
JC
A

P
02(2006)015

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Nonlinear resonance of
Kolmogorov–Arnold–Moser tori in
bouncing universes

H P de Oliveira1, I Damião Soares2 and E V Tonini3

1 Instituto de F́ısica—Universidade do Estado do Rio de Janeiro, CEP
20550-013 Rio de Janeiro, RJ, Brazil
2 Centro Brasileiro de Pesquisas F́ısicas, Rua Dr Xavier Sigaud 150, Urca, Rio
de Janeiro CEP 22290-180-RJ, Brazil
3 Centro Federal de Educação Tecnológica do Esṕırito Santo, Avenida Vitória,
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Abstract. The dynamics of closed Friedmann–Robertson–Walker (FRW)
universes with a massive inflaton field is examined where Friedmann equations
are corrected by the introduction of a potential term that implements non-
singular bounces in the early evolution of the universe. This potential term arises
from quantum gravity/high-energy corrections to cosmological scenarios near the
singularity and is semiclassical in nature, being effective only when the scale factor
is very small. For certain windows in the parameter space labelled by the scalar
field mass and the conserved Hamiltonian, nonlinear resonance phenomena take
place. Nonlinear resonance may induce the destruction of Kolmogorov–Arnold–
Moser (KAM) tori that trap the inflaton, leading to a rapid growth of the scale
factor and the scalar field, with disruption of metastable states and consequent
escape of the universe into inflation. We make a numerical/analytical approach
to the nonlinear resonance phenomena, characterizing a particular resonance by
its characteristic periodic orbits and by the structure of the associated diffusion
pattern. The diffusion occurs when the orbit escapes through a Cantorus in the
border of primary KAM islands that encloses the characteristic periodic orbits of
the resonance. The windows of parametric resonance, characterized by an integer
n ≥ 2 (associated with the ratio of the frequencies in the scale factor/scalar field
degrees of freedom) are the ones that strongly favour inflation in the system.
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We discuss how generic this behaviour is for inflationary models, and its possible
consequences for structure formation.
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1. Introduction

The initial conditions of our present expanding universe must have been fixed when the
early universe emerged from the semiclassical Planckian regime and started its classical
evolution. From these initial conditions the universe starts its evolution with the dynamics
ruled by Einstein’s field equations. Backwards evolution of the initial conditions using
classical equations of motion drives the system towards a neighbourhood of a singular
point, where the classical regime is no longer valid and must be substituted by the quantum
regime. Quantum gravity corrections to cosmological scenarios near the singularity have
been the object of much recent research, from loop quantum cosmology [1] to string
theory [2], all of them leading to the presence of bounces in the scale factor of the model.
On the other hand, the existence of infinitely bouncing universes in the realm of closed
Friedmann–Robertson–Walker (FRW) universes endowed with a simple form of massive
scalar field has a long history [3]. These structures have received considerable attention in
connection with the study of chaotic dynamics in the early universe [4]. Also, the study
of closed cosmological models has the further advantage that they are more adapted for
the development of the quantum approach to the origin of the universe. Furthermore,
bouncing universes resulting as a consequence of corrections of the field equations due to
quantum gravity effects are considered seriously as non-singular models compatible with
observational data [5]. Recently, an interesting possibility for such cosmologies has been
described in brane-world model scenarios for which corrections to Friedmann equations
on the brane due to the influence of a bulk geometry allow us to produce non-singular
bounces in the scale factor [6]. These corrections effectively result in a repulsive force
that avoids the singularity, and are dominant in its neighbourhood. In the realm of the
above-discussed quantum corrections near the cosmological singularity, we are then led
to consider the introduction of an extra potential term in Friedmann’s equations when
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treating a class of FRW models with a conformally coupled massive scalar field φ (the
inflaton field) plus a perfect fluid. For perfect fluid cosmologies this correction term may
be assumed to be of the form −A/aα, where A is a positive constant, a is the scale factor
and the integer α ≥ 2. For simplicity in performing a numerical/analytical analysis of the
dynamics we will fix α = 6 in the present paper, but the features of the dynamics may be
substantially different for other choices of α and deserve future examination4. This choice
was also considered in models with radiation and a phantom fluid with an equation of
state p = ρ ∝ a−6 [7]. For the conformally coupled scalar field we assume the potential
U(φ) = Λ + m2φ2/2 where the cosmological constant term Λ is considered to correspond
to the vacuum energy of the inflaton field and φ its spatially homogeneous expectation
values. We further assume that the model contains a perfect fluid describing radiation
(p = ρ/3).

Throughout this paper we use units such that � = c = 1 and 8πG = 1.
We start from the line element of a closed FRW model

ds2 = N(t)2 dt2 − a(t)2

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]
(1)

where a(t) is the scale factor and N(t) is the lapse function. The Lagrangian density of
the model is given by

L = LG + Lφ + LI + Lρ (2)

where LG = −√−g R/2 is the Lagrangian density of the gravitational field (1),
Lφ =

√−g(φ,µφ,µ/2 − U(φ)) is the Lagrangian density of the inflaton (scalar) field and
Lρ = −√−g ρ is the Lagrangian density of the perfect fluid content. The term

LI =
√
−g(ξφ2R/2) (3)

describes the non-minimal coupling of the inflaton with gravitation and is partly motivated
by quantum calculations in curved spacetimes (taking into account quantum backreaction,
renormalization, string theory, etc) and partly by the possibility of constructing successful
inflationary and pre-inflationary scenarios [8]. The case ξ = 0 is the usual minimal
coupling of the scalar field with gravitation, and ξ = 1/6 is the so-called conformal
coupling [9].

In the above, g is the determinant of the metric (1) and R is the Ricci scalar given
by

R = − 6

N2

(
ä

a
+

ȧ2

a2
+ N2 k

a2
− ȧṄ

aN

)
. (4)

Due to the spatial homogeneity of the model, the total action can then be expressed as

S = V0

∫
dt Na3

[
−R

2
(1 − ξφ2) +

1

2N2
φ̇2 − U(φ) − ρ

]
(5)

where the constant V0 stands for the volume of the spatial sections t = constant (which
have the topology of S3, or S3 factorized by a discrete group of identifications [10]).

4 We note that the choice n = 6 corresponds to bulk–brane corrections in Friedmann’s equations with dust.
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Discarding the total time derivative term in the integrand of (5), and further introducing
a new scalar field variable ϕ such that φ = ϕan, where

n + 6ξ = 0, (6)

equation (5) turns into

S = V0

∫
dt

[
−3aȧ2

N
+ 3kaN +

a(3−12ξ)

2N
ϕ̇2 +

3ξ(1 − 6ξ)

N
ȧ2a(1−12ξ)ϕ2 − 3kaNξϕ2

− Na3U(ϕa−6ξ) − 3kξNϕ2a(1−12ξ) − Na3ρ

]
. (7)

For matters of simplification, by a proper rescaling of the scale factor and the r coordinate
we set V0 = 1 and k = 1 in what follows. From the kinetic terms of (7) we define the
momenta canonically conjugate to a and ϕ, respectively, as

pa = −6aȧ

N
+

6ξ(1 − 6ξ)

N
ȧ ϕ2a(1−12ξ)

pϕ =
a(3−12ξ)

N
ϕ̇

so that (7) assumes the canonical form

S =

∫
dt (ȧpa + ϕ̇pϕ − NH) (8)

where

H =
p2

a

12a[−1 + (1 − 6ξ)ξϕ2a−12ξ]
+

p2
ϕ

2a(3−12ξ)
− 3a + a3U(ϕa−6ξ) + 3ξϕ2a(1−12ξ) + a3ρ.

(9)

Extremizing the action (8) with respect to variations in N results in the Hamiltonian
constraint

H =
p2

a

12a[−1 + (1 − 6ξ)ξϕ2a−12ξ]
+

p2
ϕ

2a(3−12ξ)

− 3a + a3U(ϕa−6ξ) + 3ξϕ2a(1−12ξ) + a3ρ = 0. (10)

Partly for reasons of analytical simplicity in the analysis of nonlinear resonance
phenomena, in the remainder of the paper we will restrict ourselves to the dynamics
in the conformal coupling case ξ = 1/6. The dynamics in the minimal coupling case ξ = 0
will present analogous features and will not be discussed here. For an extended range of
values of ξ, a larger parameter space analysis is demanded and will be the object of a
future investigation. As discussed previously, the fluid content of the model is given by

ρ = E0a
−4 − Aa−6 (11)

where E0 is a constant of motion proportional to the total energy of the radiation fluid and
the second term is the correction term arising from the bulk geometry. In the conformal
time gauge N = a, the dynamics of the model may then be derived from the Hamiltonian
constraint expressed in the form

H = −1
2
(p2

ϕ + ϕ2) + 1
12

p2
a + V (a) − 1

2
m2a2ϕ2 − E0 = 0. (12)
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In the above V (a) is a potential in the gravitational sector given by

V (a) = 3a2 − Λa4 +
A

a2
, (13)

where can be found, respectively, the contributions of the curvature term, the cosmological
constant and the correction term arising from the bulk geometry (the latter responsible
for the bounces).

For the sake of completeness it will be useful to give a more detailed explanation of the
basic structure of the phase space of the model. We note first that the Hamiltonian (12)
is separable for m2 = 0, that the mass term couples the two degrees of freedom making
the system non-integrable. The critical points, or equivalently the stationary solutions of
the Hamiltonian equations derived from (12) basically constitute the skeleton of the phase
space under consideration, and therefore will be crucial to our study. It can be shown
that the critical points are characterized by

pa = pϕ = 0, ϕ = 0, V ′(a) = 0, (14)

namely, they are connected to the extrema of the potential V (a). For positive values of A
and Λ and in the region a ≥ 0 there are only two critical points, P0 and P1, associated with
the maximum and minimum of the potential, respectively. P0 corresponds to the config-
uration of the Einstein static universe with an energy content having a contribution from
the quantum potential, while the critical point P1 is a stable static solution, arising from
the dynamical balance between the energy content of the radiation fluid and the negative
energy density connected to the quantum potential. It is worth remarking that P0 is a
saddle-centre and P1 a pure centre, as can be seen from the linearization of the dynamics
about each critical point [11]. Both critical points are contained in a two-dimensional
submanifold of the phase space, denoted the invariant plane and defined by

ϕ = 0, pϕ = 0, (15)

where the dynamics is integrable. Orbits with initial conditions on this plane are totally
contained in it, actually corresponding to the dynamics in the sector (a, pa) of the sep-
arable case m = 0. The phase portrait in the invariant plane is depicted in figure 1(b),
and is connected to the one-dimensional motion in the potential V (a). We remark that
due to the character of fluctuations of ϕ, physical configurations will correspond to initial
conditions near the invariant plane.

Also, a straightforward analysis of the infinity of phase space shows the presence
of a pair of critical points in this region, one acting as an attractor (stable de Sitter
configuration) and the other as a repeller (unstable de Sitter configuration). The scale
factor approaches the de Sitter attractor as a(τ) ∼ (C0 − τ )−1 for τ → C0, where τ is the

conformal time (or as a(t) ∼ exp(t
√

Λ/3) for t → ∞, where t is the cosmic time).
It is worth noticing from figure 1 that the critical point P0, connected to the maximum

of the potential, is engendered by the positive cosmological constant. Combined with the
barrier generated by the quantum correction it allows for the presence of perpetually
bouncing universes in the invariant plane figure 1(b). If the cosmological constant
decreases to zero the domain of phase space available for these bouncing solutions
decreases, and in the limit Λ = 0 only solutions with one single bounce are possible. They
have an analogous behaviour with the integrable solutions shown in the phase portrait of
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Figure 1. (a) Plot of the potential V (a) for positive Λ and A. (b) The phase
portrait of the invariant plane with the critical points P0 and P1. The separatrices
S are asymptotic orbits to the saddle-centre P0.

figure 1(b) for E0 > EP0, where EP0 is the value of the energy constant for the saddle-
centre P0. The purpose of the present paper is to treat dynamical configurations with
initial conditions for which the universe undergoes a series of bounces before the universe
enters an inflationary regime. Indeed, these configurations represent a hypothetical
pre-inflationary phase where the influence of the terms arising from quantum gravity
corrections plays the fundamental role in preventing the initial singularity, and producing
a non-trivial dynamics before the exit to inflation. This exit to inflation occurs whenever
a given orbit asymptotically approaches the de Sitter configuration. The inflationary
phase is characterized by the de Sitter configuration driven by the cosmological constant
understood as the vacuum energy of the scalar field that is dominant during inflation. In
this scenario, the model envisaged describes a pre-inflationary phase for which the escape
to inflation is represented by the asymptotic approach to the de Sitter solution. For this
reason the vacuum energy Λ is actually what drives the universe to inflation whereas
the term m2φ2/2 describes the effect of small fluctuations of the inflaton field about its
vacuum state.

The constant of motion E0 corresponds to a bounded motion in the integrable
case m = 0, and to initially bounded motion in the non-integrable cases when stable
configurations may be disrupted by nonlinear resonance phenomena. Windows of
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resonance in the parameter space, labelled by the mass of the inflaton m and the
constant of motion E0, favour inflation since the resonances destroy the Kolmogorov–
Arnold–Moser (KAM) tori that trap the inflaton about the origin (ϕ = 0, pϕ = 0). The
nonlinear resonance of KAM tori produces complex dynamical phenomena, such as long-
time diffusion through Cantori, that will also be object of the present paper since they
favour inflation after a process of long-time diffusion.

We organize the paper as follows. In section 2 we make a numerical construction of
the resonance chart of the system to localize the windows of resonance, and develop an
analytical treatment that allows us to label the resonances with an integer n ≥ 2. The
action-angle variables introduced will be useful in the interpretation of numerical results
of the remaining sections. In sections 3 and 4 we examine dynamical patterns near odd
and even resonances, including the structure of bifurcated periodic orbits, characteristic
of the resonance, as well as the presence of Cantori and stochastic webs in phase space
through which a long-time diffusion of orbits takes place with final escape to the de Sitter
attractor at infinity. In section 5 the diffusion of orbits is examined, and comparison and
distinction of the dynamical behaviour of initial physical conditions for inflation is made,
whether the system is in a resonance window or in a parametric stability region. Finally
in section 6 we discuss how generic the resonance phenomena are in inflationary models
and their possible consequences for structure formation.

2. Analytical approach to the resonance chart of the system

Let us consider the dynamics in the energy surface E0 corresponding to bounded motion
in the integrable case m = 0, or to initially bounded motion in the non-integrable cases.
This phase-space region can indeed be characterized as a nonlinear neighbourhood of the
centre P1. The results of the present section rely heavily on the analytical treatment
leading to an accurate and useful form of the Hamiltonian in action-angle variables to be
introduced below.

We start from the integrable case m = 0 in which the motion is separable with the
separately conserved quantities Ea = p2

a/12 + V (a) and Eϕ = (p2
ϕ + ϕ2)/2, satisfying

E0 = −Eϕ + Ea. For Ea < V (P0) the periodic orbits of the sector (a, pa), associated with
Ea = const., are analytically expressed as

a2(τ) = a2
3 + (a2

2 − a2
3)sn

2

(√
3Λ(a2

1 − a2
3)

3
τ | µ

)
, (16)

where a3 < a2 < a1 are the three real positive roots of the function V (a) − Ea = 0, and
µ = (a2

2 − a2
3)/(a2

1 − a2
3) is the modulus of the Jacobian elliptic sine, with corresponding

frequency

νa =

√
3Λ(a2

1 − a2
3)

6K(µ)
, (17)

where K(µ) = (π/2)F (1
2
, 1

2
; 1; µ) is the complete elliptic integral of the first kind, with

F (1
2
, 1

2
, 1; µ) denoting the hypergeometric function [12]. The two tori of the integrable

case are the topological product of the above class of periodic orbits parametrized by Ea

with the periodic orbits of the harmonic oscillator parametrized by Eϕ with frequency
νϕ = 1/2π.
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For a small coupling parameter m the KAM theorem [13] establishes the stability
of tori with a sufficiently incommensurate frequency ratio, that in the present case
means sufficiently irrational νa.

5 Other integrable tori are destroyed by the non-integrable
perturbation, and the region between two remaining invariant tori presents an intricate
dynamics [14]. However, this dynamics is bounded by the two invariant tori with irrational
νa implying in a certain sense the stability of the dynamics. The importance of KAM tori
for Hamiltonian systems with two degrees of freedom comes from the fact that they prevent
the diffusion of trajectories in the whole phase space, and thus prevent, in our model, an
escape to inflation. However, when m increases, that is when the non-integrability of
the system increases, numerical experiments show that more and more invariant tori are
destroyed [15] and the breakup of KAM tori may lead to a loss of stability of the system.
An important mechanism for this breakup is the nonlinear resonance of tori.

For future reference, we note that the periodic orbits of the sector (a, pa), in the
integrable case, will be represented by the centre (elliptic fixed point) (ϕ = 0, pϕ = 0) in
the Poincaré map with surface of section pa = 0. For small m this picture is maintained
with (ϕ = 0, pϕ = 0) as a centre of a primary KAM island. Let us now examine what
happens to other regions of the parameter space (E0, m) of the system.

We start by expressing the dynamical equations derived from the Hamiltonian
constraint (12) as

ä + 1
6
[V ′(a) − m2aϕ2] = 0, (18)

ϕ̈ + (1 + m2a2)ϕ = 0. (19)

If now m is small and/or we start from an initial condition ϕ = ϕ0 also small
(for instance, near the invariant plane), we can neglect the term proportional to m in
equation (18) and the motion in the degree of freedom ϕ is approximately described by
the Lamé equation

ϕ̈ +

[
1 + m2

(
a2

3 + (a2
2 − a2

3)sn
2

(
1
3

√
3Λ(a2

1 − a2
3)τ | µ

))]
ϕ = 0. (20)

Parametric resonance occurs when the ratio

R =
νa

ν̃ϕ
, (21)

is a rational number, where νa is given in (17) and6

ν̃ϕ =
1

2π

√
1 +

m2

2

[
a2

2 + a2
3 +

µ2

4
(a2

1 − a2
3)

]
. (22)

Under this condition ϕ begins to grow exponentially in time and to act on the dynamics of
the scale factor a, which in turn will modify equation (20). This feedback will restructure
the resonance, either (i) leading the dynamics into a more unstable behaviour, with

5 By sufficiently irrational, we mean a number α that is badly approximated by any rational number n/m, namely,
it satisfies the inequality |α − n/m| ≥ c/m(2+ε) for positive constants c, ε (see [14]).
6 It is worth noting that, for values of m ≥ 14 and E0 ≤ 1.0, we can improve the approximation for the instability
zones of the exact dynamics by correcting ν̃ϕ in equation (22) to ν̃ϕ = (1/2π)

√
1 + (m2/2)(a2

2 + a2
3).
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amplification of the resonance mechanism and consequent breaking of the KAM tori and
escaping of the orbits; (ii) leading the orbits to a general chaotic motion in a bounded
region of phase space confined between two KAM tori; or (iii) when the parameters of the
model are in the neighbourhood of a resonance island, leading to diffusion through Cantori
and stochastic webs, with a final exit to inflation. These general nonlinear resonance
mechanisms can be given an approximate analytical treatment, through which we can fix
the dominant resonances in the system, namely, the rational numbers R in (21) which will
correspond to the dominant resonances. This treatment, made along the lines of [15], will
allow us to establish numerically domains of the parameter space and initial conditions
for the full Hamiltonian dynamics of (12), where nonlinear resonance occurs and is able
to enhance the escape of orbits into the inflationary regime.

Let us approximate the Hamiltonian (12) by substituting in the non-integrability
term m2a2ϕ2/2 the variable a by its solution (16), and afterwards introduce suitable
action-angle variables (Ja, Θa,Jϕ, Θϕ). The choice of variables was dictated by the
approximation considered, which represents a further step beyond the analysis of
parametric resonances in the linear regime of equation (20).

For the sector (a, pa) we define the canonical conjugate variables Ja and Θa by

Ja =

∮
pa da = 4

√
3

∫ a2

a3

√
Ea − V (a) da,

Θa = νaτ,

(23)

and in the sector (ϕ, pϕ) the variables Jϕ and Θϕ defined by the canonical transformations

ϕ =

√
Jϕ

2π2ν̃ϕ
sin(2πΘϕ),

pϕ =
√

2Jϕν̃ϕ cos(2πΘϕ).

(24)

In the above equations νa ≡ (∂Ea/∂Ja) (see equation (17)) and we define the angle
variable Θϕ = ν̃ϕτ such that both Θa and Θϕ vary in the interval [0, 1] during a complete
cycle of the original variables. We remark that in the numerical experiments considered in
the remainder of the paper we have Ea � E0 in the initial stage of the dynamics. However,
Ea is not conserved as the dynamics proceeds, the interaction term being responsible for
the exchange of energy with the sector Eϕ.

In the action-angle variables defined above the approximate Hamiltonian can be
conveniently expressed as

H = Ea(Ja) − Jϕν̃ϕ − m2Jϕ

4π2ν̃ϕ

(a2
2 − a2

3)

[
1 − cn(2u)

1 + dn(2u)
− 1

2

]
sin2(2πΘϕ), (25)

where the argument in the Jacobian elliptic functions is u ≡ 2K(µ)Θa. Taking into
account that µ < 1 and using the expansion of the elliptic functions in terms of circular
functions with argument v = πu/(2K(µ)), equation (25) results in yields

H = Ea(Ja) − Jϕν̃ϕ − m2Jϕ

[∑
n=1

Bn(µ) cos(2nπΘa)

]
cos(4πΘϕ), (26)
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where Bn(µ) are numerical coefficients depending on µ. As we will see in the numerical
experiments made with the exact dynamics, the approximate expression equation (26)
will be extremely efficient for localizing and classifying the resonances.

The parametric resonance condition for (21) obtained from the Lamé equation (20) is
contained in the more accurate Hamiltonian (26), from which the nature of the resonances
can now be qualitatively analysed. Indeed, from equation (26) we can obtain that in this
instance the dominant resonances are the ones for which the ratio R = νa/ν̃ϕ = 2/n,
where n is an integer, n ≥ 2. These numbers will fix the values of m and/or of E0 of the
parameter space, in the neighbourhood of which a resonance occurs. To see this let us
integrate Hamilton’s equations derived from (26) for a given term n of the series. To a

first approximation we may take Jϕ = J
(0)
ϕ = const in the last term of the right-hand side

of (26), and equal to its value in the integrable case. We then obtain

Ja �
∑

n

m2Kn(µ)

2πnν̃ϕ

[
cos(2πnΘa − 4πΘϕ)

R − 2/n
+

cos(2πnΘa + 4πΘϕ)

R + 2/n

]
, (27)

with Θa = νaτ . In this expression the dominant terms will be the ones for which R � 2/n,
characterizing the resonances. Near a resonance n, equation (27) is then approximated

Ja � m2Kn(µ)

2πnν̃ϕ

[
cos(2πnΘa − 4πΘϕ)

R − 2/n

]
,

Θa = νaτ ;

(28)

in the same approximation,

Jϕ � m2K̃n(µ)

2πnν̃ϕ

[
cos(2πnΘa − 4πΘϕ)

R − 2/n

]
,

Θϕ � ν̃ϕτ.

(29)

The expression

R =
νa

ν̃ϕ
=

2

n
, n ≥ 2, (30)

will determine a curve in the parameter space (E0, m) where the dynamics is n-resonant.
For values of E0 compatible with initially bounded orbits, the condition n ≥ 2, is such
that the mass m be real.

We are now ready to construct the resonance chart for this model. The
expression (30)—where approximations as well as the neglect of non-resonant terms were
used—furnish us with lines in the parameter space which constitute an accurate guide
for localizing and labelling the actual resonances (see footnote 6). However, in the actual
resonant chart constructed numerically using the exact dynamics, the lines will have a
spread that is a correction of the approximations due to the full dynamics. Figure 1 is an
illustration of the resonant chart for values of Λ = 3/2 and Q0 = 0.01. These values will be
adopted in all the numerical experiments in the paper. The chart of figure 1 corresponds
to initial conditions taken near the invariant plane, with pa = pϕ = 0, ϕ = 0.01. The
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Figure 2. Resonance chart of system (12). The continuous lines are solutions
of the approximate resonance condition (30) for n ≥ 2, while the dark sheets
spreading about the lines are regions of disruptive resonances of the exact
dynamics (see text).

continuous lines depict the equation R = νa/ν̃ϕ = 2/n, n ≥ 2, while the small sheets
spreading about the continuous lines are regions of disruptive resonance of the exact
dynamics. In constructing the chart we adopted the value τ � 2000 as an upper limit
for testing the instability of the metastable configurations. The remaining regions of the
plane correspond to otherwise stable motion. Several numerical tests were made for other
initial conditions sufficiently near the invariant plane, and the resonance chart of figure 2
remains accurate to localize instability zones. However, for initial conditions far away
from the invariant plane the instability zones tend to spread, and even overlap for values
of m > 0. This will explain the chaotic sea and secondary islands in regions of the phase
space away from the invariant plane, in the maps of section 4 corresponding to m in the
zone of parametric stability.

In the remainder of the paper we will approach the problem through the numerical
examination of the structure of the full dynamics near a given resonance and between two
successive ones.

The basic pattern that emerges immediately after the system passes a resonance
window is a characteristic structure of stable periodic orbits, associated with the particular
resonance n. These periodic orbits are enclosed by KAM tori and the primary island of
KAM dynamics has a border beyond which the dynamics is stochastic filling of large
domains of phase space. This is the general picture, but some remarkable differences
appear whether the resonance is odd or even, namely n = odd or even, as we proceed to
discuss.
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3. Schematic analysis of the dynamical pattern near the resonances

We now examine the dynamical pattern associated with the resonances of the model,
supported not only by the analytical approximations of the previous section but by also
relying on numerical work. All the Poincaré maps discussed in this section and in the
remainder of the paper are one-directional; for instance, the map in the surface of section
ϕ = 0 is made using the standard constraint pϕ ≤ 0 on the surface.

Let us consider an even resonance n = 2k. The analytical expressions (28) give
us an approximation for (Ja, Θa) near the resonance. Since n = 2k we have for this
resonance that Tϕ = Ta/k. Let us note that the surface of section ϕ = 0 will be
crossed at each Tϕ. Therefore in the surface of section ϕ = 0 of the Poincaré map
the variables (a, pa)—that are one-to-one functions of (Ja, Θa)—will take the same value
after k crossings of the section. Thus equations (28) and (29) define a periodic orbit
with period approximately kTϕ which is characteristic of the particular resonance n = 2k.
Consequently in the corresponding Poincaré map the periodic orbit will be described by
k points. Note that expressions (28) are approximate and were obtained neglecting non-
resonant contributions; the full dynamics in a neighbourhood of the characteristic periodic
orbit due to these contributions will correspond therefore to n/2 primary KAM islands
about the stable periodic orbit in the Poincaré section.

Analogously we can obtain from expressions (29) the structure of the Poincaré maps
with a surface of section pa = 0 projected in the (ϕ, pϕ) plane. Indeed for a resonance
n we have that Ta = (n/2)Tϕ. Since the points of the Poincaré map for the surface of
section pa = 0 are taken at each period Ta it then follows that for even n the Poincaré map
will present one KAM island while for odd n the number of islands in the map is two. In
this sense the Poincaré maps with a surface of section ϕ = 0 render straightforwardly the
order of the resonance while the Poincaré maps with a surface of section pa = 0 inform
only if the resonance is even or odd. In the case of even resonances, the above periodic
orbit has a companion generated with initial conditions obtained from the previous one
by the change ϕ0 → −ϕ0. On the contrary, as we will see, odd resonances have only one
characteristic periodic orbit.

The resonances with integer n = odd have an analogous structure but are, in a certain
sense, simpler, having only one stable periodic orbit characteristic of the resonance.
The analysis of the characteristic periodic orbit connected to an odd resonance and
the associated number of primary islands can also be obtained from the approximated
analytical expressions (28) and (29). For an odd resonance n = 2k + 1 we have that
Tϕ = (2/2k + 1)Ta. Thus in the Poincaré surface of section ϕ = 0 (that is intersected
at each period Tϕ) the variables (a, pa)—which are one-to-one functions of (Ja, Θa)—will
take the same values only after (2k + 1)Tϕ, corresponding therefore to 2k + 1cuts in the
Poincaré section. Hence a n = (2k + 1) resonance will have an associated characteristic
periodic orbit of period (2k + 1)Tϕ, with (2k + 1) primary KAM islands about it. The
associated Poincaré map with surface of section pa = 0 presents two islands. It is not
difficult to verify numerically that the symmetry transformation of the initial condition
of the periodic orbit, ϕ0 → −ϕ0, reproduces the same orbit, contrary to the case of
n = even. In both cases the periodic orbits are obviously stable. In section 4 we analyse
the emergence of characteristic periodic orbits as due to the bifurcation of the stable
periodic orbit at the origin (ϕ = 0, pϕ = 0) set up by the resonance. The stable periodic
orbit at the origin turns unstable through the bifurcation.

Journal of Cosmology and Astroparticle Physics 02 (2006) 015 (stacks.iop.org/JCAP/2006/i=02/a=015) 12

http://stacks.iop.org/JCAP/2006/i=02/a=015


JC
A

P
02(2006)015

Nonlinear resonance of Kolmogorov–Arnold–Moser tori in bouncing universes

Table 1. Classification of resonances according to characteristic periodic orbits.

Primary Primary
Characteristic KAM islands, KAM islands,

Resonance periodic orbits section ϕ = 0 section pa = 0

n = 2k 2 k 1
n = 2k + 1 1 2k + 1 2

We summarize the above results in table 1:
In table 1, for even resonances n = 2k, the number k of primary KAM islands in

the surface of section ϕ = 0 refers to each periodic orbit. These results, derived from the
approximated analytical expressions (27)–(30), are illustrated in figure 3 constructed with
the exact dynamics. There we also exhibit islands of stability in the Poincaré maps with
surface of section ϕ = 0 and pa = 0, about periodic orbits of the resonance n = 2. We have
fixed E0 = 0.8, and taken the values m = 3.800 85 slightly beyond the right border (see
the chart of figure 2) of the instability zones of the resonance n = 2. The presence of the
blurred layer in the border of the islands will be the subject of section 5. The maps were
constructed with orbits having initial conditions pa = pϕ = 0, and ϕ ≥ 0 for n = 2; a more
complete extension will given in the next two sections. Main islands about the second
characteristic periodic orbit of the resonance would be obtained by the symmetry ϕ → −ϕ.

4. Parametric bifurcation of periodic orbits in the n resonances

As became clear in the previous section, for values of m far from the resonances, the
primary KAM island in the Poincaré map with a surface of section pa = 0 encloses the
centre (elliptic critical point) ϕ = 0, pϕ = 0 connected to a stable periodic orbit in the
sector (a, pa). However, as the system crosses a given n resonance, either even or odd,
this stable periodic orbit bifurcates into a unstable periodic orbit accompanied by two
(for even resonances) or one (for odd resonances) stable periodic orbits. Therefore in the
maps the centre at the origin turns into a saddle (hyperbolic critical point), with two
centres symmetrically located with respect to it. For even resonances each of the two
centres corresponds to one of the two characteristic periodic orbits of the resonance, while
for odd resonances the two centres (corresponding to an elliptic point of period 2Ta) are
the section of the single characteristic periodic orbit of the resonance.

The diagram (m, ϕ0) of the bifurcation route is given in figure 4 for the resonances
n = 2, 3 and 4. The value of E0 = 0.8 is fixed. ϕ0 denotes the critical points of the map
(together with pϕ = 0) associated with the periodic orbit. We distinguish three types of
regions in m. The shaded regions correspond to the range of m where the resonances are
disruptive, connected to the dark sheets of the resonance chart of figure 1. Immediately
to the left of the disruptive regions, the values of m are such that the origin ϕ = 0, pϕ = 0
(marked as white dots) is an elliptic point (stable periodic orbit) at the centre of the main
KAM island of the map. Continuing to the left, for decreasing values of m towards the
resonance n, we reach a third range of m where the elliptic point at the origin bifurcates.
The stable and unstable branches of the diagram in this region are shown by white and
black dots, respectively. This region is the parametric domain of the resonance n, bounded
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Figure 3. Poincaré maps with surface of section ϕ = 0 (top) and pa = 0 (bottom),
for the value m = 3.800 85 in the parametric region of resonance n = 2. The
maps show the main islands about the periodic orbit corresponding to the centre
(ϕ0 ≈ 0.18, pϕ0 = 0), and for times τ ≤ 4000.

on the left by the dark disruptive region of n. We remark that, for odd resonances, the
white dots related by ϕ0 → −ϕ0 in the parametric domain of the resonance are period-
two fixed points connected to the single periodic orbit of the resonance (see table 1 of
section 3). The crossing of a resonance n is meant to pass from the left (stability domain)
to the right (bifurcated domain) of the shaded area.
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Figure 4. Diagram (m,ϕ0) of parametric bifurcation of the periodic orbit at the
origin (ϕ = 0, pϕ = 0), between the resonances n = 2 and n = 4. The shaded
regions correspond to values of m connected to disruptive resonances for initial
condition values near the invariant plane (ϕ = 0, pϕ = 0). On their left is the
region of parametric stability for the periodic orbit. Further to the left, a value of
m is reached beyond which the periodic orbit at the origin bifurcates. The stable
and unstable branches are shown by white and black dots, respectively, marking
the parametric domain of the resonance.

We are now ready to compare the dynamical behaviour of the system in the parametric
domain of a n resonance as opposed to the behaviour in the region of parametric stability.
We will consider the value of m = 3.800 85 corresponding to the parametric domain of the
resonance n = 2 and m = 4.29 corresponding to the region of parameter stability between
the resonances n = 2 and n = 3. The latter value was fixed according to the diagram of
figure 4. Poincaré maps with a surface of section pa = 0 are used for comparison purposes,
since they have a close analogy with the standard map that was extensively studied in
connection with the existence of Cantori and diffusion of orbits in [16]7–[20] and will be
a guide to the discussion of the next section. In the map corresponding to m = 3.800 85,
shown in figure 5 (top), the two main islands are centred about (ϕ0 � ±0.18, pϕ0 = 0)
and the origin is a hyperbolic point. Beyond the border of the main islands, we note the
large region of phase space corresponding to long-time diffusion (before the orbits escape
to inflation). The stochastic sea beyond the fuzzy border of the main islands presents the
structure of a web through which diffusion takes place to large regions of phase space,
being due to the horseshoe [16] structure of the crossing of the separatrices connected
to the saddle at the origin. No islands are seen in this region. The characteristics of
diffusion mentioned so far and in the remainder of the section will be discussed in section 5.
This is opposed to the Poincaré map for m = 4.29 in the region of parametric stability,

7 For a clear and concise introduction to the standard map, including the occurrence of Cantori and transport
theory connected to them, and packages for numerical simulations, see Meiss’s pages:
http://amath.colorado.edu/faculty/jdm/index.html and
http://www.me.ucsb.edu/course pages/course pages f05/me201/reading.html.
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Figure 5. Poincaré maps with a surface of section pa = 0 for m = 3.800 85 in
the domain of parametric resonance n = 2 (top), and m = 4.29 in the domain
of parametric stability between the resonances n = 2 and n = 3 (bottom). The
origin in the first map (top) is a saddle with two associated centres, a consequence
of the bifurcation of the periodic orbit due to the resonance n = 2. The structure
of the stochastic sea differs in each case (see text). The maps were constructed
with τ = 4000.

Journal of Cosmology and Astroparticle Physics 02 (2006) 015 (stacks.iop.org/JCAP/2006/i=02/a=015) 16

http://stacks.iop.org/JCAP/2006/i=02/a=015


JC
A

P
02(2006)015

Nonlinear resonance of Kolmogorov–Arnold–Moser tori in bouncing universes

where the main island is centred about the origin and the stochastic sea beyond the
border of the main island contains several secondary islands. The diffusion of orbits (with
initial conditions beyond the border of the main island) in the stochastic sea towards
the de Sitter infinity is extremely rapid. The map is displayed in figure 5 (bottom),
where we have considered initial conditions pϕ = 0 = pa, with ϕ ≥ 0 only to avoid
overcluttering the figure. For instance, the sets of 5, 6, 11 and 16 secondary islands seen
in the stochastic sea enclose periodic orbits with R = νa/νϕ = 5/6, 6/7, 11/13, 16/19
(since the corresponding map with a surface of section ϕ = 0 presents 6, 7, 13 and 19
secondary islands, respectively). A further set of 5 and 11 secondary islands symmetrical
to the previous ones would show up if we had included in the generation of the map initial
conditions with ϕ ≤ 0.

The crucial point for the dynamics of inflation is the instability versus the stability
of the origin ϕ = 0, pϕ = 0. The differences in the two situations will have a bearing on
the dynamics of the spatially homogeneous expectation values ϕ(τ) of the inflaton field
related to the escape into inflation. Let us recall that the energy momentum tensor of
the inflaton may be split into a cosmological constant-type term (corresponding to the
vacuum energy of the inflaton field) plus the energy momentum tensor of the spatially
homogeneous expectation values of the inflaton field. In this instance the initial conditions
of the expectation values ϕ are assumed to be small, and are to be taken near the invariant
plane ϕ = 0, pϕ = 0, that corresponds to a neighbourhood of the critical point of the
map at the origin (ϕ = 0, pϕ = 0). Therefore the region of parametric stability of the
system will be unfavourable for the physics of inflation since the orbit (a configuration
of the early universe) will be trapped in a stable state between two KAM tori near
the centre of the main island. However, if the system is in the region of parametric
resonance, initial conditions near the invariant plane would undergo a long-time diffusion
through stochastic webs to large regions of phase space, and finally escape to the de Sitter
asymptotic configuration at infinity. Another difference lies in the fact that when the
system is in the region of parametric stability initial conditions for orbits that diffuse are
far from the invariant plane, and diffusion with escape to de Sitter infinity is extremely
rapid. The characteristics of diffusion mentioned so far will now be discussed.

A final remark is in order here. Since the definition of the domain of either parametric
resonance or parametric stability depends on (E0, m, ϕ0), where ϕ0 is associated with the
initial condition of the inflaton, resonance phenomena may also be present for values of
m < 1 and ϕ0 > 1. For instance, in the parametric domain about E0 = 0.8, m = 0.22
and initial condition ϕ = 1.16 (pa = 0 = pϕ as always) a resonance n = 2 is present
(equivalently R = 1), corresponding to one secondary island in the surface of section
pϕ = 0 and one associated secondary island in the surface of section pa = 0. The dynamics
of this resonant domain is localized in the stochastic sea about a primary island enclosing
the origin (ϕ = 0, pϕ = 0), in a configuration analogous to figure 5 (bottom). A more
detailed analysis of these resonances for initial configurations away from the invariant
plane and m < 1 will be the subject of future work.

5. Diffusion and Cantori

Let us consider the case of resonance n = 2. In the island of stability of figure 3 (top)
for the surface of section ϕ = 0, the orbits are either on a KAM torus or contained
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Figure 6. Poincaré maps for one orbit with initial conditions in the border of
the main island of the resonance n = 2. (a) Map of the orbit up to τ � 4540
(corresponding to 1245 iterations in the map (a, pa)). (b) Beyond 1245 iterations
the orbit is seen to undergo a diffusion escaping from the neighbourhood of the
original section and enclosing the island about the second characteristic periodic
orbit of the resonance. This is evidence of the presence of a Cantorus in the
border of the main islands. (c) For later times, τ � 7440 (or 1520 iterations of
the map), the orbit undergoes complete diffusion (see also figure 7).

between two sufficiently close KAM tori. As we explore more extended regions of phase
space far from the periodic orbit we reach the border of the island which appears in the
figure as an ill-defined thin dark layer. We still maintain the value of m = 3.800 85 in
the same energy surface E0 = 0.8 but now we evolve an orbit with the initial condition
(pϕ = pa = 0, ϕ = 0.010 010 001, a = 0.114 640 667 0921 826) taken in the border of the
main island. The motion of the orbit is displayed in figures 6, through the Poincaré map
with a surface of section ϕ = 0 for several distinct times. Figure 6(a) shows the map of
the orbit up to τ = 4540, corresponding to 1245 iterations in the map with a surface of
section ϕ = 0. It is seen to enclose the main island of figure 2(a), meaning that up to this
time the motion of the orbit takes place in a narrow finite portion of phase space (one lobe
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in the border of the main island). Beyond 1245 iterations we see from figure 6(b) that the
orbit undergoes a diffusion escaping from the neighbourhood of the original section and
enclosing the island about the second characteristic periodic orbit of the resonance. This
is evidence that this orbit was initially enclosed between a KAM torus and a Cantorus,
or between two Cantori, in the lobe and that after 1245 iterations it encountered a hole
(gap) in the external Cantorus and escaped to a larger region of phase space. Finally in
figure 6(c) for times τ > 7440 (equivalently, after 1520 iterations), the orbit undergoes
complete diffusion. This orbit is one of the stochastic seas in the map of figure 5 (top).

The presence of Cantori in the border between stability islands and the stochastic
sea, and their dynamics, has been widely discussed in the literature mainly for the case of
the standard map (see [16]–[20], footnote 7 and the two paragraphs below). The Poincaré
maps of our system with a surface of section pa = 0 given in the variables (ϕ, pϕ) have a
close analogy with the standard map (especially those in the parametric stability region,
see figure 5 (bottom)) so that the results of the above references can indeed be used here
as a basic analysis of the dynamical phenomena that occur with orbits in the border,
and their diffusion. For the benefit of readers we introduce briefly some basic notions
related to Cantori and give relevant references that we consider allow for a more complete
understanding of the subject.

Cantori are basically the remnants of KAM tori that are destroyed if either the
nonlinear perturbation is increased or the control parameters of the system, namely
(E0, m) in our system, are suitably varied. As a matter of fact, as the parameters
are varied, Cantori can be created or destroyed or change their structure. The surface
of section of a Cantorus is an invariant Cantor set of points under the dynamics, and
corresponds to a quasi-periodic orbit that has the rotation number of the KAM torus
destroyed. The image of a Cantorus may be that of a torus full of holes [16]. Cantori may
allow a small flux of orbits through them and a theory of diffusion in Hamiltonian systems
connected to the presence of Cantori has been the subject of much recent interest [17].
Cantori are usually located at the border between main islands, or between chains of
secondary islands and the stochastic sea of the dynamics. Their existence was proposed
by Percival and Aubry [18], who gave an explicit example connected to the dynamics of
the standard map. A general proof of their existence was given by Aubry and Le Daeron,
Mather and Katok [19].

Orbits initially in a region bounded by two KAM tori cannot cross the bounding
KAM tori into the other regions of phase space. By increasing the nonlinearity parameter,
bounding KAM tori break and turn into a Cantorus making it possible for chaotic orbits to
diffuse into the large stochastic sea through the holes in the Cantorus. Cantori constitute
partial barriers to the diffusion of orbits in the stochastic sea and the motion may be
trapped for a long time between two Cantori before leakage through their gaps [17]. In
the numerical analysis of a system’s diffusion within a stochastic region, the Cantori
manifest themselves as follows. First the random motion takes place in a narrow finite
portion of phase space (motion is caught in a certain layer, between a KAM torus and
a Cantorus or between two Cantori). Further, the trajectory breaks through an invisible
Cantorus quickly filling a far greater portion of phase space. Now the motion is limited
by another Cantorus and continues until a next breakthrough occurs, and the numerical
figures depict only the most conspicuous breakthroughs among them. For instance, in the
case of large K in the standard map, the Cantori are very ‘porous’ and the effective length
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of the barriers becomes extremely small [20]. We may note that Cantori are present not
only in the border of primary islands but also in those of of higher-order secondary islands.
For instance in the map of figure 5 (bottom) we can note that the 6/7 secondary islands
are detached from the main island, and we can verify numerically that orbits with initial
conditions in its border will diffuse around them for a very long period, in a behaviour
analogous to that of figure 6, before entering the chaotic sea when it escapes to de Sitter
rapidly. Furthermore through numerical experiments we have evidence of the presence of
Cantori enclosing the 5/6, 6/7, 11/13 and 16/19 islands. Escape from this region takes
place after at least 105 iterations.

However, the diffusion when the system is in the zone of parametric resonance has
some striking differences from the previous case. Due to the bifurcation of the centre
at the origin into a saddle (see figure 5 (top)) and due to the non-integrability, the
stochastic sea beyond the smeared out border of the main islands presents the structure
of a web through which diffusion takes place to large regions of phase space. The origin
of the stochastic web is due to the horseshoe structure originating from the breaking and
infinitely many crossings of the separatrices emerging from the saddle at the origin [16].
No islands are seen in this region. This will indeed be the typical pattern of the dynamics
of spatially homogeneous averaged fluctuations of the inflaton as the system evolves to
an inflationary phase. On the contrary, as already discussed, in the parametric stability
region these fluctuations are trapped between KAM tori and the system is unable to enter
the inflationary phase. In both cases we note that whenever the orbit diffuses into the
stochastic sea its motion is random and it always escapes to the de Sitter infinity.

In figure 7 we display the web pattern formed in the map corresponding to the orbit
of figure 6, for a very long time and enlarged about the saddle at the origin, due to the
resonance n = 2. This long-time process of diffusion ends up in the escape of the orbit to
the de Sitter infinity (escape to inflation).

The diffusion in the case of odd resonances is basically analogous, with the distinction
that the three lobes are already formed before the diffusion of orbits through a Cantorus
takes place. This is connected to the fact that odd resonances have only one characteristic
periodic orbit.

A careful observation of the time development of the Poincaré section for the surface
of section ϕ = 0 projected in (a, pa) shows that it develops as if, in later stages, the
orbit had three basic attracting neighbourhoods, the first two developed about the two
symmetric characteristic periodic orbits of the resonance (corresponding to the symmetry
ϕ → −ϕ) and the third one connected to the remnant tori of the stability region in the
parameter space. The diffusion from one attracting neighbourhood to another is made
through the stochastic web connected to the separatrices of the saddle point at the origin.
For the regime of fully established diffusion, an examination of the function ϕ(τ) shows
that the time duration in which the orbit remains in one of the attracting neighbourhoods,
as well as the next one to be attained, is completely random. The analysis of the time
signal ϕ(τ) will be the object of future work, the motivation of which for the physics of
inflation is discussed in the conclusions.

6. Final discussions and conclusions

In this paper we have examined the dynamics of positively curved inflationary models
in which quantum gravity corrections to General Relativity are considered, leading to
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Figure 7. The stochastic web pattern formed in the map with a surface of section
pa = 0 for the orbit of figure 6, and enlarged about the saddle at the origin. The
map was computed for a very long time, until the escape of the orbit to the de
Sitter infinity.

the presence of non-singular bounces in the scale factor of the models. The form of
these corrections is derived from brane-world models and result in a repulsive force that
avoids the singularity and provides a concrete model for bounces in the early phase of the
universe. These effects will be dominant in regions of high curvature and create metastable
configurations for the universe, corresponding to dynamical orbits confined between KAM
tori or between a KAM torus and a Cantorus. The dynamics is non-integrable and chaotic
if the mass of the inflaton m �= 0.

For certain windows of the parameter space (E0, m) of the model nonlinear resonance
of KAM tori is set up, with a complex dynamics that involves the diffusion of orbits
through Cantori into a stochastic sea. Each resonance is characterized by an integer
n ≥ 2 and its main feature is the bifurcation of the stable periodic orbit at the
origin (ϕ = 0, pϕ = 0) into an unstable periodic orbit accompanied by one or two
characteristic stable periodic orbits depending on whether n is odd or even, respectively.
This characterizes the parametric domain of the n resonance (see figure 4). Since the initial
conditions of the expectation values ϕ are assumed to be small and are then taken near the
invariant plane ϕ = 0, pϕ = 0, it follows that the parametric domain of resonance is the
one that strongly favours inflation in the system. Actually at this domain of parameters
initial conditions near the invariant plane belong to a neighbourhood of the saddle at
the origin (ϕ = 0, pϕ = 0) of the map with a surface of section pa = 0 (see figure 5
(top)) and the associated orbits have a long-time diffusion into the large stochastic sea.
Diffusion ends up with the escape of the orbits to the de Sitter infinity, corresponding to
the universe entering the inflationary phase. On the contrary, in the region of parametric
stability the orbits will be trapped in a stable state between two KAM tori near the centre
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at the origin (ϕ = 0, pϕ = 0) (see figure 5 (bottom)) and inflation is not favoured; initial
conditions that diffuse in this case are far from the invariant plane, and the diffusion is
extremely rapid.

The above phenomena are generic for closed inflationary models, as long as bounces
are included in the theory. In fact, the minimal ingredients in the inflationary
paradigm [21] are a FRW geometry plus a scalar field, the inflaton field, together with well-
formulated ideas of modern quantum field theory. The basic idea of inflation is that the
vacuum energy of the inflaton field was the dominant component of the energy density
of the universe in an early epoch of its evolution. The dynamics, ruled by Einstein’s
equations, has thus a cosmological constant-type term (connected to the vacuum energy
of the inflaton field) and the two degrees of freedom a(τ) and ϕ(τ), respectively the scale
factor and the spatially homogeneous expectation value of the inflaton field. In general
the resulting potential for ϕ always has a minimum, thus providing the condition for
nonlinear resonance.

In the domain of parametric resonance, the time period in which a diffused orbit
remains in the neighbourhood of one of the lobes about main islands is completely random.
The passage from one lobe to another is made through the stochastic web set up in the
dynamics by the resonance. This phenomenon is in the realm of a diffusion-transport
theory in Hamiltonian systems connected to the presence of partial barriers to the diffusion
of orbits into the stochastic sea, created by Cantori, and has been the object of much
recent research [17]. A signature of this randomness may be obtained if we make a
frequency analysis of the time signal of one of the variables, let us say ϕ(τ), associated
with a long-time diffusion orbit (see for instance figure 6) before escaping into inflation.
In the frequency spectrum we can verify the presence of a group of very low frequencies
above a broad background. If by a filtering procedure we reconstruct the time signal
with just this group of low frequencies, it results in large-scale intermittency; analogously
a group of higher frequencies above the background is present and the reconstruction
of the time signal with just these frequencies yields intermittency at smaller scales.
This is characteristic of a turbulent regime that might lead to thermal fluctuations and
could provide an alternative mechanism for the origin of cosmic structure, as has been
recently suggested [22]. On the other hand, some dominant frequencies are present in
the spectrum, multiples of the frequencies of the characteristic periodic orbits of the
resonance. Enhancement of perturbations with wavenumbers corresponding to these
dominant characteristic frequencies is also expected. We will come to these issues in
a future publication.

Finally, if the above processes actually occurred in the early dynamics of the universe,
the spectrum of perturbations should then have a signature of the particular resonance
and consequently of the particular value of the mass parameter of the inflaton that was
favoured in the early dynamical regime of the universe.
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