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LECTURE I: CHIRAL ANOMALY IN THE PATH-INTEGRAL FRAMEWORK

§1.1 Introduction

The derivation of anomalous Ward-Takahashi identities related
to chiral symmetries in the path-integral framework is rather recent |t

[1]

was only 30 years after the discovery of anomalies in the

theoretical calculation of the m’>vyy decay amplitudes that Fujikawa [2]
showed that the path-integral fermionic measure cannot be defined respec-
ting all clasical symmetries, this being at the origin of anomalies in

the Ward-Takahashi identities obtained by differentiation of the generating

functional,

This delay was fundamentally due to the fact people incorrectly
assumed that the fermionic measure was invariant under chiral rotations
( see for example Coleman's lectures on the uses of instantons (3] ) and
then quite artificial recipes to get the anomaly had to be invented.[q]
After Fujikawa's observation, the path-integral framework
revealed to be very useful in the analysis of anomalous Ward-Takahashi
identities. Not only it provided a non-perturbative approach to anomalies
but also it proved to bé;a powerful tool in the complete - solution
of many interesting models. In the former aspect , gravitational and con-
formal anomalies were better understood by comparing the usual approach

cionl11,[5]1-16]

with the functional integral version .Concerning the exact so-

tution of models like QEDZ, QCDZ, Thirring and SU(N)-Thirring ones, etc.

it provided a transparent derivation of the bosonization rules in the 2-

(7]

dimensional world, not only in the well-understood Abelian case but

[91-[12]

also in the non-Abelian case in which the abp]ication of the path-

[13]

integral technique extends today to the analysis of string theories
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More recently, the quantization of the so-called anomalous

[14]

theories coupling gauge and/or gravitational fields to Weyl fermions
was finally understood by carefully applying the Faddeev-Popov technique
The presence of a non-trivial Fujikawa Jacobian arising during the usual
separation of the gauge group volume integration solved the anomaly
problem showing, at the same time, the natural appearence of a Wess-Zumino
term in the resulting effective Lagrangian[15]_[19]. It is important to
stress that at the light of the results in [15] and [19] one can state that
the symmetry group ( the gauge group, the local Lorentz group, ... )
becomes physical exactly as it happens with the conformal group in the

quantization of the string theory when performed 3 la Polyakov[zo].

| will discuss all this topics in 6 lectures, starting with
the derivation of anomalous Ward-Takahashi identities ( this lecture )
then-describing the solution of 2-dimensional models ( lectures 2-4 )
in particular explaining how a Kac-Moody type current algebra can be
obtained in the QCD, case ( lecture 5 ) finally exposing the way gauge
and gravitational theories with Weyl fermions have to be quantized. |
will make special emphasis in the results derived in collaboration with
many colleagues of the La Plata University ( Quique Gamboa Saravi, Tato
Solomin, Maria Amelia Muschietti, Carlos Naén; Virginia Manias, Cecilia
von Reichenbach, Marta Trobo, Pipi Vucetich ) Pittsburgh University
( Ralph Roskies ) Paris VI University ( Olivier Babelon and Claude
Viallet ) Campinas University ( Kyoko Furuya ) and Manchester University
( James Webb ). It is thanks to their insights and patience ( as well
as those of Bruno Machet, Carlos Bollini, Carlos Garcia Canal, Luis
Epele and Huner Fanchiotti ) that | learned how to handle symmetry

transformations in the path-integral framework.
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§1.2 Anomalous Ward-Takahashi identities

Let us discuss first how the non-conservation of the axial
current at the quantum level can be derived in the path-integral frame-
work ( The case of any other anomaly, e.g. the conformal, Lorentz,
Einstein ones, can be analysed exactly in the same form ).

The fermionic (Euclidean) Lagrangian to be considered is:

L9 (e R)Y = YBRY (.

with \f/ a Dirac fermion in the fundamental representation of some
symmetry group G, interacting with the gauge field P\P‘ taking values
in the corresponding Lie algebra.

Consider some (continuous) symmetry leaving invariant

the fermionic action:

Yar YA L YLV W
SY.P‘;:V—JQ = SU\F\/‘;Y‘J

( we are considering a transformation depending on an infinitesimal
parameter®.At the classical level, there is an associated conserved
current ( which can be derived via the Noether theorem ) corresponding
either to an internal or a space-time symmetry. Equivalently, there is
a classically conserved quantity, the associated charge.

In the usual operator approach to the quantum theory,
one studies, at this stage, the commutator algebra for currents and
charges and determines if it corresponds to the one derived by naive
manipulations of the canonical commutation relations obeyed by the
fundamental fields. In this framework, it is sufficient to consider
the transformation (2) as depending on an infinitesimal global_ para-

meter.
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On the contrary, in the path-integral approach, one

is in general non-invariant under this local transformation:

\ —_ — —_— -
VYo V¥Y VY *iiibxf' J \f/_€>\¥/\: Y *iﬁgngj (3)

5:_5 S = S:JTS()X A “

Now, since the transformation (2) corresponds to a symmetry of the theory,
.A.* can be written as the divergence of some current. For example, in
the case of a non-abelian symmetry transformation, from Lagrangian (1)

and the transformation (3) one gets:

A =-J]>‘;f’ Fe"eY) (5)

in order to study the possible quantum conservation of this
current, that is, to derive the corresponding Ward-Takahashi identity,
one just takes (3) as a change of variables to be performed in the

generating functional:

2? =§Q?®Y e = éeiiw\) (6)

It is in the integration measure where the quantum aspects are taken
into account in this approach. Then, as Fujikawa stressed in his
pioneering works [2] one should expect a non-trivial Jacobian associated

with transformation (3) each time the operator approach to the quantum theory

lead to an anomaly.
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This Jacobian, whose evaluation will be discussed in details,
can be also understood as the factor relating the fermionic determinants

before and after the transformation (3):

det B 18) = I (%) dek 1, (M) ()
with]k*ux>defined from (4):

S . St—\’ DY dx (8)

Now, both determinants appearing in (7) are ill-defined quantities since the
product of eigenvalues of the Dirac operator increases without bound. Then,
some regularization has to be adopted in order to make relation (7) ( as
well as the fermionic generating functional ) meaningful. Consequently, the
actual value of the Jacobian will depend on the selected regularization.
After the transformation, the generating functional :Z can be

written as:

2- ) OYOY epl- 5[] - (ded, |

(9)

Since 2 cannot depend on Sq s

1D o3 My ~ 0 loa ()
£§=0’<§&&)83 9> FJ%C_)— (10)

As a first example, suppose that (3) represents a gauge trans-
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formation:
\ - 1o a,kv IP‘ CP\— :F ..:F t}fi*bu
with t? the generators of the symmetry group.
If the regularization prescription used to define determinants and
Jacobians respects gauge invariance ( as it is the case, for example,
of the z-function method, the Heat-kernel method - with P as regulating
operator, etc. ) then J = 1 since, being Ilégbthe covariant transform
of ;ﬂ , (7) becomes a trivial identity.
On
On the other hand, :%L is given by (5) with
o~ 8‘ o~
and hence eq.(10) leads to the conservation of the vector current at the

quantum level:
ol ub
<Df~ J* > =9 (13)

|f instead of agauge transformation, one considers a chiral ( U(1) for

simplicity ) one:

Y VY Y\LBASB.L‘V _‘. Q-> -‘—\/‘:T\/ +T”‘53°K (14)

and one conserves the same regularization prescription leading to (13),
one then has ( see next section ) a non-trivial Jacobian:

36 = o[ s PO E F dx ]

1A £ (15)
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Concerning the change in the action, one easily finds:
A0 = -aly BALYM»XL‘%>

and hence, at the quantum level one gets the usual anomaly of the

axial current:

<é»\»\/mk\@§\\, > = A .b\,*r/“/:‘w/

Wwe

0f course, one can consider also non-Abelian chiral rotations and
study the corresponding Ward-Takahashi identities . Within the -
function approach one obtains in this case the so-called covariant
anomally, which differs from the consistent ( gauge-variant ) one.
This last can be obtained by a particular choice of the regulating
operator in the Heat-kernel approach. This point will be discussed
in more details in Lecture 6. Of course, one can derive one anomaly

from the other by properly modifying the current definition.
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§1.3 The Jacobian associated with an infinitesimal chiral rotation

We shall explicitly evaluate the Jacobian associated
with an infinitesimal U(1) chiral rotation for an SU(N) gauge
theory with Dirac fermions in the fundamental representation. We
shall follow the original ( i.e. Heat-kernel ) Fujikawa's requlari-
zation scheme. The corresponding z-function calculation can be
found in Ref.[9].

In the path-integral framework the measure is defined

by expanding the (classical) fermion fields in terms of some complete

set of functions s\gwk

\+/L*) =i22f”~x\?m&7o
Ty T

where Owupare elements of an infinite Grassmann algebra. The
[ g

fermionic measure is then defined as:
DYy ETv\oméom
wn

—

fn terms of the set gﬁw\uwkthe transformation (14) can be written

as

O

ﬁ

1
Q =

-—
=

-t
(o )

C

with

Con = <6vnn,*- S;Q:,XﬂSWﬂmgeitlx

(16)

(17)

(18)

(19) -

(20)
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Hence, the Jacobian associated with the transformation (14) ( or

equivalently with (18)-(19) ) is defined as:

YDV = JDY '»Q\\/\ = Ae,\'f'(_ﬁb'\?'oﬁ)\\/‘ (21)

Using eqs. (20) and (21) we get:

J= ex?&zgaxﬁouf{(x) (22)

where

Qp»(’<) = ):‘{’j\bt) LA ALY (23)

It is important to note that the expression (23) is only formal and it
has no meaning until a regularization prescription is introduced. Indeed,

one can write cj%(i) in the form:

J =t Z}R,LX)@ \P:L L) = B, XS@ W\ (24)

which is obviously ill-defined.
Fujikawa's regularization choice is based in the introduction
of a cut-off M®> in the form:
\}
L«z
A - i D’ ¥, e M 9 ) (25)
re

Moo 3

where’vnare the eigenvalues of the (hermitian) operator B whose eigen-

functions are chosen as the basis set in expansions (15)-(16):

3‘?‘»\ :\"\\?\ (26)
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Of course, the resulting Jacobian cannot depend on the basis
choice since the fermionic measure must be defined independently of the
complete set one selects. On the contrary, J depends on the regularization
prescription. The choice of the P's eigenvalues in the exponential in (25)
ensures the gauge-invariance of the prescription ( sinceYX,t are gauge-
invariant ). It is for simplity in the explicit computations that the

eigenfunctions of y are chosen: in this case, (25) can be written as

¥
A, (:c) o LKP ¥ e P () -

M3

a manifestly gauge invariant expression. Use of other eigenfunctions,
as for example those of L?{ as a basis set leads to the same result

[22]

as first shown by Christos . On the contrary, the use of a gauge-variant

L3
Mz

cut-off, like for example:

<L’\ = hwm e

Mty 00 (28)

leads to ¢}%¢Qz: 0, i.e. a trivial Jacobian. This is the manifestation
of the well-known fact that it is not possible to mantain both gauge and
chiral invariances at the quantum level.

Coming back to (27), note that the regularized expression is
obtained by first performing the sum and then taking \\xn P{-§G) . This
corresponds to make the sum disregarding ''big eigenvalues' ( thoseyxht>*1)
For that reason, the resulting expression is finite.

Expression (27) can be rewritten in the form:
B
A‘\Q&()O - \\M \\\M t\.& e M L\QWL’O@&P k\:b (29)

-aoo)’ aX
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(4

M b Tn¥ge e Dt-o) (30)

V«‘smy_ye

In this regularized form, one can think the basis %WQ) has been

changed to a plane-wave basis, since “Dlx& can be written as:

Rx
e '42 e,
A“"& —\“«&mhge )t s 61

}&“"c@- \m“::\ Cg)}) Yo e |- (M v Wt IF ”]

(32)

The trace in (31) runs over the Dirac an internal symmetry indices.

After rescaling k M(,, one can perform the 4
n > M M*

expansion in (31) . Taking the trace with X‘ into account, one gets:
Y »
kﬁ%- Ylwa Hﬂt\, O\l \A’ QJ"?L%‘Q *'—— Lm&lvﬁt/l (33)
W0
-R

W t\,{“ _Jx LS&KQ_::L wY —d
Mo = s AR o) o T E T

inserting (33) in (22) one gets the result announced in (15).
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LECTURE 2: SCLVING TWO-DIMENSIONAL MODELS: THE ABELIAN CASE

§2.1 Introduction

| shall describe in this and the next three lectures
how very simple solutions of two-dimensional models, like the
Schwinger and Thirring models, QCDZ, Gross Neveu model, chiral
mode]s, can be obtained within the path-integral framework.

The method | will explain parallels, in the path-integral
framework, the operator fit first given by Lowenstein and Swieca[21]
and then extended to many two-dimensional models. It is then a sort
of path-integral versfon of the bosonization technique, particularly
powerful in the non-Abelian case in which the usual (operator)
bosonization scheme does not preserve the internal symmetry.

In the path-integral approach, the operator bosonization
recipe is replaced by a chiral change in the fermion variables chosen
so as to decouple fermions from other fields ( gauge fields, aux&]iar*
fields, etc. ) at the classical level. At the quantum level this change
leads to an effective Lagrangian which includes the contribution of
the associated Fujikawa Jacobian. It is in this way that the Wess-Zumino
term naturally arise in the non-Abelian case also for

[22]

interacting theories ( remember that Witten bosonization scheme was
originally applied to free fermions ).

Since the ''decoupling' change of fermionic variables
corresponds to a finite chiral transformation, we shall need to develop
a technique allowing for the computation of finite transformation chiral

Jacobians. This will be done in the next section for the case of the

Schwinger model. Then, in section 3, other Abelian models will be discussed.
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§2.2 A simple example: the Schwinger model

The Schwinger Model (S.M.) is two-dimensional electrodynamics
with massless fermions. The dynamics of the model is defined by the

(Euclidean) Lagrangian:

Lo-aml ¥ (Haef)y 0

_L‘f-

Consider the field transformation:

Y = CXPVg&ﬁ '\—\.10 )(
_\? = TL ‘U‘f L‘As<}> ‘;\)

}A

It is easy to see that after this change, the classical Lagrangian (1)

gl‘*"iawé‘#*‘é‘? (3)

becomes that of a massless free fermion decoupled from the massless

gauge field ~

L= -tR0 4 X “
Fuv =B, 7

Evidently, the Schwinger mechanism ( the ''photon'' getting a mass ) cannot
be discovered through this classical manipulations since it is a quantum

effect related to the existence of an axial anomaly.

My conventions for the (Euclidean) two-dimensional Dirac matrices are:

BAX,,*Y‘X‘ 2$ f*"" \/yy:’ £o|=~i\o=L
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In order to treat the problem at the quantum level one has to compute the
Jacobian associated to the transformation (2) proceeding a la Fujikawa.
Also the (Faddeev-Popov) Jacobian associated to (3) has to be evaluated
but this is a trivial problem:

Q‘\OQAL = Apyﬂq)@z

(6)

Age = detl-*) (7)

I'n fact,AFP is the Faddeev-Popov Jacobian associated with
the Lorentz (B»R“ = 0 ) gauge. One has then to include a%h) term in
the generating functional when fixing the gauge to the Lorentz condition
and this eliminates the ‘L -integration from EE..

Concerning the fermion Jacobian, the technique developed in
the previous lecture has to be extended to the case of finite chiral
transformations. In order to do that we shall apply the approach deve-

loped in Ref.[7]. Consider the following change of variables:

Y - Qx?[(‘(ﬁb +C10t1 Y,
Y = thQ,x?u‘(sfb "L‘L\Q‘

depending on a parameter t,°$t$L What we have in mind is to build up

(8)

the finite transformation from infinitesimal ones by growing t from 0
to 1.

The fermion Lagrangian can be written in the form:

iut:z Iptfl)t\fq> (9)
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In this particular abelian case])tfms a very simple form:

Dy = thref it Bdsde -3y

(11)

or

D, =iy e t) X

(12)

Now, performing the change in the fermionic part of the generating functional

- SRDQ\;&

(13)

2- S:s ) DY DY, e

we have:

2%_‘: - :3(&?) Aei:13g,

(14)

Since EEF_cannot depend on t,

d2¢ _o = 43 dakD, 4Tl 4 (dakDy ) (15)
dt it dt

Now, integrating (15) we get:

30) = WBL‘U‘M dtl (16)
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where

V) sdw = OL\O G\Q},\b
w lt) o= o log £ (17)

It is precisely J(1) the Jacobian we were searching for. Now, the
evaluation of UU‘Uéis related to the infinitesimal calculation we performed

in the previous lecture. Indeed, note that

Diine =Dy + ALY AL +O(ALY) (18)

with

¢M‘0 = ws @bt {D,OX‘SCP (19)

e, RL D]
loaJfdek Dead /4 | = ke logDe]br o
ey \o%& + AV M) .

= T A, A =atddan

(23)
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and hence
WK =t A DY =2t ¥ b (24)

0f course, all manipulations leading to (24) are merely formal since the
determinants appearing in (20) ( and consequently the trace in (24) ) have
to be regularized . For example, in the spirit of the previous lecture

|
( the heat-kernel regularization scheme ) the regularized form of Q)“a is:

e = lwzb xsm‘b”

“T_)m (25)
In the z-function approach, one has instead:
t -5
14) = 25007 Y|
S5=0
and in this case both expressions coincide.
One can evaluate bs\t)easily. For example, from (25) one writes:

o . e
)__\\\M Lo 2 SA-()(A? Jex 'C,M.{4> X

M7 (:.w)l
W) < liwe by ‘45"# Sc\?x d’r exﬂv )/} (28)
W w 27
Expanding the exponential in (28) one gets:

UM ,
o ') < lw 5o "75 xR e (,\ :bt?/‘“@ {D(,M”\

. (29)
We ZJT

2
In two dimensions it is the 1/M term the one that contributes in the

Wlaw Timit. After rescaling variables we have:



CBPF-M0-001/87 :
-20-

wit): 4 W" &g\’ e v B ¥ls$ D
2wt

(30)
w )= 2%{ JVC(‘;‘”;AX“ SAYX\DJ‘I\‘W 49 -
Finally we get: |
wl)= + £ -8 (oeuFudx o (32)
and hence
logd = £ S xEpFurg=- Sgr*gr“’ LAY "

Then the generating functional ( including sources ) reads after the

G A )

l‘L \Sp\\’“ ol Q‘K) DAY & (34)

decoupling:

2, et {\ WL

Lape-£% 15,
L3

f“SwchS = ){,6 E‘PI \kl‘be/ )L

We have written EE_ in the Lorentz gauge. Note that it is the chiral Jacobian

the responsible of the ''photon mass ', absent from the classical decoupling.
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Indeed, writing the effective Lagrangian in terms of 45 , we have
Lal = ADGNY - L Pnd + Wi (36)
et 2T

and hence the qb—propagator reads:

€ X

)(=4.K°e;’< '\’*"to =~ (37

A<I>U \ﬁf) 2t 13 )

That is, it corresponds to a massive scalar particle ( with mass < )
e

and a massless gauge excitation, quantized with negative metric. Any
Green Function can be obtained from the generating functional and the
complete solution of the massless Schwinger model follows in a very

economical way. For example, the two-point function reads:

— | - A — =By
YY)y = e ’ ALY > =cde e b ’%45 (38)

§2.3 0Other Abelian models

This is a purely fermionic model
- 2 = <
Ly - L raY) (39
TN <

One can introduce an auxilliary vector field PV‘ in the generating func-

tional:

t
2 . (oRoy o Hndx

T

(40)

through the identity:
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expl s \?r’z(,,\“\‘a’x\ - jmr expl- ([ g7y L8 )}o‘?x o

and hence one gets an effective vector theory which can be solved exactly
as in the S.M. case. This was done in Ref.[23] by starting from the
decoupling change of the fermionic variables (2)-(3). The resulting

effective Lagrangian takes in this case the form:

‘% E0 QRN U+3 @F«# lkés,ud? (42)

The two-point function reads:

_ ‘| ;
Cr¥1o> = exph-} T;lg" o] LR w

It is important to stress that in this model c\rtis not a gauge field and
hence, no necessity of using a gauge-invariant regularization prescription
exists. In fact, use of a more general regulating operator than that
employed in Ref.[23] leads to the well-known one-parameter family solutions

[24]

of the Thirring model as it was first shown in Ref.[25] This marks
a limitation of the g-function method which is, per se, gauge-invariant
and hence does not allow for this kind of generalizations. We shall return

to this point in Lecture 6, when discussing chiral models.

b) CP" model with fermions.

The Lagrangian for this model is:

2 =2
L __\ Q. ~ %Z:@\zg\ +WKL¥ -L"% }—;i)f (4b)
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with & an n-component complex field satisfying

2 _w
lalf =22 “2p (15)

&
Since Eész’ acts like a gauge field, it can be eliminated from the
covariant derivative by first introducing an auxilliary vector field
and then decoupling it exactly as in the Schwinger and Thirring model

cases. In the first step one gets the effective Lagrangian:

-~ —-— _ ' . - >

L‘QE D,kz-.:D,& + & (LX + EK}‘!’Jr%VQYYFﬂ (46)

jI> = 25 ~+.é; {\
mERE

with the auxiliary field replacing the quartic term in (44). Then

)ﬁ

the usual chiral rotation decouples bosons from fermions. The resulting

effective Lagrangian is
LM:iz\DMZ LR B LR tol) i

As it is discussed in Ref.[26], the resulting theory
corresponds to a Thirring-like fermionic part, decoupled from the
purely massive bosonic sector which can be studied using the habitual-
1/n expansion. The analysis of the spectrum is then straightforward
and one discovers the factorization of a U(1) chiral factor in the
Green functions responsible of a power-law behavior of the correla-

tion functions ( the almost long-range order predicted by Witten [27]).
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c) Fermion number fractionization.

A curious behaviour of quantum systems relevant in
condensed matter physics ( which is closer to real life than the
physics we have been discussing in these lectures %,can be understood
by studying a two-dimensional fermionic model in the presence of
a soliton background.

The corresponding Lagrangian is:
—_— R ,
LTl ge® )y

where 4b is a pseudo-scalar soliton field which provides the background
inducing unusual quantum numbers. In Refs.[28]-[30] the relation between
this model and that describing for example a poliacetilene molecule,can
be found. Supose we want to compute the conserved fermion number current

in the presence of qb . We then define a generating functional with a

source term. S :

fa
ZLS}S@:FD‘(’Q»? &SQ(#*%‘\’SQ:YS?B ¥ $7><) (49)
In terms of EE , the current reads:

I =Y > = %2
: " 2950, _,

Performing t;; chiral rotation:
¥s
Yoo Tthy
-_ — E(S
\Y =X e ‘%(2

—

(50)

(51)
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the resulting classical Lagrangian becomes:

L =X (L}( + # + iyl‘éf'/%'/t}) ) )< (52)

B

Concerning the Jacobian, it can be computed exactly as in the previous

cases. The details are given in Ref.[31]. The answer is:
3(6) = epl g \xL o D 4200 - L feodeap-) ]

In terms of the decoupled variables the generating functional reads:

AL, O
2 SDMJ(QS > 309) (54

and the fermion number current is:

A bt):--éwé 47 o ogcl‘?} v 3)\ (55)
A,ﬁllgrw\,ﬁ
We shall see that the first term is responsible for the fermion number

fractionization. One can expand the second one for slow varying 17 fields

getting

5,,\\,5;/&00\«3- -EZBAD \L\\‘\&\m ovders ‘erug \N\Q’Pl (55)

and hence to leading order in derivatives of Sb we get:

_ A
1?‘“ 'e:’rgfwéy‘b
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Then, for a soliton with q> varying from 0 to N the fermion number

is -1/2 1
N3 =5—3ng0 --L L4l@rola)] =1, - (55)

this being the result first obtained in Refs.[28]-[30].

We then see that all the results obtained previously with
the bosonization recipe can be derived very simply within the path-
integral approach. The case of massive theories can also be treated
in this way. The equivalence between massive Thirring and sine-Gordon

[32]

models can also be established and the analysis of other massive
fermionic models can be discussed. In particularwe shall see how this
technique can be straightforwardy extended to the case of non-Abelian

models in the next lecture.
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LECTURE 3: SOLVING TWO-DIMENSIONAL MODELS: QCD2

§3.1 Introduction

Quantum chromodynamics in two dimensions was popularized

[331]

by 't Hooft as a laboratory for the study of 1/N expansions but it was
quickly captured by two-dimensional physicists anxious to extend the
bosonization scheme to non-Abelian models. However, the attemps to

determine the spectrum of QCD, in different regimes lead to contradictory

2

results due to the fact the usual bosonization does not preserve

internal symmetries ( for a list of references on these first attemps,

see Ref.[8] ). Reliable results were at most conjectures on the existence

of a non-Abelian extension of the Schwinger mechanism providing mass to

the gluons. [34]

It was the path-integral framework that allowed to

finally understand ( at least qualitatively ) the fundamental properties

of QCDZ. At the same time, it gave an indication of how bosonization took

place when non-Abelian symmetries were in the game. The sequence of
advances in this approach can be summarized as follows:

i) The fermion determinant is computed exactly in Ref.[8] by extending
the technique described in the previous lecture. In order to ensure
the fermion decoupling, it was necessary to assume there exists some
gauge condition in which the decoupling is automatic.

ii) In Ref.[11] Roskies prooved the existence of the gauge condition

referred in (i).

iii) In Ref.[15] Polyakov and Wiegmann showed that in the light-cone

gauge the SU(N) fermion determinant reduces to a non-linear sigma
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model plus a Wess-Zumino term.

iv) In Ref.[10] the connection between the results i) and iii) is established
and the effective bosonic Lagrangian for QCD analysed. In Refs.[36]-[37]
the current algebra for QCD2 is presented.

v) In Ref.[38] Rothe extends the results in (i) to a general gauge.

Many other authors have simultaneously discovered or rediscovered
these results. ( See, for example, Refs. [39]-[41].However, the basic
ingredients for treating QCD2 in the path-integral framework are given in

(i)-(v). Concerning the bosonization scheme in the operator approach,

[22]

it was Witten who suceed in finally giving the correct rules ( at least

for free fermions ) making in this way contact with the results obtained in

[35]

the path-integral approach for QCD2[8] and SU(N)-Thirring models.
I shall describe in this lecture how the fermion determinant
can be computed for fermions in the fundamental representation of SU(N) in

the presence of an SU(N) gauge field acting as a background. | will follow

the approach developed in the prevoius lecture. Tﬂen, I will discuss the
principal features of QCD2 emerging from the analysis of the effective

Lagrangian obtained after the decoupling of fermions.
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§3.2 The fermion determinant

In the Abelian case, the fermion determinant was exactly

evaluated by performing a decoupling transformation where
[

The computation of the Jacobian associated to the fermion transformation

lead to the knowledge of the determinant since:
AQJ(:Y)(R) = J(®Y Ae:LL)( (2)

The QC02 determinant will then be solvable if there exists a
transformation of the kind (1) and if the corresponding Jacobian is exactly
computable. Both questions were answered afirmatively in Ref.[8]. Con-
cerning (1), note that if one tries to decouple fermions in the fundamental

representation of SU(N) by a chiral change:

\Y: Q?{Sd) X_

— 4. (3)
\Y/ :.7(/94 bqb

with 4) 4) -’(/ taking values in the Lie algebra of SU(N) and to\the

SU(N) generators, tre_ty <6°JD this implies a restriction on the

possible F\ which can be decoupled:

i by
TPV (Y + T EE) ve )L

In order (1) becomes an identity, one necessarily has:

bﬁexs 43) Y (5)
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[11]

It can be proved that any {\f& can be written in terms of
some 4) in a certain gauge, known as the decoupling gauge. Note that fK
can be rewritten as:

o) (f5+€fp)€:¢>

L
e
5-347) e,¢ 0
Were we working in Minkowski space ¢ and then the
resemblance between A and the free-fermion bosonized currents introduced

by Witten[zz] becomes evident . Roskies has shown[11]

that the decoupling
gauge condition is a differentiable local one. It is not necessary to
know its explicit form in order to compute the determinant in this gauge.
0f course one can extend the transformation (3) in order to decouple a
general Q& just by also including a gauge rotationbut forsimplicity we

shall work in the decoupling gauge. Exactly as we did in the previous

lecture, we consider a transformation of the form:

Y < Q_Xsdﬂg

(7)
L9

W’ \Yt €
with()ét:é\ and compute the Jacobian for the full transformation froﬁ

eqs.(16) and (25) in the previous lecture:

|
logd - - gom (&) dt "

m‘/
w k) - .\M 2T X 0e

W= 00 (9)
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with

D, - 6_3,54){:}555%

(10)

and Tr now including a trace in the internal symmetry indices. Following

identical steps as in the Abelian case, we get:
7 (4
0%3 x& o\tTJ’ D (1)

which can be written as

loa S = S T (3 el ) (12

st > 9:9@47

or ‘ . (13)
o3 =2 AT [+ (e m@l

This is the result first derived in [8]. The first term, where the t-
integration was trivially performed corresponds to a gluon mass term: as
in the Abelian case, the Schwinger mechanism takes place for gluons. The
second term is related to the Wess~Zumino functional[hz]. To see this,

let us define:

U.:u k(b){:) z Q,l{:q) (14)
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and write:
i\t \)‘ E{“ud\s (15)
with ]' '(
RPN Li*li‘}
U = O _

'y e “‘z (16)
R A \+

Eq.(15) corresponds, in the 2-dimensional world, to the decomposition of
a gauge field into vector and axial parts since the relatlon'xQ( & Xnmkes

disappear the (S matrix. The following useful identities hold:[h3]

B 20 e [ v ] e ok 087 =0
g -elot ) - Qé_&_ﬁ, (17)

%MO\V —&?.[ /lﬂ BVQY‘ -Le,[_\"y ,Al

Using them, we can write, instead of (13)

W W\= \o&lk_ S lﬁxéfﬂké U - L O&de S

° (18)

@@xww@mMU‘

and now the second term in (18), which we shall call LL>1 , can be identified
witha Wess-Zumino term. Indeed, consider for a moment the analytic conti

nuation of U to an element UC of SU(2)
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U, bt = exp 2% (P(l\j

(19)

Since we are taking space-time as a large sphere anc;“;ksukﬂﬂwe can thinkof UC
as a mapping from a solid ball B ( whose boundary is s )into the SU(2)
manifold. We shall take as coordinates in B the parameter t and the two-
space-time coordinates ( writing t=cos@, we can think of B us the upper

3
hemisphere of S )The analytically continued l})z_reads:

WS - 4min (20)

where FT is the Wess-Zumino functional:

L P 1 b U B U, T AU

B

= 4
e @

which has the very important property of being defined modulo 2W the ambi-
guity being related to the topologically inequivalent ways of extending a
given mapping UC:52—-> SU(2) into a mapping from B to SU(2). This topolo-
gically distinct possibilities are classified bYW;,L‘buhﬂ=2_-
Coming back to our actual problem, the extension from 52 to
B arose naturally when we constructed the finite chiral transformation
JsP e,txf‘;q) A i i
rom . Any other extension than the one defined by (7)

would have yielded the same W2 since there are no ambiguities when there
is a YE in the exponential since in this case the group is not SU(2) but

3 —
SL(2,C) which is homotopically equivalent to R and hence\h(d}a We then
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conclude that any other extension different from that of eq.(7) would
lead to the same result.

The presence of I in our approach has a transparent origin:
the non-Abelian chiral anomaly, responsible for the Jacobian. As we
stated above, the evaluation of J can be performed in an arbitrary gauge
by noting that the substitution

¢ 4

changes{%}_A from the decoupling gauge to a general one:
¢ Y SV
ACOY> HOnd) = e TRl Myl e N ™ (23)

This was done by Rothe in Ref.[38] where the QCD,, determinant in an
arbitrary gauge can be found. We shall end this lecture by quoting an

important property of the functional (18):

a _
ofuv] = w il & \D&Vl-irrﬁ WaU VIV dx (24)

This allows the obtention of the determinant in a general gauge by

noting that (23) can be written as:

9“32 ld)} = -%W W\M Wu\q (25)

with

V= e,i \ (26)

351

The answer conincides with the result of Polyakov and Wiegmann
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§3.3 QCD, properties

Once the decoupling change in the fermionic variables
has been done, one can write the complete generating functional for
QCD2 in terms of the decoupled fermion fields and lk at4) we are

still working in the decoupling gauge ):

5o o X
Z-\DUALMIDADA e (27)

with Seff the effective action including the Jacobian contribution:
? R . 787777
QQQ _ A t!x NVDL] d X (U[Lq 4 u# )( (28)

and Z&;@ the Faddeev-Popov determinant,
Y8

which, as Polyakov and Wiegmann

[43]

explained for the case of the axial
gauge, can be shown to lead also to a Wess-Zumino term which just changes

the factor multiplying the effective action.

It is instructive to investigate (28) by performing a perturba-
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[10],

tive expansion

o] 0~ :
W= 4 4 ¢t 4 U(¢3) (29)
leading to an effective Lagrangian of the form:

oreg > (
b £ = égtL 43(\7‘\71 %Q}_\T?)(# 4 QE (}53,,@&@ é/m/ +2¢6ﬁ\7¢’§u¢§;() (30)
2 o

As usual in the path-integral approach to bosonization, one gets an
effective Lagrangian with high-order derivative terms. It corresponds
to N2-1 massive scalars ( with mass m=e4ﬁ;% ) and N?-1 massless
excitations since the propagator associated to this Lagrangian is

again:
A - AFKW\)() -~ As:(ogx) ] Ap\W\x) = - Wp (\MX)

In summary, we have computed the fermion determinant for QCD2 and
stressed the appearence of a Wess-Zumino term analogous to that
present in other two-dimensional models. We have shown that the
fermions completely decouple from bosons, these last being massive
self-interacting scalars. Concerning fermionic Green functions, the
decoupling implies, as in the Schwinger model{that at short distances
fermions are free. It is interesting to note that the presence of

the ﬁjy term in QCD2 is responsible for the mass of the bosons, in

contrast with the case of purely fermionic models, as we shall see

in next lecture.
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LECTURE 4: PURELY FERMIONIC MODELS: THE CHIRAL GROSS-NEVEU MODEL.

§L4L.1 The model
[44]

The chiral Gross-Neveu model (CGN) dynamics is defined

by the Lagrangian:
Lg: -XFF?$W’* Rol“t (1)

) - —
Ly - ~§_MUW SRS AN (2)

with the fermions in the fundamental representation of SU(N). It is

invariant under global U(1)xU(1) and global SU(N)xSU(N) transformations:

Y ‘5‘TL\V ) S\,GﬁfS\)(\l) (3)

A Fierz-type transformation can be used to writel,-wt in terms of U(N)

generators in the form:

~— L&
(v
,Lw% o W/Z(P\)\ i *=0,1z... ,t\f'-\ (4)
with
2= Tf
- , ov:‘l'zl.../u".l (5)

Exactly as in the abelian case, we can introduce auxiliary vector fields
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in order to eliminate quartic interactions. To this end, we use the
identity:

|, ~ 2
ERIL2 AN § eI\ WS A% T A
1T o, Y BRI g TE

At this point it is interesting to note that keeping the CGN Lagrangian
in the form (1)-(2), the auxiliary fields that eliminates the quartic
interaction have to be scalars. As originally shown by Gross and

[44]

Neveu these fields are helpful to explore global aspects of the
theory and to perform 1/N expansions; in this way, relevant aspects
of the theory, like dynamical mass generation and asymptotic freedom
were discovered. However, as we shall see below, some features where
the symmetry plays an important rdle ( for example the realization of

the chiral symmetry [27] )

can be more clearly discussed in a framework

where Lagrangians whith one component ( where the introduction of scalars

is evident ) and N-component fermions ( where the SU(N) symmetry affects

neatly the properties of the system ) are not treated on the same footing.
The generating functional for the CGN model then reads:

2-N\DY DY ON e S&L A \LL“‘““& o (7)

L -\ BY +Te) i (8)

Souv (L8

L . DY+ L (e e N
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[
Here ‘\r,is an abelian vector field while {eris a 2(N2-1) component

vector. The covariant derivative 1is defined as:

-0 pY °rT e
E,&ﬁ f’“*(f;@f‘i*(\r’t> (10)

Following Ref.[45] we first extract the U(1) part of the
fermionic variables by considering an Abelian chiral transformation,
already familiar from Lecture 2. Namely, we perform the change of

variables:

:Q}“IO+Y§4)0 X 27,(0)( -
Yooury
_§§-(§ﬁubﬁi—kﬂ%> (12)

In terms of the new variables/zé reads:

Z. N DrPADN 94,00, 33y, *
copl ot o Ry L bad

e B R RS

(13)

where

NN 5 A
tlbrv = > + Qﬂ:7 P (14)
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The Jacobian E¥¥ is the trivial onegiven by eq.(7) inlecture 2 while the

fermionic one ;ﬁi)is:
{

\0% 35\” . =M 30\?%@&4’0)1 (15)

27

The generating functional takes then the form:

2 = /(/S@i,»@ X_@A/A,®¢o'©70 x

< of S}\Az“&‘mx it r%@*?: Jeto) e gt

R

NI} -\Q\‘\MS\& i

Next, we shall consider a non-Abelian transformation involving

the generators of the SU(N) group:

X~ E‘ & u;\*) 5
-5 Usb Uiy

(17)

A A A (.
(A, - %{u\% Wg>ugu VRS Jn (18)
O

W -l
fb(S‘ = Q,X/g' ﬁ "

Under this change of variables the effective lagrangian becomes now:

1l



CBPF-M0-001/87
-43-

o \vc‘ i%@ﬁug)ug“u - Q% W WK -

N va 2 2 T
L3082 (SN0t B R 2 o
>
Hence, the generating functional in terms of the new variables reads:

_ _ EQKS &
2 - jr[o395 < P DD O
PRI Ay (Y *%qu}&

A8 W 0

X € « €

(22)

Sub)
Here -;§¥, represents the Jacobian of the U5 change in the fermionic
variables. We can use Rothe result [38] for it [ beeing Ay\a true vector

field, one does not have to fix the gauge and hence one has necessarily

to work in a general gaugel.Concerning the change in the vector field,
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@ASDR\\:QP‘ Q(PO\D@ ’zj)\’ 0\:\(?/..- /w‘(v‘

~ o~
it will now depend on and 1{ ( remember that for QCD2 in the decoupling

gauge, it just contributed with a Wess-Zumino type Lagrangian ).

a SUl)

Even without computing v and ;Qkpne can already see from

(22) a remarkable property of the model: First, the massless excitations

coming from the U(1) charge decouple from the rest as it was conjectured by

[27] [46]

and confirmed at the spectral level by Andrei and Lowenstein

[47]

Moreover, in agreement with the work of Rothe and Swieca we can show

Witten

that this part of the Green functions, that indeed factorizes, coincides
with the Thirring model U(1) part, computed in Lecture 2. To see all these
properties, let us compute the two-point correlation function from

the generating functional (22):

| S

35 59 \
Z 08,08 g e (24)

CHRAYEE)> -

g)ﬁf é[)h? .L(o 1*4? X

) % D¢ o ;ﬁum) g“ . @ILV;A\;QKW«:\U?)\(( X
WL
e

%
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) Tt lol> = UL \°\> <§ e O X (25)
A ) Usto\\we >

The first factor corresponds to the U(1) part of the Green function and

is similar to the one appearing in the Thirring model:

< ”X (‘3)/p
<M° L) Us o) > M (26)

with

- & A - A 0 (27)
=S\ )

We can then infer that the "'almost long range order' of the Kosterlitz-

[27]

Thouless type occurs in the infrared region ( dominated by the mass-
less particles ). On the other hand'for short distances the coupling
constant goes to zero ( due to asymptotic freedom ) the dynamically
generated mass remains and the chirality carrying term (26) goes to

1 ensuring that in the asymptotically free region the massless part is

not important. A more detailed discussionof all these facts can be

found in Ref.[45]
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LECTURE 5: THE '"WORLD' OF CURRENTS ( IN TWO-DIMENSIONS )

§5.1 Introduction

Since the basic ideas of current algebra were introduced by

[48]

Gell-Mann in 1961, the subject found an increasing number of applica-

[49]

tions, both from the theoretical and the experimental sides . An

[50]

important result already obtained in 1969 is the (unexpected) dependence

of current commutators on the interactioq,due to the existence of anomalies
( related in this framework to the singularity structure of operator
products for small separations ).

Since operator products can be defined only as a limit, in order
to specify a theory completely, one has to specify the nature of the limit.
Two-dimensional models were then used in this context in order to investi-

gate the detailed structure of singularities. In this way, the so-called

Sugawara construction[51]

[52]-[53]

was established for different fermion models in
two-dimensions showing the possibility of providing a complete
formulation of an interacting theory in terms of current dynamics ( in the
same way equal-time (e.t.)commutation algebra of fields does in conventio-
nal canonical field theory ).

The interest in constructing the commutator algebra of currents
and energy momentum tensor revived when it was observed that this construc-
tion lead to very simple realizations of Kac-Moody and Virasoro algebras
which can then be used to analyse the spectrum of candidate string theo-

[541-[57] [22] .

ries . This fact was crucial in the derivation by Witten
the non-abelian bosonization rules. Of course, these investigation were

originally restricted to conformally invariant field theories but the under-
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standing of current algebra in other models ( like QCDZ, chiral Schwinger
model, etc ) may have interesting applications in physics and, in parti-
cular, in string theories [13]’[58].

We shall discuss in this lecture a systematic way of getting
current algebra results while working in the path-integral framework.
In particular, we shall apply our approach to the well-known Schwinger-
model current algebra and then present the more interesting non-Abelian
case where a Kac-Moody type algebra is gotten for the QCD2 model .

§5.2 Current commutators and the path-integral

Once the fermion generating functional is properly defined
( i.e. the fermion determinant is adequately regularized ) any correlation
function can be obtained by functional differentiation with no need of
new regularizations. In particular, vacuum expectation values of

fermionic currents for the abelian model

(B = o vt .
or the non-Abelian one,
(35 = e Y ALY S (2)

can be obtained from the fermionic generating functional

_ A\P[LFren) Vs
ZF =\ DY PYye S Fre] )(: det T () (3)

by using a gauge-invariant regularization prescription for the fermion
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determinant .definition ( as for example the z-function one

<3/uu)> - - V2 - -§_ log&@i@“\)

——

1 £
2.5 0 Auly) 0 {\f‘bo

<;3)‘: b@> - \E \o&c&e{j(ﬁ\)
AW
Other possible approach starts by the observation that one

can formally differentiate an unregularized generating functional ( i.e.

an unregularized determinant ),

OQ‘\"/J‘% \oogb = S‘b»?f}@ (xx)

(5)
y(ﬂ Sly) =%b“‘3> (6)

Sx\

and then define the current v.e.v. by gauge-invariantly regularizing
(5), for example by the point-splitting method, as first explained by
[60],

Schwinger

<ZX[¢X\> =- \W\ JBLKIMGLKQ)& > (7)

Here the phase-factor ensures the gauge invariance of the result. Of
course both definitions yield to the same result. From the v.e.v. of
currents and product of currents one can compute current commutators

[61][62]

using the Bjorken-Jhonson-Low (BJL) method . Indeed, consider

the current-current correlation function:

G lin) = QA Iy ()> = L 0 Ze (8)
2 WO L)
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Noting that the 1.h.s. in (8) is a time-ordered v.e.v., one has
. > - > -
< (_3,,&‘\)'1‘) (byke't:>: ‘\c—\:o{éﬂv ('XJ t*g_‘) N JJU> - C:’/w Q< /{-‘EJ‘ j.{:)] -~ (9)

and hence, from the knowledge of ) v one can derive the current

commutators.

§5.3 The abelian case

Let us consider as a first simple example the Schwinger

Model. We have, from eq.(33) in Lecture 2

dBMY < Tdek iy = g(“?/z“>SQF&SP“‘BMﬁ\AV]RJ I,

(10)

and hence using eq.(3):
2 ~\
(D> = = (Ap-3,T M) (1)

In order to compute C; y we write, instead of (8),

Gl = = LLIOS L L3,95¢3, 1y > (12
5*\,(5)

It is the first term the one which contributes to the commutator of

currents since, using (9), the second one cancels within the BJL limit .

Now

5&,&\» : g’j S Sien)e DD ﬁl D (z-
T ML) v&r””* 27 B ViEno) "
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or

Al Sy -
%I\F/b) T& ) =% S }

Then, we have for éirAV

—

,Au = <ép~b\)<\V LB) > Q/ 6 %&M~)) Q} (o)# (15)

where we have used:

~\

Dy = 5, gyl (16)

Now, we can construct [Egofl;l from (9):
ek

(17)
AT ":;:,l‘bz M ilé‘ffo €3,
T L(\‘ > “’l LTS AL

and hence

2 \
L\cﬁo ("'\Q)Z}Lbﬂ Ml =T %_- 6 (x\- 7 ) (18)

which gives the usual (finite in two dimensions ) Schwinger term . The

other commutators are of course zero.

§5.4 The non-abelian case: QCD2

Instead of differentiating the fermion determinant ( eq.(18)
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in Lecture 3 ) it is easier to use eq.(7) in order to construct current
commutators for QCDZ.
First, note that in the decoupling gauge one knows exactly

the fermion Green function:

X4>(

G (A, 5) Golx(5) e C})(b) (19)

wi th <;>q the free fermion Green function,

Gol2) = Z (20)

211’21

Calling E =X / we have,

(WD = Bl e (xx)

RQ&
¥s $ ARG LS JleheE”

<§S; > b - Lee

Ex0 W £*

(21)

One has to expand all exponentials and use:
_ ~Y_5b
9( - Gges‘)’)a > (22)
e

Then, taking the symmetric &£ -0 limit,

v
g0 gz 2
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we have:

ALl (24)

or

o 2 o (25)
<3r,\b‘)> = ‘% Oy é/un/

a result first given in Ref.[36]. It is interesting to note that, defining
1 + :(30;}- &3" > (26)

one has:

Toooe UDU
.- .e TR

10
with 1}~ _ €’2J¢

These are the currents for QCD2 ( The gauge field taken as a background ).

[22]

(27)

They differ from the free ones, first written by Witten in the boso-

nized form, in the fact they contain a covariant ( and not ordinary )

/

derivative. One can however define new currents:
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o= U de W (28)

whichdo coincide with the free bosonized fermion currents.

In order to compute current commutators we again evaluate

CsrALAkﬁataking care this time of the point-splitting. The answer is[37]:
o v alae c . 0\0 S

L\é&\ AN \9} = E Js (X)S 051 *L\le kx"VJ‘)
= et 2w [29]

Again, the current algebra for QCD2 is similar to that arising
in the case of free fermion models except that, instead of a normal Schwinger
term we have the covariant derivative of the g;function,due to the fact we
0

are considering an interacting model. However, the algebra of A*_defined

in (28) is an ordinary Kac-Moody one.

It is interesting to note that the energy momentum tensor algebra
can be also determined in the path-integral framework by functional

differentiating the fermion determinant. First, one computes:

(30)

<T,u\/ Gy = 2 % \OE}A@tD
B} %M d (x)

and then one uses the BJL method to determine the commutator algebra

631

For example we have:

2,
<T++> = 2 JD»( > | Lr-> < 2u Dt (31)
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with

T*_\ :TDO "(’TQ(

T < Too ‘TO\ (32)
and:
b o (},b -
[:_TH kx\/:h, b«”} = LB*- (’()b-t BLX\'j‘B
4. (33)

Since

Ty (38)

the \f*‘ 'T*_t 1 commutators coincide with those of a free theory.
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LECTURE 6: QUANTIZATION OF THEORIES WITH WEYL FERMIONS

§6.1 Introduction

[64]

After Polyakov's beautiful paper on quantization of strings
it has become clear that theories with some symmetry ( 1ike conformal
symmetry in the case of strings, gauge symmetry in the case of Yang-Mills
theory, Einstein and Lorentz symmetry in the case of gravitation, ... ) may
have a peculiar behavior: even if the degrees of freedom associated with
that symmetry are decoupled at the classical level ( i.e. they do not
appear in the classical equations of motion ) they can reappear playing
a physical role at the quantum level.

[65]

This idea was extended by Faddeev and Shatashvili in their

proposal of quantizing gauge theories with Weyl fermions ( a potentially
anomalous case ) by adding a physical chiral field which cancelled out

the anomaly. However, in this approach, this field was added manu militari

while Polyakov's idea was that 7the model itself already contains
( hidden at the classical level ) new physical degree of freedom charged
of absorbing the anomaly.

Very recently it was proved that this is indeed what happens

[66]-[68] [691]

for gauge theories and gravitational ones and to this

point it is addressed this last lecture.

§6.2 Gauge theories with Weyl fermions

Consider a gauge theory coupled with Weyl fermions. The

generating functional reads:

2 \ONDYDY e Sih ]
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The action is invariant under the gauge transformation:
A O W R
ISR o

Y o i, WY v :T(/g( (3)

For definiteness, we shall consider left-handed fields,

= ‘X‘s Y (4)

( See Ref.[70] for a discussion ). Were the fermions Dirac fermions, the

distinction makes no difference: in the fixing gauge procedure one passes
from the integration on the whole Arv-space st thét 6&é?7¥aeigégf£”space
by factorizing a trivial integration over the gauge-group volume. The pre-

The group space factorization is habitually obtained by
(711,

following the original Faddeev-Popov procedure : one writes a ' resolu-

tion of the identity ' in the form
Vs ApeiW) 9336(?‘[9‘5}) (5)

and then inserts it in eq.(1). Here ‘:'[Qix =90 is the gauge condition
choosing one representative of F\\on each orbit. Using (5) in (1) as well

as the trivial identities:
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DN, « D l\rg (6)
Appls) = Arelfol]

In pure gauge theories or theories withDirac fermions ( in which the
fermion integration measure satisfies an identity of the kind (6) )
the group integration factorizes trivially and the generating functional

is defined in a fixed gauge ( a certain section ).

of a relation like (6) one has for the fermionic measure:

DYDY < 3 H Dy 3Dy?

(8)

where J is the Fujikawa Jacobian:

D3 p)- EDW AD0) 8

whose non-triviallity signals the existence of an anomaly.
It is for that reason that the group integration does not facto-
rize: J depends not only on (5 but also on Af" ’( through the regulariza-

tion prescription ). Instead of the habitual result one has:

B LSl
2 @\YJD‘VQ{*\PB(\:N)ALS(* )Q N ep®) (g

1]
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[65]

This expression coincides with the one proposed by Faddeev-Shatashvilli
except that in the present approach ES has not been added by hand as a new
physical degree of freedom. It naturally appears in the fixing gauge proce-
dure.

It is easy to show that

Slap) < 3N Ug%,/ﬁ) 0

270 Wy )

( a so-called one-cocycle condition, as can be seen by writing ;5: e

Using this property it is easy to show that the resulting
theory is gauge invariant. Indeed, consider the effective action defined

after integration over fermions and the fﬁ-field:

-5 epp [A) _ - S Y YY) -
P S Q\vﬁ“(ﬁge ! 3(5 (Ai’s)

(12)

[N
For a gauge transformed £\H" , one has:

_ LAY A
D\\/D‘b@&e 3[3((\“5)

'

SRR

(13)

_ R ¥R .
- SD*Y@\YDSG/ RSB &S
Making the change of variables:

N - WY o= \V\
?g‘\(\\ RV

(14)
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with the Jacobian:
oxov D(hODIDYT (15

we have:

. - ES{}\,:%\fV\:} e
QjSo_Qg’([R A\ :XDT\J\'D\V \g)&g 3(3(\\‘3 ]\A Lk \P‘)

(16)

But, from eq.(11)

D &‘B \D\\\S‘> :%\\NP‘\A \‘l\':\l \\\ASO (17)

and hence, using

\\
EDiB = DR ) (18)
we finally have:

- A - o) )
N S%V‘ ) =< Q’“ (19)

From this fact we can conclude that the fermion gauge-current:

A - oY w
D Nl

is conserved:
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<th&\<XM> =9 (21)

Let us now understand why the Jacobian relating the Weyl
fermion measures before and after a gauge transformation is non-trivial.
The point is that the Dirac operator appearing in the generating functio-
nal (1) maps negative chirality spinors into positive chirality ones
and consequently it does not have a well-defined eigenvalue problem.

This is the reason why the definition of Weyl-fermion determinants is

[2],[72]-[73]

problematic
A

operator 3) acting on Dirac fermions,

D) =Pl i) if W)

. To handle this problem, one can define an

which then leads to a well-defined eigenvalue problem . The doubling
in the number of degrees of freedom implied by (22) affects only the nor-
malization factor since the positive chirality pieces do not couple to the

gauge field. One then defines:

3D = kD
\Hej§

with the r.h.s. ih (23) appropriately regularized since the product of

(23)

Lréc

eigenvalues of the Dirac operator (22) grows without bound. The crucial
A
point in this scheme is that :I>“9's eigenvalues are not gauge invariant,
this being the origin of the non-triviality of J.
tt is important to note that J can be closely computed in any

number of dimensions. Indeed, for an infinitesimal transformation:

5: L 400 (24)
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the corresponding Jacobian is, as we have seen:

CEA(N) D dx
dl%e)ze S * (25)

with JN. the anomaly,
DS, < A== Voa 3 2
Ferwmioue 6%&—‘

The finite transformation Jacobian is gotten just by iteration of
infinitesimal transformations. The simplest way is to build up this finite

rotation by introducing a parameter t,()S‘h NS i. . The answer is,

_t. P\g‘\\ QQ_t
A, ) - det DY) :Qt SA( Jo

det D A)

as we have seen:

(27)

where:
VR S =)

S\*f) = e o(0) =9 (28)

From the effective action (12) one can compute v.e.v.'s of product of
currents. For example the current-current correlation function is given

by:

I
LI = Ve - Woupg WP
I T3WT1Y 330 SIS
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Then, current commutators can be evaluated as we did in
the previous lecture. In Ref.[74] we have shown,in this wayythat the
current commutators for the Scwhinger model coupled to Weyl fermions
( chiral Schwinger model ) are those expected in a non-anomalous

theory:

‘*‘A“ \go’keﬂt: ©
[j§°d):§\.}§ej&

It is interesting to discuss the presence of the parameter a. Once

(29)
& 2 Vg
AW o~

the definition (22) is accepted, there is no gauge-principle to invoke
justifying the choice of a particular regularization for the fermion

A
determinants since, as we state&before,~1>@¥)is not gauge covariant. In
two dimensions, a general operator which can be a candidate in a heat-

kernel regularization scheme is:

Bv_w = 3(“\) +W9(U*\Y5) (30)
A 2

Here O is an arbitrary parameter. Now, from (29) and the usual arguments

about the definiteness of the Schwinger term signgone necessarily has

o> 4 . This was also discovered in the original investigations on

the chiral Schwinger mode][75].

Concerning more realistic models, we can conclude that the

correct treatment of the gauge degrees of freedom ensures that the

resulting quantum theory is non-anomalous. The study of the
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effective Lagrangian, which contains a Wess-Zumino term comming from
the chiral Jacobian’will decide if the theory is consistent ( in the
sense the gauge group acts as a physical field and there are no

tachyons ).

§6.3 Gravitation with Weyl fermions

It is always possible to define a Weyl fermion measure
invariant under general coordinate transformations ( Einstein

[76] but, in spaces of dimension 2 [mo&kh],it is

transformations )
not possible simultaneously to mantain local Lorentz invariance.
This is the manifestation, in the path-integral framework, of the
gravitational anomalies.

Exactly as it hapens in gauge theories, this fact makes
the quantization of gravitation with Weyl fermions a delicate problem,

[69]

It has been shown that a careful treatment of the symmetries at
the quantum level,makes the Lorentz group to acquire the status of a
physical field and the resulting quantum theory non-anomalous.

The generating functional is,in this case,of the form:

Hy = 1 -5 (’\1-
Z:jgﬁ,a(g)@(a”w)@(g’”%)e Y J (1)

wherefqhQ»is the integratioymeasure over the metric :Xﬁt,; L\, are the

vierbeins

\’Vu \“T'“o‘:iﬂ“’ | 3:(&1&3“‘,”/0

(32)
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in Euclidean space and the fermionic measure is defined in a coordinate

(771

invariant way . The action contains a gravitational part ( whose

explicit form is unimportant for the present discussion ) and a

fermionic part:

2

S T TN @;,_':mwr‘:‘“ Q;(s_w (33)

The invariance of fi) under Einstein and Lorentz transformations makes

necessary two ''gauge conditions'':

+ {‘B,AA:O 5 RN =o (34)

Again, one inserts the ''resolution of the identity'' but, when changing

variables, the Weyl-fermionic measure is not invariant:

DYDY ;B\}\\,\\ DY XSD\@\ (35)

with \\\ a Lorentz transformation:

M b\ M
\'\'m :\'\: _>\\)V\\b

(36)
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Again the effective action, defined through the identity:

2SS enp (W _ ; o (hyy
oo ;g@mw,@m@\jk\ ) e At )

satisfies the identity:

SQQC{\Q . Seq[k\) (38)

and hence the theory is non-anomalous.

We have studied the theory in a simple two-dimensional case[ég].
We have shown that the \\—field is indeed physical ( a massless scalar
field for a particular family of reqularization prescriptions ) but the
analysis of more realistic models remains to be performed.

It is interesting to note that in the caseof supersymmetric gauge
models coupled to (super)gravity ( as it is the case of the low-energy
limit of certain superstring modles ) one may have two non-trivial Ja-
cobians, one associated with the gauge symmetry and the other with the
local Lorentz symmetry. The Green-Schwartz[7&] cancellation mechanism for
certain particular symmetry groups will correspond, in the present path-
integral approach, to the cancellation of one Jacobian with the other in

such a way both group-integration then trivially factorize.
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