not
important for the magnetic properties, which involve differences in up and down spin
occupations numbers. Finally let us recall that for actual situations this simplified
approach has to be generalized to include total localized spin large that 1/2, orbital
effects and total spins J . Some comments about that will be made in Chapter 5.

3.4.1 Aplication of the linear response theory

Indirect spin-spin interaction

Let us start from the Zener Hamiltonian, involving a local spin at the site Rλ:

Hint = −J~s.~SRλ (3.69)

and then define the following effective magnetic field:

Hint = −glµB~s. ~HRλ , (3.70)

equating these interaction energies one derives the effective field

~HRλ =
J

glµB

~SRλ . (3.71)

The magnetic response to the application of this field is:

~mRλ′
= χ(Rλ′ , Rλ) ~HRλ =

J
glµB

χ(Rλ′ , Rλ)~SRλ . (3.72)

The induced polarization of the electron gas can be written:

~mRλ′ = glµB~s(Rλ′) with ~sRλ′
=

~mRλ′

glµB
. (3.73)

Calculating the Zener energy associated to the site Rλ, gives:

Eλλ′
int = −J

~mRλ′

glµB
.~S(Rλ′) = − J2

g2
l µ2

B
χ(Rλ′ , Rλ)~SRλ′

.~SRλ

= j(Rλ′ , Rλ)~SRλ′
.~SRλ , (3.74)
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where the effective interaction j(Rλ′ , Rλ) is given in a general case by:

j(Rλ′ , Rλ) = − J2

g2
l µ2

B
χ(Rλ′ , Rλ)

= − J2

g2
l µ2

B

∑

qq′
e−i~q. ~Rλ′ei~q′. ~Rλχ(q, q′). (3.75)

For pure metals , for example: Gd, Ho or Eu, the relation is:

χ(q, q′) = χ(q)δqq′ , (3.76)

and consequently:

j(Rλ′ , Rλ) = − J2

g2
l µ2

B

∑

q
ei~q.(~Rλ−~Rλ′ )χ(q). (3.77)

This is the Ruderman, Kittel, Kasuya and Yoshida (RKKY) interaction and the
original derivation of (3.77) is due to Doniach.

In terms of the calculation of the total energy (summing over all sites), a
simple estimate of the ordering temperature in a system of localized spins is given by
kTc ' Etotal

int . In this calculation we fix fix λ and sum over all the other λ′.

The induced magnetization by localized magnetic moments

For example: in LuGd alloys, the Lu do not exhibits local magnetic moment; the
magnetization at the Lu site is given by:

~mtransf (0) =
J

glµB

∑

λ

χ(0, Rλ)~SRλ . (3.78)

If the magnetic order is the ferromagnetic, then:

~mtransf (0) =
J

glµB

~S
∑

λ 6=0

χ(0, Rλ) whit χ(0, Rλ) =
∑

q,q′
ei~q′. ~Rλχ(q, q′)

=
J

glµB

~S
∑

λ 6=0

∑

q,q′
ei~q′. ~Rλχ(q, q′). (3.79)

We illustrate this situation considering Lu impurities diluted in Gd, in figure
3.4.

Self polarization

If at the origin one put a local localized spin and then calculate the electron gas
magnetization induced by this spin at its own site, one gets:

~mself (0) =
J

glµB

~SRλ=0χ(0, 0) =
J

glµB

~SRλ=0

∑

q,q′
χ(q, q′). (3.80)
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Figure 3.4 Lu impurity in Gd

Two examples:
i. GdLu, is this case χ(q, q′) ∼= χ(q)δqq′ , because both are trivalent rare

hearths; then:

~mself =
J

glµB

~SRλ=0

∑

q
χ(q) (3.81)

ii. GdPd, is this case χ(q, q′) 6= χ(q)δqq′ , then:

~mself =
J

glµB

~SRλ=0

∑

qq′
χ(q.q′) (3.82)

The Knight shift

A nucleus with magnetic moment ~µI in an uniform magnetic field, in the vacuum, has
the energy E = ~µI . ~H. In the material, one has an additional hyperfine interaction
given by:

Eint = A~µI .~me, (3.83)

where ~me is the electronic magnetization. In this way, the total energy is:

Etot = ~µI . ~H + A~µI .~me. (3.84)

The nucleus is at the origin, then:

~me(0) =
∑

qq′
χ(q, q′) ~Hq′ . (3.85)

In the uniform field case ~Hq′ = δq′0
~H, and:

~me(0) = ~H
∑

q
χ(q, 0), (3.86)

therefore

Etot = ~µI . ~H + A
∑

q
χ(q, 0)~µI . ~H = ~µI . ~H

[

1 + A
∑

q
χ(q, 0)

]

. (3.87)
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Figure 3.5 Induced energy shift

The energy may be written as E = h̄ω, then:

ω = ω0

[

1 + A
∑

q
χ(q, 0)

]

, (3.88)

where we have defined ω0 = 2gN~µI
NIH is the energy in vacuum. Introduce the change

in the resonance frequency:

∆ω
ω0

=
ω − ω0

ω0
= A

∑

q
χ(q, 0). (3.89)

The ∆ω/ω0 is defined as the Knight shift. It should be remembered that the
material is paramagnetic; this contrasts with hyperfine field results in ferromagnetic
materials, since in the second case no externally applied magnetic field is necessary
in ferromagnetic pure metals. Schematic magnetic field induced energy shift, figure
3.5.

Two cases are considered separately: a pure metal and a dilute alloy. Consider
firstly a pure metals. Then:

∑

q
χ(q, 0) =

∑

q
δq0χPauli = χPauli then

∆ω
ω0

= AχPauli. (3.90)

Consider now the NiPd alloy. In this compound it is necessary to include
the different Coulomb interaction (∆U = UNi − UPd > 0). Using the previously
obtained results for the susceptibility:

χ(q, q′) = χ(q′)δqq′ + χ(q)
∆U

1−∆U
∑

q′′ χ(q′′)
χ(q′) (3.91)

χ(q, 0) = χ(0)δq,0 + χ(q)
∆U

1−∆U
∑

q′′ χ(q′′)
χ(0). (3.92)

For the Knight shift one needs to sum over the q vectors getting:
∑

q
χ(q, 0) = χPauli +

∑

q
χ(q)

∆U
1−∆U

∑

q′ χ(q′)
χPauli

= χPauli

[

1 +
∆Uχ̈

1−∆Uχ̈

]

=
χPauli

1−∆Uχ̈
, (3.93)
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where χ̃ =
∑

q χ(q). The Knight Shift is, then:

∆ω
ω0

=
AχPauli

1−∆Uχ̃(q)
;

(∆ω
ω0

)

PdNi
=

(

∆ω
ω0

)

Pd−pure

1−∆Uχ̃(q)
. (3.94)

3.5 The Hubbard Hamiltonian

Let us start with a system of non interacting electrons. The complete set of Bloch
functions ϕk(~r) satisfy:

H0ϕk(~r) = εkϕk(~r), (3.95)

where

H0 =
[

− h̄2

2m
∇2 + V (r)

]

. (3.96)

Considering the operators c+
kσ and ckσ, that are the creation and annihilation operators

of an electron in an one electron state with spin σ and wave vector k, and the states
ϕk(~r) it is possible to obtain the creation and annihilation operators of a particle at
the position ~r:

ψ+
σ (~r) =

∑

k

ϕ∗k(~r)c
+
kσ ψσ(~r) =

∑

k

ϕk(~r)ckσ. (3.97)

The Hamiltonian for a particle system interacting with an external potential and pair
interaction, may be written in the second quantization formalism as:

H =
∑

σ

∫

d~rψ+
σ (~r)H0ψσ(~r) +

1
2

∑

σ,σ′

∫

d~rd~r′ψ+
σ (~r′)ψ+

σ′(~r)V (~r, ~r′)ψσ′(~r)ψσ(~r′), (3.98)

where V (~r, ~r′) is the pair interaction between particles. Using the Bloch representa-
tion, in the first part of the Hamiltonian, we called A, one gets:

A =
∑

σ

∫

d~rψ+
σ (~r)H0ψσ(r) =

∑

σ

∑

kk′
c+
kσck′σ

∫

d~rϕ∗k(~r)H0ϕk′(~r)

=
∑

σ

∑

kk′
c+
kσck′σεk′

∫

d~rϕ∗k(~r)ϕk′(~r) =
∑

kσ

εkc+
kσckσ, (3.99)

since the Bloch functions are supposed to be orthonormal.
The second part, are called B, is:

B =
1
2

∑

σσ′

∑

k1k2

∑

k3k4

c+
k1σc

+
k2σ′ck3σ′ck4σ

∫

ϕ∗k1
(~r′)ϕ∗k2

(~r)V (~r, ~r′)ϕk3(~r)ϕk4(~r
′)d~rd~r′.

(3.100)
For systems that can be described within the TB approximation and assuming the
non degenerate case, one gets:

ϕk(~r) =
∑

i
ei~k. ~Riφ(~r − ~Ri). (3.101)
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In this case it is possible to define the creation and annihilation operators for electrons
of spin σ at site i:

ckσ =
∑

i
e−i~k. ~Riciσ or ciσ =

∑

k

ei~k. ~Rickσ, c+
iσ =

∑

k

e−i~k. ~Ric+
kσ. (3.102)

Using this definition, one gets for the part A:
∑

kσ

εkc+
kσckσ =

∑

ijσ
c+
iσcjσ

∑

k

ei~k. ~Rie−i~k. ~Rjεk. (3.103)

Defining Tij =
∑

k εkei~k(~Ri−|vecRj), one obtains:

A =
∑

kσ

εkc+
kσckσ =

∑

ijσ
Tijc+

iσcjσ. (3.104)

In the case of εk = constant, there is no possibility of hopping between sites i and j.
The Tij is then defined as the hopping energies (Tij are band width dependent).

To calculate the part B, we begin with the integral:
∫

ϕ∗k1
(~r′)ϕ∗k2

(~r)V (~r, ~r′)ϕk3(~r)ϕk4(~r
′)d~rd~r′ =

∑

ijlm

e−i~k1. ~Rie−i~k2. ~Rjei~k3. ~Rlei~k4. ~RmUijlm

(3.105)
where

Uijlm =
∫

d~rd~r′φ∗(~r′ − ~Ri)φ∗(~r − ~Rj)V (~r, ~r′)φ(~r − ~Rl)φ(~r′ − ~Rm). (3.106)

In this way:

B =
1
2

∑

σ,σ′

∑

k1k2k3k4

c+
k1σc

+
k2σ′ck3σ′ck4σ

∑

ijlm

Uijlme−ik1.Rie−ik2.Rjeik3.Rleik4.Rm

=
1
2

∑

σ,σ′

∑

ijlm

Uijlm
∑

k1k2k3k4

e−ik1Ric+
k1σe

−ik2Rjc+
k2σ′e

ik3Rlck3σ′eik4Rmck4σ

=
1
2

∑

σ,σ′

∑

ijlm

Uijlmc+
iσc

+
jσ′clσ′cmσ. (3.107)

After this transformation the Hamiltonian A + B reads:

H =
∑

ijσ
Tijc+

iσcjσ +
1
2

∑

σ,σ′

∑

ijlm

Uijlmc+
iσc

+
jσ′clσ′cmσ. (3.108)

Within the TB spirit, in the definition of Uijlm we retain only the largest
possible overlap of atomic like functions; this occurs when all the wave functions are
centered at the same site. Then:

Uijlm =
∫

d~rd~r′φ∗(r′ −Ri)φ∗(r −Rj)V (~r, ~r′)φ(r −Rl)φ(r′ −Rm)

= δimδjlδijU (3.109)



The Hubbard Hamiltonian 69

where

U =
∫

φ∗(~r′)φ∗(~r)V (~r, ~r′)φ(~r)φ(~r′) =
∫

| φ(~r′) |2| φ(~r) |2 V (~r, ~r′)d~rd~r′. (3.110)

Now, the Hamiltonian becomes:

H =
∑

ijσ
Tijc+

iσcjσ +
1
2
U

∑

σ,σ′,i

c+
iσc

+
iσ′ciσ′ciσ, (3.111)

Since ciσciσ = 0, the only term that survives is:

H =
∑

ijσ
Tijc+

iσcjσ +
1
2
U

∑

σ,i
c+
iσc

+
i−σci−σciσ. (3.112)

Using the anti-commutation relations:
∑

σ
c+
iσc

+
i−σci−σciσ =

∑

σ
c+
iσciσc+

i−σci−σ =
∑

σ
niσni−σ

= ni↑ni↓ + ni↓ni↑ = 2ni↑ni↓. (3.113)

The Hubbard Hamiltonian is finally:

H =
∑

ijσ
Tijc+

iσcjσ + U
∑

i
ni↑ni↓. (3.114)

This is the Hamiltonian to be used in the description of pure transition metals,
alloys or intermetallics. Although its simple form, many qualitative results can be
extracted from its solution, even approximate.

3.5.1 The Hartree-Fock approximation

In the Hartree-Fock approximation, the second term of the Hubbard Hamiltonian is
linearized in the following way:

∑

i
ni↑ni↓ '

∑

i
(< ni↑ > ni↓+ < ni↓ > ni↑)

'
∑

ij
< ni↑ > c+

i↓cj↓δij +
∑

ij
< ni↓ > c+

i↑cj↑δij

'
∑

ijσ
< ni−σ > δijc+

iσcjσ. (3.115)

The Hamiltonian is rewritten as:

H ∼=
∑

ijσ
[Tij + U < ni−σ > δij] c+

iσcjσ =
∑

ijσ
Tijσc+

iσcjσ. (3.116)

For ferromagnetic and paramagnetic solutions it is possible to assume site
independence, that is, < niσ >=< nσ >. The Fourier transform of the Hamiltonian
is:

H =
∑

kσ

(εk + U < n−σ >) c+
kσckσ. (3.117)



The Hubbard Hamiltonian 70

The resolvent associated to this Hamiltonian is diagonal; using the imaginary
theorem:

ρσ(ε) = − 1
π

ImTrk
1

ε− U < n−σ > −εk

=
∑

k

δ(ε− εk − U < n−σ >). (3.118)

The number of electrons of spin σ, < nσ >, at T = 0, is given by:

< nσ >=
∫ εF

ρσ(ε)dε =
∫ εF

N(ε− U < n−σ >)dε, (3.119)

where N(ε) =
∑

k δ(ε− εk) is the density of states associated to the band structure.
This problems is transformed into a self-consistent one, through the equations:

n = 〈n↑〉+ 〈n↓〉 , (3.120)

where

〈n↑〉 =
∫ εF

N(ε− Un↓)dε (3.121)

〈n↓〉 =
∫ εF

N(ε− Un↑)dε. (3.122)

3.5.2 A dilute transition impurity in a transition host

Examples of this situations are NiPd and FePd . In this case the Coulomb interaction
∑

i Uini↑ni↓ with Ui site dependent: U0 = UNi,Fe and Ui = UPd, i 6= 0. Therefore:

∑

i
Uini↑ni↓ =

∑

i6=0

UPdni↑ni↓ + UNin0↑n0↓

= UPd
∑

i
ni↑ni↓ + (UNi −UPd)n0↑n0↓. (3.123)

It is possible to write the Coulomb terms as:

∑

i
Uini↑ni↓ = UPd

∑

i
ni↑ni↓ + ∆Un0↑n0↓, (3.124)

where ∆U = UNi − UPd > 0, since the Ni wave functions are less extended than
those of Pd.

The hopping terms, involving the overlap dependence (< φi|V |φj >), may be
rewritten for the impurity located at the origin:

Hkin =
∑

i,j 6=0,σ

T (0)
ij c+

iσcjσ +
∑

j(neighbor),σ

[

T̃0jc+
0σcjσ + T̃j0c+

jσc0σ

]

, (3.125)
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where T̃j0 = (1 + γ)T (0)
0j and γ is greater than or less than zero if the impurity wave

function is larger or narrower than the host one, respectively, then:

H =
∑

i,j 6=0,σ

T (0)
ij c+

iσcjσ + (1 + γ)
∑

j 6=0,σ

T 0
0j

[

c+
0σcjσ + c+

jσc0σ

]

+ U
∑

i
ni↑ni↓ + ∆Un0↑n0↓.

(3.126)
Including the local atomic levels εi, not considered in the hopping terms:

∑

iσ
εic+

iσciσ =
∑

i6=0,σ

ε(h)c+
iσciσ + ε0

∑

σ
c+
0σc0σ

= ε(h)
∑

iσ
c+
iσciσ + (ε(h) − ε0)

∑

σ
c+
0σc0σ, (3.127)

where ε0 and ε(h) are the impurity and host atom levels respectively.
Therefore the complete Hamiltonian is:

Htot = ε(h)
∑

iσ
c+
iσciσ + (ε(h) − ε0)

∑

σ
c+
0σc0σ +

∑

ij 6=0,σ

T (0)
ij c+

iσciσ

+(1− γ)
∑

j 6=0,σ

T (0)
0j

[

c+
0σcjσ + c+

jσcoσ

]

+ U(h)
∑

i
ni↑ni↓ + ∆Un0↑n0↓.(3.128)

3.5.3 Numerical method for Hartree-Fock solution

The usual models for the density of states are shown in figure 3.6: a constant function,
the Moriya model (ρ = A[1 − (ε/∆)2], a model for FCC metals (with a peak in the
high energy side), a model to BCC metals (superposition of two Moriya’s bands)
and finally and closed to the reality an interpolation of a calculated density of states.
Start assuming a value for the Coulomb interaction parameter, smaller than the band
width. The number of electrons per atom is specified as n̄, if the bands are normalized
to 1, n̄/2 varies of 0 to 1 per spin direction.

Remembering the self-consistence conditions:

n = n↑ + n↓ (3.129)

n↑ =
∫ εF

N(ε− Un↓)dε (3.130)

n↓ =
∫ εF

N(ε− Un↑)dε. (3.131)

Combining (3.129) and (3.130) we get’s:

n↑ =
∫ εF

ρ (ε−U(n− n↑)) . (3.132)

For a given n̄ and a value for n↑, the Fermi level εF is determined by equation (3.132).
With this value of εF and n↑, from (3.131) one gets the corresponding value of n↓.
Plotting the values of n↑ × ndownarrow one obtains the figure 3.7. Using symmetry
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Figure 3.6 Models for the density of states.

Figure 3.7 Numerial solutions of the Hartree-Fock problem.
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arguments the dot dashed is obtained; the crossing points are the self-consistence
solutions.

With the obtained solutions, it is necessary to calculate the energy of ferro-
magnetic solution and compare with that paramagnetic one. In this way it is possible
to obtain ferromagnetic solution as a function of the number of electrons, band width
and band shape.

3.5.4 The mixed magnetic systems

There is in the systems like GdFe2, GdCo2, GdRh2 and GdIr2, the localized spins
~STR, associated to the rare earth and, consequently, its exchange interaction with the
conductions electrons is given by Jdf~sd.~STR. The d electrons can exhibit magnetic
properties independently of the presence of the rare earths.

The relevant experimental test to know if the magnetic properties are asso-
ciated to the d band are the compounds LuCo2 (paramagnetic) and LuFe2 (fer-
romagnetic). In the first case the Stoner condition is not satisfied. The expected
value for Uρ(εF ) < 1, but Uρ(εF ) can be quite close to 1. This implies that
X = X0(1−Uρ(εF ))−1 is very large.

Experimentally XLuCo2
∼= 3XPd. The compound LuFe2 is ferromagnetic with

saturation magnetic moment about 1.5 uB, therefore close to Fe metallic value.



Chapter 4

ELECTRONIC STRUCTURE: REVISITED

4.1 Electronic structure calculation: a brief overview

4.1.1 Self consistent procedure

Let us start from the one electron approximation. The first step consists in solving
the Schrödinger equation for the electronic states ψj(~k, ~r):

[

−∇2 + VS(r)
]

ψj(~k, ~r) = Ej(~k)ψj(~k, ~r), (4.1)

where the quantum number ~k and j correspond to the wave vector and the sub band
respectively. Using the solution of equation (4.1) it is possible to derive the electronic
density ρ(~r), starting from :

ρ(~r) =
∑

j

occup
∑

k

∣

∣

∣ψj(~k, ~r)
∣

∣

∣

2
. (4.2)

The effective one body potential (spherically symmetric) can be written in
terms of the radial part of the electronic density:

VS(r) = −2Z
r

+ VH(r) + VXC(ρ(r)), (4.3)

in the potentials is included the Hartree and the exchange-correlation potential, they
are is defined by:

VH(r) =
∫

S
d~r′

2ρ(r′)
|~r − ~r′|

(4.4)

and
VXC(r) = µXC(ρ(r)) = µXC (ρ(r), α1, α2, . . . , αP ) , (4.5)

the adopted potential model is defined by α.
Equations (4.1 -4.5) define the self consistent program for the electronic struc-

ture. This problem is usually solved within the rigid core approximation. In this
approximation only the more external electrons s, p and d are considered; the charge
density of the remaining electrons is kept fixed. The core density is obtained from
an atomic calculation, taking only account of a renormalization, consistent with the
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adequate atomic volume. It should be noted however, that this procedure fails in
presence of high pressures, since the inner levels overlap with the neighbors, trans-
formed in internal bands. In the case of hyperfine interactions, it is also necessary to
introduce modifications of these internal states.

In general, a computer program to solve these equations (4.1- 4.5) should have
the following structure:

i. the atomic charge densities are obtained from any method of the Hartree-
Fock type;

ii. the projected densities of states and the number of occupied states per
atom and per angular momentum l, should be derived from the diagonalization of
the Hamiltonian;

iii. the main output of the self consistent program should be the parameters
defining the potential.

One of the results extracted from this calculations is for instance the electronic
pressure, from which the equilibrium lattice parameter can be derived.

4.1.2 Steps of the self consistent program

First of all let us recall that the radius S of the Wigner-Seitz cell, for a monoatomic
material, is given by:

Ω = ~a1. (~a2 × ~a3) =
4π
3

S3. (4.6)

In order to get a trial charge density ρ0(r) one uses an atomic charge density,
renormalised to the volume given by the radius S.

Then one solves the Poisson’s equation:

∇2VH(r) = −8πρ(r) (4.7)

using for that, the so obtained charge density. From the solution of Poisson’s equation,
one obtains the Hartree potential VH(r). Given this solution, one should add the
potential 2Z/r associated to the nuclei. The exchange-correlation potential, for a
given approximation, is calculated using the charge density ρ(r). Once this part is
finished, the potential VS(r), for a given step of the self consistence is defined.

The third step consists in obtaining the radial wave functions, and with that
calculating the corresponding potential parameters. One proceeds through the fol-
lowing steps: i. to solve Dirac’s equations, without spin-orbit coupling, using the
potential function obtained in the preceding step; ii. using the so obtained solution,
one calculates the following potential parameters defined by:

mS2 =
(

Sφ2
ν

)−1
(4.8)

a = −Sφνφ̇ν (4.9)

b = S−1φ2
ν

〈

φ̇ν
2
〉

. (4.10)
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Equation(4.8) involves only the wave function, whereas in (4.9) and (4.10) the en-
ergy derivative of the solution of the Dirac’s equation is required. This derivative is
obtained calculating the wave function in two energies Eν + ε and Eν − ε, where ε is
a convenient and small fraction of the band width.

The fourth step involves the construction of a new charge density, using the
obtained solutions φνl(r) and their first and second energy derivatives; it can be shown
that:

4πρ(r) =
∑

l

[

nlφ2
νl(r) + 2φνl(r)φ̇νl(r)

∫ EF

2Nl(E) (E − Eνl) dE

+
(

φ̇2
νl(r) + φ̈νl(r)φνl(r)

)

∫ EF

2Nl(E) (E − Eν)
2 dE + . . .

]

(4.11)

where Nl(E) is the state density with orbital momentum l and

nl =
∫ EF

2Nl(E)dE, (4.12)

the factor 2 occurs for spin.
The program should then at this step, to be able of calculating this density of

states, the Fermi level and the moments of the density of states.
It remains to know if self consistency is obtained. It should be noted that

energy Eν was introduced in a not very precise way; this energy being chosen by
imposing Eν around the center of the band. The self consistency is made, starting
from the moments of the occupation number N(E), since these give an idea of the
occupied part of the band.

Self consistence: the first order moment, if imposed to be zero, defines the
center of gravity of the band.

4.2 The recursive method: general formulation

4.2.1 Notation

Let us start with some general considerations. First of all a technical detail: in order
to get a programmable theory, one should have a finite basis. The computer is a
discrete and finite machine.

A discrete basis is defined by a set of wave functions not necessarily orthogonal;
if ~r are the coordinates of the system:

{φ0(~r), φ1(~r), φ2(~r), . . . , φN(~r), . . .} , Nfinite. (4.13)

The states of the system are represented by column vectors. A given arbitrary u state
of the system is represented by a column vector with the elements u0, u1, u2, . . . uN , . . .
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in the form:

u =























u0

u1

u2
...

uN























. (4.14)

Using the basis, as defined in (4.13) we can construct the wave function asso-
ciated to the state u:

u(~r) =
N

∑

n=0
unφn(~r). (4.15)

Linear operators A are represented by matrices. Using the basis (4.13) to
represent any operator A, the matrix is given by:

amn =
∫

d~rφ∗m(~r)Aφn(~r), (4.16)

where the integration is performed in all coordinate space. If A is the Hamiltonian
we introduce:

Huα = Eαuα, (4.17)

where α is an index defining the quantum numbers associated to the problem.
Definition of the adjoint operator, of state, in this context (superscript †).
The state u has an adjoint u† defined by the line vector with the elements u∗i :

u† =























u0

u1

u2
...

uN























†

≡ [u∗0, u
∗
1, u

∗
2, . . .] (4.18)

Note that line and column vectors can be interchanged (the adjoint of a line vector
is a column vector); consequently

(

u†
)†

= u.
The operator A has an adjoint A†, such that the corresponding matrix is the

transpose, complex conjugate of the matrix associated to A; then again
(

A†
)†

= A.
Definition of the overlap: starting from two states u and v we can define the

scalar s:

s = v†u = [v∗0, v
∗
1, v

∗
2, . . .]

















u0

u1

u2
...

















. (4.19)

This correspond to multiply a line vector by a column vector. The adjoint of a
product is the product of the adjoints in the inverse order (v†u)† = u†v.
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4.2.2 Hamiltonian and orthogonality

In general, the basis constituted by the φn(~r) is not necessarily orthogonal,
∫

φ∗m(~r)φn(~r)d~r 6= 0. (4.20)

It should be noted that, to construct an orthogonal basis is not very useful since the
orthogonalization process destroy the simple idea of orbitals located at each atom,
chemical neighborhood and other simple concepts.

Thus we introduce the overlap matrix S, in the chosen basis via:

(S)mn =
∫

d~rφ∗m(~r)φn(~r). (4.21)

We then define the internal product of physical overlap of two states by v†Su. This
is connected to overlap between wave functions as written in the chosen basis:

∫

d~rv∗(~r)u(~r) =
∑

m,n
v∗mun

∫

d~rφ∗m(~r)φn(~r) =
∑

m,n
v∗mSmnun = v†Su (4.22)

This expression relates the overlap of two states with the overlaps of the basis
orbitals. Note that v†u is not a physical overlap; this is just a formal sum. Two states
are orthogonal if they are physically orthogonal:

v†Su = 0 (4.23)

Matrix representation for the Hamiltonian operator. Let H be the Hamil-
tonian operator. If H acts in an orbital of the φn(~r) basis, then the result is a linear
combination of the elements of that basis. One has then:

Hφn(~r) =
∞
∑

m=0
Hmnφm(~r), (4.24)

where Hmn is the Hamiltonian matrix. Note that the Hamiltonian matrix or the
parameters Hmn, should not be identified in general with the matrix elements of the
Hamiltonian H defined by:

Hmn =
∫

d~rφ∗m(~r)Hφn(~r). (4.25)

The overlap matrix S relates Hmn through:

Hmn = [SH]mn. (4.26)

The proof is made following the usual way, combining (4.24) and (4.25):

Hmn =
∫

d~rφ∗m(~r)Hφn(~r) =
∫

d~rφ∗m(~r) [Hφn(~r)]

=
∫

d~rφ∗m(~r)
[

∑

l

Hlnφl(~r)
]

=
∑

l

[∫

d~rφ∗m(~r)φl(~r)
]

Hln

=
∑

l

SmlHln = [SH]mn. (4.27)
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Then:
Hmn = [SH]mn (4.28)

Note that in the case of orthogonal basis there is no difference because Smn =
∫

φ∗mφnd~r = δmn = [I]mn and one has Hmn = Hmn.
It remains to make some comments about the overlap matrix S: this matrix

is self adjoint, since:

S†nm = S∗mn =
[∫

φ∗m(~r)φn(~r)d~r
]∗

=
∫

φ∗n(~r)φm(~r)d~r = Snm (4.29)

Consequently S† = S. Also one has H∗
mn = Hmn.

4.2.3 The chain model

Theorem: any quantum system can be transformed in one or several one dimen-
sional pseudo chains and then solved. The reason for that is based in the fact that any
matrix can be transformed into a tri-diagonal matrix (also called the Jacobi matrix).
To perform this program, let us introduce two definitions.

Definition 1 A quantum model is defined by An Hamiltonian and a set of or-
bitals over which the Hamiltonian acts and a physical interpretation of these orbitals.
The Hamiltonian describes the motion of the system through the tunneling between
orbitals, it is always assumed to be hermitian and the overlaps are defined by an
hermitian matrix.

Definition 2 The chain model is defined in the following way: a sequence of or-
thonormal orbitals: [u0, u1, . . . , un, . . .]. Two sequences of real parameters: [a0, a1, a2, . . .][b1, b2, b3, . . .].
The orbitals and the parameters describe the action of the Hamiltonian through the
recursive formula:

Hun = anun + bn+1un+1 + bnun−1. (4.30)

Since the un are orthonormal, one can deduce the component of the un+1 in the
recursion formula through bn+1 = u†n+1Hun. The recursion relation gives also:

Hun+1 = an+1un+1 + bn+2un+2 + bn+1un. (4.31)

The component of un in Hun+1 is bn+1; then bn+1 = u†nHun+1.
In conclusion: the chain is symmetric, namely u†n+1Hun = u†nHun+1.
This result presents a certain similarity with the hermiticity property. Another

result is:
u†nSum = δnm. (4.32)
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Figure 4.1 Pictorical representaion of the action of the Hamiltonian

A sequence of orbitals u0, u1, . . . , uN , . . . may be finite or infinite. In the case
of finite sequence the orbitals u−1 and uN+1 are taken equal to zero.

A graphical representation of the chain is the following: the orbitals are repre-
sented by the vertices and the Hamiltonian is represented by the connections between
vertices. The loop corresponds the a component associated to the vertex, due to the
application of Hamiltonian, figure 4.1.

Formally one has:

Hu0 = a0u0 + b1u1; u−1 = 0 (4.33)

Hu1 = a1u1 + b2u2 + b1u0 (4.34)

Hu2 = a2u2 + b3u3 + b2u1, (4.35)

and so on.

Equivalence between the chain model and the Jacobi matrix

To demonstrate that, let us introduce a representation for the state un: this is a
column vector with all the components equal to zero except the n-th:

un =





























0
...
0
1
0
...





























. (4.36)

We use the formal definitions (4.35) to calculate the matrix elements:

u†mHu0 = a0u†mu0 + b1u†mu1. (4.37)

Two non vanishing elements are H00 = a0 and H10 = b1. The terms of the second
line of the matrix are given bay:

u†mHu1 = a1u†mu1 + b2u†mu2 + b1u†mu0, (4.38)
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there are three non vanishing elements: H01 = b1, H11 = a1 and H21 = b2. The third
line is given by:

u†mHu2 = a2u†mu2 + b3u†mu3 + b2u†mu1. (4.39)

There are also three non vanishing elements: H22 = a2, H12 = b2 and H32 = b3. Then:

[H] =























a0 b1 0 0 . . .
b1 a1 b2 0 . . .
0 b2 a2 b3 . . .
0 0 b3 a3 . . .
...

...
...

... . . .























. (4.40)

4.2.4 Physical interpretation of the chain model

Let us start from equations (4.33 - (4.35); let u0 be the initial state of the system,
for example: one electron in the orbital of the central atom. This electron makes
a transition to another orbital u1. The orbital u1 may be a linear combination of
orbitals in neighboring atoms. Once the electron lies in orbitals u1, two possibilities
may occur: or the electron hops to the orbital u2, more extended, or can back to the
first one.

4.2.5 Formal aspects of the tranformation of the chain model

First of all let us choose the initial state u0; this choice determines the physics of the
problem. To each choice for u0 it corresponds a different chain. We take then the u0

that contains the relevant information for the problem of interest. Secondly we recall
the definition of the internal product:

(v, u) = v†Su, (4.41)

where S is the overlap matrix of the considered basis. Thirdly, the starting state u0

should satisfy the following requirement:

u†0 (SH)n u0 < ∞, (4.42)

for any finite value of n. The physical interpretation of this equation is that the high
energy components of u0 should quickly decrease by applying H. Let us suppose that
the starting state is normalized:

u†0Su0 = 1. (4.43)

We now build up a vector u1, as closed as possible to u0, using the recursion (4.30)
and imposing u−1 = 0.

Hu0 = a0u0 + b1u1 (4.44)
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If we impose the orthonormality condition we determine a0:

u†0SHu0 = a0u
†
0Su0 + b1u

†
0Su1, (4.45)

the first term is one and the second is zero, both by orthonormality. In conclusion:

a0 = u†0SHu0 (4.46)

and from (4.44):
b1u1 = (H − a0I)u0. (4.47)

In order to determine the value of b1, let us impose the u1 state is normalized (u†1Su1 =
1). Multiplying equation (4.47) on the left by b1u

†
1S, one gets:

b1u
†
1Sb1u1 = b2

1u
†
1Su1 = [(H − a0I) u0]

† S [(H − a0I) u0] , (4.48)

then by the normalization condition:

b2
1 = [(H − a0I) u0]

† S [(H − a0I) u0] . (4.49)

One should note b2
1 is larger or equal to zero, since the scalar product is positively

defined. If b1 is different from zero, we take the positive root of (4.49), and we get
from (4.47):

u1 = (H − a0I)u0/b1. (4.50)

In conclusion u1 is normalized and we can verify using (4.50) that u1 is or-
thogonal to u0. In fact:

u†0Su1 =
1
b1

u†0S(H − a0I)u0 =
1
b1

[

u†0SHu0 − a0u
†
0Su0

]

= 0, (4.51)

where we have used equation (4.46).
In this way we have constructed the first recurrence of the chain.
Let us suppose we have constructed the orthonormal states [u0, u1, . . . , un]

and obtained the corresponding parameters [a0, a1, . . . , an−1] and [b1, b2, . . . , bn]. Let
us make the assumption that any one of the bj is zero. Now we intend to construct
un+1, an and bn+1 using the recursion:

Hun = anun + bn+1un+1 + bnun−1. (4.52)

Introducing the overlap matrix S:

SHun = anSun + bn+1Sun+1 + bnSun−1. (4.53)
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Now we perform the internal product with u†n−1; we impose orthogonality and using
the previous construction u†n−1Sun−1 = 1, then:

u†n−1SHun = anu
†
n−1Sun + bn+1u

†
n−1Sun+1 + bn. (4.54)

Using orthogonality condition, one gets:

bn = u†n−1SHun. (4.55)

It should be noted that this bn was obtained starting from (4.52); alternatively we
can use the preceding recurrence:

Hun−1 = an−1un−1 + bnun + bn−1un−2, (4.56)

in this case:
bn = u†nSHun−1. (4.57)

It remains to show that the two bn are identical. To do that we start from (4.55) and
use the fact SH is self adjoint: [SH]† = SH = H†S. The qualitative proof is the
following:

u†n−1SHun = u†n−1H
†Sun = [Hun−1]

† Sun

= [Hun−1]
†
[

u†nS
]†

=
[

u†nSHun−1

]†
. (4.58)

The first term on the left was calculated in the new recurrence and the last
one is calculated in the previous recurrence.

Then in expression (4.52) we have the term bn as constructed from the previous
recurrence; it remains only to calculate an and bn+1 to obtain the new state. The
calculation of an goes has follows:

u†nSHun = anu†nSun + bn+1u†nSun+1 + bnu†nSun−1, (4.59)

since the last two terms are zero due to orthogonality and the first one is an one gets:

an = u†nSHun. (4.60)

Remember that un was obtained in the preceding recurrence. Now we construct the
new state un+1 starting from (4.52)

bn+1un+1 = (H − anI)un − bnun−1. (4.61)

Again if we impose that un+1 is normalized, one gets then:

b2
n+1u

†
n+1Sun+1 = b2

n+1 = [(H − anI)un − bnun−1]
† S [(H − anI)un − bnun−1] , (4.62)

this defines the quantity bn+1, because the quantities on the right side have been
calculated in the preceding recurrence.
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4.2.6 Expansion in continuous fractions

Using the Jacobi form for the matrix H we write the matrix:

E −H =

















E − a0 −b1 0 . . .
−b1 E − a1 −b2 . . .
0 −b2 E − a2 . . .
...

...
... . . .

















D0

D1

D2
...

(4.63)

Since we need the resolvent to obtain the density of states, let us calculate:

G =< µ0 | [E −H]−1 | µ0 >=
det | D1 |
det | D0 |

=
1

det|D0|
det|D1|

, (4.64)

considering that the determinant D0 as a functions of minor determinants id given
by:

det | D0 |= (E − a0) det | D1 | −b2
1 det | D2 |, (4.65)

then the Green functions is:

G =
1

E − a0 − b2
1

det|D2|
det|D1|

=
1

E − a0 − b2
1

1
det|D1|
det|D2|

. (4.66)

In general one has:
det | Dn |

det | Dn+1 |
= E − an −

b2
n+1

det|Dn+1|
det|Dn+2|

. (4.67)

This equation furnishes naturally the expansion in continuous fractions as:

G =
1

E − a0 −
b2
1

E − a1 −
b2
2

E − a2 −
b2
3

. . .

. (4.68)

4.3 Theoretical basis of the LMTO method

4.3.1 The concept of muffin tin orbitals

Let us start defining the energy independent muffin tin orbitals (MTO) χα
RL(~rR),

these orbitals are characterized by angular momentum with indices L = (l,m). They
are centered in sites R of the lattice of the material. In the general α representation,
the MTO are defined by:

χα
RL(~rR) = ϕRL(~rR) +

∑

R′L′
ϕ̇α

RL(~rR′)hα
R′L′,RL + Kα,i

RL(~rR), (4.69)
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with
ϕ̇α

RL(~rR′) = ϕ̇RL(~rR′) + ϕRL(~rR′)oα
RL, . (4.70)

In this definition ϕRL(~rR) = ϕRL(rR)Y (r̂R), where Y (r̂R) are the spherical harmonics
and the vector ~rR is ~r − ~R, rR =| ~rR | with r̂R = ~rR/ | ~rR |. The other quantities in
(4.69)will be now systematically defined. The function ϕRL(~rR) is the solution of the
scalar relativistic Schrödinger radial equation for a given potential VR(~rR); usually
this potential is determined within the local density formalism. A very traditional
approximation used in most cases is the von Barth-Hedin. The adopted value of the
energy EγRL is usually taken as the center of the energy interval of interest.

The function ϕRL(~rR) is normalized to unity within a sphere centered at ~R
and with radius sR,

∫ sR

0
|ϕRL(~rR)|2 r2

RdrR = 1. (4.71)

The function ϕ̇RL(~rR) is the energy derivative of the wave function (ϕ̇ = ∂ϕ
∂E ), again

calculated at the energy EγRL. The quantity oα
RL in equation (4.70) is the mixing

amplitude of the wave function ϕRL with its derivative ϕ̇RL, (oα
RL = 〈ϕRL|ϕ̇RL〉).

The amplitude of the energy derivative of the wave function is defined by pRL =
〈ϕ̇RL|ϕ̇RL〉. The function Kα,i

RL(~rR) in (4.69) is the contribution to the MTO arising
from the interstitial region. Finally, the matrix hα

R′L′,RL, connects functions centered
at different sites; this function is determined in such a way that the wave function
(4.69) is continuous with continuous derivative at the surface of radius sR. The
explicit form will be demonstrated at the end of these general considerations and it
turns out to be:

hα
RL,R′L′ = (Cα

RL − EγRL) δRR′δLL′ + (∆α
RL)1/2 Sα

RL,R′L′ (∆
α
R′L′)

1/2 , (4.72)

In the expression (4.72) Sα
RL,R′L′ are the site and angular momentum matrix elements

of the structure matrix Sα in the representation MTO-α. ∆α and Cα are the potential
parameters which, together with the mixing amplitude oα

RL, can be expressed by the
potential function Pα

RL and their energy derivatives Ṗα
RL e P̈ α

RL, always calculated
at the energy EγRL. These relations are made explicit at the and of these general
considerations. These relations are:

(∆α
RL) =

[

˙PRL
α
(EγRL)

]−1
,

Cα
RL − EγRL = − P α

RL(EγRL)
˙PRL

α
(EγRL)

, (4.73)

oα
RL =

¨PRL
α
(EγRL)

2 ˙PRL
α
(EγRL)

.
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The potential function in the α representation P α
RL(E) are expressed in terms

of the conventional potential function P 0
RL(E) and of the elements αRL of the matrix

defining the representation MTO-α. Such a relation is obtained and discussed in
more detail also at the end of these considerations. One has:

Pα
RL(E) =

P 0
RL(E)

1− αRLP 0
RL(E)

. (4.74)

The quantities P 0
RL(E) have a direct physical interpretation. They are proportional

to the cotangents of the phase shifts associated to the potentials VR(~rR) of the sphere
centered at R. An interesting point is that a parametrization of the functions P 0

RL(E),
can be made in a broad spectrum of energies. This is made in terms of the centers
CRL, in terms of the width ∆RL and of the form γRL of the bands. As shown at the
end of these considerations the parametrized form of the potential function is:

P 0
RL(E) =

E − CRL

∆RL + γRL(E − CRL)
. (4.75)

The quantities CRL, ∆RL and γRL are often called potential parameters, and are
characteristic of the atom occupying site R with orbital L. These potential parameters
can be understood as the diagonal elements of the diagonal matrices C, ∆ and γ.

These potential functions can be written in another general representations β
using the transformation formula:

P β
RL(E) =

P 0
RL(E)

1− βRLP 0
RL(E)

, (4.76)

The connection between the potential functions in representations α and β, that is the
transformation rule, enables to obtain a given function in terms of the corresponding
in another representation. This is done by eliminating P 0

RL(E) in equations (4.74)
and (4.76); the result is:

Pα
RL(E) =

P β
RL(E)

1− (αRL − βRL)P β
RL(E)

. (4.77)

The crystal lattice enters the theory through the structure constant Sα, defined
in terms of the canonical structure constant S0:

Sα
RL,R′L′ =

[

S0
(

1− αS0
)−1

]

RL,R′L′
. (4.78)

The matrix elements Sα
RL,R′L′ , depend only on R/ω and R′/ω, where R and R′ are the

atomic positions and ω is the averaged Wigner-Seitz (WS) radius of the solid. The
structure constant S0 depends only on the geometry of the lattice, independent of the
atomic occupation of the several sites by different atoms. The matrix S0

RL,R′L′ is given
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in general form by Slater and Koster. Taking the z axes in the ~R− ~R′ directions, this
matrix is given by

S0
l,l′m = (−1)l+m+1(l′+l)!2

[

(2l′ + 1)(2l + 1)
(l′ + m)!(l′ −m)!(l + m)!(l −m)!

]1/2 (w
d

)l′+l+1
. (4.79)

As the equation (4.79) indicates, S0
RL,R′L′ behaves as a power law of the type (ω

d )l+l′+1,
where d = |R − R′|. For small values of the angular momentum (l = 0 or 1) ,
S0 has a long range on real space. Considering the l = 0, s band, the canonical
structure matrix S0 is S0(d) = −2w/d; in reciprocal space the matrix in this case
is S0(k) = −6/(wk)2. The same matrix element in other representation defined by
(4.78), is given by:

Sα(k) =
− 6

(wk)2

1 + α 6
(wk)2

=
−6

(wk)2 + 6α
, (4.80)

The inverse Fourier transform implies in:

Sα(d) = (−2w/d)e−
√

6αd/w. (4.81)

This result shows that the quantities, Sα
RL,R′L′ behaves like e−(λα

ll′ )d/ω, where λα
ll′ de-

pends on the representation. Numerical studies have shown that for compact lattices,
a representation exists in which S has rapid monotonic decay in real space. This rep-
resentation, called the MTO-β or localized representation, is site independent, but
angular momentum dependent and is defined by:

βs = 0, 3485; βp = 0, 05303; βd = 0, 010714 and βl = 0 for l > 2. (4.82)

For compact crystal structures Sβ vanishes for distances larger than the second
neighbors, and consequently the values wave function χβ

RL is localized in real space.
On the contrary the conventional function χ0

RL is long ranged.
For the structure constant, in a way similar to the potential function, a trans-

formation rule can be shown to exist between different representation. The proof is
quite similar to that used in the proof of (4.77) and one gets the result:

Sα = Sβ
[

1− (α− β) Sβ
]−1

. (4.83)

This equation connects the structure matrix Sα with the β representation Sβ.

4.3.2 Hamiltonian of the system

The scalar relativistic Schrödinger equation for the solid is solved taking for ψα(~r) a
linear combination of MTO wave functions,

ψα(~r) =
∑

~R,L

ξα
RLχα

RL(~rR). (4.84)
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The variational or Ritz method furnishes the eigenvectors ξα
RL and the energy

eigenvalues from the equation:

∑

R,L

(

Hα
RL,R′L′ − EOα

RL,R′L′

)

ξα
RL = 0. (4.85)

Note that the matrix elements of Hα and Oα are energy independent. Equation (4.85)
is a classical equation of eigenvalues for the energy E, and (4.85) is main equation
for the linear muffin tin orbital method (LMTO). In this method the basis set is
composed by the MTO and the energy E appears only explicitly.

The overlap matrix Oα
RL,R′L′ = 〈χα

RL|χα
R′L′〉 is easily obtained substituting the

wave functions (4.69) and assuming 〈χ̇α
RL|χ̇α

R′L′〉 = 0, one gets the result:

Oα = (1 + oαhα)(hαoα + 1) + hαphα + 〈kα,i|kα,i〉. (4.86)

The Hamiltonian matrix is defined by:

Hα
RL,R′L′ = 〈χα

RL| − ∇2 + V (r) |χα
R′L′〉 , (4.87)

and, using again the wave function (4.69), one obtains:

H = hα+hαoαhα+(1+hαoα)Eγ(oαhα+1)+hαEγphα+〈kα,i|−∇2+V (r)|kα,i〉. (4.88)

In (4.88) hα is the matrix defined in (4.72), oα and Eγ are diagonal matrices with
elements defined in (4.73) and p is the diagonal matrix of elements pRL = 〈ϕ̇RL|ϕ̇RL〉.
The last term in (4.86) and in (4.87) arise from the interstitial region.

Within the muffin tin (MT) approximation the interstitial region is well de-
scribed since the potential is constant and spherically symmetric. The simples way
to introduce the interstitial region is via the atomic sphere approximation (ASA).
This simplifies also the solution of the eigenvalue equation (4.85). The ASA approx-
imation consists in replacing the MT spheres by Wigner-Seitz spheres, consequently
introducing superpositions. The ASA furnishes a good description of the electronic
structure if the WS spheres superpose in such a way that its overlap contains almost
all electrons of the interstitial region. The validity of the approximation is given for
an intersection less than 30%,

|sR + sR′ − d|
d

< 0, 3, (4.89)

where d (= |R − R′|) is the distance between the centers of WS spheres which are
next neighbors. For compact structures this condition is normally satisfied.

Using the atomic sphere approximation in equations (4.86) and (4.88) the last
term vanishes in both equations, and considering also that the PRL quantity is a small
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parameter in LMTO theory, one gets:

Oα = (1 + oαhα)(hαoα + 1) (4.90)

H = hα(1 + oαhα) + (1 + hαoα)Eγ(oαhα + 1). (4.91)

A very simple representation for these equations is obtained when αRL is given
by the potential parameter γRL; in this representation the potential function is given
by:

P γ
RL =

(E − CRL)
∆RL

. (4.92)

Given this function and using (4.73), one gets Cγ
RL = CRL, ∆γ

RL = ∆RL and
oγ

RL = 0. In this case the function Hγ and Oγ have the form:

Hγ = hγ + Eγ, Oγ = 1. (4.93)

Since the overlap vanishes, this particular representation is called the orthogonal
representation. In this case one obtains finally:

Hγ
RL,R′L′ = CRLδRR′δLL′ + ∆1/2

RLSγ
RL,R′L′∆

1/2
R′L′ (4.94)

Oγ
RL,R′L′ = δRR′δLL′ (4.95)

Sγ
RL,R′L′ =

[

S0
(

1− γS0
)−1

]

RL,R′L′
. (4.96)

In the first principles Hamiltonian (4.94), hopping is associated to the struc-
tural terms (Sγ) and on the potential parameters characteristic of the WS spheres.
These in turns are obtained from the solution of the scalar relativistic equation. The
possibility of separation the structural part from that depending on the particular
site occupation enables the application of this method in the description of disordered
systems using the classical approximation of the coherent potential approximation
(CPA).

4.3.3 The Green’s function

In the determination of the electronic structure the adequate technique is the one-
electron Green’s function (or resolvent). The Green’s function (GF) associated to a
given Hamiltonian is defined as:

GRL,R′L′(z) =
[

(z −Hγ)−1
]

RL.R′L′
, (4.97)

where z is the complex energy. If in (4.97) we introduce the Hamiltonian (4.94) and
consider the orthogonal representation of the potential function given in (4.92), one
gets:

GRL,R′L′(z) = ∆−1/2
RL

[

(P γ(z)− Sγ)−1
]

RL,R′L′
∆−1/2

R′L′ , (4.98)
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when the notation P γ(z) corresponds in (4.92) to replace E by z.
It is possible to express G(z) in other representation. Due to the importance

in passing, from one representation for G(z) to another, let us present the proof in
some detail.

Let us start from (4.98) in the matrix notation:

G = ∆−1/2 [P γ − Sγ]−1 ∆−1/2, (4.99)

Using the relation (4.83)between Sγ and Sα one gets:

G = ∆−1/2
[

P γ − Sα [1− (γ − α)Sα]−1
]−1

∆−1/2. (4.100)

After some algebraic transformations and again using the representations transform
P α

P γ = [1 + (γ − α)P γ]−1, one has:

G = ∆−1/2 [1− (γ − α)Sα] [Pα − Sα]−1 Pα

P γ ∆−1/2. (4.101)

Introduce the auxiliary GF:

gα(z) = [Pα(z)− Sα]−1 , (4.102)

one obtains the following scaling law between G and g:

G = ∆−1/2(γ − α)
Pα

P γ ∆−1/2 + ∆−1/2Pα

P γ gα Pα

P γ ∆−1/2. (4.103)

In terms of matrix elements of G, one has:

GRL,R′L′ = ∆−1/2
RL (γRL − αRL)

(Pα

P γ

)

RL
∆−1/2

RL δRR′δLL′ +

+∆−1/2
RL

(Pα

P γ

)

RL
gα

RL,R′L′

(P α

P γ

)

R′L′
∆−1/2

R′L′ . (4.104)

Introduce now the auxiliary variable:

D = ∆−1/2
RL

(P α

P γ

)

RL
, (4.105)

combining the relation (4.77) and the orthogonal representation of the potential:
(Pα

P γ

)

RL
=

∆RL

∆RL − (αRL − γRL)(z − CRL)
, (4.106)

then:

D =
∆1/2

RL

∆RL + (γRL − αRL)(z − CRL)
. (4.107)
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In a similar way one gets the first term of (4.104) as D/∆1/2. Introducing in
the above equation, one finally gets:

GRL,R′L′(z) = λα
RL(z)δRR′δLL′ + µα

RL(z)gα
RL,R′L′(z)µα

R′L′(z), (4.108)

where
λα

RL = (γRL − αRL)
µα

RL(z)

∆1/2
RL

(4.109)

and

µα
RL(z) ≡

(

Ṗα
RL(z)

)1/2
=

∆1/2
RL

∆RL + (γRL − αRL)(z − CRL)
. (4.110)

The structure constant Sα = S0(1− αS0)−1 in equation (4.102), defining the
auxiliary resolvent, may be random in a disordered system, since it depends on the
occupation through the values of αRL. In the MTO-β, however the structure constant
is site independent.

4.3.4 Derivation of the hopping term

In the approximation of neglecting the interstitial part, the α representation of the
MTO orbital is given by:

|χα >= |φ > +|φ̇α > hα, (4.111)

and
|φ̇α >= |φ̇ > +|φ > oα, (4.112)

where oα introduces a small mixing of φ with φ̇. We have also used the simplified
notation where |χα >≡ χα

RL(~rR).
The matrix hα is build up through the imposition of the continuity of the

function and its derivatives in the inner and outer parts of the sphere.
The functions outside the sphere are the regular and irregular solution of the

Laplace equation:

|Kα > = |K > −|Jα > Sα (4.113)

|Jα > = |J > −α|K > . (4.114)

Thus in the surface of the sphere, one should ensure continuity between these func-
tions and linear combination of φ and φ̇, the latter being the solution of Schrödinger
equation and its derivative inside the sphere.

In general, given a general junction f(r), there is continuity between a linear
combination of the functions a(r) and b(r) in a given surface s when:

f(r) → [a(r)W{f, b} − b(r)W{f, a}] (W{a, b})−1 , (4.115)
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where W{a, b} is the Wronskian of the functions a and b, defined by:

W{a, b} ≡ s2

∣

∣

∣

∣

∣

∣

a(s) b(s)
a′(s) b′(s)

∣

∣

∣

∣

∣

∣

. (4.116)

Introducing the general criterion to one particular case one gets:

|χα >= |φ > +|φ̇α >



− W{K, φ}
W{K, φ̇α}

+

√

2
s
W{Jα, φ}SαW{Jα, φ}

√

2
s



 . (4.117)

Comparing this result with (4.111), we have:

hα =



− W{K,φ}
W{K, φ̇α}

+

√

2
s
W{Jα, φ}SαW{Jα, φ}

√

2
s



 . (4.118)

Since the Wronskian are diagonal matrices, depending only on the site occu-
pation, we define the following parameters:

C = εν −
W{K,φ}
W{K, φ̇α}

(4.119)

∆1/2 =

√

2
s
W{Jα, φ}. (4.120)

Thus finally one has:
hα = C − εν + ∆1/2Sα∆1/2. (4.121)

4.3.5 Derivation of the potential function

The potential function Pν is defined as:

Pν = − 1
π

arctg(Dν) + 0, 5, (4.122)

where:

Dν = s
∂
∂rΨ(s)
Ψ(s)

≡ s
Ψ′(s)
Ψ(s)

, (4.123)

is the logarithmic derivative of the wave function at he surface of the sphere.
The function Pν is limited between 0 and −1, due to the constants π and 0, 5.

Its major property is to be a function which has a better behavior than Dν , since
when Dν →∞, Pν → 0.

In order to obtain Pν it is enough to know Dν as a function of the potential
parameters C, ∆ and γ. To obtain this proof let us start from the functions Φ+ and
Φ−, related to the potential parameters by:

∆1/2 =
(a

s

) (a
2

)1/2
Φ−(s) (4.124)

∆1/2

γ
= 2(2l + 1)

(a
s

) (a
2

)1/2
Φ+(s), (4.125)
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where a is a scale parameter and s is the radius of the muffin tin sphere. These
functions are defined by:

Φ+ = φ + ω+φ̇, Φ− = φ + ω−φ̇, (4.126)

where ω+ and ω− are taken in such a way that Φ+ and Φ− have logarithmic derivatives
respectively equal to l and −(l + 1). As usually φ and φ̇ are the wave function and
its derivative respect to the muffin tin sphere.

In general, the functions Φ+ and Φ− can be written as:

Φ(D, r) = φ(r) + ω(D)φ̇(r), (4.127)

where ω(D) is such that Φ(D, r) has a logarithmic derivative equal to D in the sphere
surface. Starting from the definition D = sΦ′

Φ , one obtains:

D =
Dν + ω(D)Dν̇

φ̇
φ

1 + ω(D) φ̇
φ

, (4.128)

where we used the definitions Dν̇ = s φ̇′

φ̇
and Dν = sφ′

φ .
Defining

ω(D) = −φ
φ̇

D −Dν

D −Dν̇
(4.129)

and introducing it in (4.127), for r = s, one obtains:

Φ(D, s) = φ
Dν −Dν̇

D −Dν̇
. (4.130)

Replacing D by its value in the surface of the sphere:

Φ+ = φ
Dν −Dν̇

l−Dν̇
, (4.131)

Φ− = φ
Dν −Dν̇

−l− 1−Dν̇
, (4.132)

one gets to the ratio of these equations:

Φ+

Φ− =
−l− 1−Dν̇

l−Dν̇
. (4.133)

From that relation one gets:

Dν̇ = l + (2l + 1)
[

Φ+

Φ− − 1
]−1

. (4.134)

Introducing the value of Dν̇ in (4.131) and using the relation extracted from (4.126):

ω−
ω+

=
Φ+ − φ
Φ− − φ

, (4.135)
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one finally gets:

Dν = l + (2l + 1)
(

Φ+

Φ−
ω−
ω+

− 1
)−1

. (4.136)

Using the relation between the functions Φ+ an Φ− with the potential param-
eters as given in (4.124) and (4.125), one has:

Φ+

Φ− =
γ−1

2(2l + 1)
. (4.137)

Imposing the continuity of the wave functions, using the Wronskians, between the
functions inside and outside the spheres, one has:

ω− = C − εν , ω+ = ω− −∆γ−1. (4.138)

Replacing these values of ω+, ω− in (4.136), one has:

Dν = l + (2l + 1)
(

1
2(2l + 1)

εν − C
∆ + γ(εν − C)

− 1
)−1

. (4.139)

Finally introducing Dν in the definition of Pν given in (4.122), one has:

Pν = − 1
π

arctg



l + (2l + 1)
(

1
2(2l + 1)

εν − C
∆ + γ(εν − C)

− 1
)−1



 + 0, 5. (4.140)

This is the exact definition of the potential function for numerical self consis-
tent calculation. This function may be approximately represented in an energy range
defined by ε̃ν , by:

Pν =
ε̃ν − C

∆ + γ(ε̃ν − C)
. (4.141)

It can be shown that the above function approximates quite well the above general
expression.



Chapter 5

RARE EARTH METALS AND COMPOUNDS

5.1 Introduction

We present here a brief discussion of stable compounds, intermediate valence, Kondo
and heavy fermion compounds. Contrary to the previous Chapters, this is mostly
devoted to the discussion of materials including elements of two specific series of the
Periodic Table, namely the 4f and the 5f . The first one, called the lantanide series, is
divided in two distinct groups: materials including the stable Rare Earths and those
with the anomalous ones, constituted by Ce, Y b, Eu, Sm, Tm.

These materials are in general intermetallic compounds, exhibiting structures
like the cubic, hexagonal, tetragonal, orthorombic, modified cubic, Laves phase and
Heusler. These compounds may contain or not, in their composition, transition metal
elements.

The stability of these rare earths is understood here in terms of the existence
of localized 4f states well separated from the extended conduction states, as dis-
cussed in Chapter 3. On the contrary, unstable rare earths present 4f levels which,
in the absence of interaction with the conduction states, lie close to the Fermi level
of the metallic material.

A first attempt to discuss these stable rare earths was made in Chapter 3,
in the presentation of the exchange interaction between a localized spin and the
conduction electrons (Zener interaction). In that Chapter a very simplified picture
was presented, in order to exhibit the main ingredients of this problem, namely the
Pauli principle and the electron- electron Coulomb interaction.

Using the linear response theory, formally developed in the Appendix, it was
possible, following Doniach’s formulation, to derive the classical RKKY interaction
between localized f -moments (cf. Chapter 3). In that case, the problem of describing
the coupling between the magnetic moments of stable rare earths was transformed
into an electronic structure calculation and a statistical mechanics problem for the
localized and coupled moments. The first part corresponds to estimate the indepen-
dent electron susceptibility for the itinerant sp−d electrons of a pure rare earth metal
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or a compound. The second part is a statistical mechanics problem for obtaining the
thermal average of the coupled localized spins, made via a simple molecular field or
a Monte Carlo procedure.

Clearly, a suitable generalization of the description of the Zener Hamiltonian,
presented in Chapter 3, is necessary in order to include a better description of the
rare earth trivalent ion. In the present Chapter we introduce more details, like the
more realistic ”atomic” description of the isolated rare earth ion, the existence or
not of crystal field effects, comments about the effect of the spin orbit coupling, the
possibility of J as a good quantum number.

This theory applies equally well to pure rare earth metals and compounds, the
difference lying in the computation of the susceptibility. The existence of sublattices
and also the possibility of other magnetic orders like ferrimagnetism, associated in
certain cases, to the magnetic order in the sublattice of transition metal atoms, makes
the description these compounds more complex.

In the case of unstable rare earths, the phenomenon of intermediate valence
may occur. By unstable rare earths we understand those cases, where the energy
levels of the rare earth ions lie close to the Fermi level of the material , thus enabling
a mixing of the local states to the extended ones. A first picture of a 4f ion in a
metal was proposed by Hirst. Such a picture was developed, having unstable atoms
like Ce in mind and more generally 4f atoms like Eu and Y b. We must then, first of
all, introduce some energy scales involved in the description of these 4f states.

We insist that the picture for actinide pure metals and compounds, although
some times described using a similar approach, is more adequately described by a
multiband (sp, d, f) itinerant electron structure. This stems from the fact that 5f
states are more spatially extended as compared to 4f ones, thus introducing strong
tunneling effects to neighbouring atoms, as in usual pure transition metals or inter-
metallics.

Coming back to the Ce ion case, let us remember that for this atom two distinct
valences may be considered: the trivalent f 1 and tetravalent f0 valence states. In
general for cerium compounds, due to the neighborhood of the 4f level with the Fermi
level, a more sophisticated description than the Zener model is required.

As described in Chapter 2, the adequate way to start is the Anderson Hamil-
tonian, since a localized level, here the 4f level, hybridizes with the sp, d band of the
pure unstable rare earth metal or compound. Unfortunately, the simplified Hartree-
Fock description of the Anderson Hamiltonian, presented in Chapter 2, is not ade-
quate in these cases due to the existence of a ratio Uff/∆ >> 1, ∆ being the one
electron Friedel virtual bound state width. Then a rather extensive ”collection of
approaches” has been set up to discuss this particular situation.
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Around the years of 1969, a very interesting approach to describe Ce com-
pounds was provided by the derivation of the Coqblin-Schrieffer (CS) Hamiltonian.
In a quite similar way as in the Hubbard Hamiltonian, the difficulties with the Ander-
son Hamiltonian arise from the competition between Coulomb interactions and the
band kinetic energy, via the hybridization term. The idea behind the CS Hamiltonian
was to use the canonical transformation method to eliminate, to a certain order in
perturbation, the hybridization term. This generates an effective Hamiltonian of the
Zener type, but including scattering processes where the detailed ionic structure is
involved. Thus, the Hamiltonian including the ”ionic” details, via the M components
of J , defines an ”effective exchange interaction” JMM ′ generalizing for these cases,
the Zener interaction.

We introduce now a series of concepts and definitions to construct an ade-
quate exchange interaction Hamiltonian extending the Zener Hamiltonian discussed
in Chapter 3. To do that, we make several remarks concerning the ionic description
of the 4f 1 and 4f 13 configurations. For that we consider the involved energy scales.

Consider first the Coulomb interaction U , the most important energy term,
whose estimate is 10eV . If the energy of one electron is EM , to add another electron
costs EM + U . This is a very high energy. Secondly, we neglect multiplet splitting
due to exchange interactions, when there are two or more electrons in the 4f shell.

The second contribution in energy is the large spin-orbit coupling: in the case
of Ce, this amounts to 0.1eV . This coupling splits levels with different j values, and
leads to a given value j for the ground state; examples are j = 5/2 for Ce impurities
and j = 7/2 for Y b impurities.

In this energy scale, the third term is the crystal field splitting. This inter-
action splits the levels inside the ground state multiplet. We introduce the notation
EM for the energies of the different crystal field split levels. The order of magnitude
of this interaction is 0.01eV again for Ce and Y b.

It remains to consider other energy scales, the conduction electron band-width
and the hybridization strength. Some comments however are necessary, to justify the
CS procedure in deriving the effective Hamiltonian. The general idea is to start from
Anderson’s Hamiltonian including the “ionic” description and then to eliminate the
hybridization between conduction and localized states, via the canonical transfor-
mation. We present this formalism following Kittel approach described in his book
Quantum Theory of Solids.
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5.2 Canonical transformation

Let us start from a general Hamiltonian H and let us define a new transformed
Hamiltonian H̃ through :

H̃ = e−SHeS (5.1)

where S should be determined with an adequate receipt. Before defining the proce-
dure, expanding the exponentials in (5.1) one gets:

H̃ =
{

1− S +
1
2!

S2 + . . .
}

H
{

1 + S +
1
2!

S2 + . . .
}

= H + [H, S] +
1
2

[[H, S] , S] + . . . (5.2)

The interest of applying such transformation occurs in cases where the Hamiltonian
can be naturally split in two terms :

H = H0 + λH ′. (5.3)

From (5.2) one sees that:

H̃ = H0 + λH ′ + [H0, S] + λ[H ′, S] + . . . (5.4)

If one decides that S is to be chosen in such a way that:

λH ′ + [H0, S] = 0, (5.5)

then, the Hamiltonian H̃ of (5.4) contains only terms of higher order than the first in
λ. A very interesting way to do that to derive the CS Hamiltonian is the following:
suppose that H ′ and consequently S are time independent in the Schrödinger picture.
One introduces the interaction representation for S, we call SI , defined by:

SI = eiH0tSe−iH0t (5.6)

Then:
iṠI = [SI , H0] (5.7)

as it follows from the differentiation of (5.6). Transforming equation (5.5) to the
interaction representation, it implies that :

[SI , H0] = λH ′
I . (5.8)

Thus the equation of motion for the SI operator reads:

iṠI = λH ′
I (5.9)
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Assuming that SI(−∞) = 0 , equation (5.9) can be integrated to give:

SI(t) = −iλ
∫ t

−∞
dt′H ′

I(t
′) (5.10)

The next step in the determination of the transformed Hamiltonian, to second order
in the coupling strength λ, starts from (5.2) including the complete Hamiltonian:

H̃ = H0 + λ[H ′, S] +
1
2

[[H0, S] , S] + O(3)

= H0 + λ[H ′, S]− 1
2

[λH ′, S] + O(3) (5.11)

Then, combining with (5.10) one obtains:

H̃ = H0 +
1
2
λ[H ′, S] = H0 −

1
2
iλ2

∫ t

−∞
dt′ [H ′, H ′

I(t
′)] . (5.12)

Recalling that H ′ = H ′
I(0), as it follows from (5.6), one finally obtains for the second

order correction in λ:

H̃ = H0 +
1
2
iλ2

∫ t

−∞
dt′ [H ′

I(t
′), H ′

I(0)] . (5.13)

This is the starting point for the Wolf-Schriefer transformation as applied to Ander-
son’s Hamiltonian.

5.3 Transformation of the Anderson Hamiltonian: Coqblin-
Schrieffer version

Let us start from the following simple version of the Anderson Hamiltonian:

H =
∑

kM

εknkM +
∑

M

E0nM +
1
2
U

∑

M,M′
M 6=M′

nMnM ′ +
∑

kM

(

Vkc+
kMcM + V ∗

k c+
MckM

)

(5.14)

In (5.14) and without crystal field effects, the quantum number M correspond to the
z-component of the total angular momentum J . Introducing crystal field effects for
an hexagonal symmetry, the multiplet of value J is split in doublets of the same J2

z

value. In the case of Ce impurities, one has three doublets, with z-component :

Jz = ±1/2,±3/2,±5/2 for Ce (5.15)

In the case of Y b we have four doublets,

Jz = ±1/2,±3/2,±5/2,±7/2 (5.16)

In this case we can keep the Jz representation of the Hamiltonian (5.14), introducing
only minor corrections, replacing the energy level term E0nM above by EMnM for
each J value, and introducing the new values for EM , the new energy of each doublet.
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A different situation is provided by cubic symmetry. The existence of a crystal
field splits the multiplet into doublets and quartets. Contrary to the hexagonal
symmetry, no half integer eigenvalues exist in this case. Then, the eigenfunctions
are linear combinations of functions which have M eigenvalues. Examples are the
following: in the case of J = 5/2 for the Ce case, the multiplet is split into a doublet
Γ7 and a quartet Γ8. The corresponding eigen functions are:

Γ7 : |Jz = ∓0.83 >= 0.4083| ± 5/2 > −0.9129| ± 3/2 >

Γ8 : |Jz = ±1.83 >= 0.9129| ± 5/2 > +0.4083| ∓ 3/2 >

: |Jz = ±0.5 >= | ± 1/2 > (5.17)

For the case of Y b impurities, the multiplet is slitted into two doublets and a quartet,
which wave functions are given by:

Γ6 : |Jz = ±1.17 >= 0.6455| ± 7/2 > +0.7638| ∓ 1/2 >

Γ7 : |Jz = ±1.50 >= 0.8660| ± 5/2 > −0.5000| ∓ 3/2 >

Γ8 : |Jz = ±1.83 >= 0.7638| ± 7/2 > −0.6455| ∓ 1/2 >

: |Jz = ∓1.50 >= 0.5000| ± 5/2 > +0.8669| ∓ 3/2 > (5.18)

The Hamiltonian then should be rewritten in the basis of the new functions as
defined in (5.17) and (5.18). The transformation operation passing from the operators
c+
M to the new ones c+

µ is an unitary transformation, which conserve the commutation
relations and the fermion character:

[

cM , c+
M ′

]

= δMM ′ , [cµ, c+
µ′ ] = δµµ′ (5.19)

The same transformation can be introduced for the creation operators c+
kµ of the

conduction electrons, starting from c+
kM .

The general Hamiltonian using the above discussion is then:

H = H0 + H1

H0 =
∑

kM

εknkM +
∑

M

EMnM +
1
2
U

∑

M,M′
M 6=M′

nMnM ′

H1 =
∑

kM

(

Vkc+
kMcM + V ∗

k c+
MckM

)

. (5.20)

Now we follow the receipt described in (5.10) above to perform the canonical
transformation; after the commutations of H1 and the exponential exp(−iH0t), one
obtains for the transformation operator S:

S = −i
∫ 0

−∞
dt

∑

kM

Vkc+
kMcMeit(εk−EM )

∏

M” 6=M

[

(1− nM ′) + e−iUtMM′
]

+V ∗
k c+

MckMeit(EM−εk)
∏

M”6=M

[

(1− nM ′) + e+iUtMM′
]

(5.21)
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Introducing the definitions:

∏

M” 6=M

[

(1− nM ′) + e+iUtMM′
]

=
2j
∑

p=0
eipUtAp(M) (5.22)

Ap(M) =
∑

M 6=M ′
[. . . nM ′ . . .] [. . . (1− nM ′) . . .] (5.23)

the S operator reads:

S =
∑

kM

(

V ∗
k c+

MckM − Vkc+
kMcM

)
∑

p

Ap(M)
εK − EM − pU

(5.24)

Introduce now the auxiliary quantities:

JMM ′

p (k, k′) = WMM ′

p+1 (k, k′)−WMM ′

p (k, k′) (5.25)

WMM ′

p (k, k′) =
V ∗

k Vk′

2

[

1
εk − EM − pU

+
1

εk′ − EM ′ − pU

]

(5.26)

The transformed Hamiltonian H will finally be:

H = H0 + H ′
0 + Hexch + Hdir + Hdd (5.27)

To get the final form of (5.27) we introduce the quantity Bp(M,M ′), obtained from
the expansion of Ap(M) as:

Ap(M) = (1− nM ′)Bp(M,M ′) + nM ′Bp−1(M, M ′) (5.28)

Besides the H0, the remaining of (5.27) are given by:

H ′
0 =

∑

k,p,M

WMM ′

p (k, k)Ap(M)nM (5.29)

Hexch = −
∑

k,k′,M,M′,p
M 6=M′

JMM ′

p (k, k′)Bp(M, M ′)c+
k′M ′ckMc+

McM ′ (5.30)

Hdir =
∑

k,k′,M,p

WMM
p (k, k′)Ap(M)c+

k′MckM (5.31)

Hdd = −1
2

∑

k,k′,M,M′
M 6=M′

JMM ′

p (k, k′)Bp(M, M ′)
[

c+
k′Mc+

kMcMcM ′ + ck′M ′ckMc+
Mc+

M ′

]

(5.32)

Up to this point, the Hamiltonian (5.27 is quite general; simplifications can be in-
troduced in some specific cases: supposing that one has N electrons, the previous
terms acquire a simpler form. First of all, the term Hdd is very small since this term
creates or destroys two 4f electrons, and this is highly improbable. The first term
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H ′
0 only incorporates a shift in the energy EM . For the given configuration some of

the auxiliary quantities can be written as:

Ap(M) =
(

δp,N − δp,(N−1)

)





∑

M ′ 6=M

nM ′ −N



 + δp,N (5.33)

Bp(M,M ′) = δp,N−1 (5.34)

Finally the remaining terms, Hex and Hdir can be incorporated in Heff in such a way
that:

Heff = Hexch + Hdir

= −
∑

k,k′,M,M ′
JMM ′

N−1 (k, k′)c+
k′M ′ckMc+

McM ′ +
∑

k,k′,M

WMM
N (k, k′)c†k′MckM .(5.35)

Expression (5.35) is applied to the case of Ce (N = 1) and Y b for which N is
the number of 4f holes. To introduce a further simplification, instead of WMM

1 we
introduce a semi-phenomenological direct potential VM,M ′(k, k′). Then the complete
Hamiltonian becomes:

H =
∑

k,M

εknkM −
∑

k,k′,M,M ′
JMM ′c+

k′M ′ckMc+
McM ′ +

∑

k,k′,M

VMMc+
k′MckM . (5.36)

Also we neglect the k dependence of JMM ′ through the energies εk and εk′ We take a
cutoff D , independent of M and M ′ in such a way that JMM ′ = 0 if |εk| or |ε′k| are
larger than D. The cutoff value is taken to be of the order of the average value of
EM .

In the case of Ce, since U is much larger than EM , the effective exchange
coupling reads:

JMM ′ =
V ∗V

2

[ 1
EM

+
1

EM ′

]

(5.37)

Finally some comments about the Hamiltonian (5.36): for M = M ′ the average
value of the second term is not zero, thus implying that this term contains both
exchange and direct scattering terms. If one wants to separate these terms one
rewrites the Hamiltonian as :

H =
∑

k,M

εknkM −
∑

k,k′,M,M ′
JMM ′c+

kM ′ckM

(

c+
McM ′ − δM,M ′ < nM >

)

+
∑

k,k′,M

[VMM − JMM < nM >] c+
k′MckM (5.38)

where we have added and subtracted the direct term JMM ′ < nM >. Then in (5.38)
the second term is pure exchange scattering, and the last one is pure direct scattering.
The relative relevance of these terms should be established from the application of
these calculations to specific cases.
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This interaction JMM ′ is negative and connected to the ”ionic” energies EM

and EM ′ (relative to the Fermi level) and also to the hybridization matrix elements
| Vkf |2 . The result obtained by CS is the following :

JMM ′ =
1
2
| Vkf |2

[ 1
EM

+
1

EM ′

]

(5.39)

and the “generalized” Zener Hamiltonian GZ
gen describing the scattering between ionic

states and the conduction electrons is:

HZ
gen = −

∑

kk′MM ′
JMM ′c+

k′M ′ckM

(

c+
McM ′ − δM,M ′ < nM >

)

+
∑

kk′MM ′
VMM ′c+

k′M ′ckM .

(5.40)
In the Hamiltonian above, c+

M creates an electron in the 4f state with l = 3, s =
1/2, J = 5/2 and M = Jz. Contrary to Chapter 3, the internal degrees of freedom of
the ion are explicitly included in the “exchange” scattering term. For the conduction
electrons, an adequate representation, projected in these states is used. This ends
with the derivation of a generalized Zener Hamiltonian, adequate to describe these
rare earth impurities in anomalous situations. Also we recall that at high temperature
respect to a characteristic one, the calculation of some transport properties has been
performed using third order perturbation theory.

5.4 Qualitative remarks about Ce compounds

Let us describe here some general ideas discussed by Coqblin and collaborators. From
the experimental point of view, many cerium compounds have been studied. It is well
established that a single Kondo impurity, described by the Hamiltonian above, be-
haves like a free ion at high temperatures as compared to a characteristic temperature
TK . This temperature is called the Kondo temperature, and defines an specific regime:
for temperatures very low as compared with TK , a regime characterized by high ef-
fective masses sets in. Experimentally, this situation corresponds to huge values for
the electronic specific heat, γ, and simultaneously high values for the susceptibility
χ.

Before discussing compounds, let us briefly recall the low temperature prop-
erties of an isolated Kondo impurity. At T = 0K, the properties correspond to those
of a nonmagnetic singlet state. The magnetic susceptibility and the electronic spe-
cific heat are enhanced respect to the normal magnetic behaviour. The Wilson ratio,
defined by R = χ/γ and using appropriate units (those adequate to the density of
states) is constant and ranging between 1 and 2. This corresponds to strongly cor-
related electron gas. An interesting behaviour is shown by the de Haas-van Alphen
measurement. For example in CeCu6 one observes a cyclotron mass of the order of
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80m0 where m0 is the bare electron mass; this should be compared to the result for
LaCu6, which is 2.5m0. Such difference indicates the role of electron correlations in
“dressing” the electrons.

At very low temperatures, the transport properties in particular, are well
described by the Fermi liquid approach. In the compound CeCu6, the resistivity
at low temperatures varies like ρ = AT 2, where the coefficient A is very large. To
be more explicit, if TK is the Kondo temperature as defined below, separating two
resistivity regimes, one notes that χ and γ behave as 1/TK at T = 0. The dependence
of A however is 1/T 2

K . Several values of the constant A are observed, varying like
0.5, 6., 10, 30, 120 for different cerium compounds.

Again let us emphasize that the characteristic Kondo temperature defines a
smooth “crossover” between a Fermi liquid behaviour at low temperatures to free ion
like behaviour, at high temperatures compared to TK .

A very interesting behaviour concerns the density of states for a single Kondo
impurity at T = 0K. This density of states shows two peaks, contrary to the most
naive treatments of the Anderson picture. In fact, the broad peak centered at the
position of the 4f level is associated to the Hartree-Fock treatment of the Anderson
model. The other peak is associated to a more adequate treatment of the electron
correlations, outside the scope of the HF treatment. This extremely narrow peak is
located near the Fermi level and is thus responsible for the important values of χ
and γ. The width of this peak is given by TK/N , where N is the degeneracy; thus
increasing N , or decreasing the Kondo temperature or both decreases its value. In
the slave boson approach, these results will become more apparent.

A very important point in compounds is the competition between the Kondo
effect itself, implying in the screening of the magnetic moment by the antiferromag-
netically polarized electron gas, and the RKKY interaction, inducing long range mag-
netic order of the local moments. Experimental examples of these opposite situations
are the following: CeAl2, CeCu2, CeB6, that show low temperature magnetic order.
These compounds show specific heats of the order of 100mJ/molK. On the contrary,
CeAl3, CeCu6, CePd3B show a very high specific heat of the order of 1000mJ/molK,
but at the same time complex magnetic behaviour, short range magnetic correlations
or even non magnetic behaviour. The description of these situations needs a long
and complex discussion. Firstly we intend to present, although not rigorous, the
main lines of the simplest approach. The first main lines of an attempt to describe
this situation of Kondo lattices was proposed by Doniach, and we describe now this
simple picture. Consider a lattice of rare earth Kondo atoms. The Kondo effect
tends to suppress the magnetic moment with decreasing temperature, by condensing
the electron gas antiferromagnetically around the ionic moment. Introduce TK0 , as
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the Kondo temperature for an isolated rare earth impurity. For the classical Zener
Hamiltonian, H = −Γs.S , this

Kondo temperature depends on Γ and on the density of states of the conduc-
tion band near the Fermi level ρ(Ef ), in the following way:

TK0 ' exp [−1/ | Γρ |] (5.41)

This result shows that for small values of the product | Γρ | one has a small value of
TK0 . On the other hand, as shown in Chapter 3, the RKKY coupling between local
moments may introduce an antiferromagnetic Néel temperature TN0, which varies
with the product | Γρ | as:

TN0 '| Γρ |2 (5.42)

This quadratic dependence again implies in TN0 tending to zero for small values of
the product | Γρ |. The origin of the competition becomes now very clear, since both
temperatures, the Kondo and the ordering, depend on the same quantity | Γρ |, but
with different functional forms.

The competition is then clearly associated to the functional form of the
| Γρ | dependence of the corresponding temperatures. It is clear that the power
law dependence of TN0 overcomes that of TK0 at low values of | Γρ |. However, it
exists a critical value of | Γρ |, | Γρ |c such that the exponential dependence of TK0

overcomes the power law behaviour of TN0 and a crossing exists of the two curves
as a function of | Γρ |. This means that a two regime behaviour occurs: firstly the
ordering temperature increases with the strength of | Γρ |, passes through a maximum
(the competition between RKKY and Kondo effect start to set in importantly), then
decreases to zero indicating the Kondo like dominance.

This proof however is quite oversimplified, and more rigorous attempts have
been tried. Among these, we quote firstly the slave boson method, discussed later
in general grounds. Secondly, the case of two magnetic Kondo impurities, discussed
using the numerical renormalization group approach. This last method was originally
devised by Wilson to treat an isolated Kondo impurity, and its application to the two
impurity case can improve the above discussion of the competition between the RKKY
and the Kondo screening.

Finally let us mention that the perturbation theory treatment of the Coqblin-
Schriefer Hamiltonian has enabled the description of many experimental data. Quite
recently, the possibility of producing single crystals of these materials, introduced
new theoretical problems. The transport properties at temperatures higher than TK ,
well described up to this moment within the third order perturbation approach on the
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effective coupling, required an adequate treatment to take explicitly into account the
anisotropy of these single crystal compounds. The perturbation theory scheme how-
ever fails at low temperatures (T < TK) , where a different temperature dependence
is observed.

5.5 The Read and Newns approach

Let us first introduce the simplest version of the slave boson approach to the Kondo
lattice. This model applies to Ce and Y b and may be approximately used for Sm and
Eu cases. Using a formulation suggested by Coleman to describe strongly correlate
f -electrons, let us start from the Hamiltonian:

H =
∑

k

εkc+
k ck + E0

∑

i,m
f+

imfim + V
∑

i,m

[

c+
imfimb+

i + f+
imcimbi

]

. (5.43)

In this expression i stands for the sites, k corresponds to the wave vector of the
conduction states and m is the magnetic quantum number, −l < m < l. Note that
in this first approach we neglect spin, which is a 1/N effect, taking N = 2j + 1. In
(5.43), fim and ck are respectively, fermion operators for the rare earth site and for
conduction states of wave vector k; these states correspond to energies E0 and εk

respectively. Finally, following a truck introduces by Coleman, let us introduce the
operator c+

im which projects a conduction states characterized by l, m at the site i,
and such state is constructed from the band states. The definition of these operators
is:

c+
im = (4π)1/2

∑

k

[Y m
l (Ωk)]

∗ e−kRic+
k . (5.44)

In the Hamiltonian (5.43), the hybridization or “local hopping” V , describes the
passage from the local 4f state fim to the localized state c+

im and vice-versa.
Finally and more importantly, the boson creation and destruction operators

bi and b+
i , introduced originally by Coleman, act in the following way: start from a

state with zero f -electrons and one boson; successive applications of the Hamiltonian
reproduce the original state or create a state with one electron and no bosons. This
is true provided that the following condition is satisfied for all sites i:

Qi = Nfi + b+
i bi = 1, (5.45)

where Nfi =
∑

m f+
imfim for all sites i. This shows that no excited states, like f 2, f 3 . . .,

very high in energy, can be created, via this constraint.
We include this constraint in the partition function Z using a representation

of the δ function. The result is:

Z =
∫ π/β

−π/β

∏

i

βdλi

2π
Tr

[

e−βH−iβ
∑

i λi(Qi−1)
]

. (5.46)
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It should be noted that the integral over λ reproduces the constraint (5.45), in the
expression for Z, projecting out deviations from this equality. Now using Feyman’s
method, the partition function is written as a functional integral, in terms of the
imaginary time lagrangian L(τ). The result is:

Z =
∫ π/β

−π/β

∏

i

βdλi

2π

∫

DbDb+DfD+
f DcD+

c e−
∫ β

0
dτL(τ) (5.47)

where the lagrangian is defined by:

L =
∑

i
b+
i

d
dτ

bi +
∑

im
f+

im

[

d
dτ

+ E0

]

fim +
∑

k

c+
k

[

d
dτ

+ εk

]

ck +

V
∑

im

[

c+
imfimb+

i + f+
imcimbi

]

+ i
∑

i
λi

[

Nfi + b+
i bi − 1

]

(5.48)

In (5.47) we have used D to mean
∏

im Dfim in the functional integral. In (5.47) and
(5.48), the ck and fim are anticommuting Grassman numbers, as it follows from the
general Feyman’s theorem for the expression of the partition function. In view of
future calculations, it is useful to make a gauge transformation in the action defined
above. For that we introduce the following transformation for the imaginary time
dependent boson operators:

b(τ) = r(τ)eiθ(τ), with dbdb+ = rdrdθ (5.49)

This transformation introduces new quantities defined as :

f ′im(τ) = fim(τ)e−iθ(τ) and c′k(τ) = ck(τ) (5.50)

obtaining for the λ parameter, ensuring the constraint, a new value

λ′i(τ) = λi + θ̇(τ) (5.51)

Introducing the transformation in the functional integral one gets:

Z =
∫

Dλ
[

∏

τ
r(τ)DrDfDf+DcDc+e−

∫ β

0
L′(τ)dτ

]

(5.52)

L′ =
∑

im
f+

im

[

d
dτ

+ E0 + iλi

]

fim +
∑

k

c+
k

[

d
dτ

+ εk

]

ck +

V
∑

im
ri

[

c+
imfim + f+

imcim

]

+ i
∑

i
λi

[

r2
i − 1

]

(5.53)

It is to be noted that the variable θ(τ) has disappeared from L: that means we have
“real bosons”, because, due to the periodicity of r on the interval 0 to β, the integral
in this interval of rṙ vanishes. The interesting feature of this transformation is that
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”new parameters” appear in the lagrangian, renormalizing the “hybridization V ”, as
compared to (5.43).

The main points of these transformations have been presented above. The
next and more important step is to find an approximate way to deal with it; we
will present evidence that the “static approximation” which is simply treated, is
valid in the large N limit, for low temperatures T and magnetic fields H. A good
approximation is obtained when N = 7, which corresponds in our spinless case to
j = 6/2 = 3. First of all let us assume translation invariance, and define a new time
independent parameter εf by :

iλi(τ) = εf − E0 (5.54)

and a new time independent hybridization strength r0 = r(τ). Once defined these
constants, the next step is to minimize the free energy, and to extract the corre-
sponding values of the parameters. For that let us present the proof of a simple
result.

Starting from the definition of the free energy in terms of the parameter depen-
dent Hamiltonian Heff (α), where α stands for a series of parameters, the free energy
is:

F (α) = − 1
β

logZ(α), (5.55)

with
Z(α) = Tre−βHeff (α). (5.56)

Performing the derivative of F (α) respect to any α one has:

∂F (α)
∂α

= − 1
β

∂Z(α)/∂α
Z(α)

;
∂Z(α)

∂α
= −βTr

[

∂Heff (α)
∂α

e−βHeff (α)

]

(5.57)

Imposing the partial derivative is zero, one obtains that the thermodynamic average
of the partial derivative of the Hamiltonian is also zero. The theorem is then:

1
Z(α)

Tr
[

∂Heff (α)
∂α

e−βHeff (α)

]

=
〈

∂Heff (α)
∂α

〉

= 0. (5.58)

The result of these considerations is called the Hellman-Feyman theorem.
The effective Hamiltonian with the above transformations bacomes:

Heff =
∑

k

εkc+
k ck+εf

∑

im
f+

imfim+r0V
∑

im

[

c+
imfim + H.C.

]

+
∑

i
(εf−E0)(r2

0−1) (5.59)

The result is that the Hamiltonian (5.43), which is complex, has been replaced by a
quasi particle one, containing however a renormalized f level εf to be determined and
a renormalized hybridization strength, r0V .
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The final result is that the solution of (5.59) leads directly to renormalized
band structure, since one has a one particle Hamiltonian. The ground state corre-
sponds to a normal Fermi liquid. Again, if the chemical potential lies in a gap of the
effective electronic structure, the system is an insulator. Recently, Fulde et al. have
extended this effective Hamiltonian in order to get a more first principles electronic
structure. This was obtained by introducing, as parameters, the “potential param-
eters” of a LMTO calculation. In these notes we follow the simplest approach, and
introduce simplifications for the one electron propagators.

Let us first compute the propagator going from site i state m to the same
site and state. We intend to calculate this propagator in powers of the hybridization
strength r0V ; this procedure holds for energies far enough from εf . Since one needs
the f -state occupation numbers, let us calculate the trace over the degenerate states
m, getting:

ImTrmGfim,im =
r2
0V

2

(ε− εf )2NImgm,m(0, ε) + Im
∑

mm′
gm,m′(−Rij, ε)

r2
0V

2

ε− εf
gm,m′(Rij, ε).

(5.60)
In expression (5.60), gmm′(R, ε) is the non hybridized propagator from a conduction
state defined in (5.44) at the site 0,m′ to a state R,m. The result is:

gm,m′(R, ε) = 4π
∑

R

Y m
l (Ωk) (ε− εk + iδ)−1

(

Y m′

l (Ωk)
)∗

eik.R (5.61)

A simplified form for the conduction electron propagator can be obtained in
the limit of large N (in the present case large l). The idea is to take the quantization
axis as the vector R, making gmm diagonal, and using the Darboux formula for the
spherical harmonics in the large l limit one finally gets:

gm,m(R, ε) =
∫ ρ(k)kdk

ε− εk + iδ
J0(kR); m ≤ l (5.62)

In this expression ρ(k) is the number of states in the free electron band with vector
k and J0 is the Bessel function of order zero. Equation (5.62) is N independent and
this is an essential point for the following considerations.

Then, keeping only the first term of (5.60), and introducing the renormalized
width by:

∆ = πr2
0V

2ρ (5.63)

one can calculate:

ρf = −π−1TrGfimim = π−1N∆/(ε− εf )2 (5.64)

This corresponds to a gaussian line width, centered around the effective level εf . The
density of states at the Fermi level µ can be extracted from (5.64), provided that
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the level εf is self consistently determined. This procedure is based in the Helmann-
Feyman theorem shown in (5.57) and (5.55). Taking the thermal average of equation
(5.59) and performing the partial derivative of the average energy respect to εf one
gets:

1− < nf >= r2
0. (5.65)

Introducing the “unrenormalized width” by the natural formula of Chapter 3, one
has:

∆0 = πV 2ρ. (5.66)

one obtains for the ratio of widths:

∆/∆0 = r2
0. (5.67)

Then the first self consistency relation reads:

1− < nf >= ∆/∆0. (5.68)

From equation (5.64) one calculates the occupation number of the f resonance. For
zero temperature, integrating (5.64) up to the Fermi level µ, one gets the equivalent
of the Friedel sum rule; the result is:

< nf >= π−1N∆/(εf − µ). (5.69)

As a final remark let us note that the renormalized width ∆ is determined by the
occupation number of f -electrons or the valence, as it follows from (5.65). Note that
near occupation number equal to 1, the width tends to zero (r2

0 tends to zero) as
expected for a situation close to a local and stable state.

It remains to determine the effective f -level εf to have the problem entirely
solved. This corresponds to establish the energy scale of the problem. To do that,
one needs to estimate the average value of the mixing matrix element < c+

imfim >,
since r0V appears multiplying it.

The thermal average of the effective Hamiltonian (5.59) as derived respect to
the renormalized hybridization parameter r0 reads:

V
∑

[

< c+
imfim > + < HC >

]

+ 2r0(εf − E0) = 0 (5.70)

The next step is to calculate the averaged values in the above equation; symmetry
considerations make equal the two terms in the parenthesis. The equation becomes
then:

2V
∑

< c+
imfim > +2r0(εf − E0) = 0 (5.71)
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In order to calculate the average value one needs the propagator Gcf , which can be
written in terms of the Gff and the conduction band propagator gcc, as:

Gcf = r0V gccGff (5.72)

Then the averaged value is given by:

< c+
imfim >= − 1

π
r0V Im

∫

dεgccGff . (5.73)

For a flat conduction band of width D we can neglect the real part of the propagator
gcc and replace gcc by −iπρ. Using the explicit form of the Gff one finally gets:

< c+
imfim > =

1
π

r0V Im
∫

dε
iπρ

ε− εf − i∆

= r0V ρ
∫

dε
ε− εf

(ε− εf )2 + ∆2 . (5.74)

The integral is performed between 0 and −D and this integration makes a log to
appear. Including this result in the equation obtained using the minimization respect
to r0, one gets:

V 2ρ
∫

dε
ε− εf

(ε− εf )2 + ∆2 + (εf − E0) = 0. (5.75)

Performing the calculations one gets:

εf − E0 = − 1
π

N∆o log[(εf − µ)/D]. (5.76)

Let us introduce some applications of the theory developed above. Consider the
susceptibility associated to the resonance above:

χ0 =
1
3
µ2

effρ(µ) =
1
3π

µ2
eff

N∆
(µ− εf )2 . (5.77)

We can use now the Friedel’s sum rule connecting the occupation number or valence
in terms of the same parameters:

< nf >= 1/π
N∆

(µ− εf )
. (5.78)

From this result one obtains a relation between the local density of states and the
above parameters:

1
π

N∆
(µ− εf )2 =

π < nf >2

N∆
= ρ(µ) (5.79)

Combining with the expression for the susceptibility one gets:

χ0 =
1
3
µ2

eff
π < nf >2

N∆
(5.80)
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Introducing the unrenormalized width ∆0, one gets:

χ0 =
1
3
µ2

eff
π < nf >2

N∆
=

1
3
µ2

eff
π < nf >2

N∆0(∆/∆0)
(5.81)

Using the relation between the occupation number and the renormalized width (5.68),
one gets:

χ0 =
1
3
µ2

eff
π < nf >2

N∆0(1− < nf >)
(5.82)

It should be remembered that if we reintroduce the existence of the quantum number
j, one would get, µ2

eff = g2j(j + 1)µ2
B. Quite similarly, for the specific heat one

obtains from the local density of f -states:

γ =
1
3
π2k2

Bρ(µ) (5.83)

Expressions (5.82) and (5.83) correspond to the local Fermi liquid theory. There
is however another quantity that can be estimated using the same procedures: this
is the charge susceptibility, defined by the change in occupation number with the
position of the bare f -level. Taking the change in the stationary value of (εf , ∆) one
gets for χc defined as

χc = −d < nf >
dE0

= πN−1∆−1
0 < nf >2 (1− < nf >) (5.84)

These remarks conclude this simplified description of the slave boson method.
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APPENDIX - LINEAR RESPONSE THEORY

In this Appendix we focus our interest in describing how an external perturbation can
modify the dynamics of a given system. In Chapter 3 we have defined and applied the
concept of susceptibility which corresponds to induce a change in magnetic properties
of a system upon the application of a magnetic field. This concept has been very useful
in describing magnetic instabilities and the RKKY interaction. Here we intend to
present, for a general system and using the formulations introduced by Kubo, the
response to a general externally applied perturbation. We will try to be the most
general possible in the calculated responses and in the order of the perturbation.

First of all consider a system described by an Hamiltonian H0 and let us
apply an external time dependent perturbation, we call Hext(t). External pertur-
bations couple to the system via the corresponding operators. For example in the
susceptibility case, the operator is the magnetic moment of the system.

Returning to the general case, the complete Hamiltonian is then:

H = H0 + Hext(t), (A.1)

where

Hext(t) = −
∑

j
BjFj(t), (A.2)

in this equation Bj are operators of the system and Fj(t) is the form and intensity
of the external perturbation. Usually the external perturbations are adiabatically
switched. This induces the absence of transients associated to the quick switching of
an external perturbation. In order to mathematically define the adiabatic process, let
us present (A.2) in Fourier transformed form and including the adiabatic switching
term proportional to eεt. One sees that for large negative times the perturbation
vanishes, and for t = 0 the full strength occurs. In mathematical terms:

Hext(t) =
∑

j

∑

ω
eεt−iωtBjFj(ω), ε → 0. (A.3)
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Note that all the time dependence is included in the exponential and the Bj operators
are time independent.

The physically interesting quantities involve both the averages, in the quantum
mechanical and statistical mechanics senses, of the operators associated to the system
in consideration. In order to obtain these averages the density matrix operator ρ is
required, since < A >= trace[ρA].

The time evolution of the density matrix operator is given by Liouville’s equa-
tion:

i
∂ρ
∂t

=
[

H0 + Hext(t), ρ(t)
]

. (A.4)

where we use, for practical purposes, h̄ = 1. Since we intend to separate the effects
of internal dynamics of the system from the external perturbation, let us introduce
the interaction representation for the operator density matrix. This is defined by:

ρ1 = eiH0tρ(t)e−iH0t. (A.5)

The derivation of the above equation is given by:

∂ρ1

∂t
= iH0eiH0tρ(t)e−iH0t + eiH0t ∂ρ(t)

∂t
e−iH0t − ieiH0tρ(t)H0e−iH0t.

= i [H0, ρ1(t)] + +eiH0t ∂ρ(t)
∂t

e−iH0t. (A.6)

Using the definition (A.5) and the identity operator e−iH0teiH0t, we get:

i
∂ρ1

∂t
=

[

Hext
1 (t), ρ1(t)

]

, (A.7)

where Hext
1 (t) = eiH0tHext(t)e−iH0t is the interaction representation form of the ex-

ternal interaction.
Writing in Hext

1 (t) in such a way that the operators Bj are written in the
interaction representation leads to:

Hext
1 (t) = −

∑

j
Bj(t)Fj(t) (A.8)

Combining equation (A.7) and (A.8) one finally gets:

i
∂ρ1

∂t
=

∑

j
[ρ1(t), Bj(t)] Fj(t). (A.9)

This differential equation can be easily transformed in an integral equation,
including the boundary condition ρ1(t) = ρ0 to for large negative times. ρ0 is the
density operator in the absence of external perturbations, namely:
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ρ0 =
e−βH0

Tre−βH0
(A.10)

The integral form is given by:

ρ1(t) = ρ0 +
∫ t

−∞

1
i

∑

j
[ρ1(t′), Bj(t′)] Fj(t′)dt′. (A.11)

This is the general integral form of equation (A.9). Formally its solution in terms of
ρ0, Bj(t′) and Fj(t′) is obtained by an interaction procedure increasing powers of the
perturbation Bj(t′)

However usually the strength of the external perturbation is small as compared
to the internal energies of the system. An example of this situation was presented in
Chapter 3 for the derivation of the Pauli susceptibility.

We then retain our calculations only to first order in the external perturbation.
This corresponds to retains in the right hand side only the term ρ1(t′) = ρ0, getting:

ρ1(t) = ρ0 +
∫ t

−∞

1
i

∑

j
[ρ0, Bj(t′)] Fj(t′)dt′ (A.12)

Multiplying (A.12) on the left by e−iH0(t) and on the right by eiH0(t) one finally gets:

ρ(t) = ρ0 +
∫ t

−∞

1
i

∑

j
[ρ0, Bj(t′ − t)] Fj(t′)dt′. (A.13)

This equation enables the calculation of the averaged value of any operator in terms of
the unperturbed density matrix, and this is the central result for the linear response
theory.

Next step is to obtain a closed expression for the change in average value of
an observable upon application of the perturbation. From equation (A.13) one gets:

< A >= Tr(ρ0A) +
∫ t

−∞

1
i

∑

j
Tr ([ρ0, Bj(t′ − t)] A) Fj(t′)dt′. (A.14)

Using the trace invariance under interchange of operators, it is possible to transform
equation (A.14) in to the following:

< A >=< A >0 +
∫ t

−∞

1
i

∑

j
trace [[A,Bj(t′ − t)] ρ0] Fj(t′)dt′ (A.15)

Performing the averaged using the density matrix ρ0 one gets:

< A >=< A >0 +
∫ t

−∞

1
i

∑

j
〈[A,Bj(t′ − t)]〉Fj(t′)dt′. (A.16)
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In words, the change in average value of the observable A is given by the average
value of commutator of the observable A with the time dependent operator coupling
to the external perturbation.

In order to get a more adequate expression including the causality principle
let us introduce some transformations explicitating the t and t′ dependence of the
operator eiH0t and eH0t′ . The final result is:

< A >=< A >0 +
∫ t

−∞

1
i

∑

j
〈[A(t), Bj(t′)]〉Fj(t′)dt′. (A.17)

This means that the change in averaged value is connected to commutator of the
observable A and perturbation Bj, in the system Heisenberg representation.
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