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Abstract. In this paper we analyse the spin wave excitations (magnons) of an
inhomogeneous spin system within the Boltzmann—Gibbs framework and then
connect the results with the nonextensive approach (in the sense of Tsallis
statistics). Considering an equivalence between those two frameworks, we can
connect the entropic parameter ¢ with moments of the distribution of exchange
integrals of the inhomogeneous system. This supports the idea that the entropic
parameter is connected to the microscopic properties of the system.
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1. Introduction

Inspired by multifractals, Tsallis proposed a generalization of the Boltzmann—Gibbs
entropy (Spg) [1]

q
=kl g e 0
qg—1

where ¢ is the entropic parameter for a specific system and is connected to its dynamics,
as recently proposed [2,3], p; are the probabilities satisfying > . p; = 1, k is a constant,
and lim, 1 S, = Spg. This entropy for a system composed of two independent parts A
and B, such as the probability is given by P(A()B) = P(A) P(B), has the interesting
property of nonextensivity (see for example [4, 5]):

Sy(A+ B) = 54(A) + 54(B) + (1 = 9)5,(A)S4(B). (2)

Besides representing a generalization, S,, like Spg, is non-negative, concave, and Lesche
stable (V¢ > 0), and recently it has been shown that it is also extensive for some sorts of
correlated systems [6].

Tsallis statistics, or nonextensive statistics, attempts to handle some anomalies
that appear in physical problems which cannot be treated with Boltzmann—Gibbs
(BG) statistics, for instance, long-range correlations, intrinsic cooperativity, multifractal
structure, dissipation on a mesoscopic scale, strong non-Markovian microscopic
memory [7]. These anomalies have the common characteristic of presenting power laws,
instead of the ordinary exponential laws, which is also a characteristic of some complex
systems. Its applicability ranges from protein folding [8] to financial markets [9], and
from turbulence [10] to cosmic rays [11]. For example, in condensed matter problems
we can cite Ising ferromagnets, Landau diamagnetism, electron—phonon systems, tight-
binding-like Hamiltonians, metallic and superconductor systems [12]. In addition, an
interesting example appears in [13, 14] where the authors predicted some peculiar magnetic
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properties of manganites using nonextensive statistics like nanoscale inhomogeneity and
phase coexistence, fractal structures, and long-range interactions [15]-[17].

Herein, we present some results comparing an inhomogeneous spin system within
the BG framework and a homogeneous spin system in a nonextensive approach. This
comparison led us to a connection between the nonextensive parameter ¢ and specific
moments of the distribution of the exchange integral of the inhomogeneous system. Thus,
the spin waves in a inhomogeneous magnetic media can be described using nonextensive
statistics and the entropic parameter is connected to the microscopic properties of the
system, as previously shown for other systems by Beck [18], Beck and Cohen [19], Wilk
and Wlodarczyk [20], Reis et al [2], and therefore can be seen as a measurement of its
complexity.

2. Spin waves

2.1. Magnons within an inhomogeneous medium: the Boltzmann—Gibbs framework

In a ferromagnet at T" = 0 K all the spins have the maximum projection S in the z
direction; this is the ground state configuration [21,22]. Letting the spin system be in
thermal contact with a reservoir, as the temperature increases, it will leave its ground
state, the projections along the quantization direction will be reduced, and a wave-like
perturbation will flow through the spin system; that is the spin wave (magnons). The spin
wave theory leads to the description of the magnetism of ferromagnets at low temperatures,
in the regime where the total angular momentum is close to its the projection in the z
direction, S =& S”%.

We will consider a system of N spins, each one interacting with z neighbours in an
inhomogeneous way, and in the presence of a magnetic field By. Thus, the Hamiltonian
for this inhomogeneous magnetic system is given by [21, 23, 24]

H=—-> JuR)Sr-Sria—h) Sk (3)
R.d R

in which J;(R) > 0 (always ferromagnetic) describes the inhomogeneity of the media,
i.e., there is a distribution of exchange interactions f(J), and h = g ug By is the applied
magnetic field. The whole Hamiltonian can be rewritten in terms of the collective motion
operators in order to give us the magnetization per unit of volume. One can write the
spin operators as

Sr ' Sr+d = 5 [SRSr1a T SrSR1a) T SReSRd:- (4)

The Holstein—Primakoff transformation of spin operators, at low temperatures, is
given by

Sg ~V2Sar and Sg ~V2Sak (5)

in which af; and ag obey the commutation relation [agr, af] = 1. The operators ag and

ay, can be written in terms of the collective motion of the system:

1 ik-R 1 —ik-R }+
arR = ——= » <y and ah = ——= ) e %) (6)
/N g R /N g k
in which [by, bf] = 1.
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Thus, one can rewrite the exchange term of the Hamiltonian (3) as

- Z Ji(R) SR * Sr4d = —3 Z Ja(R) [S%Sria + SrStiidl Z Ja(R) Sr-S(®R+4)--
d

(7)
Using the low temperature Holstein—Primakoff transformation, in terms of the
collective motion operators, we have

% > Ja(R) [SfSgia+ SeSiial = D (%Zjd(m cos(k-d)) bt by, (8)
and

Z Ja(R) Sr-Sr4d> = N S° (i Z Jd(R)> -25 (i Z Jd(R)> Z by bi (9)
R,d N R,d N R,d k

and note that we exclude the magnon-magnon interaction, represented by the term ny ny.
In terms of these operators,

SRz =5 - CLJI;F{CLR (10)

where S is the spin value per site and therefore the second term of the Hamiltonian can
be written as

~hY Sr.=h)» biby—hNS (11)
R k
where N is the number of sites. Hence, the Hamiltonian becomes
H:—(hNS—i-NSQJ)—l-Z(h—i—QSJ——ZJd )cos(k - d)) (12)
k

where ny, = b} by is the boson number operator and J = 1/N > 5 4 Ja(R). The first
two terms represent the fundamental state of the system, or the total energy without
excitations. The term that describes the magnons is the second one. It has the form
> x hwiny and gives the dispersion relation for this inhomogeneous magnetic system

hwk_h+25J——ZJd )cos(k - d). (13)

For large wavelength, one may write

> Ja(R)cos(k - d) Zjd k- d)? (14)

and (k- d)? = k? a®, where a is the lattice parameter. Thus, the dispersion relation is
hwy =~ h+ k*D(J) (15)

where D(J) = a*z S J is the stiffness parameter and z is the number of first neighbours.
As the interaction varies between spins, one may consider that it has a distribution
f(J). Thus, the average magnetization change, with respect to the saturation value of
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the magnetization, per unit of volume is given by

@my =228 [ ar700) [ ki, (16)
272 J, 0
where (ny); is the Planck distribution. Thus (16) becomes
g /B 0 0 k?
(Am) = 2/, de(J)/O dk BT RT ] (17)

g uB i kBT i (kBTZE—h)l/Q
=— — d
e S
where z = (k*D(J) + h)/ks T.
For By =0, i.e., h = 0, the inner integral becomes

/ooo PRr VT () (19)

et —1 2
where ((n) is the Riemann zeta function. The volume magnetization variation due to
magnon excitation of an inhomogeneous system is then given by

(Am) = ((3/2) gz (kBT )3/2 /°° ) <G/ gps (kBT )3/2 ) (20)

8 7r3/2 a2z S J3/2 8 3/2 a2z S

It is important to emphasize that the volume magnetization change of the
inhomogeneous system has a 7%/ dependence (like the homogeneous case) and also
depends on the —3/2 moment of the distribution of exchange integrals (J~%?2). This
exponent is expected since 3 is related to the dimension of the system and 2 relates to the
dynamics, i.e., comes from the dispersion relation (15).

Jkg T et —1

2.2. Magnons within the homogeneous medium: the nonextensive framework

The dynamics of a system is given by its Hamiltonian H and the wavenumber £, defined
by 'H, is, consequently, related to the dynamics. On the other hand, the statistics of a
system is given by an average over a great number of variables; and it lies, for instance,
in the number of bosons n; for each wavenumber k. This average over weighted states
makes it possible to obtain the relation of microscopic physical properties and macroscopic
thermodynamic quantities such as the volume magnetization variation. The nonextensive
approach proposes a change of the statistics of the system, not of the dynamics. Thus,
we assume an equivalent Hamiltonian (3), but homogeneous in this framework, i.e., the
exchange integral can be taken out of the sum. The dispersion relation is therefore given
by €. = a*S J k?, where J is the exchange integral of this homogeneous system. The
volume magnetization in this nonextensive scenario can be written as [25]

gps [~
(Amy =575 | dk R (mi)ag (21)

in which ny = b} by, is the boson number operator and (- - ), is not the standard Planck
distribution, but its ¢ version, i.e., the generalized Plank distribution

(g = Tr {ny, p7} _ ZZZ:() ng [1 — (1 —q)(Bng e)]¥ 09
HaT T Ty {pa) S ol = (1= q)(Bng )]/0-9)
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Using the dispersion relation described above and making (21) dimensionless, one

gets
/2 poo
gus [ keT \°
where
> g [1— (1 = g)(xng) /0~
o q) = S L= (L= 9)amo)] »
S o[l — (1= q)(any)]e/0-0)
Finally, the magnetization can be written as
g uB kB T 3/2

where F'(q) is the integral which appears in equation (23). One can see that the
magnetization in this scenario has the same 7%/ behaviour as in (20). It is a consequence
of neither the dynamics (e; oc k%) nor the dimension (d = 3) having changed. All the
information about the homogeneity and/or inhomogeneity of the system is in the statistics
and, consequently, in the coefficient of the magnetization change.

An analytical connection between the entropic parameter ¢ and the volume
magnetization change can be obtained at the limit (¢ — 1) — 0. At this limit, we can
write (23) as

(0% = 1) + (1/2) (B (g = 1) (1 +4e07% 4 209 J(ea7% — 1))

= 2
g T+ (1/2) (B (g — 1) (@00 + D)ot 1) 2
Thus the volume magnetization change is now given by
gps [ gus (ke NPT, (a—1),
<A m>q = 2—7‘_2 . dk k <77/]€>q7j = 42 22 ZSJ Fq -+ Trq (27)
in which I'} and I'] are dimensionless integrals
F/ _ /oo I1/2 dl‘
o Jo ferr = 1] 1+ ((a = 1)/2) 22 ([e9® + 1]/[er* — 1])]
_ gg (g) _5.2277 (g — 1) (28)

and

F”:/OO [1+4e2® 4 297 22 dx
© o Jo [erm = 1P [14 ((g—1)/2) 22 ([ + 1]/[ee® — 1]%)]
— 16.4154 — 68.6515 (¢ — 1). (29)

As it is an approximation for ¢ close to 1, there is no necessity for terms higher than
(¢ — 1), so the second term of I') can be neglected. Thus,

3/2
g uB kB T \/7_1' 3
A = — (= 298(g—1)]|. 30
@, =22 () [ () + 298t (30)
One can see that, in this approximation, the magnetization is directly related to the

entropic index and when ¢ — 1, it recovers the usual result (homogeneous case within BG
statistics).
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3. Mean field approximation and the critical temperature

Let us consider that the two systems discussed before have the same critical temperature,
as already done in the literature [14].  Considering the Hamiltonian (3) for an
inhomogeneous magnetic system within the mean field approximation, one may change
the quantum operator Sg,q to its thermal average (Sgiq)r. Thus, considering z first
neighbours of an atom on the Rth site of the lattice, its Hamiltonian becomes

My = —(J) 2Sr * (Sr+a)r (31)

where in this approximation we can consider the exchange interaction between the spins
as an average value (J). This is reasonable, because all of the spins, in the mean field
approximation, interact with all other spins in the same way.
For the above Hamiltonian it is straightforward to obtain the critical temperature
28 (S+1)
T.= ————=(J). 32
c ?)kB < > ( )
An analogous calculation can be carried out in the nonextensive scenario [26]. The
generalized Brillouin function [2] gives us the critical temperature

Tla) — M

e Yy J (33)

in which J is the exchange integral in this framework. The relation between these two
temperatures is given by [14, 26]

Thus, using (32)-(34) one finds the relation between the two exchange integrals
T ={J), (35)

that is, the exchange integral in the nonextensive framework is equivalent to and average
of the inhomogeneous one. This result is expected since, as already discussed above, we
are not changing the dynamics of the system, only the statistical treatment which is used
to calculate the thermodynamical properties of the system.

4. Equivalence of the two frameworks

Comparing the magnetization change per unit of volume in the inhomogeneous
framework (21) with its analogue in the nonextensive scenario (25), one finds that

P =L (3) - (D8 (36)

The above equation is a relation of the ¢ parameter and moments of the exchange
interaction distribution f(.J). Figure 1 presents the expression above numerically solved
for ¢ € [0.1,1.9]. This procedure comparing the magnetization has already been carried
out [14], where similar results were found, with the authors inspired by superstatistics [19].

An analytical connection between the entropic parameter ¢ and the specific moments
of the exchange integral of the inhomogeneous magnetic media can be obtained using the
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5
Numerical solution
4
Q
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"A Analytical
- 34 solution
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Figure 1. The entropic parameter ¢ is connected to specific moments of the
distribution of exchange integrals. This result is valid for any f(J) and shows
that the entropic parameter is connected to the physical properties of the system.

expression for the volume magnetization change in the limit (¢ — 1) — 0. Comparing (21)
and (28) one gets

gg(g)jtz%(q—l):gc(@% (37)

or
(=)
The result above is also valid for any f(.J) and shows that the entropic parameter is
connected to the physical properties of the system [2], [18]-[20].

5. Final remarks

Summarizing, in the present work we have shown that the ¢ parameter can be seen
as a measurement of the inhomogeneity of a magnetic system. This supports previous
work [2,3] in which, inspired in superstatistics [19], the authors related the entropic
parameter ¢ to the first and second moments of the distribution of magnetic moments
of manganites:
g2 qp =) (39)
(1)?

and this was also experimentally verified. Thus, the present work supports the idea that
changing the usual Boltzmann-Gibbs statistics to one that is able to describe power
laws (Tsallis statistics), one can characterize systems that have special features like
inhomogeneities; nonextensivity is therefore key for describing complex systems.
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