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Abstract. Initial Value Representations are constructed to avoid the search for

trajectories that are only defined in semiclassical approximations by their boundary

conditions. We show how to incorporate these procedures within the full Weyl

representation, so that quantum expectation values are given by phase space integrals

over the evolving Wigner function. Spurious semiclassical singularities at caustics are

cancelled, even though there is no increase in the number of trajectories, as compared

to usual semiclassical formulae. The whole construction remains exact in the case

of quadratic Hamiltonians. The evolution of (density) operators depends on either a

forward and back trajectory, given by an initial value, or else on a pair of trajectories,

propagating backwards from their final value. The latter option reduces numerical

errors in the computation of trajectories. The general scheme also leads to analogous

algorithms for evolving the quantum fidelity, which can be approximated perturbatively

with a single trajectory, reducing to the ‘dephasing representation’ for small times.

The theory is developed within a generalized ‘Maslov method’, based on semiclassical

Fourier transforms, in order to avoid singularities in the limit of small times.
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1. Introduction

The marked distinction between the structures of classical and quantum mechanics

accounts for the difficulties in the practical implementation of semiclassical (SC)

approximations. The uncertainty principle obstructs the natural specification of relevant

classical trajectories by their initial values, so that the orbits in SC propagators need

to be specified variationally by boundary conditions at both ends. Unlike the unique

trajectory emmanating from an initial value, there may be multiple variational solutions

that coalesce along caustics. This is sometimes refered to as the root search problem.

The caustics themselves may have complex configurations where amplitudes

are indeed high, but not singular as in the simpler SC formulae, which must be

substituted by elaborate uniform approximations, depending on the different types of

local catastrophe [1]. The fact that a caustic may always be obtained as the projection

of a manifold in a higher space, left open the possibility that they could be avoided if

the framework of SC approximations were entirely cast in phase space itself, instead of

relying on the position representation. However, it turned out that the Wigner function

[2, 3], its Fourier transform (the chord function or the quantum characteristic function)

and the Weyl representation of the evolution operator are all bedevilled by caustics in

their own right [4, 5, 6, 7]. Furthermore, the higher dimensionality of the space generates

the need to accomodate higher generic singularities within the theory.

The hazard in dealing with such rich structures justifies to some extent the

continued use of simulations, that rely on purely classical molecular dynamics, for

a variety of physical processes within the quantum realm. The more satisfactory

alternative is to employ the traditional SC approximations within integrals and then

to juggle for a change of variables, from a final boundary condition to an initial value.

Remarkably, there are contexts where the Jacobian of this transformation exactly cancels

off the spurious SC singularities, thus avoiding the need for sophisticated uniform

approximations along caustics. Such Initial Value Representations (IVR) were initially

introduced by Miller [8, 9] for the standard Van Vleck propagator in the position

representation [10, 11]. The alternative IVR for the coherent state propagator, proposed

by Herman-Kluk and Kay [12, 13], is even more used in simulations. However, it is

obtained from the Van Vleck propagator by smoothing [14] and it not quite satisfactory

from a theoretical point of view [15].

Can one implement the IVR program for the Wigner function? After all, it allows

one to calculate quantum expectation values as if with a probability distribution in phase

space and it is a part of the full Weyl-Wigner representation of quantum mechanics,

for which semiclassical approximations are available, as reviewed in [7]. Even so, the

same difficulties with root searches for trajectories, as well as caustics, also arise in

SC approximations for this phase space representation. Recently, an IVR has been

introduced by Vanicek [18] for the evolution of the fidelity (or quantum Loschmidt

echo) in terms of the Wigner function. It was shown in [25] that this corresponds to a

first order classical perturbation within a standard SC formula involving an integral over
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the Weyl propagator. However, this extra approximation, has not hampered efficient

and successful applications [20, 21, 22, 23, 24, 26], just as is the case of the Herman-

Kluk propagator. Otherwise, the Weyl representation seems to be invoked only for

approximations in which a linearization of the evolution in the neighbourhood of a

classical trajectory may be in order, so that the exact propagation of Wigner functions

for quadratic Hamiltonians can be invoked [9, 29].

Our objective here is to show how the IVR program fits perfectly within the general

framework of the Weyl representation, if one includes both the Wigner function and the

Weyl propagator, defined in terms of a basis of reflection operators and their Fourier

transforms, with their basis of translation operators [16, 17, 7]. As a first illustration,

we derive IVR’s for the Fourier integrals of the propagators themselves, thus avoiding

caustics that are also present in this representation. However, it is in the combination of

the propagators with the density operator, or observables, that the distinct advantage

of the Weyl representation manifests itself. Indeed, disposing of a basis composed of

operators within the same family as the unitary operators that are responsible for the

evolution, one can combine a product of operators so as to form a (basis dependent)

compound unitary operator within a single IVR. There is no extra smoothing, so that

the formulae remain exact in the case of linear classical evolution that is generated by

quadratic Hamiltonians.

The task of deriving suitable integrals for the full evolution of density operators,

or for the observables, is nontrivial. The direct semiclassical approximation in [31]

demands a root search and it cannot be applied either in the neighbourhood of caustics,

nor for coherent states, unless complex trajectories are allowed. Pure states of any

kind can be transported by Wigner function propagators, whose semiclassical form

has been presented by Dittrich et al [32]. However, it is then this propagator itself

that has trajectories defined indirectly by boundary conditions and the region near the

dominant classical trajectory is invariably marred by a caustic. The alternative of mixed

propagators taking the Wigner function into its Fourier transform [33], or viceversa, does

circumvent this vicious caustic, but parallel numerical work to this paper reveals that

caustics still hover around and constitute a problem.

Therefore a new IVR integral that evolves a Wigner function or chord function,

without caustics, or root search, while avoiding any extra integration steps, is most

welcome. It turns out that one needs no recourse to the IVR formulae for the propagators

themselves. Again, it is the interplay between the usual Weyl representation and its

Fourier transform that leads to the simplest semiclassical algorithm, as in [33]. One can

opt between two alternatives. One is to define a pair of final values, and thus a pair

of trajectories travelling back for a time t, in effect an FVR. The other possibility is to

take an initial value, travel forwards for a time t, then travel backwards along a related

trajectory. The disadvantage of this option is that numerical errors in the integration

of the trajectory then build up exponentially for a time 2t.

Both these methods can be immediately adapted to provide a full IVR or FVR

for an evolving quantum fidelity. Furthermore, in all cases we obtain exact results if
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the driving Hamiltonian is quadratic. Evolved density operators can then be inserted

in classical-like expressions for expectation values. In the examples cited in [29] this

further step merely limits the range of values for which the evolving Wigner function

(or chord function) needs to be calculated.

The following section is devoted to the review of both the Weyl and chord

representations from the perspective of reflection and translation operators. Then the

discussion of the semiclassical form of the evolution operators and their new IVR is

presented in section 3. There follows the theory for either the IVR or the FVR that

describe the evolution of the density (or other arbitrary) operators in section 4. In

the case of the quantum fidelity, treated in section 5, we also present a comparison of

the result of our exact IVR with the dephasing approximation for oscilators of variable

frequency. The discussion of the full form of expectation values is then presented in

section 6.

2. Review

Let us recall that R2N stands for a (2N)-dimensional classical phase space, {x = (p,q)}
with its skew product,

x ∧ x
′ =

N∑

l=1

(plq
′
l − qlp

′
l) = J x · x′, (2.1)

which also defines the skew symplectic matrix J. We shall here use a distinct notation for

the centre of a pair of points, x = (x++x
−)/2, whereas the chords, ξ = (ξp, ξq) = x

+−x
−,

are the conjugate variables to the centres x and correspond to tangent vectors in phase

space, as in the scheme for a Legendre transform. Each of these chords lables a uniform

translation of phase space points x0 ∈ R2N by the vector ξ ∈ R2N, that is: x0 7→ x0+ξ.

Likewise, each centre, x, labels a reflection of phase space R2N through the point x,

that is x0 7→ 2x− x0.

Corresponding to the classical translations, one defines translation operators,

T̂ξ = exp
{
i

ℏ
ξ ∧ x̂

}
, (2.2)

also known as displacement operators, or Heisenberg operators. The chord

representation of an operator Â on the Hilbert space L2(RN) is defined via the

decomposition of Â as a linear (continuous) superposition of translation operators. In

this way,

Â =
1

(2πℏ)N

∫
dξ Ã(ξ) T̂ξ (2.3)

and the expansion coefficient, a function on R2N, is the chord symbol of the operator Â:

Ã(ξ) = tr
[
T̂
−ξ Â

]
. (2.4)

The Fourier transform of the translation operators defines the reflection operators,

2N R̂x =
1

(2πℏ)N

∫
dξ exp

{
i

ℏ
x ∧ ξ

}
T̂ξ, (2.5)
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such that each of these corresponds classically to a reflection of phase spaceR2N through

the point x. The same operator Â can then be decomposed into a linear superposition

of reflection operators

Â = 2N
∫ dx

(2πℏ)N
A(x) R̂x, (2.6)

thus defining the centre symbol or Weyl symbol of operator Â,

A(x) = 2Ntr
[
R̂x Â

]
(2.7)

It follows that the centre and chord symbols are always related by a Fourier transform:

Ã(ξ) =
1

(2πℏ)N

∫
dx exp

{
i

ℏ
x ∧ ξ

}
A(x) , (2.8)

A(x) =
1

(2πℏ)N

∫
dξ exp

{
i

ℏ
ξ ∧ x

}
Ã(ξ). (2.9)

In particular, one obtains the reciprocal representations of the reflection operator and

the translation operator as

2N R̃x(ξ) = exp
{
i

ℏ
x ∧ ξ

}
or Tξ(x) = exp

{
− i

ℏ
x ∧ ξ

}
. (2.10)

These expressions are ideally suited for use in SC approximations. The direct

representations are

2N R̃x(x
′) = δ(x′ − x) or Tξ(ξ

′) = δ(ξ′ − ξ). (2.11)

In the case of the density operator, ρ̂, it is convenient to normalize its chord symbol,

so that we define the chord function as

χ(ξ) =
1

(2πℏ)N
tr
[
T̂
−ξ ρ̂

]
=

ρ̃(ξ)

(2πℏ)N
, (2.12)

whose Fourier transform is the Wigner function,

W (x) =
1

(2πℏ)N

∫
dξ exp

{
i

ℏ
(ξ ∧ x)

}
χ(ξ), (2.13)

or alternatively [17]

W (x) =
1

(πℏ)N
tr
[
R̂x ρ̂

]
. (2.14)

From the general expression for the trace of a product of operators,

tr (Â B̂) =
∫ dx

(2πℏ)N
A(x) B(x) =

∫ dξ

(2πℏ)N
Ã(ξ) B̃(−ξ) , (2.15)

one obtains the expectation values

〈Â〉 = tr (ρ̂ Â) =
∫
dx A(x) W (x) =

∫
dξ Ã(ξ) χ(−ξ). (2.16)

The normalization condition reads

1 = tr ρ̂ =
∫
dx W (x) = (2πℏ)Nχ(0) . (2.17)

The Weyl-Wigner representation and its Fourier transform have a long history.

References [3, 16, 17, 19] cover most aspects, with unavoidable variations in the notation

and interpretation. Our presentation is largely based on the review [7].
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3. Semiclassical Weyl propagators and their IVR

The Weyl propagator for the unitary operators, Û , that correspond classically to

symplectic transformations, x 7→ x
′ = Mx (i.e. M is a symplectic matrix) are [7]

U(x) =
2N

| det(I+M)|1/2 exp
[
i

ℏ
(S(x) + ℏπσ)

]
. (3.1)

This group of metaplectic unitary transformations includes all motions generated by

quadratic Hamiltonians. The action is then also a quadratic form, S(x) = xBx, where

the symmetric matrix B is one of the Cayley parametrisations of M:

M = [I+ JB]−1[I− JB] = [I− JB̃]−1[I+ JB̃]. (3.2)

The action specifies the canonical transformation indirectly through [7]

ξ = −J
∂S

∂x
, x

′ = x+
ξ

2
, x = x− ξ

2
. (3.3)

Within this restricted class of transformations, the amplitude in (3.1) is a constant,

with respect to x, but, for a continuous evolution in time, an eigenvalue of M (or a pair

of eigenvalues) may eventually equal −1. This is not a spurious singularity: At this

instant, the divergent form of (3.1) is substituted by a Dirac δ-function and, beyond it,

the integer (Maslov) index σ may change its parity (signifying a switch of metaplectic

sheet). The passage through caustics of metaplectic operators, in the context of the

position representation, are described by Littlejohn [34], but have only now been worked

out for the Weyl representation [35]. §
No such discontinuity occurs at this instant for the chord propagator,

Ũ(ξ) =
1

| det(I−M)|1/2 exp
[
i

ℏ
(S̃(ξ) + ℏπσ̃)

]
, (3.4)

for the same quantum evolution, Û , and, hence, the same classical symplectic matrix,

M. In this case, the classical chord action generates a canonical transformation through

[7]

x = J
∂S̃

∂ξ
, x

′ = x+
ξ

2
, x = x− ξ

2
(3.5)

and the quadratic form for the action becomes S̃(ξ) = (1/4)ξB̃ξ, where B̃ is the

alternative Cayley parametrisation for M in (3.2). For a continuous time evolution,

it is when M has a pair of unit eigenvalues that the index σ̃ changes parity, at which

point (3.4) is replaced by a δ-function.

Semiclassical approximations of the Weyl and chord propagators for general unitary

transformations [30, 7] have the same form as (3.1) and (3.4). However, the Weyl action,

S(x) and the chord action, S̃(ξ), are no longer quadratic; they are related by Legendre

transforms [7]. The geometry for a continuous trajectory, resulting from Hamiltonian

evolution, is illustrated in Fig. 1. The geometric part of the Weyl action, S(x), is just the

§ At least, in the case of a single degree of freedom, the result is that there is only a change of sign in

(3.1) if there is an exchange of elliptic to hyperbolic motion at the caustic, or vice versa.
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Figure 1. Sketch of the chord-centre variables in terms of the initial x and x
′ variables

for a continuous evolution.

symplectic area between the trajectory and the chord, ξ = x
′ − x, joining its endpoints.

From this, one subtracts −Et, where E is the energy of the trajectory. The symplectic

matrix M is now only defined locally by linearisation of the canonical transformation

that is specified implicitly by (3.3) or (3.5), so that, henceforth we write M(x) or M(ξ).

There may be multiple solutions to the variational problem that identifies trajectories

with a given centre, x, or a given chord, ξ, as shown in Fig. 2, so the actions may

have many branches and these branches meet along caustics where the semiclassical

amplitude diverges. On crossing a caustic the index σ(x) or σ̃(ξ) switches parity. ‖
The IVR alternative is to describe the propagator as an integral over trajectories.

Counterbalancing the vast increase in the number of trajectories to be computed, each

of these is determined directly by its initial value. In all the foregoing sections, one casts

the function to be calculated as the trace of a product of operators. Here these are just

the operator Û , itself, together with the chosen basis operator, R̂x or T̂
−ξ. Then, from

expressions (2.4), (2.7), (2.10) and (2.15), one obtains

U(x) = 2Ntr
[
R̂x Û

]
=
∫ dξ

(2πℏ)N
Ũ(ξ) exp

(
i

ℏ
x ∧ ξ

)
(3.6)

and

Ũ(ξ) = tr
[
T̂
−ξ Û

]
=
∫ dx

(2πℏ)N
U(x) exp

(
− i

ℏ
x ∧ ξ

)
. (3.7)

In this instance, one thus retrieves the expressions of U(x) in (2.8) and Ũ(ξ) in (2.9) as

reciprocal Fourier transforms.

Inserting the SC approximations, (3.1) or (3.4), for the integrand in a region without

caustics, one notices that the Jacobian for the change of integration variable to the initial

value is

det
dx

dx
= det

(
I+M

2

)
or det

dξ

dx
= det (I−M) . (3.8)

Hence, we obtain the IVR’s for the propagators:

U(x) =
∫ dx

(2πℏ)N

√
| det(I−M(x))| exp

[
i

ℏ
(S̃(ξ(x)) + x ∧ ξ(x) + σ̃(x)πℏ)

]
(3.9)

‖ Then U(x) or Ũ(ξ) become a sum of terms of the form (3.1) or (3.4).
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and

Ũ(ξ) =
∫ dx

(2πℏ)N

√
| det(I+M(x))| exp

[
i

ℏ
(S(x(x))− x(x) ∧ ξ + σ(x)πℏ)

]
. (3.10)

Here, the absence of a sum over contributing trajectories is no longer a slight of hand, as

in (3.1) and (3.4) for general evolutions. Indeed, the possible multiplicity of trajectories

that share a given centre (or a given chord) have different initial values, x, and each of

these is the source of an unique trajectory (see Fig. 2).

Figure 2. Multiplicity of trajectories for a given centre x or a chord ξ. In each case,

the trajectories have different initial values.

No smoothing has been introduced to obtain these IVR’s. By reversing the exact

change of variable, x 7→ x or ξ 7→ x, one performs the complex Gaussian integrals, in

the case of metaplectic transformations, thus retrieving the exact propagators (3.1) and

(3.4), for which the amplitude is constant. For general nonlinear transformations, nodal

surfaces of det(I±M) are no longer spurious singularities of the respective propagators,

but the integrand switches sign as the index, σ(x) or σ̃(x), changes parity.

4. Evolution of operators: final and initial values

We now implement the same procedure, that generated IVR’s for the propagators,

to describe directly the Weyl and chord representations of arbitrary operators, Â,

undergoing Heisenberg evolution:

Â(t) = Û(t)
†
Â Û(t). (4.1)

The important case of density operators, which undergo Liouville-Von Neumann

evolution, is special in that the time is reversed, that is their forward time evolution

will be denoted as

ρ̂(t) = Û(t) ρ̂ Û(t)
†
, (4.2)

so that the corresponding evolution of the Wigner function is

Wt(x
′) =

tr
[
ρ̂(t) R̂x′

]

(πℏ)N
=

tr
[
ρ̂ R̂x′(t)

]

(πℏ)N

=
∫ dx

(πℏ)N
W (x) Rx′(x, t) =

∫ dξ

(πℏ)N
χ(ξ) R̃x′(ξ, t). (4.3)
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Here one recognizes the direct centre-centre propagator of Wigner functions [32] as

Rx′(x, t), that is, the Weyl representation of the Heisenberg-evolved reflection operator,

whereas its chord representation, R̃x′(ξ, t), can be identified as the mixed chord-centre

propagator, introduced in [33]. The evolution of the chord function follows suit:

χt(ξ
′) =

tr
[
ρ̂(t) T̂ξ′

]

(2πℏ)N
=

tr
[
ρ̂ T̂ξ′(t))

]

(2πℏ)N

χt(ξ
′) =

∫ dx

(2πℏ)N
W (x) T

−ξ
′(x, t) =

∫ dξ

(2πℏ)N
χ(ξ) T̃ξ′(−ξ, t), (4.4)

so that the chord representation of the Heisenberg-evolved translation operator,

T̃ξ′(−ξ, t) is the direct chord-chord propagator, while T
−ξ

′(x, t) is the mixed centre-

chord propagator. ¶ Similar formulae describe the chord and centre representations

of Heisenberg-evolved operators, by merely reversing t 7→ −t. The mixed propagators,

related by [33] R̃x(ξ
′, t) = T

−ξ
′(x,−t), have the advantage over the direct propagators

that R̃x(ξ
′, 0) and Tξ(x

′, 0), as given by (2.10), are already in their standard semiclassical

form, whereas the corresponding direct representations (2.11) are not.

The crucial point is that the basis that has been adopted is composed entirely of

unitary operators, be they reflections or translations. Thus, the evolving operator, R̂x(t)

or T̂ξ(t), can be considered as a single unitary operator, corresponding classically to a

compound canonical transformation, in which a phase space reflection or translation

is sandwiched by a pair of trajectories of the Hamiltonian, so as to constitute a single

piecewise smooth trajectory. Let us first consider the component classical trajectories

entering the SC Weyl representation of Û(t) = T̂
−ξ

′(t), namely it is considered as an

instance of the general form (3.1), i.e. U(x, t) = T
−ξ

′(x, t). An initial point, x−, evolves

to x
−′
(x−, t); then it is translated, that is, x−′ 7→ (x−′ − ξ′ = x

+′
) and finally evolves

back to x
+(x+′

,−t). This full compound trajectory, shown in Fig. 3a, determines the

Figure 3. Semiclassical phase space structure of the evolved translation and reflection

operators: a) is for T
−ξ′(x, t) and b) Rx

′(ξ, t).

phase and amplitude of the semiclassical approximation (3.1), evaluated at the point

x = (x−+x
+)/2. Indeed, the intermediate step is just a translation, which does not alter

¶ Both mixed propagators were defined in [33] in terms of appropriate Lagrangian double phase space

surfaces evolving forwards in time, whereas here they arise from the backward motion of the surfaces

corresponding to the final centre, x′, or the final chord ξ′.
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the neighbourhood of x−′ 7→ x
+′
, so that the symplectic matrix for the full evolution,

x
− 7→ x

+, is defined as

M
−ξ

′(x) = [M(x+)]−1 I M(x−), (4.5)

given that the pair of symplectic matrices,M(x±), account for the linearized motion near

the pair of trajectories that have centres x± = (x±+x
±′)/2. It is important to note that

the insertion of a translation between the pair of symplectic evolutions, corresponding

to M(x±), does not alter the parity, σ, for the full transformation, according to the

analysis in [35].

The action, S
−ξ

′(x), in (3.1) has an energy term and a geometric term, which is

the symplectic area of the curvilinear quadrangle in Fig. 3a. Thus, according to [7], the

action can be decomposed as

S
−ξ

′(x) = ∆4 + S(x−)− S(x+) + (E+ − E−) t, (4.6)

where S(x±) are the (centre) actions for both smooth trajectory segments, E± are their

energies and the symplectic area of the straight-sided quadrilateral in Fig. 3a is

∆4 =
1

2
[x+ ∧ x

+′
+ x

− ∧ x
−′ − x

+′ ∧ x
−′ − x

+ ∧ x
−]. (4.7)

A similar compound trajectory determines the SC chord representation of R̂x′(t),

i.e. a special case of the general unitary operator (3.4). The difference is that here the

point x
−′
(x−, t) is then reflected through the given centre, x′, that is, x−′ 7→ (x+′

=

−x
−′

+ 2x′), before evolving back to x
+. This reflection simply reverses the sign of the

symplectic matrix, so that here the matrix in the amplitude of (3.4) is defined as

Mx′(ξ) = [M(x+)]−1 [−I] M(x−). (4.8)

The chord action is the Legendre transform of the centre action for any given trajectory,

so that, evaluating Sx′(x) just as in (4.6), we then have

S̃x′(ξ) = ξ ∧ x− Sx′(x) = x
+ ∧ x

− − Sx′

(
x
+ + x

−

2

)
. (4.9)

Notwithstanding the overall similarity for calculating S̃x′(ξ) and S
−ξ

′(x), there is

a subtlety concerning the overall phase, σ̃ for the chord propagator: The product of a

metaplectic transformation by a reflection changes its sign (i.e. σ̃ gains a phase π) if it

is elliptic, but does not if it is hyperbolic, according to [35]. In the hyperbolic case, the

transformation switches between straight hyperbolic and hyperbolic with inversion, but

there is no overall change of phase.

So far, we have determined the contribution of a specific compound trajectory

that will be relevant for some centre-argument of the Wigner function, or some chord-

argument of the chord function, to be discovered a posteriori, because it depends on the

chosen initial value. However, nothing prevents us from treating this unitary operator in

the same way as in the previous section, that is, one can change the integration variable

precisely to this initial value, x 7→ x−, in the first integral in (4.4), with the Jacobian:

det
dx

dx−
= det



I+M

−ξ
′(x)

2


 = det

(
I+ [M(x+)]−1M(x−)

2

)
. (4.10)
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Otherwise, one changes the integration variable, ξ 7→ x
−, in the second integral in (4.3),

with the Jacobian:

det
dξ

dx−
= det (I−Mx′(ξ)) = det

(
I+ [M(x+)]−1M(x−)

)
. (4.11)

Thus, the evolved Wigner function in (4.3) becomes

Wt(x
′) =

∫ dx−

(2πℏ)N

√
| det(I+ [M(x+)]−1M(x−))|

× exp
{
i

ℏ

[
S̃x′

(
−(x+ − x

−)
)
+ ℏσ̃π

]}
χ(x+ − x

−), (4.12)

while the evolving chord function becomes

χt(ξ
′) =

∫ dx−

(2πℏ)N

√
| det(I+ [M(x+)]−1M(x−))|

× exp

{
i

ℏ

[
S
−ξ

′

(
x
+ + x

−

2

)
+ ℏσπ

]}
W

(
x
+ + x

−

2

)
.(4.13)

Thus, one obtains the same amplitude of propagation for a given initial value for both

representations of the evolution.

In the general case where each compound trajectory can only be computed

numerically, the need of integrating it forward and then backwards in time can magnify

computational errors. There is then a considerable advantage in making an alternative

change of variable to the complementary variable of the representation employed. Thus,

in the case of the evolved Wigner function, where the final centre, x′, is given, we adopt

the final chord, ξ′, as the integrand. One then integrates both trajectories, starting at

x±
′ = x′± ξ′/2, backwards to x± = (x±

′,−t). The fact that the matrices M(x) all have

unit determinant then implies that the Jacobian,

det
dξ

dξ′
= det[M(x+) +M(x−)] = det[I−Mx′(x)], (4.14)

is again what is needed to cancel eventual caustics. Hence, the final value representation

(FVR) for the evolving Wigner function is

Wt(x
′) =

∫ dξ′

(2πℏ)N

√
| det[M(x+) +M(x−)]|

× exp
[
i

ℏ
[S̃x′(−(x+ − x

−)) + ℏσ̃π)]
]
χ(x+ − x

−). (4.15)

Likewise, for an evolved chord function evaluated at ξ′, one can adopt the

complementary centre, x′, as the new integration variable, so that again the trajectories

travel backwards from x±
′ = x′ ± ξ′/2. The Jacobian for the coordinate transformation

is then

det
dx

dx′
= det

(
M(x+) +M(x−)

2

)
= det



I+M

−ξ
′(x)

2


 , (4.16)

so that the FVR for the evolved chord function becomes

χt(ξ
′) =

∫ dx′

(2πℏ)N

√
| det[M(x+) +M(x−)]|
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× exp

[
i

ℏ
[S

−ξ
′

(
x
+ + x

−

2

)
+ ℏσπ)]

]
W

(
x
+ + x

−

2

)
. (4.17)

It is remarkable that both these IVR’s and FVR’s are derived directly, without

any recourse to the extra integration, which would arise from the intermediate use of

the IVR’s for the propagators themselves at each step, as presented in the previous

section. Just as in those simple examples, all singularities at caustics are replaced

by nodal lines (or nodal surfaces) along which the integrand switches sign. Again,

these IVR’s and FVR’s are exact changes of variable for exact expressions, in the

case of evolution generated by quadratic Hamiltonians: The evolution is simply the

classical Liouville evolution of the Wigner function or the chord function, which is

Fourier transformed (in the beginning or the end) because we are here using mixed

propagators. Equivalent IVR’s for the Heisenberg evolution of other sorts of operators

result in analogous equations, except for the exchange t 7→ −t.

5. IVR or FVR for the quantum fidelity

The evolution of the quantum fidelity may also be obtained from the trace of two

operators. First, we define the echo operator as the modification of the Heisenberg

evolution of the identity operator, by having different forward and back propagations

[25],

ÎL(t) = Û+(t)
†
Î Û−(t) = exp

(
i

ℏ
Ĥ+t

)
Î exp

(
− i

ℏ
Ĥ−t

)
, (5.1)

with the Weyl representation, IL(x, t), so that the echo is the intensity of

L(t) = tr
[
ρ̂ ÎL(t)

]
=
∫ dx

(πℏ)N
W (x)IL(x, t). (5.2)

Evidently, one deals with the same structure as in the previous section. Indeed, the

identity operator is a special (ξ = 0) translation operator, so that (5.2) is a particular

evolution of the chord function, albeit for a non-Heisenberg evolution. The difference

between the operators Û± is responsible for the identity operator evolving nontrivially,

rather than remaining invariant. The classical trajectory scheme coresponding to

IL(x, t), shown in Fig. 5, replaces the curvilinear rectangle of Fig. 3a by a triangle.

Furthermore, one must now distinguish the symplectic matrices, M±(x), for the

linearized motions near the trajectories generated by the pair of Hamiltonians H± that

are centred on a given x. According to [35], there will be no change of overall phase

beyond that contributed by the pair of factor operators if both are of the same type,

either both elliptic or both hyperbolic.

It follows that all the semiclassical ingredients can be defined in exact analogy to

the previous section, leading to the FVR

L(t) =
∫ dx′

(2πℏ)N

√
| det[M+(x+) +M−(x−)]|

× exp

{
i

ℏ

[
S0

(
x
+ + x

−

2

)
+ ℏσπ)

]}
W

(
x
+ + x

−

2

)
, (5.3)
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Figure 4. Phase space scheme for the fidelity. It is the same as in Fig. 3a, for the limit

of ξ → 0, i.e. when the translation operator tends to the identity operator. Notice

that the paths are driven by different Hamiltonians, i.e. the path departing from x
+

(x−) is driven by H+ (H−).

where x
±(x′,−t) are the ends of both the backward classical trajectories generated by

the pair of Hamiltonians, H±(x). The action S0(x) is given by (4.6) with ξ′ = 0. The

alternative is to start at the arbitrary point x
−, evolve forward along the trajectory

generated by H−(x), and then reverse the motion with H+(x), thus obtaining the IVR:

L(t) =
∫ dx−

(2πℏ)N

√
| det(I+ [M+(x+)]−1 M−(x−))|

× exp

{
i

ℏ

[
S0

(
x
+ + x

−

2

)
+ ℏσπ

]}
W

(
x
+ + x

−

2

)
. (5.4)

It is the approximate evaluation of S0(x) by classical perturbation theory that

leads to a simple IVR with a single trajectory, as obtained in [25]. The amplitude of

IL(x, t) will then be small if (H+−H−)t is small, so that, if this is neglected, one obtains

Vanicek’s dephasing representation (DR) [18]. Here, one need make no such assumptions

and, in the case of the FVR (5.3), the trajectories are calculated for the same time as in

the dephasing representation, so there is no growth of numerical errors due to doubling

the integration time, as in (5.4).

Even in the case of quadratic Hamiltonians, the evolution of the fidelity is not

trivial, because of the difference in the forward and back motions. In Fig. 5 we display

the fidelity amplitude for Ĥ± = 1

2
(p2 + k±q

2) , i.e. a pair of Harmonic Oscillators with

different frequencies and compare it with the DR, as well as the corrected DR developed

in [25]. We can observe that the Eq. (5.4) is essentially equal to the exact quantum

calculation, as expected.

The usual picture for fidelity decay has two components: the decay of classical

overlaps and the decay of dephasing [27, 18]. The DR approximation only takes in

account the dephasing part, thus it succesfully describes the quantum-mechanical decays

for complex systems but it fails in systems with recurrencies or revivals of the fidelity.

The more rigorous approach in [25], includes a short time correction for the amplitude,

which as shown in Fig. 5a) and b), compensates this decay, and furnishes more accurate

evaluation for fidelity at small times (see Fig 5b) and d)).
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Figure 5. Fidelity of a coherent state driven by a pair of Harmonic Oscillators with

frequencies 1 and
√
0.9. The center of the initial states is a) at the origin and c) at

(0, 1). Panels b) and d) are magnifications of a) and c) respectively. One observes that

the IVR (5.4) reproduces the exact quantum fidelity. The DR [18] and the version of

DR with a prefactor [25] are presented for comparison. Here ℏ = 1.

Summarizing this section, the formulae (5.3) and (5.4) evaluate the fidelity

amplitude with the simplicity of the DR-prefactor but with a higher accuracy. In the

present example, where both Hamiltonians are quadratic, the trajectories are known

analytically, so there is no increase of numerical effort with respect to the pertubation

approach in [25]. We remark that for higher dimensional systems the propagation of

the monodromy matrices can be considered a challenge, for which some strategies are

developed in the literature, see e.g. [28, 26].

6. IVR or FVR for evolving expectation values

Semiclassical evolution of expectation values for observables or general quantum

operators may also be evaluated by means of a direct IVR or FVR. All one needs

is to exchange variables in

〈Â〉(t) = tr (ρ̂(t) Â)

=
∫ dx

2πℏ
A(x) tr (ρ̂(t) R̂x) =

∫ dξ

2πℏ
Ã(ξ) tr (ρ̂(t) T̂

−ξ), (6.1)



Initial or final values for semiclassical evolutions in the Weyl-Wigner representation15

that is, there is just an extra integral on top of (4.3) or (4.4). This becomes specially

symmetric, in the case of the FVR:

〈Â〉(t) = 2N
∫ dx′dξ′

(2πℏ)2N

√
| det[M(x+) +M(x−)]|

× exp

[
i

ℏ
[S

−ξ
′

(
x
+ + x

−

2

)
+ ℏσπ]

]
Ã(ξ′)W

(
x
+ + x

−

2

)
(6.2)

or

〈Â〉(t) = 2N
∫ dx′dξ′

(2πℏ)2N

√
| det[M(x+) +M(x−)]|

exp
[
i

ℏ
[S̃x′(−(x+ − x

−)) + ℏσ̃π]
]
A(x)χ(x+ − x

−). (6.3)

One can immediately recognize that here the integrals are carried out over the full

double phase space variables, that is the final values for the returning trajectories, x±′
,

in which terms we have:

〈Â〉(t) = 2N
∫ dx+′

dx−′

(2πℏ)2N

√
| det[M(x+) +M(x−)]|

× exp

[
i

ℏ
[S

−ξ
′

(
x
+ + x

−

2

)
+ ℏσπ]

]
Ã(x+ − x

+)W

(
x
+ + x

−

2

)
(6.4)

or

〈Â〉(t) =2N
∫ dx+′

dx−′

(2πℏ)2N

√
| det[M(x+) +M(x−)]|

exp
[
i

ℏ
[S̃x′(−(x+ − x

−)) + ℏσ̃π]
]
A

(
x
+ + x

−

2

)
χ(x+ − x

−).(6.5)

Thus, in both cases, the endpoints of the pair of backward trajectories specify the chord,

for the chord representation of Â, or the centre, for the Weyl representation of ρ̂, or

vice versa. In any case, all trajectory integrations are carried out for a time t, rather

than 2t. We have here privileged the density operator, but similar formulae follow for

arbitrary tr(Â B̂(t)). +

The choice between the alternative FVR’s for evolving expectation values (6.4) or

(6.5) depends on the operators involved. It should be recalled that the chord function

is immediately obtained from the Wigner function, within a phase factor and a change

of scale, if the state has a centre of symmetry [41], which is the case of coherent states

and the eigenstates of the harmonic oscillator. Besides the obvious classical observables

that are suitably symmetrized polynomial functions of momenta and positions, choices

such as δ(p̂ − p0) or δ(q̂ − p0) may be physically relevant [29]. Evidently, the integrals

in (6.4) and (6.5) are greatly simplified in these instances.

+ Curiously, these are generally reffered to as correlations in the chemical literature, even though the

statistical sense only arises for the density operator, where they are just expectation values.
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7. Discussion

It is a formal possibility to work directly with a centre-centre propagator, i.e the

propagator for the Wigner function in (4.3), instead of the mixed centre-chord or chord-

centre formulae that we have presented. Besides the difficulty with the limits of small

time and quadratic Hamiltonians, one should notice that, though the region of the

direct trajectory is then no longer a caustic, because of the switch of variables, it has

instead a nodal line in the amplitude. Thus, even when it should work, there must

be some overall compensation for omiting that which should be the dominant classical

contribution, with very dangerous effects for numerical convergence for the IVR or the

FVR integrals. It may still be interesting to investigate whether sensible results can be

obtained in this direct approach, but, for the moment, we are confining to numerical

investigations for the Kerr Hamiltonian [36], within the theory developed here.

It is certainly illuminating to translate this entire theory into double phase space.

Following [37], this is the basis for the presentation of mixed propagators in [33].

The advantage is that pairs of trajectories become a single trajectory driven by an

appropriate double Hamiltonian. The SC theory for evolving unitary operators is

then reduced to ordinary WKB theory, i.e Van Vleck evolution in double phase space.

Nonetheless, the emphasis here has been on obtaining usable formulae with the least

theoretical investment and the interested reader should have no difficulty in adapting

the discussion in [33].

The doubling of phase space does become indispensible for the semiclassical

treatment of motion for open quantum systems [38, 39], because dissipation destroys

the decomposition of a double phase space trajectory into trajectory pairs in a single

phase space [40]. The possibility of extending the present theory for Markovian open

systems may turn the semiclassical approximations of open systems into a viable future

computational tool.
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