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Extending the Spin Projection Operators for Gravity Models with Parity-Breaking in

3-D
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We propose a new basis of spin-operators, specific for the case of planar theories, which allows
a Lagrangian decomposition into spin-parity components. The procedure enables us to discuss
unitarity and spectral properties of gravity models with parity-breaking in a systematic way.

I. INTRODUCTION

In the analysis of quantum aspects of any field theory,
considerable interest is devoted to the description of the
particle spectrum and the relativistic and quantum prop-
erties of scattering processes of the theory under investi-
gation. Some of these issues may be understood by means
of the analysis of the propagator of the theory. There are
various methods for the attainment of propagators, but,
particularly in the case of weak field approximation for
quantum gravity, which is our interest, algebraic methods
have been intensively developed, specially the one based
on the spin projection operators (SPO). The SPO has
the interesting property of decomposing fields into defi-
nite spin-parity sectors and the latter can be expressed in
terms of the transverse (θ) and longitudinal (ω) operators
as building blocks. The attainment of the propagator by
this technique for gravity models, whenever the metric is
adopted as the fundamental quantum field, was possible
using the basis built up in Ref. [1]. Later Neville [2], and
Sezgin and Nieuwenhuizen [3] extended the set of oper-
ators in order to provide a complete SPO basis (in four
dimensions) for Lagrangians containing a rank-2 tensor
and a rank-3 tensor antisymmetric in two indices. With
this basis, it was possible to discuss generalized parity-
preserving models of gravitation with the vielbein (eaµ)

and spin connection (ω ab
µ ) as fundamental fields.

Motivated by the importance of finding a suitable ba-
sis in the task of calculating tensor field propagators, this
Letter sets out to propose and discuss a possible exten-
sion of the basis of spin operators mentioned above [2, 3]
that may prove to be more appropriate for the analysis
of propagators of planar models, in special generalised
models for 3-D gravity with parity-breaking.

To understand the convenience of the properties satis-
fied by the basis proposed in [3], let us study a general
parity-preserving model:
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(L)2 =
∑

α,β

ψαOαβψβ , (1)

where Oαβ is some local differential operator and ψα
carry the 40 components (φab, χab, ωabc), with φ, χ being
the symmetric and antisymmetric quantum fluctuation
pieces of the vielbein respectively. We can systemati-
cally analyse the spectrum and unitarity of this model
by means of a decomposition in SPO in the momentum
space, as described in [3]:

(L)2 =
∑

α,β,ij,JP

ψαa
ψλ
ij

(

JP
)

P
ψλ
ij

(

JP
)

αβ
ψβ , (2)

where the diagonal operators, PΨΨ
ii

(

JP
)

, are projectors
in the spin (J) and parity (P ) sectors of the field Ψ and
the off-diagonal operators (i 6= j) implement mappings
inside the spin-parity subspace.
This basis of operators is orthonormal and complete in

the following sense:

∑

β

PΣΠ
ij

(

JP
)

αβ
PΛΞ
kl

(

IQ
)

βγ
= δPQδΠΞδjkδIJP

ΣΞ
il

(

JP
)

αγ
,

(3a)
∑

i,JP

Pii
(

JP
)

αβ
= δαβ. (3b)

If the coefficient matrices, aij(J
P ), are invertible, then

the propagator saturated with the external sources, Sα,
can be written as

Π = i
∑

S∗
αa

−1ψφ
ij P

ψφ
ij

(

JP
)

αβ
Sβ. (4)

But, if there are gauge symmetries in the model, the
coefficient matrices become degenerate. In this case, as
shown in [2], the correct saturated propagator is given by

Π = i
∑

S∗
αA

ψφ
ij P

ψφ
ij

(

JP
)

αβ
Sβ , (5)

where the Aij are the inverses of the largest submatrix
with nonzero determinant obtained from the aij . The
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sources, in this case, obey certain constraints. Both, the
gauge transformations of the fields and the source con-
straints, are obtained from the degeneracy structures of
the coefficient matrices. They are given, respectively, by:

δφα =
∑

JP ,j,β,n

V
(R,n)
j (JP )Pjk(J

P )αβfβ(J
P ), for any k

(6a)
∑

j,β

V
(L,n)
j (JP )Pkj(J

P )αβSβ(J
P ) = 0, for any k and JP

(6b)

with fβ(J
P ) being arbitrary functions and V (R,n) and

V (L,n) being the right and left null eigenvectors of
aij(J

P ). So, they are given by the relations:

∑

j

aij(J
P )V

(R,n)
j (JP ) = 0, (7a)

∑

j

V
(L,n)
j (JP )aji(J

P ) = 0, (7b)

We see, by this brief discussion, that with the basis
(3a), (3b), the analysis of the particular model we have
at hand can be reduced to the task of discussing the co-
efficient matrices. So, it is interesting to generalise this
basis in order to accommodate more general models while
keeping the same type of formalism. Even if this proce-
dure may readily be generalised to arbitrary dimensions
[4], it may however leave aside important models with
parity violation.
The motivation for our quest comes mainly from the

Chern-Simons term which appears for Yang-Mills and
gravity theories in (1 + 2)-dimensional space-time, that
have been extensively discussed in the literature [5]-[9].
Our point is that the operator brought about by the
Chern-Simons term in a Maxwell-Chern-Simons model
(we shall refer to such an operator as Sµν), motivates us
to search for operators more fundamental than the ordi-
nary θµν - and ωµν-operators. Indeed, we shall find out
two new projection operators, ρµν and σµν , in terms of
which θµν can be expressed. Our task here consists in
building up a whole set of new SPO in 3-D and, with the
help of the results presented in this Letter, we shall pave
the road for the analysis of the spectral consistency of pla-
nar quantum-field theoretic models with vector and ten-
sor fields that may encompass generalised gravity models
in 3-D.

II. BUILDING UP THE SPO BASIS

To fix ideas before we go on searching for the new
basis, it is instructive to consider a simpler case where
the Levi-Civita tensor is present. In 3-D, we can define
the Maxwell-Chern-Simons Lagrangian as:

LMCS = −1

4
FµνF

µν +
µ

2
ǫµνκAµ∂νAκ. (8)

It is easy to convince ourselves that, if one allows to
express the wave operators only in terms of the metric
tensor and derivatives (powers of momenta in momentum
space), the basic elements needed to expand the operator
are the θ’s and ω’s. This is not the case if the Levi-Civita
tensor appears in the wave operator. Since ǫ cannot be
written in terms of θ’s and ω’s, we are forced to enlarge
the number of building blocks and, this is actually our
main point to extend the usual basis of spin-operators as
we have already mentioned above.
The Lagrangian (8) can be brought into the form:

LMCS =
1

2
AµOµνA

ν , (9)

with Oµν in momentum space, given by:

Oµν = θµν + µSµν , (10)

where Sµκ = ǫµνκk
ν .

If we wish to obtain the propagator, we must know
the algebraic properites between basic operators that we
have at hand. We can show that:

θ2 = θ, ω2 = ω, θω = ωθ = 0,

S2 = −θ, Sθ = θS = S, Sω = ωS = 0. (11)

With these relations, we see that the operator S is
a transverse one. That is, it is a linear operator that
maps an arbitrary vector into another vector that lies in
the transverse subspace. But, this vector is independent
of the vector that is obtained by the action of the θ-
operator. This is possible since the transverse subspace
in 3-D is two dimensional. Surely, we can exhaust all
possible transverse operators if we define a basis in this
transverse subspace. Taking two orthonormal space-like
vectors (e1 and e2) in the transverse subspace, we may de-
fine two operators that project onto the one-dimensional
subspace spanned by each one of these vectors and two
operators that implement mappings between these two
subspaces. Let us define the two projectors by the rela-
tion:

θµν = ρµν + σµν , (12)

with

ρµν = −(e1)µ(e1)ν , (13a)

σµν = −(e2)µ(e2)ν , (13b)

where,
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e1.e1 = e2.e2 = −1, e1.e2 = 0. (14)

One can show that the other two operators that ac-
complish the mappings can be given by:

(P12)µν = ρµρσνσǫ
ρσλ kλ√

k2
, (15a)

(P21)µν = σµσρνρǫ
ρσλ kλ√

k2
. (15b)

The four operators we have defined satisfy:

(P11)
2 = P11, (16a)

(P22)
2 = P22, (16b)

P12P21 = P11, (16c)

P21P12 = P22, (16d)

with P11 ≡ ρ and P22 ≡ σ.
We stress that our interest is on gravity theories in

first-order formalism. In this manner, the fundamental
fields are the vielbein and spin connection. Another im-
portant application of these basis is the possibility of tak-
ing advantage from the dual aspect of the fields. So, even
if the wave operator does not explicitly contain the Levi-
Civita tensor, the latter may indirectly appear. Once the
Lagrangian is written in terms of the quantum fluctua-
tions of eaµ and ω ab

µ , the ǫ-tensor may come in if the
Lagrangian needs to be written in termos of the dual
fields of these fluctuations. Using the duality relations,
the quantum fluctuations can be written as:

ẽµν = φµν + ǫµνκχ
κ, (17a)

ω̃ νκ
µ = ǫνκσ (ψµσ + ǫµσρλ

ρ) , (17b)

We have dropped the distinction between greek and latin
indices, since we have assumed that the fluctuations are
about a Minkowski vacuum. In the relations (17a) and
(17b), φµν is the symmetric part of the vielbein fluctua-
tion and χκ is the vector dual to the antisymmetric one,
ψµσ is the symmetric part of the field dual to the spin
connection fluctuation and λρ is the vector dual to the
antisymmetric part of the dual field. In the sequel, we
shall consider these fields as the fundamental ones.
The task of finding a basis of operators that act on

the vectors fields χ and λ has already been carried out,
since we only need to add the longitudinal operator, ω, to
the list (16d). In the work of Ref.[4], the spin projectors
for symmetric rank-2 tensor was obtained for arbitrary
dimension. These projectors have been written in terms
of θ’s and ω’s. But, as we have seen, θ can be split into
two more basic projectors and, with this, we increase the
possibilities of construction of wave operators. In the
same way, we can also use the relation (12) to split the

spin projectors of [4] for D=3 into more basic ones. As
an example, let us take one of the projectors and analyse
how this works:

Pφφ(2+)ab;cd =
1

2
(θacθbd + θadθbc)−

1

2
θabθcd. (18)

Substituting (12) in the expression (18), we obtain two
projectors in terms of ρ and σ, one for each degree of
freedom of spin:

P
φφ
11 (2−)ab;cd =

1

2
(ρacσbd + ρadσbc + σacρbd + σadρbc),

(19a)

P
φφ
22 (2+)ab;cd =

1

2
(ρadρbc + σadσbc)−

1

2
(ρabσcd + σabρcd).

(19b)

The mappings between the degrees of freedom are carried
out by:

P
φφ
12 (2−+)ab;cd =

1

2
ǫghe(ρacσ

h
b ρ

g
d + ρbcσ

h
aρ

g
d

− σadρ
g
bσ

h
c − σbdρ

g
aσ

h
c )

ke√
k2
, (20a)

P
φφ
21 (2+−)ab;cd =

1

2
ǫghe(ρcaσ

h
dρ

g
b + ρdaσ

h
c ρ

g
b

− σcbρ
g
dσ

h
a − σbdρ

g
cσ

h
a )

ke√
k2
. (20b)

Before we proceed, let us clarify the notation. The nota-
tion in (18) is imported from 4-D and it makes strictly
physical sense only in 4-D. If the symbols do not lead
to wrong physical conclusions, we preserve them in 3-D.
But, in terms of ρ and σ, extra care must be taken. Ac-
tually, the operators above do not project over the whole
spin-2 space, but rather over a sub-sector of the degrees
of freedom carried by a spin-2. The most important dif-
ference concerns parity. In 4-D, we can fix the parity of
an operator by counting the number of field contractions
with the θ’s present in the given operator. This is so be-
cause θ projects a Lorentz index in the 1−-sector. That
is, we associate a parity ”-” with the subspace projected
by θ. This makes sense, since the representation of parity
in Minkowsky vector space is given by:

P =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






, (21)

and, for a massive particle in the rest frame, we can as-
sume that the transverse space is the 3-D spatial part of
Minkowsky space. So, the parity operation changes the
sign of the spatial components of the vector. However, in
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3-D, a parity operator distiguishes one particular space
direction. For example, we can define it as:

P =





1 0 0
0 1 0
0 0 −1



 . (22)

In this form, the transverse operator can be split as the
direct sum of two subspaces, each one associated with
one parity. By convention, let us choose the subspace
projected by σ as the one related to the ”-” parity. So,
in 3-D, the parity of the operators is given by counting
the number of indices contracted by the σ operator. This
justifies the prescription we have done to the operators
(19a), (19b), (20a) and (20b).
By construction, the operators defined above satisfy

the relations below:

Pφφ(2+) = P
φφ
11 (2++) + P

φφ
22 (2−−), (23a)

(P11)
2 = P11, (23b)

(P22)
2 = P22, (23c)

P12P21 = P11, (23d)

P21P12 = P22. (23e)

This process of decomposition can be repeated for all
operators needed to exhaust all the possiblities of con-
traction of the fields in the free Lagrangian. Before we
write down the explicit form of the operators in our ba-
sis, it is worthy to mention that they carry a pair of
superscripts (ψ1 = ψ, ψ2 = φ, λ1 = λ, λ2 = χ) and a
pair of subscripts (i1, j1 = 1, 2; i2, j2 = 3, 4; i3, j3 = 5, 6;
i4, j4 = 7, 8). The operators, in terms of ρ, σ and ω, are
finally cast below:

1. P
ψi1

ψj1

i1j1
(1++)ab;cd =

1
2 (ρacωbd + ρbcωad + ρadωbc + ρbdωac)

2. P
ψi2−2ψj2−2

i2j2
(1−−)ab;cd =

1
2 (σacωbd + σbcωad + σadωbc + σbdωac)

3. P
ψi1

ψj2−2

i1j2
(1+−)ab;cd =

1
2ǫghe(ρ

g
aσ

h
c ωbd + ρ

g
bσ

h
c ωad + ρgaσ

h
dωbc + ρ

g
bσ

h
dωac)

ke√
k2

4. P
ψi2−2ψj1

i2j1
(1−+)ab;cd =

1
2ǫghe(σ

h
aρ

g
cωdb + σhaρ

g
dωcb + σhb ρ

g
cωda + σhb ρ

g
dωca)

ke√
k2

5. P
λi3−4λj3−4

i3j3
(1++)ab = ρab

6. P
λi4−6λj4−6

i4j4
(1−−)ab = σab

7. P
λi3−4λj4−6

i3j4
(1+−)ab = ρgaǫghe

ke√
k2
σhb

8. P
λi4−6λj3−4

i4j3
(1−+)ab = σhaǫghe

ke√
k2
ρ
g
b

9. P
ψi1

λj3−4

i1j3
(1++)ab;c =

1√
2k2

(ρackb + ρbcka)

10. P
λi3−4ψj1

i3j1
(1++)a;bc =

1√
2k2

(ρbakc + ρcakb)

11. P
ψi2−2λj4−6

i2j4
(1−−)ab;c =

1√
2k2

(σackb + σbcka)

12. P
λi4−6ψj2−2

i4j2
(1−−)a;bc =

1√
2k2

(σbakc + σcakb)

13. P
ψi2−2λj3−4

i2j3
(1−+)ab;c =

1√
2
ǫghe(σ

h
aρ

g
cωeb + σhb ρ

g
cωea)

14. P
λi3−4ψj2−2

i3j2
(1+−)a;bc =

1√
2
ǫghe(σ

h
b ρ

g
aωec + σhc ρ

g
aωeb)

15. P
ψi1

λj4−6

i1j4
(1+−)ab;c =

1√
2
ǫghe(ρagσ

h
c ωbe + ρbgσ

h
c ωae)
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16. P
λi4−6ψj1

i4j1
(1−+)a;bc =

1√
2
ǫghe(ρbgσ

h
aωce + ρcgσ

h
aωbe)

17. P
ψi1

ψj1

i1j1
(0++)ab;cd =

1
2θabθcd

18. P
ψi2−2ψj2−2

i2j2
(0++)ab;cd = ωabωcd

19. P
ψi1

ψj2−2

i1j2
(0++)ab;cd =

1√
2
θabωcd

20. P
ψi2−2ψj1

i2j1
(0++)ab;cd =

1√
2
ωabθcd

21. P
λi3−4λj3−4

i3j3
(0++)ab = ωab

22. P
ψi1

λj3−4

i1j3
(0++)ab;c =

1√
2
θab

kc√
k2

23. P
λi3−4ψj1

i3j1
(0++)a;bc =

1√
2
θbc

ka√
k2

24. P
ψi2−2λj3−4

i2j3
(0++)ab;c = ωab

kc√
k2

25. P
λi3−4ψj2−2

i3j2
(0++)a;bc = ωbc

ka√
k2

26. P
ψi2−2ψj2−2

i2j2
(2−−)ab;cd =

1
2 (ρacσbd + ρadσbc + σacρbd + σadρbc)

27. P
ψi1

ψj1

i1j1
(2++)ab;cd =

1
2 (ρadρbc + σadσbc)− 1

2 (ρabσcd + σabρcd)

28. P
ψi2−2ψj1

i2j1
(2−+)ab;cd =

1
2ǫghe(ρacσ

h
b ρ

g
d + ρbcσ

h
aρ

g
d − σadρ

g
bσ

h
c − σbdρ

g
aσ

h
c )

ke√
k2

29. P
ψi1

ψj2

i1j2
(2+−)ab;cd =

1
2ǫghe(ρcaσ

h
dρ

g
b + ρdaσ

h
c ρ

g
b − σcbρ

g
dσ

h
a − σbdρ

g
cσ

h
a )

ke√
k2
.

The off-diagonal operators have been obtained in such
a way that the following multiplicative rules and com-
pleteness relation are fulfilled:

∑

β

PΣΨ
ij (IPQ)αβP

ΛΞ
kl (JRS)βγ = δjkδ

ΨΛδIJδQRPΣΞ
il (IPS)αγ ,

(24a)
∑

i,IPP

Pii(I
PP )αβ = δαβ , (24b)

and, as we have claimed at the beggining, this makes
possible to analyse generalised parity-violating gravity
models in 3-D, by using the same techniques as the ones
presented in [3]. There are only slight differences due to
the notation and role played by parity. In the present
case, the wave operators is written as:

Oαβ =
∑

J,ij

aΣΛ
ij (J)PΣΛ

ij (JPQ)αβ , (25)

and the saturated propagator, in the case of gauge sym-
metries, can be cast as below:

Π = i
∑

J,ij

S∗
αA

ΣΛ
ij (J)PΣΛ

ij (JPQ)αβSβ , (26)

where Aij(J) is the inverse of the largest submatrix of the
aij(J) with the degeneracies extracted. The important
fact is that these coefficient matrices accommodate the
coefficients of the operators with both parities. Besides
these subtle aspects, the rest of the analysis goes along
the same paths as it has been carried out with the basis
(3a).

A detailed application of the general procedure we de-
velop here is worthwhile. Indeed, the study of a 3-D
model for gravity in the presence of dynamical torsion
and higher power of the curvature is under progress and
the efficacy of the projectors we have presented here be-
comes manifest in this application. These results shall
soon be reported elsewhere [10].
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