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Might EPR particles communicate through a wormhole?
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Abstract – We consider the two-particle wave function of an Einstein-Podolsky-Rosen system,
given by a two-dimensional relativistic scalar field model. The Bohm-de Broglie interpretation
is applied and the quantum potential is viewed as modifying the Minkowski geometry. In this
way an effective metric, which is analogous to a black hole metric in some limited region, is
obtained in one case and a particular metric with singularities appears in the other case, opening
the possibility, following Holland, of interpreting the EPR correlations as being originated by an
effective wormhole geometry, through which the physical signals can propagate.
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Introduction. – There is an increasing interest in the
application of the Bohm-de Broglie (BdB) interpretation
of quantum mechanics to several areas, such as quantum
cosmology, quantum gravity and quantum field theory,
see, for example, [1–5]. In this work, we develop a causal
approach to the Einstein-Podolsky-Rosen (EPR) prob-
lem, i.e. a two-particle correlated system. We attack the
problem from the point of view of quantum field theory,
considering the two-particle function for a scalar field. In
the BdB approach, it is possible to interpret the quan-
tum effects as modifying the geometry in such a way that
the scalar particles see an effective geometry. As a first
example, we show that a two-dimensional EPR model,
in a particular quantum state and under a non-tachyonic
approximating condition, can exhibit an effective metric
that is analogous to a two-dimensional black hole (BH) in
some region (which is limited by the approximations we
made). In a second example, for a two-dimensional static
EPR model we are able to show that quantum effects
produce an effective geometry with singularities in the
metric, a key ingredient of a bridge construction or worm-
hole. In this way, and following a suggestion by Holland [6],
we can envisage the possibility of interpreting the EPR
correlations as driven by an effective wormhole, through
which physical signals can propagate. This letter is orga-
nized as follows: in the next section we recall the basic
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features of a relativistic scalar field and write the two-
particle wave equation. Then, we apply the BdB inter-
pretation to it and, from the generalized Hamilton-Jacobi
equation, we visualize the quantum potential as generat-
ing an effective metric. Having done that, we next study
two-dimensional EPR models and show how the effective
metric appears, being a BH metric (in some region) in the
first example and a particular metric with singularities in
the second. The last section is for the conclusions.

Scalar field theory and its BdB interpretation.
– The Schrödinger functional equation for a quantum
relativistic scalar field is given by

i�
∂Ψ(φ, t)

∂t
=

∫
d3x

{
1

2

[
− �2 δ

2

δφ2
+(∇φ)2

]
+U(φ)

}
Ψ(φ, t),

(1)

where Ψ(φ, t) is a functional with respect to φ(x) and a
function with respect to t. A normalized solution Ψ(φ, t)
can be expanded as

Ψ[φ, t] =
∞∑
n=0

∫
d3k1 . . . d

3kncn(�k
n, t)Ψ

n,�kn [φ], (2)

where �k(n) ≡ {k1, . . .kn} and kj is the momenta of particle
j, being the functionals Ψ

n,�k(n) [φ] a complete orthonormal
basis.
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For free fields, the n-particle wave function is given by
(see, for example, [7,8])

ψn(�x
(n), t) = 〈0|φ̂(t,x1)...φ̂(t,xn)|Ψ〉, (3)

where �x(n) ≡ {x1, . . .xn}.
The wave function (3) satisifies

n∑
j=0

[
(∂µ∂µ)j +

m2c2

�2

]
ψn(�x

(n), t) = 0. (4)

For the two-particle wave function we have

2∑
j=1

[
(∂µ∂µ)j +

m2c2

�2

]
ψ2(�x

(2), t) = 0 (5)

which is [
(∂µ∂µ)1+

m2c2

�2

]
ψ2(x1,x2, t)

+

[
(∂µ∂µ)2+

m2c2

�2

]
ψ2(x1,x2, t) = 0. (6)

In order to apply the BdB interpretation, we substitute
ψ2 =R exp(iS/�) in eq. (6) obtaining two equations, one
for the real part and the other for the imaginary part. The
first equation reads

∂µ1S∂µ1S−m2c2− �2
(∂µ∂µ)1R

R

+ ∂µ2S∂µ2S−m2c2− �2
(∂µ∂µ)2R

R
= 0 (7)

that can be written as

ηµ1ν1∂µ1S∂ν1S+ η
µ2ν2∂µ2S∂ν2S = 2c

2M2, (8)

where ηµν is the Minkowski metric and

M2 ≡m2
(
1− Q

2m2c2

)
(9)

with

Q≡−�2 (∂
µ∂µ)1R

R
− �2 (∂

µ∂µ)2R

R
. (10)

The equation that comes from the imaginary part is

ηµ1ν1∂µ1(R
2∂ν1S)+ η

µ2ν2∂µ2(R
2∂ν2S) = 0 (11)

which is a continuity equation.
Equation (8) is the Hamilton-Jacobi equation for a 2-

particle system of mass 2M. The term Q is the quantum
potential whose effect can be interpreted as a modification
of the system’s mass with respect to its classical value 2m.
We see that M2 is not positive-definite, a feature that
is associated whith the existence of tachyonic solutions.
To overcome this problem one can, for example, choose
initial conditions in such a way that a positiveM2 value
is obtained for an initial time. Because of the continuity
equation, this will be true all the time.

Now, following an idea proposed by De Broglie [9] and
fruitfully applied to gravity in [3] and [4], we can rewrite
the Hamilton-Jacobi equation (8) as

ηµ1ν1

(1− Q
2m2c2 )

∂µ1S∂ν1S+
ηµ2ν2

(1− Q
2m2c2 )

∂µ2S∂ν2S = 2m
2c2.

(12)

We can interpret the quantum effects as realizing a
conformal transformation of the Minkowski metric ηµν in
such a way that the effective metric is given by

gµν =

(
1− Q

2m2c2

)
ηµν (13)

and eq. (12) can be written as

Dµ1SDµ1S+Dµ2SDµ2S = 2m2c2, (14)

where Dµ stands for a covariant differentiation with
respect to the metric gµν and ∂µS =DµS, because S is
a scalar.
Then, as was already shown by Shojai et al. in [3],

the quantum potential modifies the background geometry
giving a curved space-time with the metric given by
eq. (13). In some appearances, according to Shojai, space-
time geometry shows a dual aspect: it sometimes looks like
(semiclassical) gravity and sometimes looks like quantum
effects.

Two-dimensional models. – Two-dimensional
models have been studied for a long time, in order to
address subjects such as gravitational collapse, black holes
and quantum effects. We analyse two-dimensional models
because some aspects in a low-dimensional model have
the same behavior as the more realistic four-dimensional
models1. In this section, we are going to show two
examples in two dimensions of a two-particle EPR system
that exhibit an effective metric, as in eq. (13). Because
of the singularities of this effective metric, it resembles
a two-dimensional BH-type solution, as presented in [4]
and [10], and this is the key that could allow us to
connect the EPR correlations with an effective wormhole
geometry. Before presenting the examples, we briefly
recall the basic features of that solution.
The two-dimensional BH presented in [10] consists of

a point particle situated at the origin, with density ρ=
M
2πGN

δ(x), where M is the mass of the particle and GN is
the Newton gravitational constant. A symmetric solution
of the field equation of this problem, without cosmological
constant (see [10], sect. 3), is given by the metric

ds2 =−(2M |x| −C)dt2+ dx2

2M |x| −C , (15)

where C is a constant. The sign of the quantity α≡
2M |x| −C determines the type of region: timelike regions
1Furthermore, low-dimensional models appear naturally in effec-

tive string theories.
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are for positive α and spacelike regions are for negative α.
The points at which α(x) = 0 are coordinate singularities
and locate the event horizons of the space, which in the
present case are at

|x|= C

2M
. (16)

The horizons only exist if C and M are of the same sign.
For example, for positive C and positive M , there are
two horizons, at xh =∓ C

2M , with the source located in
a spacelike region surrounded by two timelike regions. In
particular, if C = 0 and M > 0 there is only one horizon
at x= 0 surrounded by a timelike region. The metric (15)
can be cast in “conformal coordinates” (t, y) (see [10],
sect. 3). For example, in the case ofM and C positives, the

transformation x= C+e
2My

2M , for x∈ ( C2M ,∞), transform
the metric in

ds2 = e2My(−dt2+dy2). (17)

In the following part of this section we consider two-
dimensional models for the EPR problem.
First example: non-tachyonic EPR model. For the two-

particle system, we obtained a conformal transformation
of the metric where the conformal factor is associated
with the quantum potential, eq. (13). We shall deal here
with the non-tachyonic case, i.e. we need to impose the
positivity ofM2. One way to do this is to assume that Q is
a small perturbation, viewing eq. (9) as an approximation,
to first order in Q

2m2c2 , of an exponential:

M2 =m2 exp

(
− Q

2m2c2

)
�m2

(
1− Q

2m2c2

)
(18)

which is valid for ∣∣∣∣ Q

2m2c2

∣∣∣∣	 1. (19)

Then, with this assumption, which means a very
restricted example, we have for the effective metric,
eq. (13):

gµν = exp(− Q

2m2c2
)ηµν . (20)

Now we assume that our two-dimensional two-particle
system satisfies an EPR condition, i.e., their positions
x1 and x2 are correlated in such a way that x1+x2 =
const [11]. Then, the dependence of the amplitude R (and
of the quantum potential Q) on the coordinates x1 and x2,
can be cast as a function of only one coordinate, say x1,
and defining z ≡ x1 and assuming that the amplitude of
the state is independent of time (see below, eq. (22)), we
can write, with a little abuse of notation, R=R(x1, x2) =
R(z) and Q=Q(x1, x2) =Q(z).
The line element now becomes

ds2 = exp

(
− Q(z)

2m2c2

)
(−dt2+dz2). (21)

We are now going to make the assumption that the
quantum entangled state is prepared in such a way that
its amplitude is given by the (real) Airy function [12]:

R(z) =
A

π

∫ ∞
0

cos

(
− s
(
z+

K�2

2Mm2c2

)

×
(
2Mm2c2

�2

)1/3
+
s3

3

)
ds, (22)

where K and M are integration constants (positive, for
instance) and A is a normalization constant. Then the
amplitude R(z) satisfies the equation

d2R

dz2
+

(
K +

2Mm2c2

�2
z

)
R= 0 (23)

and taking into account the definition of the quantum
potential, eq. (10), we can see that Q satisfies

dQ

dz
= 4Mm2c2. (24)

Defining a coordinate transformation from z to y by

means of 2My=− Q(z)
2m2c2 the line element (21) in (t, y)

“conformal coordinates” reads

ds2 = e2My(−dt2+dy2). (25)

Now we can make a coordinate transformation from y
to x by means of

2Mx=C + e2My , (26)

where C is a constant and x∈ ( C2M ,∞). The line element
ds2 in terms of the (t, x) coordinates is given now by

ds2 =−(2M |x| −C)dt2+ dx2

2M |x| −C , (27)

where we made a symmetrical extension for the other
values of x other than ( C2M ,∞) (see [10]). Hence, we arrive
at the same metric defining a two-dimensional BH-type
solution, eq. (15). In spite of this similarity, we must stress
that the metric for the analysed EPR problem is given by
eq. (27) only when the approximation given by eq. (19)
and the assumption (22) are satisfied, which means only
for x in the region defined by

2M |x| −C = e−2Mz, with |2Mz| 	 1 (28)

or

x∈
(
1+C

2M
− ε, 1+C

2M
+ ε

)
(29)

being ε a constant satisfying 0< ε	 1
2M . (Here we used

the particular form of Q, Q= 4Mm2c2z, that comes
from (23) with K = 0). In fact, the extension we made,
led us beyond the region of validity of our approximation,
for 2M |x| −C very different from 1. Hence we can consider
this particular EPR problem as an analog model of a BH,
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only in some limited region which is given by (29). The
coordinate singularities are located at x=∓ C

2M , at the
poles of the quantum potential Q(z), but they are outside
the region (29) and the approximation (19) breaks down.
This makes our present example very limited. Let us now
consider our next example.
Second example: a static model. In the last part of

this section we shall show a very simple example where
singularities are present in the transformed metric. We
consider again the two-particle wave function of a scalar
field in two dimensions. Following the approach of Alves
in [4] we shall see that, for the static case, it is possible
to obtain a solution as a metric of the curved space-time
(the effective metric), which comes from eqs. (8) and (11).
In the present case, these equations are

η11∂x1S∂x1S+ η
11∂x2S∂x2S = 2m

2c2
(
1− Q

2m2c2

)
, (30)

∂x1(R
2∂x1S)+ ∂x2(R

2∂x2S) = 0 . (31)

Now we consider that our two-particle system satisfies
the EPR condition p1 =−p2 which in the BdB interpreta-
tion, using the Bohm guidance equation p= ∂xS, can be
written as

∂x1S =−∂x2S. (32)

Using this condition in eq. (31), we have

∂x1(R
2∂x1S) = ∂x2(R

2∂x1S) (33)

and this equation has the solution

R2
∂S

∂x1
=G(x1+x2), (34)

where G is an arbitrary (well-behaved) function of x1+x2.
Substituting eq. (34) in eq. (30), we have

2m2c2
(
1− Q

2m2c2

)
= 2

(
G

R2

)2
(35)

and taking into account the expression (10) for the
quantum potential, the last equation reads

8G2+ �2(∂x1(R
2))2− �22R2∂2x1R2+ �2(∂x2(R2))2

−�22R2∂2x2R2− 8m2c2R4 = 0. (36)

A solution of this nonlinear equation is

R2 =
1

2m2c2

(
C1 sin

(mc
�
(x1+x2)

)
+C2

)
(37)

provided a suitable function G(x1+x2), which can be
obtained from (36) by substituting the solution.
In order to interpret the effect of the quantum potential,

we can re-write eq. (30) using (35) obtaining

η11∂x1S∂x1S+ η
11∂x2S∂x2S = 2

(
G

R2

)2
(38)

or

m2
η11

( G
R2
)2
∂x1S∂x1S+m

2 η11

( G
R2
)2
∂x2S∂x2S = 2m

2 (39)

that we write as

g11∂x1S∂x1S+ g
11∂x2S∂x2S = 2m

2c2 (40)

and then we see that the quantum potential was
“absorbed” in the new metric g11, which is

g11 =
1
g11
= η11
c2m2
( G
R2
)2 =

1
4

2C21 sin
2(mc� (x1+x2))−C21 cos2(mc� (x1+x2))−2C1C2 sin(mc� (x1+x2))

(C1 sin(mc� (x1+x2))+C2)
2 .

(41)

We can see that this metric is singular at the zeroes of
the denominator in (41). According to the model reviewed
at the begining of this section, this is characteristic of a
two-dimensional BH solution (see [4] and [10]). Then our
two-particle system “sees” an effective metric with singu-
larities, a fundamental component of a wormhole [13],
through which the physical signals can propagate2.

Conclusion. – We studied the two-particle state of
a scalar field under the EPR condition for the two-
dimensional case, in two situations, a non-tachyonic case
and a static one. We found that the quantum potential can
be interpreted as realizing a conformal transformation of
the Minkowski metric to an effective metric. In the first
situation, this effective metric is analogous to a BH metric
in some limited region and in the second situation the
metric contains singularities, a key ingredient of a bridge
construction or wormhole. This opens the possibility,
following a suggestion by Holland [6], of interpreting the
EPR correlations of the entangled particles as driven by an
effective wormhole. Obviously, a more realistic (i.e. four-
dimensional) and more sophisticated model (i.e. including
the spin of the particles) must be studied.
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b2
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opening out to another asymptotically flat region connected with
the first through a wormhole of size 2b.
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