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Abstract

The dynamics of the approach to equilibrium of the hydrogen atom is investigated numerically through a Monte Carlo

procedure. We show that, before approaching ionization, the hydrogen atom may live in a quasi-equilibrium state,

characterized by aging, whose duration increases exponentially as the temperatures decreases. By analyzing the quasi-

equilibrium state, we compute averages of physical quantities for the hydrogen atom. We have introduced an analytic

approach that fits satisfactorily the numerical estimates for low temperatures. Although the present analysis is expected to

hold for energies typically up to 5% of the ionization energy, it works well for temperatures as high as 7000K.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Obtaining equilibrium properties for the hydrogen atom in free space, through standard Boltzmann–Gibbs
(BG) statistical mechanics, is troublesome, since the partition function diverges for any finite temperature.
This occurs mostly in systems of composite particles, which are characterized by upper bounds, preceded by a
quasi-continuum of energy levels, in their energy spectra. Each of the levels in the quasi-continuum yields a
small contribution for the partition function; the divergence arises since there are, in principle, an infinite
number of such levels. Essentially, this reflects the fact that composite particles always ionize at any finite
temperature. Due to these difficulties, such systems are never discussed in standard statistical-mechanics
textbooks (for an exception of this, see Ref. [1]).

However, the presence of long-living nonionized hydrogen atoms in galaxy peripheries and in intergalactic
media, at low temperatures, is undeniable. Certainly, their density must be very low in such a media, in order
to avoid combination (HþH! H2), and they should spend a long time in their nonionized state, before
reaching ionization. These long-living quasi-equilibrium states represent the main point we explore, on
theoretical grounds, in the present work.
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The specific heat of the hydrogen atom has been calculated recently [2] through the generalized statistical-
mechanics formalism [3–5] that emerged from Tsallis’s generalization of the BG entropy [6]. Within this
approach, the specific heat was computed for certain values of the entropic index qo1 (notice that q ¼ 1
corresponds to the standard BG formalism). Even within such a formalism, the hydrogen-atom specific heat
presents several anomalies, like divergences, cusps, and discontinuities in its derivative [2].

Herein, we choose a different approach for analyzing this problem, as described next.
(i)
 We investigate the dynamical behavior of the hydrogen atom by applying a standard Monte Carlo
method, in which the probability for jumping between states is based on the BG weight. For the sake of
simplicity, our numerical simulation is carried by ignoring the degeneracy of energy levels; as will become
clear later on, this simplification will not change qualitatively our results. As expected, for any finite
temperature, the simulation always carries the system towards ionization, after some time. However, it is
shown that the system may live in a quasi-equilibrium state, characterized by a slowly varying value of the
average energy, before approaching its maximum-energy state. The time that the system remains on such
a quasi-equilibrium state increases for lowering temperatures.
(ii)
 We propose a modified dynamics that prevents the system from reaching ionization and whose results
coincide, during some time (essentially when the system lies in its low-temperature quasi-equilibrium
state), with those of the standard dynamics. Therefore, for low temperatures, depending on time scale of
interest, the modified dynamics may reflect the correct dynamical behavior of the system. The advantage
of the modified dynamics is that its corresponding partition function, associated to the statistical weight
that generated it, is finite and may be calculated exactly.
(iii)
 Since the quasi-equilibrium state may present a long duration for low temperatures, herein we will
consider it as an effective equilibrium. Therefore, if the results obtained from the standard and modified
dynamics coincide within such a quasi-equilibrium state, one may use the later formalism in such a way to
compute thermodynamic properties.
(iv)
 We introduce a modified regularized partition function, by extracting the divergence of the BG partition
function, of the hydrogen atom, in either situations of nondegenerate and degenerate energy levels. In the
former case, we compare the corresponding internal energy and specific heat with the results obtained
from the numerical simulations. Moreover, we show that, for low temperatures, the internal energies
computed from the above-mentioned regularized partition functions are related by a simple constant
energy shift.
(v)
 Obviously, the procedures described above may work as good approximations for low energies, but
should fail for increasing energies. Since our energies are always measured with respect to the
corresponding ionization energy, we show that our approximations work well for energies that
correspond to temperatures much higher than room temperature.
In the next section we investigate the dynamical behavior of the hydrogen atom within a standard Monte
Carlo framework. In Section 3 we introduce a modified dynamics and apply it for the hydrogen atom. In
Section 4 we calculate a regularized partition function, related to the modified dynamics introduced in Section
3, and compute some associated thermodynamic quantities for the hydrogen atom. In Section 5 we propose
two possible physical realizations for the quasi-equilibrium states presented herein. Finally, in Section 6 we
present our conclusions.

2. The hydrogen atom within a standard Monte Carlo procedure

Let us consider a hydrogen atom with its well-known energy spectrum (see, e.g., Ref. [7, p. 790]),

En ¼ R 1�
1

n2

� �
ðn ¼ 1; 2; . . .Þ, (1)

where R is the Rydberg constant [R ¼ 13:6058 eV, or R ¼ 2:18� 10�18 J, which corresponds to a temperature
ðR=kBÞ ¼ 1:579� 105 K], and we have chosen the ground state to have zero energy. As n increases, one has a
quasi-continuum of energy levels, and in the limit n!1 the atom ionizes (with an ionization energy E� ¼ R),
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in such a way that the gap separating the ground-state and ionization energies is R. A transition between the
ground state and the first-excited state costs most of the energy of the gap, i.e., 3R=4, whereas all further jumps
occur in the range R=4. Therefore, for low temperatures, the hydrogen atom is expected to remain a long time
in the lowest-energy states (mostly in the ground state). However, as the quantum number n increases, the
energy cost for jumps between nearest-neighbour levels decreases. Therefore, once the system has reached a
state characterized by a large quantum number n, transitions to higher-energy levels cost very little energy, in
such a way that after a long time, the hydrogen atom will ionize. The ionization will always occur for any finite
temperature; one of the questions we address in the present work is how long does the system remains in the
quasi-equilibrium state (characterized by an average energy close to the ground-state energy).

It is important to remind that the above energy spectrum is degenerate (see, e.g., Ref. [7, p. 798]), in such a
way that a given energy level En presents a total degeneracy gn ¼ n2. Therefore, a precise analysis of this
problem should take into account the degeneracy of the energy levels, as well as of the spins. However, in the
following numerical simulations, only the lowest energy levels will contribute most significantly, in such a way
that the effects of the degeneracy will not change qualitatively our results, as will be discussed later on;
consequently, we will consider, in such computations, gn ¼ 1 ð8n), for simplicity.

We have investigated the dynamical behavior of the hydrogen atom through a Monte Carlo procedure [8].
The probabilities Pðnþ 1! nÞ and Pðn! nþ 1Þ, for transitions between the states characterized by quantum
numbers n and nþ 1, satisfying the detailed-balance condition and constructed by using the standard BG
weight, are given by

Pðnþ 1! nÞ ¼ c; Pðn! nþ 1Þ ¼ c exp ½�bðEnþ1 � EnÞ�, (2)

where b ¼ ðkBTÞ�1 and c is an arbitrary constant (0ocp1=2). In order to implement the dynamical evolution,
a uniform random number z (z 2 ½0; 1�) must be generated at each Monte Carlo step (which will be adopted as
our unit of time). For a system in a state characterized by the quantum number n at time t, transitions between
states are performed (or not), depending on the value of zðtÞ, according to the following rules:
(i)
 if zðtÞpPðn! nþ 1Þ, perform the jump n! nþ 1;

(ii)
 if Pðn! nþ 1ÞozðtÞp½Pðn! nþ 1Þ þ Pðn! n� 1Þ�, perform the jump n! n� 1;

(iii)
 else, remain on level n.
One may easily see that the constant c is proportional to the probability for no jumps [rule (iii)]. In the
following results we have used c ¼ 1

2
, although we have verified that other choices for this constant (0oco1

2
)

did not change qualitatively our results. Below, h i correspond to averages over Ns distinct samples, i.e.,
different sequences of random numbers. We have considered two distinct initial conditions in our simulations,
which will be refered to, herein, as conditions 1 and 2, corresponding to all samples starting with the quantum
number n ¼ 1 (condition 1), and all samples starting with n ¼ 2 (condition 2). Although, in some cases, the
results obtained by using these two initial conditions seem to be different, they approach each other in the limit
Ns !1 (except, of course, in the transient regimes, before reaching the quasi-equilibrium state).

In Fig. 1 we present the time evolution of the average dimensionless energy, heðtÞi ½en ¼ En=R�, for several
values of the relative-temperature variable, y ¼ ðkBTÞ=R, i.e., the ratio of the temperature with respect to the
Rydberg constant. Our simulations were carried up to a maximum time tmax ¼ 109, whereas for the averages
we have considered Ns ¼ 2000 samples with the initial condition 2. Our plots exhibit a general tendency for
increasing the average energy, towards the ionization energy, after some time. This reflects the fact that the
hydrogen atom always ionize for any finite temperature. However, the interesting effect noticed herein is the
presence of a quasi-equilibrium state, characterized by a slowly varying average energy, before the approach to
ionization. Such a quasi-equilibrium state may present a long duration for low values of y, as shown in Fig. 1.

It is important to notice that such a state presents quite nontrivial behavior, e.g., it is characterized by aging,
as observed on a similar system [9]. In order to see this effect, let us define the two-time autocorrelation
function [10],

Cðtþ tw; twÞ ¼
heðtþ twÞeðtwÞi � heðtþ twÞiheðtwÞi

sðtþ twÞsðtwÞ
, (3a)
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Fig. 1. The time evolution of the average dimensionless energy (energy in units of the Rydberg constant), for the hydrogen atom, is

represented for several relative temperatures (y ¼ kBT=R). Time is measured in Monte Carlo steps.

100 101 102 103 104 105 106 107

t

0

0.2

0.4

0.6

0.8

1

C
 (

t+
t w

,t w
)

tw = 5 x 106

tw = 1 x 106

tw = 5 x 105

tw = 1 x 105

tw = 1 x 104

θ=0.08

Fig. 2. The two-time autocorrelation function Cðtþ tw; twÞ, for the hydrogen atom, is represented against time, for a given value of the

relative temperature and several waiting times tw. Time is measured in Monte Carlo steps.
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where tw represents the well-known ‘‘waiting time’’, and

sðtÞ ¼ ½hðeðtÞÞ2i � heðtÞi2�1=2. (3b)

In Fig. 2 we exhibit such a correlation function for a value of the relative temperature y ¼ 0:08 and several
waiting times. The initial conditions are the same as in Fig. 1, but now, the averages that appear in Eq. (3)
were taken over Ns ¼ 350 000 samples. The waiting times considered were chosen in such a way to ensure that
the correlation function Cðtþ tw; twÞ was evaluated with the system on the quasi-equilibrium state (which is
typically inside the time range 102! 108, as shown in Fig. 1). Clearly, there is a dependence on the waiting
time typical of the aging effect [10].
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3. The hydrogen atom and the modified Monte Carlo procedure

We have also considered the evolution of the system under a modified dynamics, which satisfies detailed
balance, but prevents the approach to ionization (the justification for that will become clear later on). The
jumping probabilities are given by

Pðnþ 1! nÞ ¼ c; Pðn! nþ 1Þ ¼ c
expð�bEnþ1Þ � expð�bRÞ

expð�bEnÞ � expð�bRÞ
. (4)

In Fig. 3 we compare the results for the time evolution of the average dimensionless energy obtained by using
the standard dynamics [Eq. (2)] with those obtained through the modified dynamics [Eq. (4)], for typical values
of the relative temperature. The conditions for the simulations in Fig. 3 are the same as those of Fig. 1, which
correspond to tmax ¼ 109 and Ns ¼ 2000 (initial condition 2). One observes that the agreement between the
two dynamical procedures persists during a given time (essentially within the quasi-equilibrium state), that
increases for lowering values of the temperature. Within the modified dynamics, which was constructed in
such a way to avoid the system from reaching ionization, the system remains on a quasi-equilibrium state
forever.

Let us define the duration of the quasi-equilibrium state, tMSðyÞ, as the time during which the system
remains on such a state, within the standard dynamics, by keeping the absolute value of the difference between
the average dimensionless energies computed from the standard and modified dynamics less than a given value
d. Although the choice of d may be arbitrary, one expects the corresponding law followed by tMSðyÞ to be
independent of this particular choice. In the present analysis we estimated tMSðyÞ by considering several values
of y from 0.08 up to 0.12, by imposing that d does not exceed 0.05. Our data fit well the exponential law,

tMSðyÞ� expðb=yÞ ¼ exp½bR=ðkBTÞ� ðb ¼ 1:95� 0:06Þ, (5)

which implies tMSðyÞ ! 1 when T ! 0. Essentially, the duration of the quasi-equilibrium state follows an
Arrenhius law, typical of the Kramers’ escape problem in chemical reactions [11,12], where the system may
remain for a long time in a quasi-stationary state, before overcoming the potential barrier associated with the
reaction. To our knowledge, this is the first time that such a behavior has been associated with the dynamics of
the hydrogen atom.

Therefore, for very low temperatures and depending on time scale of interest, the modified dynamics may
reflect the correct dynamical behavior of the system. The advantage of the modified approach is that the
corresponding partition function, associated to the statistical weight that generated Eq. (4), is finite—contrary
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Fig. 3. The time evolution (in Monte Carlo steps) of the average dimensionless energy (energy in units of the Rydberg constant), for the

hydrogen atom, is represented for two relative temperatures (y ¼ kBT=R), in the case of the standard (empty symbols) and modified

dynamics (full symbols).
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to the one associated with the standard dynamics—and may be calculated exactly. This will be done in the next
section.

4. The regularized partition function and associated thermodynamic functions

In the present section we shall calculate the partition function defined through the statistical weight related
to the modified dynamics, introduced above. It will be shown that such a procedure leads to a kind of
regularized partition function, from which finite macroscopic properties may be calculated. A similar
regularized partition function will also be defined for the more realistic situation of degenerate energy levels,
and its corresponding macroscopic quantities will be compared to those of the former approach.

Let us first address this point by considering in detail the divergence of the partition function associated
with the energy spectrum of Eq. (1),

Z ¼
X1
n¼1

expð�bEnÞ ¼ expð�bRÞ
X1
n¼1

exp½bR=ðn2Þ�. (6)

The equation above may still be written as

Z ¼ expð�bRÞ lim
n�!1

Xn�
n¼1

exp½bR=ðn2Þ�, (7)

where n� is an appropriated cutoff in the quantum number, that will be taken to infinite later on. One has that

expðbRÞZ ¼ lim
n�!1

Xn�
n¼1

X1
m¼0

ðbRÞm

m!

1

n2m
¼ lim

n�!1

Xn�
n¼1

1þ
X1
m¼1

ðbRÞm

m!

1

n2m

" #

¼ lim
n�!1

n� þ
X1
m¼1

Hn�;2m

ðbRÞm

m!

" #
, ð8Þ

where Hn� ;2m ¼
Pn�

n¼11=ðn
2mÞ are the harmonic numbers of order 2m [13]. The limits n� ! 1 of the harmonic

numbers are well-defined, leading to finite coefficients, B2m ¼ limn�!1Hn�;2m. One has that
B2 ¼ p2=6 ¼ 1:64493 . . ., B4 ¼ p4=90 ¼ 1:08232: . . ., B6 ¼ p6=945 ¼ 1:01734 . . ., in such a way that B2m

converges to unit for increasing values of m, e.g., B16 ¼ 1:00002 . . .. Therefore, one gets

Z ¼ expð�bRÞ lim
n�!1
ðn�Þ þ

X1
m¼1

B2m

ðbRÞm

m!

" #
, (9)

which shows a linear divergence with the quantum number. It should be stressed that the divergent
contribution of the partition function comes from a single term in the sum over m of Eq. (8) (term m ¼ 0). Let
us now introduce a ‘‘modified regularized partition function’’,

Z0 ¼ Z � expð�bRÞ lim
n�!1

ðn�Þ ¼ expð�bRÞ
X1
m¼1

B2m
ðbRÞm

m!
, (10)

which is finite. The regularized partition function defined above may be written also as

Z0 ¼
X1
n¼1

expð�bEnÞ �
X1
n¼1

expð�bRÞ ¼
X1
n¼1

½expð�bEnÞ � expð�bRÞ�, (11)

where one identifies the statistical weight that leads to the jumping probabilities of Eq. (4).
Obviously, Z and Z0 are very distinct from one another (actually, the difference between them diverges).

However, for low temperatures, the hydrogen atom remains for a long time in its low-energy states. Therefore,
for a given low temperature, if one considers the corresponding quasi-equilibrium state as an effective
equilibrium, for which the divergent term is not relevant, one may use Z0 in order to calculate thermodynamic
properties as approximations. Within this formalism, the quantities that would correspond to the internal
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energy and specific heat are given, respectively, by

u0 ¼ �R
q lnZ0

qðbRÞ
¼ �R �1þ

P1
m¼1 mðB2m=m!ÞðbRÞm�1P1

m¼1ðB2m=m!ÞðbRÞm

� �
, (12a)

c0

kB

¼ ðbRÞ2
q2 lnZ0

qðbRÞ2
¼ ðbRÞ2

P1
m¼1mðm� 1ÞðB2m=m!ÞðbRÞm�2P1

m¼1ðB2m=m!ÞðbRÞm

�

�

P1
m¼1mðB2m=m!ÞðbRÞm�1

� �2
P1

m¼1ðB2m=m!Þ ðbRÞm
� �2

)
, ð12bÞ

where we keep the prime notations to remind that such thermodynamic properties were calculated by using the
regularized partition function Z0.

In Fig. 4 we exhibit the internal energy of the hydrogen atom, as calculated from the above analytic
expression [Eq. (12a)], and compare it with results of the numerical simulations. In the latter, we have
computed time averages over a time interval ranging from t1 ¼ 200 up to t2 ¼ 400 Monte Carlo steps of the
standard-dynamics quasi-equilibrium states, where the values at each time do already represent averages over
Ns ¼ 106 samples, with the initial condition 1. Similar results may be obtained by starting the system with the
initial condition 2, although a larger computational effort (i.e., higher values of Ns) may be necessary for a
proper convergence towards the low-temperature quasi-equilibrium state in this case. One observes a very
good agreement between the two approaches up to temperatures 104 K. In fact, the relative discrepancy
between these procedures gets larger for increasing temperatures, yielding the typical values of 0.004, for
y ¼ 0:05 (T � 7895K) and 0.282, for y ¼ 0:06 (T � 9474K). A similar picture to the one shown in Fig. 4
holds for the specific heat of the hydrogen atom, with relative discrepancies of the same order of magnitude as
those found for the internal energy. Hence, for the range of temperatures over which one finds a good

agreement between these two approaches (typically from 0–104 K), the long-living low-temperature quasi-

equilibrium state may be considered as an effective equilibrium state, for which the divergence of the partition
function in Eq. (9) has been removed, and one may compute effective thermodynamic properties for such a
hydrogen-like atom (in the sense that the degeneracy of energy levels has not been considered) from the
regularized partition function of Eq. (10).
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Let us now discuss the inclusion of degeneracy in the problem, with a given energy level En presenting a
total degeneracy gn ¼ n2. The partition function of Eq. (6) becomes

Z ¼
X1
n¼1

gn expð�bEnÞ ¼ expð�bRÞ
X1
n¼1

n2 exp½bR=ðn2Þ�, (13)

and the introduction of the cutoff leads to

Z ¼ expð�bRÞ lim
n�!1

Xn�
n¼1

n2 exp½bR=ðn2Þ�. (14)

By considering a power expansion of exp½bR=ðn2Þ�, one observes that in this case, the divergence of the
partition function is associated with the first two terms of this power series [in contrast with the expansion of
Eq. (8), for which only the first term of the series was related to such a divergence]. A procedure similar to the
one carried in Eqs. (7)–(9),, leads to

Z ¼ expð�bRÞ lim
n�!1

ðbRn�Þ þ
Xn�
n¼1

n2

" #
þ
X1
m¼2

B2ðm�1Þ
ðbRÞm

m!

( )
. (15)

The regularized partition function, which corresponds to the finite part in the r.h.s. of the above equation, is
given by

Z00 ¼ expð�bRÞ
X1
m¼2

B2ðm�1Þ
ðbRÞm

m!
¼ expð�bRÞ

X1
m¼1

B2m

ðbRÞmþ1

ðmþ 1Þ!
. (16)

Comparing the regularized partition function Z0 of Eq. (10) (calculated by neglecting the degeneracy of energy
levels), with the above expression for Z00 (computed by taking into account such a degeneracy), one observes
quite similar power series, except for the fact that, in the later case, the coefficient B2m multiplies a power
contribution, ðbRÞmþ1=ðmþ 1Þ!, that is one order higher than the corresponding contribution of Z0. Therefore,
the associated internal energy and specific heat may be calculated from Eq. (16),

u00 ¼ �R
q lnZ00

qðbRÞ
;

c00

kB

¼ ðbRÞ2
q2 lnZ00

qðbRÞ2
, (17)

leading to expressions that are analogous to those of Eqs. (12) if one takes into account the above-mentioned
correspondence.

By using an appropriated software for algebraic computation, we have computed both internal energies u0

and u00. As expected, these quantities are well behaved, with the ratios of series [cf. Eq. (12a)] leading to finite
numbers for each temperature considered. For the range of temperatures investigated, we verified numerically
that u004u0. Such a result may be understood based on the fact that, for low temperatures, only the lowest-
energy levels are important (as mentioned before, the ground- and first-excited states are responsible for the
most relevant contributions); the inclusion of a degeneracy will certainly intensify jumps from the ground- to
the first-excited state, leading to an increase in the average energy value.

In Fig. 5 we exhibit the relative discrepancy between these two quantities,

ZE ¼
u00 � u0

u00
, (18)

for a range of temperatures that goes up to 7000K. One observes that even though u00 is significantly greater
than u0, the difference between them is kept almost constant over the interval of temperatures shown in Fig. 5.
One gets, for instance, ZE ¼ 0:75 (up to 10 decimal digits) for T ¼ 1000K, and ZE � 0:75517 for T ¼ 5000K.
For the higher temperature of Fig. 5, i.e., T ¼ 7000K, one gets that ZE is slightly less than 0.76, corresponding
to a deviation of the order 1%, when compared with its lowest-temperature estimates. For very low
temperatures (when compared with the ionization temperature, e.g., below 400K), numerical difficulties
appear, that prevent us from obtaining reliable numerical estimates. In the same way, above 7000K (typically
around 8000K) one notices irregularities in ZE , signaling the breakdown of validity of the regularized partition
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functions. We have checked that these results did not change, and consequently, the plot in Fig. 5 was not
altered, by considering series with 1400, as well as 1800 terms for the computation of u0 and u00; this guarantees
the convergence of the series ratios considered.

From these results, the following conclusions may be drawn:
(i)
 The inclusion of degeneracy in the energy levels leads to a different internal energy, when compared to the
one computed from the regularized partition function by neglecting the degeneracy. However, the
difference between these two quantities remains almost constant for a large temperature interval. This
result leads to a simple shift in the new internal energy calculated, in such way as to keep the relative
discrepancy defined in Eq. (18) close to 0.75.
(ii)
 The temperature range for the validity of the energy shift mentioned above goes from T ¼ 0K up to
nearly T ¼ 7000K.
(iii)
 The numerical results, obtained through Monte Carlo simulations for nondegenerate energy levels, should
also apply, for the case of degenerate energy levels, taking into account the conditions specified in items (i)
and (ii) above. In particular, the Arrenhius law of Eq. (5), signaling the quasi-equilibrium-state duration
growth, for low temperatures, remains valid under conditions (i) and (ii).
Therefore, based on the fact that the internal energy obtained for the hydrogen-like atom (calculated by
neglecting the degeneracy of energy levels) is related, in a very simple way, to the one of the hydrogen atom
(computed by taking such a degeneracy into account), the long-living low-temperature quasi-equilibrium state
picture, as discussed in the previous section, also holds for the hydrogen atom in the temperature range from
T ¼ 0 up to 7000K, in such a way that this state can also be considered as an effective equilibrium state for the
hydrogen atom. Consequently, by removing the divergence of the partition function, one may compute
effective thermodynamic properties for the hydrogen atom from such a regularized partition function. It is
important to mention that the range of temperatures over which the present regularized formalism should be
applied safely for the hydrogen atom goes far beyond room temperature.

5. Possible realizations

It seems difficult from the experimental point of view to perform measurements on a system of highly
diluted nonionized hydrogen atoms, since one has to avoid the atoms from reaching ionization (which is
favored at high temperatures), as well as from achieving combination, HþH! H2 (which becomes enhanced
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at low temperatures). In the following discussion we propose two possible physical situations in which
hydrogen atoms may be found in the above-mentioned long-living quasi-equilibrium state. In both cases, the
duration of such a state is estimated in real time.

5.1. Hydrogen atoms in a photon bath

It is well known that long-living nonionized hydrogen atoms exist in very low concentrations and at very
low temperatures (typically 3K), in intergalactic media. These atoms are in direct contact with photons, in
such a way that transitions between states occur through photon emission and absorption.

In what follows, we will present a crude estimate of a lower bound for the duration (in real time) of the
above-mentioned quasi-equilibrium state for a hydrogen atom in a medium such as the intergalactic media.
For that we will consider:
(i)
 a nonionized hydrogen atom in contact with a photon bath at a temperature T ;

(ii)
 the temperature T sufficiently low for the atom to be found initially in its ground state;

(iii)
 the velocity of the atom negligible with respect to the velocity of light.
Let us define t1!nðyÞ as the average time that the atom takes to absorb a sufficiently energetic photon [with
an angular frequency oXL ¼ ð3RÞ=ð4_Þ], in such a way as to perform a transition from the ground state to an
excited state characterized by a quantum number n (n41), for a given value of y. Obviously, t1!nðyÞ represents
a lower-bound estimate for the duration of the quasi-equilibrium state, since the atom may return afterwards
to its ground state (this may occur with a large probability, since we are assuming low temperatures). Let us
then consider the average number of photons per unit volume (including both directions of polarization), with
angular frequency oXL,

noXLðyÞ ¼
8p

ð2pcÞ3

Z 1
L

o2 do
exp½ð_oÞ=ðRyÞ� � 1

, (19)

where we have used the variable y ¼ kBT=R. For the temperature range of interest, one has that
exp½ð_oÞ=ðRyÞ�b1, in such a way that the above integral may be calculated easily,

noXLðyÞ ffi
8p

ð2pcÞ3
exp

�3

4y

� �
2

Ry
_

� �3

þ 2L
Ry
_

� �2

þ L2 Ry
_

" #
. (20)

Using the result above one may estimate the number of photons with energy _oX3R=4 in the volume of the
hydrogen atom (to be considered herein as 4pa3=3, where a represents Bohr’s radius). The maximum time that
these photons spend within the volume of the atom is given by 2a=c. Therefore, the average number of such
photons in the volume of the hydrogen atom, per unit time, may be written as

NoXLðyÞ ¼ noXLðyÞ
c

2a

� � 4

3
pa3

� �
ffi

2a2

3pc2
exp

�3

4y

� �
2

Ry
_

� �3

þ 2L
Ry
_

� �2

þ L2 Ry
_

" #
. (21)

From this result one calculates the average time for the hydrogen atom to absorb a photon with sufficient
energy to perform the transition 1! n, t1!nðyÞNoXLðyÞ ¼ 1, i.e., t1!nðyÞ ¼ ½NoXLðyÞ��1. It is important to
notice that, similarly to what happens for the duration of the quasi-equilibrium state—measured previously in
Monte Carlo steps [cf. Eq. (5)]—the lower bound t1!nðyÞ (in real time units) also follows an Arrenhius law,

t1!nðyÞ� exp½3=ð4yÞ� ¼ exp½3R=ð4kBTÞ�. (22)

However, as expected, the factor multiplying ð1=yÞ in Eq. (22) is smaller than the one found in Eq. (5). One
should notice that there may be alternative ways to obtain NoXLðyÞ through the knowledge of noXLðyÞ, as
done in Eq. (21), e.g., by introducing a different time dependence in Eq. (21). However, the most important
behavior, i.e., the Arrenhius law of Eq. (22), remains unchanged by using a different calculation for NoXLðyÞ.

Lets us now consider a typical example for the lower bound t1!nðyÞ, namely y ¼ 0:01 ðT � 1580KÞ; from
Eq. (21), one gets the colossal time (even when compared with the age of the universe of about
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1:5� 1010 years), t1!nð0:01Þ ffi 3:52� 1016 years. Since the duration of the quasi-equilibrium state (in real time
units) should be much larger than t1!nðyÞ, it becomes evident the treatment of the quasi-equilibrium state
considered herein, as an effective equilibrium state for low temperatures.

5.2. Gas of hydrogen atoms

Let us assume the viability, from the experimental point of view, for generating a gas of nonionized
hydrogen atoms at low temperatures (as compared with the corresponding ionization temperature). We shall
also assume that the following conditions are satisfied:
(i)
 The combinations, HþH! H2, are negligible. In fact, there are experimental techniques for such a
purpose, in which pairs of atoms in the so-called ‘‘spin-polarized state’’, can not produce bound states
[14–16].
(ii)
 The temperature T is sufficiently low in such a way that most of the atoms that compose the gas are in the
ground state.
(iii)
 A given hydrogen atom can only change its state through collisions with other atoms (we will assume that
the linear dimension of the box enclosing the gas is much larger than its mean free path, in such a way that
collisions with the walls may be neglected). An atom in its ground state may experience several collisions
before excitation (actually, such an atom should undergo a collision with a sufficiently energetic atom in
such a way to absorb an energy greater than 3R=4 for a transition to occur).
Therefore, the mean time between two successive collisions, t, may be obtained from standard kinetic-
theory calculations (see, e.g., Ref. [17, Chapter 12]),

t �
1

16
ffiffiffi
p
p

na2

m

kBT

� �1=2

, (23)

where n represents the density of atoms in the gas, m is the mass of the hydrogen atom, and a stands for the
Bohr’s radius. In the present physical system, a given atom can only change its energy through collisions with
other atoms; this situation is mimicked in the Monte Carlo simulation, where at each step there is a finite
probability for the occurrence of a given energetic transition. In order to establish a connection between the
duration of the quasi-equilibrium states of Fig. 1 (given in Monte Carlo steps) with real time, we shall, in the
present application, propose a crude—but very suggestive—proportionality relation between a given set of
successive atom collisions and a certain number of Monte Carlo steps. Considering this assumption, one gets
that the duration (in real time) of a hydrogen atom quasi-equilibrium state, may be written as

treal / tMSt�
1

na2

m

kBT

� �1=2

exp½2R=ðkBTÞ�, (24)

where we have considered the fitting parameter b ¼ 2 [cf. Eq. (5)]. Notice that, at low temperatures, the
exponential growth dominates completely, with the multiplicative factors in Eq. (24) becoming irrelevant. It is
important to mention that the exponential growth of Eq. (24) is consistent with the lower-bound estimate
t1!nðyÞ in the previous example [cf. Eq. (22)].

One sees that the above duration time depends on two parameters, namely, the density of atoms and the
temperature, i.e., treal 	 trealðn;TÞ. We have estimated trealðn;TÞ for the typical values n ¼ 1023 atoms=m3 and
y ¼ 0:10 ðT � 15 797KÞ, y ¼ 0:05 ðT � 7898KÞ, and y ¼ 0:03 ðT � 4739KÞ, which yielded, respectively, the
duration times, treal ¼ 5:35 s, 3:67� 109 s, and 1:81� 1021 s (� 5:73� 1013 years). Once again, one notices
tremendous duration times for the lowest temperatures.

It is important to remind that the above results have not taken into consideration the degeneracy of the
energy spectrum, which should contribute to decrease the duration of the quasi-equilibrium states (since the
degeneracy increases the number of possible transitions taking place in the Monte Carlo process). However,
the enormous estimates found above, for low temperatures, should not be altered significantly due to the
degeneracy of the energy spectrum.
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6. Conclusion

We have shown that the hydrogen atom may live in a quasi-equilibrium state, at low temperatures—in
comparison with its corresponding ionization temperature—whose duration increases exponentially as the
temperature decreases. By considering such a quasi-equilibrium state as an effective equilibrium state, we have
calculated, for the first time (to our knowledge), thermodynamic properties within the BG statistical
mechanics. For that, we have proposed a modified formalism (whose results are very close to those obtained
through numerical simulations using the BG weight factor in the quasi-equilibrium state, at low
temperatures), characterized by a regularized partition function. It should be stressed that such an
approximation is supposed to be valid up to temperatures corresponding to about 5% of the ionization
energy. Since the ionization energy E� of the hydrogen atom is extremely high (E� � 13:61 eV, i.e.,
E�=kB ¼ 1:579� 105 K), our approximation should work well up to temperatures 7000K. It is important to
mention the broad interest of the above analysis, which applies to many atoms, molecules, composite particles,
and other similar systems, characterized by: (i) upper bounds, preceded by a quasi-continuum of energy levels,
in their energy spectra; (ii) large gaps separating the ground and first-excited states. Obviously, experimental
investigations are highly desirable in order to test the validity of these results.
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