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Abstract – The ARCH process (Engle R. F., Econometrica, 50 (1982) 987) constitutes a
paradigmatic generator of stochastic time series with time-dependent variance like it appears
on a wide variety of systems besides economics in which ARCH was born. Although the ARCH
process captures the so-called “volatility clustering” and the asymptotic power law probability
density distribution of the random variable, it is not capable to reproduce further statistical
properties of many of these time series such as: the strong persistence of the instantaneous variance
characterised by large values of the Hurst exponent (H > 0.8), and asymptotic power law decay of
the absolute values self-correlation function. By means of considering an effective return obtained

from a correlation of past returns that has a q-exponential form (expq[x]≡ [1+ (1− q)x]
1

1−q ,
(q ∈ℜ), and exp1[x] = e

x) we are able to fix the limitations of the original model. Moreover, this
improvement can be obtained through the correct choice of a sole additional parameter, qm. The
assessment of its validity and usefulness is made by mimicking daily fluctuations of the SP500
financial index.
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The time evolution analysis of both physical and
non-physical observables plays a central role in nowadays
scientific research devoted to complexity. Explicitly,
studies on time series with geophysical, meteorological,
physiological, and financial origin, amid others, have
populated scientific literature particularly during the
last two decades [1,2]. Although each type of system has
its own (microscopic) dynamical mechanism, the fact is
that certain time series obtained from so dispair systems,
like those mentioned above, exhibit common statistical
features such as asymptotic power-law decaying probabil-
ity density functions, and a long-lasting power-law-like
self-correlation function of the magnitude of the time

series observable, notwithstanding a fast vanishing or
null self-correlation function of the variable itself. This
special class of time series has usually been associated
with stochastic processes which have time-dependent
variance, mathematically defined as heteroskedasticity, in
contrast to the other type of time series, said homoskedas-
tic, that present a constant value for the variance.
Customarily, the profile of heteroskedastic time series is

(a)E-mail: sdqueiro@cbpf.br

also reminiscent of on-off intermittency [3], i.e., large
values of the variable upon analysis are typically followed
by other large values, but with an arbitrary sign. Within
a financial context, this behaviour has been found in
price fluctuations of stocks traded in financial markets or
inflation [4]. In 1982, to further mimic the latter, Engle
introduced the autoregressive conditional heteroskedastic-
ity (ARCH) process [5]. This process is considered as a
cornerstone of econometrics fact that awarded Engle the
2003 Nobel Memorial Prize in Economics “for methods
of analysing economic time series with time-varying
volatility”1. Albeit ARCH importance, that is attested
through its broad application and generalisations [6],
Engle’s proposal is unable to properly reproduce the
long-lasting behaviour of the volatility self-correlation
function, because it only leads to an exponential decay of
this function [7]. In the sequel of this letter we propose
a generalisation of the celebrated ARCH (1) process
by introducing a memory kernel emerging from current
non-extensive statistical mechanics formalism [8]. As a

1Volatility is the financial technical term for instantaneous
variance.
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result, we are able to obtain the asymptotic power law
behaviour of the random variable probability density
function, which is notably described by q-Gaussian
distributions, and to mend the shortcoming of Engle’s
process. The usefulness of this generalisation is shown by
modelling daily fluctuations of the SP500 financial index.
Following Engle [5], we define an autoregressive condi-

tional heteroskedastic (ARCH) time series as a discrete
stochastic process, zt,

zt = σt ωt, (1)

where ωt is an independent and identically distributed
random variable with null mean and unitary variance, i.e.,
〈ωt〉= 0 and 〈ω2t 〉= 1. Henceforth, we call zt as return.
Normally, ω is associated with a Gaussian distribution
(which we have used throughout this work), but other
distributions for ω have been presented [9]. In the seminal
paper of ref. [5], it has been suggested a possible dynamics
for σ2t (hereinafter denominated as squared volatility)
defining it as a linear function of past squared values of zt,

σ2t = a+
s
∑

i=1

bi z
2
t−i (a, bi � 0). (2)

For its linear dependence on z2t−i, eq. (1), together with
eq. (2), have been coined as ARCH (s) linear process. In
financial practice, namely price fluctuation modelling, the
case s= 1 (b1 ≡ b) is, by far, the most studied and applied
of all ARCH-like processes. It can be easily verified, even
for all s, that, although 〈zt zt′〉 ∼ δt t′ , the correlation
〈|zt||zt′ |〉 is not proportional to δt t′ . As a matter of fact,
it has been proved for s= 1 that, 〈|zt||zt′ |〉 decays as
an exponential law with characteristic time τ ≡ |ln b|−1,
which does not reproduce empirical evidences [4]. It has
also been proved that, even for large s, the exponential
decay of 〈|zt||zt′ |〉 remains (check ref. [7] for details).
Furthermore, the introduction of a large value for para-
meter s gives rise to implementation problems. In other
words, when s is large, it is very hard to find a set of
{bi}, since it represents the evaluation of a large number
of fitting parameters2. Despite instantaneous volatility
fluctuation, the ARCH (1) process is actually stationary
with a stationary variance, σ̄,

σ̄=
a

1− b (b > 1). (3)

Moreover, it presents a stationary returns probability
density function with larger kurtosis than the distribution
P (ω). The kurtosis excess is precisely the outcome of
such time-dependence of σt. Correspondingly, when b= 0,

2A generalisation of eq. (2), σ2t = a+
s∑

i=1
biz
2
t−i+

r∑

i=1
ci σ

2
t−i

(a, bi, ci � 0), known as GARCH (s, r) process [10], was introduced
in order to have a more flexible structure which could correctly
mimic data with a simple GARCH (1, 1) process. However, even this
process presents an exponential decay for 〈|zt||zt′ |〉, with τ ≡ |ln(b+
c)|−1, though condition b+ c < 1 guarantees that GARCH (1, 1)
corresponds exactly to an infinite-order ARCH process.

the process reduces to generating a signal with the same
PDF of ω, but with a standard variation

√
a.

We shall now introduce our variation on the ARCH (1)
process. Explicitly, we consider a ARCH (1) process where
an effective immediate past return, z̃t−1, is assumed in the
evaluation of σ2t . By this we mean that we have changed
eq. (2) by

σ2t = a+ b z̃
2
t−1 (a, bi � 0), (4)

in which the effective past return is calculated according to

z̃2t =

t
∑

i=t0

K(i− t) z2i (t0 � t), (5)

where

K(t′) = 1

Zqm(t)
expqm [t

′] (−t� t′ � 0, qm < 2) (6)

with

expq[x]≡ [1+ (1− q)x]
1

1−q

+ , (7)

Zqm(t)≡
∑0
i=−t expqm [i], and [x]+ =max{0, x} (see

footnote 3). In the preceding formulae we have assumed
t0 = 0. For q=−∞, we obtain the standard ARCH (1),
and for q= 1, we have K(t′) with an exponential form
since exp1[x] = e

x [8]. Although it has a non-normalisable
kernel, let us refer that the value qm =∞ corresponds
to the situation in which all past returns have the same
weight, K(t′) = 1/(t− t0+1). The introduction of an
exponential kernel has already been made in ref. [11] but,
as stated therein, it is not able to capture the long-lasting
correlation in σt (or |zt|), at least for financial markets4.
Even though, we surmise that some systems (apart
those we aim to replicate herein) might have a set of
its statistical properties well-described by processes for
which qm � 1. Considering the process as stationary, it
is not difficult to verify that eq. (3) holds. Additionally,
because of the white noise nature of ω(t), it should be
stressed that we always have the self-correlation function,

Cτ (x) =
〈x(t)x(t+ τ)〉− 〈x(t) 〉2
〈x(t) 2〉− 〈x(t) 〉2 , (8)

for returns, Cτ (zt), equal to zero (except when t= t
′). This

occurs notwithstanding the fact that there is a memory
in σt given by eq. (6). Specifically, if we use eq. (1) and
eq. (4) to calculate (zt zt′), it is verifiable that only terms
with odd exponents in ω(t) and/or ω(t′) appear. Hence,
when we calculate the average 〈zt zt′〉, it vanishes for all
t′ �= t. (This has been numerically confirmed, and it is
presented in the upper panel of fig. 4.)
Moving ahead on the study of our proposal we have

performed numerical realisations, based on eq. (1) and

3This condition is known in the literature as Tsallis cut off at
x= (1− q)−1.
4A worth mentioning continuous time approach to price dynamics

in stock markets using an exponential kernel was presented in
ref. [12].
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Fig. 1: (Colour on-line) Left panel: Entropic index q of eq. (9) vs. parameter b for several values of the memory index qm. All the
numerical adjustments to obtain q have a χ2 (per degree of freedom) error function of the order of 10−5 and squared correlation
coefficient R2 ∼ 0.999. Right panel: Hurst exponent H vs. parameter b for several values of the memory index qm obtained by
the DFA method. The numerical adjustments we have made present a correlation coefficient R∼ 0.999. The runs that lead to
the values depicted in both panels have 106 elements.

eq. (4), from which we have analysed the return prob-
ability density function (PDF), the Hurst exponent [13]
of |zt| integrated signal as well as the |zt| self-correlation
function. In order that our goal is to verify the usefulness
of eq. (6) we have kept a= 12 . The invariancy of parameter
a is justified by the fact that a might be eliminated if we
define a new variable, z′ ≡ z/√a, for which standard devi-
ation becomes equal to 1 (when b= 0). Besides, expanding
eq. (4),

σt =
√

1+ b z̃′2t ∼ 1+
b z̃′2t
2
+O(z̃′4t ),

and considering a continuous time approach in eq. (1), we
might interpret a as the coefficient that is related to the
magnitude of additive noise, which does not lead to “fat
tails” in p(z), whereas b is associated with the strength of
multiplicative noise that is responsible for the emergence
of tails in p(z) (see footnote 5) [14].
To mathematically describe the returns probability

density function we have used the q-Gaussian function

p(z) =Ae−B z2q (q < 3), (9)

with B= [σ̄2q (3− q)]−1, where

σ̄2q ≡
∫

z2[p(z)]qdz
/

∫

[p(z)]qdz,

is the q-generalised second-order moment [15], andA is the
normalisation constant. For q < 5/3, σ̄2q relates to the usual
variance according with σ̄2q (3− q) = σ̄2(5− 3 q) [8]. Distri-
bution (9) optimises non-additive (or Tsallis) entropy,

5When the distribution for ω is non-Gaussian, b answers for the
increase in the tails of p(z).

Sq [16], and it is widely applied to describe the PDF of
returns in stock market indices and other natural and
artificial processes which present the properties that we
aim to reproduce6. In the characterisation of p(z), all PDF
adjustments have only involved one parameter, the index
q, since we have normalised z by the standard deviation
and we have divided p(z) by p(0) =A. Nevertheless, as we
shall see further on, the agreement at the peak is clear-cut.
On account of difficulties7 about evaluating truthful

values of the self-correlation function, we have opted to use
the integrated |zt| time series Hurst exponent,H, obtained
from the trustworthy DFA method which describes the
scaling of the root-mean square, F (τ), in signals, F (τ) ∼
τH (0<H < 1) (see footnote 8) [17]. The results of q and
H obtained from numerical adjustment procedures are
depicted in fig. 1 as functions of b and qm.
As is visible from fig. 1 (left panel), for constant qm, q

increases monotonically as b also increases. For the same b
we observe that larger values of qm lead to smaller values of
q. In other words, by increasing qm, we augment memory
in σ2t , hence volatility tends to become less fluctuating. As
a consequence, p(z) approaches ω distribution, since, as we
have mentioned above, the time dependence of σt is the
responsible for emergence of the tails in p(z). This effect is

6Within a financial context, distribution (9) is usually referred
to as t-Student distribution which is equivalent to the q-Gaussian
distribution for q > 1 as it can be easily checked.
7In the evaluation of Cτ (x) the stationarity of the signal is

assumed, fact that does not necessarily correspond to its actual
nature. Another problem is the high sensitivity of Cτ (x) to the actual
average of x(t).
8For 0<H < 1

2
the signal is anti-persistent and composed by

anti-correlations, while for 1
2
<H < 1 the time series is persistent

with correlations the stronger the higher H is. When H = 1
2
the

time series is a Brownian motion (or white noise) analogue.
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Fig. 2: (Colour on-line) Left panels: Excerpts of the SP500 daily normalised return times series with 2000 elements, from the
10th September 1997 to the 25th October 2005, and model (with qm = 1.6875 and b= 0.99635) for mere illustration proposes.
Right panel: Probability density function p(z) vs. (normalised) z, obtained from the whole time series shown on left panels, in
log-linear scale (symbols are used for SP500 PDF and line for model PDF). As can be seen the accordance is quite good. For
SP500 fitting q= 1.47± 0.2 (χ2 = 6× 10−5 and R2 = 0.99). In both cases z is expressed in standard deviation units.

perfectly observed when qm =∞, for which memory effects
are so strong (every single element of the past influences
the present with the same weight) that, after some time
steps, volatility remains constant.
Concerning Hurst exponent figures, we would like to

refer that they have a bearing on the time interval, τ ′,
before the crossover into H = 12 regime. Whatever the
value of qm we have considered, for values of b < 0.75, the
crossover is visible with a transition τ , τc, which increases
as b gets larger. Should time series have highly persis-
tent volatility, like price fluctuation ones, the crossover
is basically unperceptive within a temporal scale up to
τ = 106 time steps.
From the set of numerical results we have estimated the

best values of qm and b which can reproduce statistical
features of a paragon of the type of time series that we have
been referring to —the daily fluctuations of the SP500
financial index [4]. Our SP500 time series runs from the
3rd January 1950 up to the 28th February 2007 in a total
of 14380 business days. The daily return zt is computed as

zt ≡ ln St− ln St−1,

where St represents the SP500 value at time t. As is
usual we have divided z by its standard deviation that
corresponds to the so-called normalised return. Gathering
together the values of q and H for SP500, respectively
1.47± 0.02 and 0.88, we have verified that qm = 1.6875
and b= 0.99635 are able to reproduce, with a remarkable
agreement, both the return probability density function
and the Hurst exponent as is exhibited in fig. 2 and
fig. 3. Further, when we have compared, a posteriori, the
self-correlation functions of |zt|, eq. (8), we have verified
the same qualitative behaviour. In fact, despite both of
the short range available for fitting and the fluctuations,

Fig. 3: (Colour on-line) Root-mean square fluctuations, F (τ),
vs. τ of the time series of fig. 2. The values obtained from
numerical fitting are H = 0.883± 0.005 for SP500 (squares)
and H = 0.886± 0.003 for the model (circles).

we have obtained a quite similar power law decay with
an exponent of 0.73± 0.01 for our model and 0.71± 0.02
for SP500 as shown in fig. 4. Specifically, and according
to fig. 4, the two curves stand basically side by side for
τ > 20 in a log-log scale. In addition, and as we have
referred to here above, we verify that the signal generated
with our model is uncorrelated like it happens with the
SP500 daily price fluctuations time series.
To summarise, in this letter we have introduced

a generalisation of Engle’s proposal for generating
instantaneous volatility in heteroskedastic processes.
This modification refers to the introduction of a memory
kernel which has an asymptotic power law dependence
defined by a parameter qm. Apart from the fact that our

30005-p4
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Fig. 4: (Colour on-line) Upper panel: Returns self-correlation
function Cτ (zt) vs. τ . As it can be verified, our model (red
line and symbols) presents the same uncorrelated character
of zt, just as the SP500 daily price fluctuations (black line
and symbols). In the inset we present the absolute value of
Cτ (zt) vs. τ in a log-linear scale for clarity. Disregarding the
value of τ = 0, C0(zt) = 1, Cτ (zt) is at noise level indicated by
the dotted lines. Lower panel: Absolute returns self-correlation
function Cτ (|zt|) vs. τ in log-log scale. The similarity on the
qualitative behaviour of the two curves is evident. Although
the fluctuation, evaluating the decay exponents as a result of
a fitting procedure for large τ we have obtained 0.73± 0.01 for
the model and 0.71± 0.03 for SP500.

alteration has been able to reobtain the non-Gaussian
PDF for the random variable, zt, it has also been
successful about reproducing the long-lasting (asymptotic
power law decaying) self-correlation of the magnitude
of zt exhibited by a large number of phenomena. The
improvement in the reproduction of statistical features of
such a kind of time series has been achieved by consider-
ing just one additional parameter, qm, which represents
a clear simplification against ARCH (s) (with s≫ 1),
that only manage to exhibit an exponential volatility
self-correlation function with large characteristic time,
or other heteroskedastic processes [6]. By exhaustive
numerical analysis of our model we have found a pair of
values, qm and b, with which we have mimicked daily
fluctuations of SP500. The resemblance between the

SP500 time series and the signal obtained by numerical
application of our suggestion is remarkably good for the
probability density function and the Hurst exponent.
In a qualitative sense, the correlation function has also
been quite well described. The quantitative discrepancies
verified in Cτ (|zt|) and F (τ) might be solved if we modify
kernel (6) by introducing a sort of “characteristic time”,
T , i.e., in eq. (6) t′→ t′/T , as another parameter.
It is well known that there are an infinity of dynamics

whose outcome is the same probability density function.
However, as far as we are able to obtain an appropriate
reproduction of further statistical properties, as is the case
we have just presented, we will be approaching our models
towards the nature of the system upon study. This is
certainly important when the models are applied, e.g., on
forecasting purposes. It is on this basis we support the
relevance of our propose.
In respect of financial markets, and considering a macro-

scopic approach, our model permits us to say that price
fluctuations are actually dependent on their history, but
on an asymptotically scale-free way [18], as is exhibited
by the majority of the so-called complex systems. Such a
dependence is in contrast with the usual, and analytically
simpler, exponential treatment. On a practical way, this
also means that past events take a long time to loose their
relevance.
Last of all, owing to Cτ (|zt|) asymptotic power law

decay, as is visible from eq. (7), we could make a corre-
spondence between the decay exponents and a correlation
index, qc. By this we get qc = 2.37± 0.03 for our model
and qc = 2.41± 0.06 for SP500. Such an association intro-
duces an alternative triplet of entropic indices [19], namely
{qm, q, qc}, which is related to non-extensive statistical
mechanics formalism that could characterise this type of
systems.
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