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We develop a theoretical framework that allows us to compare electromagnetism with gravitation
in a fully covariant way. This new scenario does not rely on any kind of approximation nor
associate objects with different operational meaning as sometime it’s done in the literature.
We construct the electromagnetic analogue to Riemann and Weyl tensors and develop the
equations of motion for these objects. In particular, we are able to identify precisely how and
in what conditions gravity can be mapped to electrodynamics. As a consequence, many of
the geometrical tools of General Relativity can be applied to electromagnetism and vice-versa.
We hope our results would shed new light in the nature of electromagnetic and gravitational theories.

I. INTRODUCTION

Right from the beginning, as soon as Einstein proposed
his theory, it became an interesting practice to compare
the differences and similarities between General Relativ-
ity (GR) and electrodynamics (EM) Ref.’s [1]-[8]. Nowa-
days, this is not anymore only a theoretical challenge
Ref.’s [11]-[18] but it also attracts much attention from
experimental relativists Ref.s [19]-[31]. Notwithstanding
very interesting works in the literature, there is still no
consensus on how to precisely compare these two theo-
ries.

A priori, a given theory can be formulated in several
ways1. Regardless of their equivalence, each formulation
has its own peculiarity that makes it more suitable to
deal with certain questions. In addition, different for-
mulations generally increase our understanding of that
class of phenomena. The choice of a specific formalism,
that could be only a matter of convenience, becomes a
crucial point if one wishes to compare different theories.
An accurate comparison is only possible if we are able
to identify and associate pairs of objects that play simi-
lar roles in each theory. This is not an easy task and it
is intrinsically related to the framework chosen to work
with.

Assuming that Maxwell’s Theory and Einstein’s Gen-
eral Relativity are the proper theories to describe elec-
tromagnetism and gravitation respectively, we can for-
mulate four main challenges that has to be addressed if
one wishes to correlate them:

i) Electromagnetic fields are described by a vector po-
tential Aµ while gravitation is described by a sec-
ond rank symmetric tensor gµν ;

ii) Electromagnetic interactions depend on the charge
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1 Newtonian Mechanics, for example, has two other formulations,

namely, Lagrangian and Hamiltonian formulations.

mass ratio of test particles while the universal char-
acter of gravitation allow us to geometrize it;

iii) The electric and magnetic fields are defined as first
derivatives of the vector potential but it is impossi-
ble to construct a tensor with only first derivatives
of the metric. This is related to the fact that in
GR gravity can be locally cancelled by a coordi-
nate transformation;

iv) Electrodynamical solutions satisfy the superposi-
tion principle while Einstein’s equations are highly
non-linear and involved.

The traditional approach to deal with these issues can
be divided in two main groups depending if they priv-
ilege the kinematical or the dynamical features of the
theories. The kinematical approach is mainly concerned
with the association between equivalent objects (objects
that play the same role) while the dynamical one focus
on the mathematical structure and the symmetries hid-
den in the dynamical system of equations. These two
approaches can be sketched as follows:

Kinematical approach - this approach is based on the
weak field limit of linearized Einstein’s equations and
deals only with slow moving test particles (|vi| � c).
In this limit, it’s possible to choose a specific gauge
that puts Einstein’s equations in a similar form to
Maxwell’s equations2. In addition, the geodesic equation
is “transformed” into a newtonian second law with the

2 Actually, there has been some significant development describing
this kinematical approach in a completely covariant form Ref.’s
[32]-[34]. However, notwithstanding the use of foliation theory,
the crucial point remains: to construct a spatial gravitational
force, i.e. a force defined in the local spatial reference frame of
a given observer, and compare it to the electromagnetic 2-form
F µν . By choosing another time-like congruence, it is always
possible to locally vanish these forces. Thus, this kind of analogy
is only valid for a class of observer and seems to be fortuitous.
As a matter of convenience, so that we do not enter in a long
discussion, we will describe just the traditional non-covariant
approach.
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Christofell’s symbol playing the role of a Lorentz force
Ref.’s [35, 36]. This framework has the advantage to
compare only objects with the same physical dimension.
The vector potential Aµ is related to the metric gµν while
the Christofell symbol Γαµν is associated to the electric Eµ
and magnetic Hµ fields. In this scenario, it’s possible to
apply well known electromagnetic solutions to gravita-
tion with only minor extrapolations Ref.’s [11]-[18]. On
the other hand, this method is clearly not covariant and,
since it’s only valid for a given gauge in the linear limit, it
does not properly compare these theories. Furthermore,
even ignoring the gauge problem, the approximative na-
ture of this analogy could give the wrong idea that it is
only valid in the linear limit.

Dynamical approach - there is a formulation of GR,
known as Quasi-Maxwellian, that describes the dynam-
ics with respect to the Weyl tensor. Lichnerowicz’s the-
orem Ref. [37] guarantees that this system of equations
reproduce GR if Einstein’s equations are valid in a given
hypersurface. In fact, this is a first order system for
the irreducible parts of the Weyl tensor Ref.’s [38, 39].
The decomposition of the gravitational equations into
its four possible projections (so called quasi-maxwellian
equations) reproduces in some sense the symmetries of
Maxwell’s equations for the electric and magnetic part of
the Weyl tensor. Contrary to the kinematical approach,
this is a fully covariant formalism but, as it will be shown
in section III, it fails precisely because it compare com-
pletely different objects. Note that both approaches
adapt the gravitational framework keeping the electro-
magnetism intact. Instead, we propose a new framework
that is equivalent to Maxwell’s equations but has a math-
ematical structure similar to the Quasi-Maxwellian for-
mulation. Since we are re-writing electrodynamics in a
way similar to GR, we shall call this formalism Quasi-
Einsteinnian picture of Maxwell’s equations.

This new approach is fully covariant and avoid all the
above-mentioned problems. In particular, it associates
only equivalent objects in the sense that they are of the
same physical dimension and operational meaning. In
this picture, we can also construct the electromagnetic
analogue to Riemann and Weyl tensors and, most impor-
tant of all, we can specify precisely when and how elec-
trodynamics differs from gravitational interaction. This
control is specially important to identify the situations
when we can perfectly map one theory into another.

After specifying some basic mathematical machinery
in the next section, we shall briefly describe the main
properties of the Quasi-Maxwellian formalism in section
III. In section IV we construct the Quasi-Einsteinnian
formalism and analyse its fundamental aspects. Finally,
section V is devoted to some final remarks.

II. MATHEMATICAL PRELIMINARIES

The propose of this introductory section is to define
some relevant objects and to fix our notation. The space-
time signature is chosen to be (+ − −−), every time-like
congruence V µ is considered normalized in the sense that
V µVµ = 1 and the symmetric and anti-symmetric parts of
a given tensor Aµν are written as A(µν) ≡ Aµν +Aνµ and
A[µν] ≡ Aµν −Aνµ, respectively. We can define two use-
ful tensors: the Levi-Civita completely anti-symmetric
tensor ηαβµν that satisfy the relations

ηµνεληµξσρ = −δνελξσρ ,

ηµνεληµνσρ = −2δελσρ ,

and a four rank tensor constructed with the space-time
metric and defined by gαβµν ≡ gαµgβν − gανgβµ.

As it is well known, Maxwell’s equations can be cast
in a manifest covariant form by introducing an anti-
symmetric tensor Fµν and its dual F ∗µν ≡ 1

2ηµνελF
ελ.

For a given charge distribution characterized by the four
current Jµ, Maxwell’s equations are written as

Fµν;ν = Jµ , (1)

F
∗

µν
;ν = 0 , (2)

The kinematical relations given by equation (2) is equiv-
alent to F [αβ;λ] = 0 which allows us to define an electro-
magnetic potential Aµ such that Fµν = ∂[µAν]. In this
context, we understand the electric and magnetic fields as
projections of the Fµν tensor along the observer world-
line V ν , i.e Eµ ≡ FµνV

ν and Hµ ≡ 1
2η
µ
εαβV

εFαβ , or
inversely we can re-write Fµν ≡ E[µV ν] − ηµναβHαV β .

To re-obtain the original, non-covariant, form of
Maxwell’s equations it suffices to project equations (1)-
(2) along and perpendicularly to the time-like congruence
V µ. This canonical procedure is exactly what we will use
to construct the proper framework to establish the anal-
ogy between gravitation and electromagnetism.

We finally recall that the Weyl Conformal tensor in an
arbitrary 4-dimensional space-time is defined as

Wαβ
µν = Rαβµν +

1
2
R

[α
[µδ

β]
ν] −

1
6
Rgαβµν , (3)

from where we can directly deduce that this tensor is
traceless Wα

αβµ = Wα
βαµ = Wα

βµα = 0 and satisfies the
symmetry relations Wαβµν = 1

2W[µν]αβ and Wα[βµν] = 0
Ref. [40].

III. QUASI-MAXWELLIAN PICTURE OF
EINSTEIN’S EQUATIONS

In this section we will briefly discuss some properties
of the Quasi-Maxwellian formulation of General Relativ-
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ity. This third order3 formalism of Einstein’s equations
was first suggested by Matte Ref. [41] and sequentially
developed by Jordan, Ehlers, Kundt, Trumper, Bel, Lich-
nerowicz and others in the late fifties Ref.’s [37, 42, 43].
Our main goal will be to retrace the standard arguments
found in the literature and to analyse how the symme-
tries of the Weyl tensor and its dual share, in a sense,
some similitude with the electromagnetic tensor Fµν .

First of all, note that if we take Bianchi’s identi-
ties, which are geometrical properties of any Rieman-
nian space-time, and assume that Einstein’s equations
are valid, it can be shown that

Wαβµν
;ν = −1

2
Tµ[α;β] +

1
6
gµ[αT ,β] , (4)

where Tµα is the energy-momentum tensor describing the
matter field and T its trace.

The core of the Quasi-Maxwellian formalism, which
was proved by Lichnerowicz, is that if Einstein’s equa-
tions are valid in a given spatial hypersurface Σ than
equation (4) propagates it through the whole manifold.
In other words, in a Riemannian space-time, if Gµν =
−κTµν on a single hypersurface than, necessarily, it also
holds everywhere.

This beautiful result allows one to reformulate in a
powerful way many applications and issues of General
Relativity such as perturbation theory applied to cos-
mology Ref. [44], emission of gravitational waves Ref.
[45], internal symmetries of Einstein’s field equations Ref.
[46], and the hamiltonian formulation of General Relativ-
ity Ref. [47].

The next step in the Quasi-Maxwellian formalism,
and precisely when the analogies with electrodynam-
ics comes into play, is to construct all possible projec-
tions of equation (4) with respect to a given observer
V µ and its rest space hµν ≡ gµν − VµVν . If we define
Eαµ ≡ −WαβµνV

βV ν and Hαµ ≡ −W ∗
αβµνV

βV ν the
Weyl conformal tensor admits the following representa-
tion

Wαβρσ = (ηαβµνηρσλτ − gαβµνgρσλτ )V µV λEντ +

+ (ηαβµνgρσλτ − gαβµνηρσλτ )V µV λHντ . (5)

It’s straightforward to show that Eµν and Hµν are irre-
ducible, traceless, symmetric and orthogonal to the time-
like congruence. These two tensors are known in the liter-
ature as the electric (Eµν) and the magnetic (Hµν) parts
of the Weyl tensor because they are related to the con-
formal curvature in a similar way as the electromagnetic
fields are related to Fµν . The system of equations for the
irreducible parts of the Weyl tensor can be found by the

3 The Quasi-Maxwellian equations are third order with respect to
the metric tensor but, as will see later, it can also be interpreted
as a first order formalism for the irreducible parts of the Weyl
tensor Eαβ and Hαβ .

four independent equations given by the projections

Two vectorial
equations


W µν
αβ ;ν V

βVµ

W ∗ µν
αβ ;ν V

βVµ

Two tensorial
equations


W µν

αβ ;ν V
βhα(σhρ)µ

W ∗ µν
αβ ;ν V

βhα(σhρ)µ

This system is not only numerically equal to Maxwell’s
equations but they have a mathematical structure very
similar to electrodynamics. These similarities are usu-
ally taken as the starting point to construct an analogy
between electromagnetism and gravitation. In the next
sub-section we will summarize the arguments generally
given in the literature and argue why we consider this
direct analogy between Fµν and Wαµβν misleading.

A. Misleading analogy between F µν and Wαµβν

As it was argued above, General Relativity written in
the Quasi-Maxwellian form has a mathematical structure
that allows one to envisage an analogy between elec-
tromagnetism and gravitation. But, to do so, we are
forced to associate the electromagnetic tensor Fµν with
the Weyl tensor Wαµβν . Furthermore, the electric Eµν
and the magnetic Hµν parts of the Weyl tensor have to
be associated with the electric Eµ and the magnetic Hµ

parts of Fµν .
Besides the similarities in the mathematical structure

of these two system of equations, there are also two
other reasons that seduce us to develop this analogy. If
we consider a source-free region (Tµν = 0), the Quasi-
Maxwellian equations have an additional internal sym-
metry that plays (as it is generally argued) the same role
as the dual symmetry of electrodynamics. As a matter
of fact, in vacuum, the Quasi-Maxwellian equations are
invariant under an arbitrary field rotation

 Ẽαβ
H̃αβ

 =

 cos θ sin θ

− sin θ cos θ

 Eαβ
Hαβ

 . (6)

In addition, the invariants constructed with Fµν and
Wαβµν , respectively, have the same structure. All these
similarities are summarized in the table below 4.

4 For some interesting detailed discussion on other properties see
Ref. [48].
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Maxwell Quasi-Maxwellian

variables Fµν Wαβµν

irreducibles Eα Eαβ
Hα Hαβ

invariants EαEα −HαHα EαβEαβ −HαβHαβ
EµH

µ 2EαβHαβ
dual Eα −→ Hα Eαβ −→ Hαβ

symmetry Hα −→ −Eα Hαβ −→ −Eαβ

Unfortunately, this analogy compares two completely
distinct objets. First of all, one can immediately see that
Fµν and Wαβµν don’t have the same dimensional unit.
The Fµν tensor plays the role of a force for charged parti-
cles while Wαβµν measures the relative movement of two
particles in vacuum. Note also that Maxwell’s equations
are second order equations for the electromagnetic po-
tential while the Quasi-Maxwellian equations are third
order for gµν . In addition, it is not clear the meaning
of the gravitational dual symmetry and its relation to
the electromagnetic case. Actually, it is natural to sup-
pose that we must correlate only objects that are of the
same order with respect to the electromagnetic potential
and the metric tensor. It is clear that this is not the
case if we insist to associate Fµν with Wαβµν . Another
strong argument against this comparison comes from the
geodesic deviation equation. In vacuum, the equation for
the connecting vector ηα is

D2ηα

Ds2
= Wα

βµνη
µV βV ν = Eαµ ηµ . (7)

As it is shown below, eq. (8), the equation that de-
scribe the vector connecting two initially parallel charged
particles is analogous to equation (7) but replacing the
Weyl tensor Wα

βµν by Fαβ ;µ. Note that, these tensors
are both of the same order in their potentials. Wα

βµν
has third order derivative of the metric gµν just as
Fαβ ;µ has third order derivative of the electromagnetic
potential Aµ.

IV. QUASI-EINSTEINIAN PICTURE OF
MAXWELL’S EQUATIONS

If we want to construct a common framework to es-
tablish a dialogue between two different theories, such as
General Relativity and electromagnetism, first of all, it
is mandatory to specify a rule to associate their objects.
We understand that this rule should be defined not just
by a pure analogy between similar objets, Fµν and Wαβµν

for instance, but rather by their physical-mathematical
operational meaning.

One could propose to associate General Relativity and
electromagnetism by comparing the test particle’s equa-
tion of motion in the presence of a gravitational field

(geodesic equation) with the test charged particle’s equa-
tion of motion in an electromagnetic field (Lorentz force).

geodesic eq. :
d2xα

ds2
= Γαµν V

µV µ

Lorentz force :
d2xα

ds2
= Fαµ V

µ

But then, we would be forced to relate Fµν to Γαµν . It
is reasonable to pursue this association only in the weak
field limit of General Relativity where it is possible to ar-
range the first order equations exactly as Maxwell’s equa-
tions for stationary electric and magnetic fields Ref.’s
[11, 31]. This analogy can be useful to study gravi-
magnetic fields or frame dragging phenomena Ref. [49].
Notwithstanding its utility in some special cases, the
Christoffel’s symbol is not a tensor. Any kind of com-
parison made in this way shall be fortuitous and gauge
dependent. In fact, General Relativity does not admit a
tensor only with first derivatives of the metric tensor gµν .
Thus, it is impossible to construct, in a covariant way, a
framework to compare General Relativity and electro-
magnetism using first order derivatives of the potentials
Aµ and gµν .

Up to this point, we have only briefly summarized
previous works and contented ourselves to argue against
their inappropriateness. Now, we propose a different way
to look into Maxwell’s equations, which will deal with
third order derivatives of the electromagnetic potential
Aµ. This formalism contains a very natural generaliza-
tion of the Riemann and Weyl tensors for electrodynam-
ics and it provides the necessary framework to compare
electrodynamics and General Relativity on equal foot-
ing. In what follows, we shall assume that the charge
mass ratio is constant q

m = const.. Instead of looking to
the geodesic equation, we focus in the geodesic deviation
equation and the equation for the deviation vector ηµ
connecting the world-lines of two charged particles with
parallel initial tangent vectors (V µ;ν η

ν = 0)

D2ηα

Ds2
= Fαµ;νV

µην . (8)

The above equation shows us that the natural choice
is to identify Fαµ;ν as the electromagnetic analogue
of the Riemann tensor. Since the tensor catalogue
we will construct has a direct counterpart in General
Relativity, even-though, in principle, they have nothing
to do with geometry, we suggest to call this framework
Quasi-Einsteinian picture of electrodynamics.

A. Some useful decompositions and projections

In general, Fαβ ;λ has a non-zero trace, see eq.(1). Ac-
cordingly to General Relativity, the electromagnetic ana-
logue of the Weyl tensor should be defined as the traceless
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part of the electromagnetic analogue to the Curvature
tensor. Thus, we define

Iαβλ ≡ Fαβ;λ −
1
3

(Fα gβλ − Fβ gαλ) , (9)

where Fα ≡ F ε
α ;ε. Note that, Iαβλ has inherited the

anti-symmetry in the first two index Iαβµ = 1
2I[αβ]µ.

Using Maxwell’s equations, it is also straightforward to
show that I[αβλ] = 0. By construction, Iαβλ does not
depend on the current field Jµ. Nonetheless, there are
integrability conditions relating Iαβλ to derivatives of the
current vector Jµ ;α in the same way as Wαµβν is con-
nected to derivatives of the energy-momentum tensor by
the Bianchi’s identities.

With the help of a time-like congruence V µ and its
associated projector hµν ≡ gµν−VµVν , we can decompose
the Iαβλ and its dual tensor as

Iαβµ = −V[αQβ]µ − ηαβλεZλµV ε , (10)

I ∗αβµ = −V[αZβ]µ + ηαβλεQ
λ
µV

ε , (11)

where Qαβ ≡ Iαεβ V
ε and Zαβ ≡ I ∗αεβV

ε. These are
traceless tensors (Qββ = Zββ = 0) with the first index
projected on the hypersurface, i.e. QαµV α = ZαµV

α =
0. It’s interesting to notice, as can be seen from equa-
tions (10)-(11), that this system satisfy the same kind of
rotational symmetry as the Quasi-Maxwellian one. The
system is invariant with respect to a rotation in the Qαβ
x Zαβ plane analogous to equation eq. (6). In addition,
the projection of only one index of the Weyl tensor along
the time-like congruence can be written in a very similar
way to equation (10)

WαβµνV
ν = V[αEβ]µ + ηαβλεHλµV ε . (12)

Nevertheless, there is a crucial difference that forbid
us to relate them. The Qαβ and Zαβ are not irreducible
parts of Iαβµ such as Eαβ and Hαβ are of Wαβµν . The
proper analogy between electromagnetism and General
Relativity is made using the irreducible parts of Iαβµ.
As we shall see, tidal effects are considerably more
sophisticated in electrodynamics than in gravitation.
This is a remarkable result related to the fact that
electrodynamics is a vectorial theory while General
Relativity is a pure tensorial theory. If this is the case,
it’s expected that alternative gravitational theories such
as TeVeS Ref.’s [50, 51] should also produce some of
these electromagnetic interesting features with respect
to tidal forces.

B. The irreducible parts of the electromagnetic
analogue Weyl tensor

As equation (10) suggests, the Iαβµ tensor can be com-
pletely described by the irreducible parts of Qαβ and

Zαβ .5 Since they are not completely on the hypersur-
face orthogonal to V µ we have

Qαβ = Q̂αβ +QαVβ (13)

Zαβ = Ẑαβ + ZαVβ (14)

where Q̂αβ ≡ Qαε h
ε
β , Ẑαβ ≡ Zαε h

ε
β , Qα ≡ Iαερ V

ε V ρ

and Zα ≡ I ∗αερ V
εV ρ. In these equations the ̂ means

that the tensor is entirely restricted to the space-like hy-
persurface. It is immediate to see that the vector Qα and
Zα are also on the hypersurface. The Q̂αβ and Ẑαβ ten-
sors can still be decomposed relatively to its symmetric
and anti-symmetric parts.

Q̂αβ = Eαβ +
1
2
Q̂[αβ] , Eαβ ≡

1
2
Q̂(αβ) ,

Ẑαβ = Hαβ +
1
2
Ẑ[αβ] , Hαβ ≡

1
2
Ẑ(αβ) .

We note that the symmetric tensors Eαβ and Hαβ sat-
isfies exactly the same properties of the electric and mag-
netic parts of Weyl tensor i.e. EαβV β = HαβV

β=0 and
Eαα = Hα

α = 0. Using their own definitions, the anti-
symmetric parts of Q̂αβ and Ẑαβ can be written in terms
of the vectors Qα and Zα as

Q̂[αβ] = −ηαβελZεV λ or Zα =
1
2
ηαµνλQ̂

[µν]V λ ,

Ẑ[αβ] = −ηαβελQεV λ or Qα =
1
2
ηαµνλẐ

[µν]V λ .

Consequently all the information contained in Iαβλ is
coded in four tensor that are restricted to the hypersur-
face. In view of its irreducible parts, Iαβµ and its dual
are given as

Iαβλ = −V[αEβ]λ + ηαβµνV
µHν

λ +
1
2
Q[αhβ]λ + (15)

+Q[αVβ]Vλ − ηαβµνZµV νVλ +
1
2
V[αηβ]λµνZ

µV ν ,

I ∗αβλ = −V[αHβ]λ − ηαβµνV µEνλ −
1
2
Z[αhβ]λ + (16)

+Z[αVβ]Vλ + ηαβµνQ
µV νVλ +

1
2
V[αηβ]λµνQ

µV ν .

The consistency check is made by counting the degrees
of freedom for each one of the tensors. Since Iαβλ and
its dual are traceless and they are anti-symmetric in the
first two indexes, Iαβλ has 16 independent components
(we recall that the Weyl tensor in four dimensions has

5 Actually, there is also the possibility to project all three index
of Iαβµ on the hypersurface but it can be shown that this new
tensor is completely determined by the four tensors that compose
the irreducible parts of Qαβ and Zαβ .



6

10 independent components). On the other hand, Eαβ
and Hαβ are completely projected and are also traceless
(Eαα = Hα

α = 0 , EαβV β = HαβV
β = 0) so each one of

them has 5 independent components. The other 6 miss-
ing degrees of freedom are divided between the two vector
since they are on the hypersurface (QαV α = ZαV

α = 0).
Note that vanishing of Iαβµ implies the simultaneous

vanishing of Eαβ , Hαβ , Qα and Zα. This interesting sit-
uation, which it is obviously possible in electrodynamics
without the vanishing of the fields Eµ and Hµ them-
selves, could be understood as the electromagnetic ana-
logue of a conformally flat solution of Einstein’s equa-
tions.

The distinct character of electrodynamics appears with
the two vectors Qα and Zα. In fact, the Eαβ and Hαβ

are perfectly mapped to Eαβ and Hαβ respectively. The
two simplest invariant constructed with Iαβµ and its dual
are6

IαβµI
αβµ = 2 (EµνEµν −HµνH

µν) + 3 (QαQα −HαH
α)

I ∗αβµI
αβµ = 4 EµνHµν + 2 QαZα .

These expressions are very similar to that presented in
the Quasi-Maxwellian picture section except by the vec-
tor terms. Note also that there is no cross term between
vectors and tensors. We conjecture that a detailed study
of all possible independent algebraic invariants might
provide a possible classification of electrodynamics con-
figurations in a similar way as Debever used to classify
General Relativity Ref. [52].

In terms of these objects, the deviation equation,
eq.(8), in a source-free region assumes the form (V µηµ =
0)

D2ηα

Ds2
=
(
Eαν −

1
2
ηανλρZ

λV ρ
)
ην ,

which is exactly eq.(7) except for the extra vectorial
term7. We immediately see that, since the tensor Eαβ
has exactly the same properties of the electric part of
Weyl tensor Eαβ , electrodynamics will mimic gravita-
tional tidal forces if and only if the vector Zα is zero.

In the next section we will develop the dynamical sys-
tem for these irreducible tensors but it’s already possible
to notice in which case there is a full analogy between
electrodynamics and gravitation.

6 Since Iαβµ is a traceless tensor only with three indexes, it is
impossible to construct any third order invariant.

7 As first shown by Papapetrou Ref.’s [53, 54], the magnetic part
of the Weyl tensor Hµν influence the trajectory of any parti-
cle having angular momentum or spin. In the electromagnetic
case there is a complete analogous equation coupling the angular
momentum or the spin to Hµν and Qα Ref.[56]. Thus, the pa-
papetrou’s equation also strength our attempt to associate the
tensor Iαβµ to the Weyl conformal tensor.

The covariant formalism constructed here shows that
discrepancy between electrodynamics and gravitation
comes from the two vector Qα and Zα. If and only if
these two vectors vanish simultaneously it’s possible to
map one theory into another. We also like to reinforce
that this is a complete covariant statement that does
not depend in any kind of approximation and compares
“equivalent objects” from each theory.

C. Dynamical equations

In this section we derive the dynamical equations for
the Quasi-Einsteinnian formalism. The full general equa-
tions are quite extensive so, for the sake of clarity, here
we will assume only inertial observers (Vα;β = 0) in flat
space-time (Rαµβν = 0). The generalization to non-
inertial observers in curved space-time is given in ap-
pendix A.

Similarly to the Quasi-Maxwellian equations, the dy-
namics for the given system are determined by the di-
vergence of the Iαβλ and its dual tensor. The divergence
for Iαβµ can be calculated directly. The other dynamical
equation can be found by the following relation

∇[α Iµν]β = −1
3
(
∇[αFµ]gνβ +∇[ν Fα]gµβ +∇[µFν]gαβ

)
.

It’s straightforward to show that

Iµβα;β =
2
3
Fµ;α , (17)

I
∗

µβα

;β =
1
3
F

∗
µ;α . (18)

To study the dynamics through the irreducible repre-
sentations Eµν , Hµν , Qα and Zα we have to perform the
four possible projection along and perpendicular to the
congruence defined by V µ. The time derivative of any
given tensor is defined as ξ̇µ ≡ ξµ;αV

α while the pro-
jected four current is written as jµ ≡ Jαh µ

α . Equation
(17) has the following projections

i)Iµβα; βVµVα : −Qβ ;β =
2
3
ρ̇

ii)Iµβα;βVαh
ρ
µ : Q̇ρ − ηρβεσZε;βV σ =

2
3

(jρ)̇

iii)Iµβα;βVµh
λ
α : −Eλβ;β −

1
2
ηλβεσZ

ε
;βV

σ =
2
3
ρ;αh

λα

iv)Iµβα;βh
ρ
µh

λ
α : Ėρλ − 1

2
ηρλεσŻ

εV σ − ηρβεσZελ;βV σ =

=
2
3

[
ρ̇V λV ρ − (jρ)̇V λ − ρ ;λV ρ + jρ;λ

]
while equation (18) give us
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v)I
∗

µβα

;βVµVα : −Zβ;β = 0 ,

vi)I
∗

µβα

;βVαh
ρ
µ : Żρ + ηρβεσQ

ε
;βV

σ =
1
3
ηρεσα j

ε ;σV α ,

vii)I
∗

µβα

;βVµh
λ
α : −Hλβ

;β −
1
2
ηλβεσQ

ε
;βV

σ =

= −1
3
ηλεσα j

ε ;σV α ,

viii)I
∗

µβα

;βh
ρ
µh

λ
α : Ḣρλ − 1

2
ηρλεσQ̇

εV σ + ηρβεσQ
ελ

;βV
σ =

=
1
3

(
ηρλεσ j

ε ;σ + V [ρ η λ]
εσα j

ε ;σV α
)

This system is composed of two scalar equations, i) and
v), two vectorial equations, ii) and vi), and four tensorial
equations, iii), iv), vii) and viii). The four tensorial equa-
tions give the dynamics of the two tensors Eµα and Hµα

and as expected are completely analogous to the gravita-
tional system except for the terms involving the vectors
Qα and Zα.

It’s also interesting to notice that the remaining four
equations define a closed system for the two vectors. In a
source-free region these four equations have exactly the
same form as Maxwell’s equations but instead of being
for the electric and magnetic fields themselves are for the
Qα and Zα vectors.

Inasmuch as this system is completely characterized,
the next step is to analyse particular solutions. With
this formulation of Maxwell’s equations we can turn
on and off the terms that distinguish gravitation and
electrodynamics. In addition, it seems reasonable to
admit that many of the technical resources for solving
some class of solutions in one of the theories can be used
to solve/study the similar type of solutions in the other
theory. Some very interesting cases will be analysed
elsewhere Ref. [55].

V. CONCLUSION

In this work, we have constructed a framework where
it is possible to properly compare electromagnetism with
gravitation. We have chosen to reformulate electrody-
namics so that its mathematical structure appears simi-
lar to the Quasi-Maxwellian formulation of General Rel-
ativity. The main point is that with our formulation the
analogies created between these theories compare objects
that play the same role in each theory.

For the sake of conciseness, we have only briefly de-
scribed the common approaches already well known in
the literature connecting Maxwell’s theory with General
Relativity. We hope to have convinced the reader that
up to now there is no satisfactory framework that incor-
porate completely both theories.

At this moment, it is imperative to mention the work
of L. Filipe Costa and Carlos A. R. Herdeiro Ref. [56].

Our formalism have been developed independently and
only recently we were aware of their work. Hence, we
decided to maintain the structure of our paper without
adding an analysis of their formalism. Actually, their
proposal is very similar to ours but there is a crucial dif-
ference: they form an analogy between Qµα with Eµα
and Zµα with Hµα. As we have explained earlier, the
proper analogies are made with the irreducible parts of
these tensor. Without the irreducible parts of Iαβµ it is
impossible to discriminate exactly where and how elec-
trodynamics differs from gravitation.

It is worth to summarize our formalism in a table sim-
ilar to the one presented in section III A:

Quasi-Einsteinnian Quasi-Maxwellian

variables Iαβµ Wαβµν

irreducibles

Qα No Analogue
Zα No Analogue
Eαβ Eαβ
Hαβ Hαβ

invariants
2 (EµνEµν −HµνH

µν) EαβEαβ −HαβHαβ+ 3 (QαQα −HαH
α)

4EµνHµν + 2QαZα 2EαβHαβ
dual symmetry restored Eαβ −→ Hαβ

symmetry only if Qµ = Zµ = 0 Hαβ −→ −Eαβ

Since we understand that we are developing a new ap-
proach to compare electrodynamics and General Relativ-
ity, it was wise to restrict our discussion and only define
the main objects and stress the internal structure of the
Quasi-Einsteinnian formalism. However, there is still a
list of promising routes to be analysed.

We have already mentioned that we expect to learn
from all the technical tools developed for one of the theo-
ries and to be able to apply into the other. Thus, a formal
map between Quasi-Maxwellian to Quasi-Einsteinnian
formalism could allow us to gain a new understanding
of old solutions. Even more interesting, there is the pos-
sibility to construct new classes of solutions, for exam-
ple, we could look for the electromagnetic analogue of
all cosmological solutions such as Friedmann -Lemâıtre
-Robertson -Walker, de Sitter, Kerr or even Gödel.

We also conjecture that it should be possible to classify
electromagnetic solutions in terms of the properties of its
invariants. It would be very interesting to compare this
classification to the well known Petrov’s classification for
the Weyl tensor.

Furthermore, one can study tidal forces in the present
of the two vector Qµ and Zµ. If these vectors vanish, all
tidal effects are equivalent to the gravitational analogue,
but in the non-vanishing case the vectors should deform
the dynamics creating a much richer situation.

We hope to verify all these possibilities in future works.
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Appendix A: Generalization for a non-inertial
congruence in curved space-time

We now consider the general case of a non-inertial ob-
server in curved space-time. The covariant derivative of
the vector field defining the observes can be characterized
by the kinematical parameters of the congruence through

Vµ;ν =
1
3
θhµν + σµν + wµν + aµVν

where θ ≡ V λ;λ is the isotropic expansion, σµν the
shear, wµν the torsion tensor and aα ≡ Vα;λV

λ the four-
acceleration vector.

To find the divergence of Iαβλ in a Riemannian mani-
fold, we recall the identity

Fµν;αβ = Fµν;βα +R µαβ
λ Fλν +R ναβ

λ Fµλ .

By contracting the ν and β indexes and using the def-
inition of Iµβα we find

Iµβα;β =
2
3
Fµ;α +RαλF

µλ +Rα µ
β λF

βλ . (A1)

The other dynamical equation can be found by taking
the covariant derivative of the Iαβλ, which combined with
equations (2) and (9) give

∇[α Iµν]β = 2Rλβ[µν Fα]λ −
1
3
(
∇[αFµ]gνβ +

+ ∇[ν Fα]gµβ +∇[µFν]gαβ
)

.

Multiplying both sides of this equation by ηραµν we
find

I
∗

ραβ
;α = R

∗
λβραFαλ +

1
3
F

∗
ρ;β . (A2)

The dynamical equations related to the divergence of
Iαβλ are generalized to

i)Iµβα; βVµVα : −Qβ ;β −Q
µaµ +

(
Eβµ +

3
2
ηµβελZ

εV λ
)
Vµ;β =

2
3

(ρ̇− jµaµ)

ii)Iµβα;βVαh
ρ
µ : Q̇ρ + θQρ − (Qρµ − V ρQµ) aµ − ηρεσβ (ZεV σ);β − V ρ;βQ

β −
(
V ρηµβεσZ

εV σ − ηρβεσZεµV σ
)
Vµ;β =

=
2
3

[
(jρ)̇ + jµaµV

ρ + ρ aρ
]

iii)Iµβα;βVµh
λ
α : −Eλβ;β −

(
Qµλ −QµV λ

)
aµ −

1
2
ηλεσβ (ZεV σ);β − V λ;βQβ +

−
(
EµβV λ +

3
2
V ληµβεσZ

εV σ − ηµβεσZελV σ
)
Vµ;β =

2
3

(ρ;α − jµVµ;α)hλα

iv)Iµβα;βh
ρ
µh

λ
α : Ėρλ + θEρλ − 1

2
ηρλεσ

(
ŻεV σ + Zεaσ + θZεV σ

)
+Qρaλ +

(
Eβλ − 1

2
ηβλεσZ

εV σ
)
V ρ;β +

+
(
V (ρEλ)µ +

1
2
V (ρηλ)µ

εσZ
εV σ

)
aµ − ηµβεσhρµhλα (ZεαV σ);β =

=
2
3

[
ρ̇V λV ρ − (jρ)̇V λ − ρ ;λV ρ + jρ;λ + jµV

µ;λV ρ − jµaµV λV ρ
]

v)I
∗

µβα

;βVµVα : −Zβ;β − Z
µaµ +

(
Hµβ − 1

2
ηµβελQ

εV λ
)
Vµ;β = 0

vi)I
∗

µβα

;βVαh
ρ
µ : Żρ + θZρ − (Zρµ − ZµV ρ) aµ + ηρµνβ (QµV ν);β − V ρ;βZ

β +
(
V ρηµβεσQ

εV σ − ηρβεσQεµV σ
)
Vµ;β =

=
1
3
ηρεσα j

ε ;σV α
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vii)I
∗

µβα

;βVµh
λ
α : −Hλβ

;β −
(
Zµλ − ZµV λ

)
aµ −

1
2
ηλεσβ (QεV σ);β − V λ;βZβ +

−
(
HµβV λ − 1

2
V ληµβεσQ

εV σ − ηµβεσQελV σ
)
Vµ;β = −1

3
ηλεσα j

ε ;σV α

viii)I
∗

µβα

;βh
ρ
µh

λ
α : Ḣρλ + θHρλ − 1

2
ηρλεσ

(
Q̇εV σ +Qεaσ + θQεV σ

)
+ Zρaλ −

(
Hβλ − 1

2
ηβλεσQ

εV σ
)
V ρ;β +

+
(
V (ρHλ)µ +

1
2
V (ρηλ)µ

εσQ
εV σ

)
aµ + ηµβεσh

ρ
µh

λ
α (QεαV σ);β =

1
3

(
ηρλεσ j

ε ;σ + V [ρ η λ]
εσα j

ε ;σV α
)
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