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Tailoring magnetic vortices in nanostructures
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Tailoring the properties of magnetic vortices through the preparation of structured multilayers is
discussed. The dependence of the vortex core radius r on the effective anisotropy is derived within
a simple model, which agrees with our simulations. As the perpendicular anisotropy increases, r also
increases until a perpendicular magnetization appears in the disk rim. Co/Pt multilayer disks were
studied; x-ray microscopy confirms qualitatively the predicted behavior. This is a favorable system
for implementing vortex-based spin-transfer nano-oscillator devices, with enhanced rf power
resulting both from the increase in the core size and synchronization afforded by the coupling of the
Co layers. © 2010 American Institute of Physics. [doi:10.1063/1.3462305]

In nanomagnetic samples the magnetic domain configu-
ration depends on several parameters of the system such as
size, shape, anisotropy, magnetic exchange stiffness, inter-
face roughness, etc. A magnetlc vortex often represents the
lowest energy conﬁguratlon being characterized by the fol-
lowing features: polarity (up or down direction of the vortex
core) and circulation (clockwise or counterclockwise curling
direction). Vortices have drawn great interest among re-
searchers dealing with nanostructured materials. ? Their tech-
nological applications are numerous, encompassmg from
devices such as vortex random access memories™ to bio-
functionalized microdisks for cancer treatment.’ They also
represent a key system to understand magnetism in reduced
dimensions; e.g., a vortex-antivortex square lattice was pro-
posed as a laboratory system for the study as an analog to the
Bose—Einstein condensation.

Another application is vortex-based spin transfer nano-
oscillators (VSTNOs), used as microwave generator devices
and suitable for device integration. e Despite their great ap-
peal, these devices generate low power and dissipate much
heat. It was demonstrated experlmentally, that the micro-
wave power can be increased through phase-locking of
closely spaced nano-oscillators. Still lacking is optimizing
the synchronization of these devices. To face these chal-
lenges, a fine engineering of the vortex features and optimiz-
ing device geometry is highly desirable. Many efforts have
been made in order to modify the vortex propertles % how-
ever, properties such as vortex core size are hard to adjust
and highly dependent on the magnetic anisotropies of the
system.

In Co/Pt multilayer systems the effective magnetic an-
isotropy (K.g) is sensitive to the interface contributions, and
can be easily controlled from in-plane to out-of-plane by
playing with the Co thickness [e.g., see Ref. 12]. Moreover,
these systems have been shown to present TMR or
GMR.”"™ In this letter, we propose Co/Pt multilayer engi-
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neering to tailor the Co vortex properties by means of the
interface contribution to K ¢; we show how the vortex core
magnetization and radius (r) can be tailored by controlling
Keff'

According to studies on single-layered structures, typi-
cally vortices cores have r~5 nm. In the limit of small
thickness (r— 0), r can be expressed by \rA/ K, where A is
the exchange stiffness and K, is the magnetostatic energy
density (K= ,LLOM /2). The effective anisotropy K in Co/Pt
multilayers can be described by the following phenomeno-
logical expression:

Keff:Kv_z(Kv/t)5 (1)

where ¢ is the Co thickness, K, and K are the volume and
interface anisotropy, respectively. From Eq. (1), one sees that
it is possible to vary K g of a multilayer, simply by varying t;
as K. crosses zero, there is a spin reorientation, from in-
plane (K> 0) to out-of-plane (K.;<0)."

Following Ref. 16, we used the ansatz for the core mag-
netization of a vortex, in cylindrical coordinates; m.=m_(p)
=exp(=28°p?), where B is the variation parameter, corre-
sponding to 1/2r. We have considered no in-plane aniso-
tropy, only perpendicular anisotropy energy, proportional to
the perpendicular anisotropy constant K, as follows:

[exp(-4D°BY) ~ 1]
4 ‘
Minimizing the total energy, i.e., exchange, magnetostatic

[Egs. (5) and (8) of Refs. 16, respectively] and perpendicular
anisotropy energy, we arrive at the following:

1 | A
—=2r=2 . (3)
B Ki-K;

valid up to the limit » much smaller than the disk diameter D,
i.e., BD>1. Note that in this approximation r diverges for a
sufficiently large anisotropy, and for K, <K, there is no real
solution.

E =- ZWKth pdpm? = 7K.t 2)
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FIG. 1. (Color online) Simulated phase diagram of spin configuration of the
Co/Pt multilayer disks as a function of perpendicular anisotropy and disk
diameter. [a(i)] narrow core diameter (K.=0). [b(i)] wide core diameter
(K.=1.18X10° J/m?). [c(I)] annular spin structure (K.=1.2X10° J/m?).
[d(I11)] perpendicular single domain (K,>1.2X10° J/m?).

Considering that K, and K, are, respectively, equivalent
to the volume anisotropy K, and the interface term 2K/t in
Eq. (1), in our model r is a function of K ¢ Micromagnetic
simulations (OOMMF code'’) were performed to verify the
model validity. We obtained the ground state configuration
for 0.25, 0.5, 0.75, 1, and 2 um diameter disks of a single
Co layer as a function of the perpendicular anisotropy con-
stant (K,). The cell size was taken as 2X2 X2 nm?; A=30
X 107! J/m and M,=1400X 10°> A/m (the values used for
bulk Co). Again, we have considered only the perpendicular
term in the simulations; r was determined from a pseudo-
Voigt function fit to m_(p) obtained from the simulation.

Our simulations (Fig. 1) show vortices when K. is in-
cluded, pointing to the possibility of obtaining vortices in
Co/Pt multilayer disks. A more relevant conclusion is that r
varies as a function of K, following the behavior predicted
by our model [Eq. (3)]. A phase diagram (Fig. 1) displays
core size versus K, (and therefore Co thickness) for D=250,
500, 750, 1000, and 2000 nm [Eq. (3) is also plotted]. A good
agreement between the core diameters is obtained for the
simulation and our model [Eq. (3)] for all disk diameters
investigated. From this phase diagram, we can distinguish
three regimes. For low values of K (region I, Fig. 1), we find
an ordinary vortex structure with nearly the expected vortex
core diameter (~10 nm) for a soft magnetic micrometric
disk, i.e., for K,=0 [I-a in Fig. 1]. In region I, we observe a
monotonic increase in the diameter as a function of K, as
predicted by the model. The increase in 2r is extended up to
the limit of validity given by Eq. (3) [I-b of Fig. 1], followed
by region II in the graph of Fig. 1. In region II, we observe
that by augmenting the interface contribution, the spin con-
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FIG. 2. (a) Image obtained by XMCD-PEEM of the [Co,/Pt,] X6 1 um
disk array. (b) Detail of the disk highlighted by the red circle, presenting a
typical vortex pattern. (c) oOMMF simulation of a disk with the same char-
acteristic, showing a good agreement with (a).

figuration may present increasingly out-of-plane compo-
nents. Besides the perpendicular magnetization of the vortex
core, a perpendicular magnetization also appears at the rim
of the disks [II-c in Fig. 1], forming a domain configuration
of out-of-plane concentric rings. Although K, is still larger
than 2K /¢, the boundary conditions impose an out-of-plane
K. Region III: for 2K /t>K,, it gives rise to an out-of-
plane single domain [region III and III-d of Fig. 1], and
therefore the vortex is no longer observed.

Four samples, consisting of lithographed arrays of Co/Pt
multilayered disks [D=1 and 2 um] deposited by sputtering
on Si0,/Si(100) wafers, were produced. Their structure was
([Co,/Pt,]¢/Pts) with Co layer thickness t=2.0, 1.6, 0.8, and
0.6 nm. Continuous films were also produced in the same
sputtering runs. The magnetic properties and morphology of
the samples were characterized by magnetometry, x-ray mag-
netic circular dichroism (XMCD) photoelectron emission
microscopy (PEEM) and magnetic force microscopy.

The XMCD-PEEM measurements were performed at the
Nanospectroscopy beamline at Elettra Synchrotron, Italy.
The final pictures were obtained by averaging up to 250
images (taken at Co L edge) originated from subtracting two
images acquired with opposite (left/right) circular polariza-
tions. This imaging technique contrasts the magnetization
alignment relative to the x-ray beam direction. The experi-
ment was carried out in grazing incidence setup (16°), there-
fore the images distinguish mostly the in-plane magnetiza-
tion distribution, the black/white contrast referring to
parallel/antiparallel relation between the magnetization com-
ponents and the beam direction. However, the measurements
are still sensitive to the perpendicular magnetization, due to
the angle between the perpendicular magnetization and the
x-ray beam.

Figure 2 shows images of the [Co,/Pt,]| X 6 multilayered
disks, which presented the highest K. For the 1 and 2 um
array, almost all disks have a single vortex structure. This is
confirmed if we compare the experimental result of a particu-
lar disk size with the equivalent simulated one (Fig. 2). The
realization of magnetic vortices in a multilayer system rep-
resents a great step toward better controlling the magnetic
vortex properties and characteristics.

For the arrays with a smaller Co thickness [Co,/Pt,]
X6 (t=0.6 and 0.8 nm), i.e., for K.~ 0, the magnetic con-
figurations do not seem to correspond to an usual vortex
[XMCD-PEEM image in Fig. 3(a)]. In this case, it is ob-
served a smaller bright/dark contrast close to the center. Our
interpretation is that we have the same spin configuration of
region IT of the phase diagram [see II-c in Fig. 1], i.e., at the
center M is pointing upwards, at the rim downwards and
in-between there is a planar vortex. For comparison, Fig.
3(b) also presents the spin configuration of ¢(Il) (Fig. 1), but
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FIG. 3. (a) XMCD-PEEM image of 1 um [Coy4/Pt,] X6 disk. (b) simu-
lated spin configuration of a disk of the same size (region II in the phase
diagram of Fig. 1), showing a good agreement with (a).

in a pattern that mimics the PEEM contrast, showing a good
agreement between the measurement and the simulation. In
this case, the faint contrast is due to the 16° tilt angle be-
tween the plane of the sample and the x-rays direction.

Although the XMCD-PEEM technique is not well suited
for assessing r, we could observe a behavior that corrobo-
rates our proposition. For the thicker Co layers, where it is
expected a larger in-plane anisotropy, we obtained a vortex
structure (Fig. 2). As we get closer to the spin reorientation
transition condition, i.e., for thinner Co layers, we observed
out-of-plane magnetization in concentric annular regions
(Fig. 3). This agrees with the simulations, i.e., vortex struc-
ture and annular arrangement, corresponding to regions I and
IT (Fig. 1).

These results open up opportunities for optimizing VST-
NOs devices.® The magnetic dipole moment of the vortex
core is proportional to its square radius (r); w=r*tM,. The
synchronization of the gyrotropic motion of the cores in an
array of vortices® is dependent on the coupling between vor-
tices through the antivortices, and therefore dependent on the
dipolar and long-range exchange interactions between vorti-
ces and antivortices counter balanced by the restoring forces
(Oersted field). Since both interactions depend on r, tailoring
r is relevant for increasing the microwave power and for
achieving phase locking in VSTNOs.

Maybe the most significant contribution of multilayer-
based vortex systems would be the establishment of an alter-
native architecture for the VSTNOs, i.e., a vertical vortices
stacking, possibly solving the problems of synchronization
and power. This vortices stacking device is naturally phase-
locked, since it is well-known that the Co layers are
coupled,18 and therefore the power generated will be ampli-
fied relative to an individual vortex. Hence, we would have a
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synchronized set of vortices in a very compact device.

In conclusion, tailoring magnetic vortex core diameters
as well as other properties of magnetic disks is proposed by
adjusting the interface energy contribution in Co/Pt multilay-
ered structured system. The proposal is supported by a model
and by micromagnetic simulations which present consistent
results. Theory and simulation are also presented in the form
of a phase diagram defining three regions with distinct do-
main structure. We demonstrated experimentally vortex for-
mation on Co/Pt multilayered disks. We also verified that
vortex nucleation is affected by the interface contribution,
consistently with the model. Finally, we proposed and dem-
onstrated a strategy to engineer magnetic vortex properties to
suit technological application demands.
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