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que se ele tivesse que viver em alguma rocha alta,

em uma saliência tão estreita que só teria espaço para ficar de pé,
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Resumo

Com novas e futuras pesquisas esperando uma quantidade sem precedentes de dados

de lentes gravitacionais fortes, o desenvolvimento de métodos de modelagem rápidos e

automatizados que sejam capazes de prever incertezas confiáveis é crucial para a ciência

derivada desses fenômenos. Recentemente, métodos baseados em Redes Neurais têm

atraido muito interesse devido a alta performance e alta aplicabilidade em análise de

grande volume de dados. Neste trabalho, relatamos a aplicação da Neural Posterior

Estimation, um método de Simulation-Based Inference para inferir o raio de Einstein,

dispersão de velocidade da galáxia de lente e redshifts de ambas as galáxias lente e fonte

em imagens simuladas realistas baseadas na DEcam. Também é analizada a confiabilidade

dos posteriores gerados pelos modelos. Nós discutimos algumas das limitações inerentes ao

uso de inteligência artificial como asubstituto aos métodos tradicionais de modelagem, e

aplicamos o modelo a conjuntos de dados reais para avaliar sua adequação em situações de

mundo real. Nossos resultados sugerem que a Simulation-Based Inference é uma técnica

promissora para realizar modelagem inversa em Lentes Gravitacionais, e pode se mostrar

uma ferramenta essencial para futuras investigações nesta área.

Key-Words: Lentes Gravitacionais fortes, Simulation Based Inference, Inteligência Ar-

tificial, Astrof́ısica Extragaláctica.
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Abstract

With new and future surveys expecting an unprecedented amount of strong lensing data,

the development of fast and automated modeling methods that are able to predict re-

liable uncertainties is crucial to the science derived from these phenomena. Recently,

methods based on Neural Networks have been raising a lot of interest due to their per-

formance and suitability when analyzing large volumes of data. In this work, we report

on the application of Neural Posterior Estimation, a Simulation-Based Inference method

to infer Einstein radius, lens galaxy velocity dispersion, and redshift of both lens and

source objects on realistic wide-field DECam-based simulated griz-band images. We also

analyze the reliability of the posteriors generated by the models. We discuss some of

the caveats involved in using Artificial Intelligence to replace traditional modeling and

apply our model to real datasets to gauge their suitability in real-world scenarios. Our

results suggest that Simulation-Based Inference is a promising technique for performing

Bayesian inference in astrophysics and cosmology and could prove an essential tool for

future investigations in this field.

Key-Words: Strong Gravitational Lensing, Bayesian Inference, Simulation-Based Infe-

rence Artificial Intelligence.
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Chapter 1

Introduction

Strong gravitational lensing is a phenomenon predicted by General Relativity, in which

the deformation in space-time caused by a massive object such as a galaxy alters the paths

of light rays emitted by a more distant source that is sufficiently aligned to the line of

sight of the massive object [1, 2, 3], causing the appearance of multiple images of the

more distant source. The lensing effect may also cause images to appear magnified and

distorted.

Strong lensing has been successfully employed to study many different astrophysical

phenomena. These systems can be used to probe mass distributions in galaxies, providing

valuable insights into the physics of dark matter [4, 5, 6, 7, 8]. The effect of strong

lensing in multiply-imaged time-varying sources such as quasars and supernovae has been

used to measure the expansion rate of the universe (known as the Hubble constant)

[9, 10, 11], contributing to a solution to the so-called “Hubble tension”, a discrepancy

in the measured values of this constant. Furthermore, since lensing phenomena conserve

surface brightness, a magnification effect may be induced, causing these systems to act

as “gravitational telescopes”, aiding in the study of very distant source objects [12, 13].

Currently, the number of confirmed and modeled lenses lies in the hundreds, pre-

venting robust statistical analyses that depend on strong lensing data. In the coming

years, however, ongoing and future astronomical surveys, such as the Dark Energy Sur-

vey (DES) [14], the Vera Rubin Observatory Legacy Survey of Space and Time (LSST)

[15], and Euclid [16], featuring closer to ideal observing conditions for the detection of

strong lenses, are expected to increase this number by up to three orders of magnitude

[17]. This volume of data will require fast and automated data analysis methods, marking

a departure from the traditional maximum likelihood approach that would quickly become

prohibitively time- and effort-intensive. In recent years, methods based on Convolutional

Neural Networks have achieved remarkable results in parameter inference tasks, though

with limited success in uncertainty estimation [18, 19], and given its significant role in
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the applications of strong lensing in astrophysics and cosmology, a method that offers a

Bayesian approach to parameter inference could prove advantageous to the science derived

from strong lensing data.

In this work, we propose using Normalizing Flows [20, 21], a class of Neural Network-

based density estimators, to perform Neural Posterior Estimation [22], a Simulation-Based

Inference method, of strong gravitational lensing parameters. Although similar methods

have been applied to this problem before [23, 24, 25], this work targets four parameters

relevant to the Singular Isothermal Ellipsoid lens model, namely the Einstein Radius (θE),

the velocity dispersion of the lens galaxy (σv), as well as the redshifts of both lens (zl) and

source (zs) galaxies, and focuses on ground-based data by using DECam-like simulated

strong lens images. We aim to approach the problem under a Bayesian framework to

prioritize uncertainty estimation. The chosen method is computationally efficient and

not time-intensive, proving suitable for the volume of data expected in the near future.

This work is divided as follows: In Chapter 2, we provide historical context and a

brief mathematical introduction to strong gravitational lensing, discussing some of its

applications. In Chapter 3, we focus on deep learning, addressing how modern techniques

such as normalizing flows can be applied to perform Bayesian inference, highlighting their

advantages over traditional methods. In Chapter 4, we detail the methodology used in

this work. By combining the information in previous chapters, we propose an algorithm to

perform fast and automated analysis of strong lensing systems. We discuss the technical

aspects of the work, detailing the simulations as well as the deep learning algorithm used

in this work. Finally, in Chapters 5 and 6, we evaluate the performance of our proposed

method using different metrics. We also discuss some of the caveats in our results.
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Chapter 2

Strong Gravitational Lensing

The idea of an interaction between light and gravity was first speculated by Sir Isaac

Newton in 1704 in his book Opticks [26], although the first attempt at computing the

deflection angle of light by a massive body was only carried out in 1783 by John Mitchell

[27, 3, 1], prompted by correspondence with Henry Cavendish, assuming a corpuscular

nature of light in Newtonian gravity. Notably, at about the same time, Pierre-Simon

Laplace also speculated that the deflection of light due to gravity could be so large that

light would not be able to flow out of it, an early hint at the idea of a black hole.

Shortly after these initial calculations, in 1801 Johann Von Soldner used Newtonian

mechanics to estimate the deflection angle for light particles close to the surface of the

Sun, arriving at a value of α = 0.83′′. Soldner’s result did not lead to much discussion

at the time, and in fact, even when Albert Einstein arrived at a very similar result

using his recently developed theory of Special Relativity, the result was still met with

indifference by the community. Although there was talk of observational confirmation

of these results during a solar eclipse in 1914, the proximity of the predicted value to

the limit of observational precision caused the community to meet this prospect with

indifference.

It took another eight years and the advent of General Relativity to generate interest in

this phenomenon. Einstein’s new theory changed the prediction to approximately double

the original value, now well within the limits of observational precision. The prediction

was to be tested during the 1919 solar eclipse, with groups observing the phenomenon

from the Island of Principe, in northern Africa, and in the city of Sobral, in the state of

Ceará, Northern Brazil. In accordance with Einstein’s theory, the teams obtained a value

of 1.61′′ ± 0.30′′ [27], marking the first experimental confirmation of GR and ushering a

new post-newtonian era in astrophysics.

This confirmation led to an increase in interest, and prompted the theoretical predic-

tion of the appearance of multiple images of a lensed object. In fact, for systems where
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the source object is perfectly aligned with the lens, one would expect to see a ring (la-

ter denoted an “Einstein Ring”) around the lens, though Einstein himself believed the

probability of observing this phenomenon would be very low due to the small separation

between images caused by masses of stars.

In 1937, Fritz Zwicky was the first to propose that galaxies could act as lenses [28],

and that given their much higher mass, the separation between images would be more

resolvable and thus, the probability of observation would be much higher [29]. Zwicky also

noted that since the lensing phenomenon conserves surface brightness, the magnification

effect would allow the observation of distant object that would otherwise be too faint to

observe. Despite the new outlook proposed by Zwicky, the first observation of a multiply

imaged system would only happen in the late 70s, with the advent of Charge-Coupled

Devices (CCDs) replacing photographic films playing a significant role in the confirma-

tion of the lensing phenomenon. In the following decades, the interest in gravitational

lensing increased, prompting the discovery of many of its applications in astrophysics and

cosmology.

2.1 The Lens Equation

Assuming a weak-field regime, Einstein’s GR predicts that the deflection angle for a

light particle due to a singular point mass would be given by

α̂ =
4GM

c2ξ
, (2.1)

where G is the gravitational constant, c is the speed of light in a vacuum, M is the mass

of the point particle. The impact parameter ξ denotes the lowest distance between the

incoming light ray’s trajectory and the center of mass of the object. This equation is

valid for an impact parameter much larger than the Swarzschild radius RS ≡ 2GM/c2.

The condition for a deflected ray to reach an observer O can be derived from Euclidean

geometry (see Fig. 2.1), noting that the small angle approximation sin(θ) ≈ θ is valid for

all angles involved:

β̂DOS = θ̂DOS − α̂DLS, (2.2)

known as the Lens Equation. By introducing the reduced deflection angle

α̂′ =
DLS

DOS

α̂, (2.3)

Eq. 2.2 can be written as

β̂ = θ̂ − α̂′. (2.4)

This equation can be used to constrain the position of the lensed image given the

other parameters of the scheme. Combining Eqs. 2.1 and 2.4, and using that ξ̂ ≈ DOLθ̂,



2.1. The Lens Equation 5

Figure 2.1 – Diagram of the Lens Equation.

we have

β̂ = θ̂ −
(

4GM

c2
DLS

DOSDOL

)
1

θ̂
. (2.5)

We can then define the Einstein Angle for a point-particle deflector as

θE ≡
√

4GM

c2
DLS

DOSDOL

. (2.6)

By defining these angles in units of radians, the Einstein Angle (θE) remains an angular

measurement, which is commonly used in observational studies. While θE is sometimes

referred to as the “Einstein Radius” in observational contexts, it should not be confused

with the physical Einstein Radius (RE = DOLθE), which has units of length. For the

remainder of this work, we will use “Einstein Radius” to refer to the angular measurement,

following the convention in observational contexts.

Finally, this value can be applied to 2.4, yielding

β̂ = θ̂ − θ2E

θ̂
. (2.7)

When the lens and source objects are perfectly aligned (β = 0), given the symmetry of

the problem, the source image appears as a ring to the observer, with radius θE.

2.1.1 Lensing by Extended Sources

In order to model the lensing effect caused by galaxies, instead of a point mass, one may

consider a mass distribution. One of the simplest parametrizations of mass distributions

in galaxies is the Singular Isothermal Sphere (SIS), given by

ρ(r) =
σ2
v

2πGr2
. (2.8)
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This model describes a collection of self-gravitating particles with velocities following a

Maxwellian distribution, making the system behave like an isothermal gas. The SIS model

presents two key issues: the central density is infinite (which is why it is called “singular”),

and the density does not converge as the radius approaches infinity. The first issue can

be addressed by introducing a core with a finite density within a certain radius, making

the model more physically realistic. The second issue does not significantly affect lensing

phenomena, as lensing is dominated by the mass at smaller radii ([3]).

By integrating the mass distribution along the line of sight, we obtain the surface

density

Σ(ξ) =
σ2
v

2Gξ
, (2.9)

and the deflection angle is calculated using the relation for an arbitrary mass surface

density in an axially symmetric mass distribution (see [30] for a more detailed explanation)

α̂(ξ) =
4G

c2
2π

∫ ξ

0
Σ(ξ′)ξ′dξ′

ξ
, (2.10)

which yields

α̂(θ) =
4πσ2

v

c2
. (2.11)

The lens equation now reads

β̂ = θ̂ −
(

4πσ2
v

c2
DLS

DOS

)
, (2.12)

and the Einstein radius is then defined as

θE ≡ 4π
σ2
v

c2
DLS

DOS

. (2.13)

As an alternative to the SIS model, one can opt for a slightly more realistic Singular

Isothermal Ellipsoid (SIE) model [31, 32]. In this scenario, the density profile is given by

ρ(r̃) =
σ2
v

2πGr̃2
, (2.14)

where r̃ is the elliptical distance from the center, given by r̃2 = x2/q + qy2, with q

representing the ratio between the axes, also know as the flattening of the ellipse. The

Einstein radius for this density profile is also given by Equation 2.13.

The density profiles introduced in this chapter have two major characteristics. They

present a divergence at the center and have infinite total mass as r → ∞. Despite these

peculiarities, they have been shown to be good approximations to both early- [33] and

late-type galaxies [3], with the SIE model particularly appropriate for the modeling of

early types, which account for the majority of lenses in strong lensing systems (see [34]).

Thus, the position of the lensed image (given by the Einstein Radius) is determined

by three variables: the velocity dispersion of the lens galaxy, the distance between lens
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and source and the distance between observer and source, which can be represented

in observational measurements by their redshifts through the angular diameter distance

and assuming a cosmological model. These parameters are traditionally measured from

observations using spectroscopical information for the redshifts and the velocity dispersion

combined with maximum-likelihood based methods for the Einstein Radius. While that

method is a gold standard in parameter inference, new and future surveys are expected to

detect an unprecedented number of SL systems, rendering traditional methods unsuitable.

Thus, we investigate a method to perform fast and automated parameter inference using

neural network-based methods.





9

Chapter 3

Deep Learning for Bayesian

Inference

The field of artificial intelligence (AI) comprises a number of techniques intended to

perform complex tasks. While the definition of intelligence is a matter of debate, it is

generally agreed upon that machines that perform pattern recognition, natural language

processing and many forms of decision making display some form of artificial intelligence.

Within the realm of AI methods, a subset that has garnered a lot of interest in the

last few decades is Machine Learning (ML), a set of techniques that allow for training of

a machine with the goal of performing a task. ML methods are defined by an inversion

of the process of traditional programming. Instead of using a set of instructions to be

applied to input data in order to arrive at a certain output, ML methods aim to learn

the transformations that need to be applied to input data in order to arrive at a desired

output. The methods that perform this task can use labeled data (that is, use both

input and output data to learn the transformations), in which case they are referred to as

Supervised Learning, or simply find patterns in input data, referred to as Unsupervised

Learning.

Deep Learning (DL) [35, 36] is a special subset of ML methods characterized by

the use of multi-layer neural networks (NNs), a class of models that act as universal

function approximators. With the goal of mimicking the behavior of neurons in the

human brain, NNs have been widely employed in recent years in a vast number of fields,

showing great performance in many different tasks, such as classification and regression,

with applications in Natural Language Processing, Computer Vision, and many other

tasks that rely on some form of decision making.

The notion that machines could demonstrate intelligence was first posed in its modern

form in 1950 by Alan Turing [37]. Since then, the field went through periods of high

interest, with advancements such as the artificial neuron [38], introduced in 1943 by
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McCullough and Pitts. This idea was later developed by Rosenblatt in 1958 [39], sparking

great interest, only to be followed by the discovery of technical limitations [40], leading

to periods of low interest. Such periods came to be known as as AI winters (see [41]).

Some important milestones in the history of AI include the introduction of the Per-

ceptron [39], a precursor to modern day neural networks, based in the artificial neuron

introduced by McCullough and Pitts in 1943, the successful employment of AI to recognize

handwritten digits by Yan LeCun in 1990 [42], the big AI boom of the 2010s, where Deep

Learning models surpassed human performance in image classification tasks, and more

recently, the development of Large Language Models (LLMs) powered by the transformer

architecture [43].

As has always been the case, technological advancements are fueled by scientific dis-

covery, and in turn, these advancements are then used accelerate new scientific discovery.

In the current era of Big Data in astronomy and cosmology, AI methods can prove a

valuable, if not essential tool to analyze large datasets. The paradigm of AI fueling scien-

tific discovery extends beyond astronomy, with its increasing importance for science being

recognized with the 2024 Nobel prize, awarded to physicists John Hopfield and Geoffrey

Hinton for their foundational work which paved the way for modern Machine Learning.

3.1 Neural Networks

Inspired by the behavior of neurons in the human brain, the artificial neuron is the

building block of neural networks. A neuron works by taking a set of inputs, each with a

respective weight associated to it, and its output is determined by an activation function

acting on the linear combination of weights and inputs (along with a bias term). Neurons

are combined in layers, with all neurons in a layer receiving the same set of inputs, and

layers are stacked in order to form complete networks, where the outputs of the neurons

in a layer are used as the set of inputs for the neurons in the subsequent layer, a pattern

that is repeated all the way to the output layer of the network.

For a given input X = {x1, x2, ..., xn}, an artificial neuron processes this data by

taking a linear combinations of the input data with a set of weights W = {w1, w2, ..., wn},

and adding a bias term b. The output of a neuron is the value of an activation function

evaluated at the result of this sum. A visual representation of this process can be seen in

Figure 3.1. A Perceptron is a neural network built using a distribution of these artificial

neurons.

The output of a neural network is directly dependent on the weights of the neurons

in the network, such that in order for a network to perform a given task, it must have

appropriate weights. In supervised learning, a network can be trained to perform a certain

task given a set of labeled input data, that is, a set of inputs along with the desired output

of the network for those inputs. The loss function L(ŷ, y) compares the network’s output
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Figure 3.1 – On the left: Model of an artificial neuron. The output of the neuron is the
activation function F applied on the linear combination of the inputs x and
their respective weights, as well as the bias term. On the right: A model
of a single layer Perceptron. In the case of a Multi-layer Perceptron, the
outputs of the neurons in a hidden layer serve as inputs to the neurons in
the subsequent hidden layer.

ŷ to the true label y, and measures how well the network is performing. For example, in

a classification task, a common choice for L is the cross-entropy loss, defined as

LCE(ŷ, y) = −
C∑
i=1

yi log(ŷi), (3.1)

where C is the number of classes, yi is the true probability (1 for the correct class, 0

otherwise), and ŷi is the predicted probability for class i. In regression tasks, the mean

squared error (MSE) is often used as the loss function. It is defined as

LMSE(ŷ, y) =
1

N

N∑
i=1

(ŷi − yi)
2, (3.2)

where N is the number of data points, ŷi is the predicted output, and yi is the true value.

The training process consists of comparing the output of a network for a given set of

inputs with the label associated with these inputs. By computing the derivative of the loss

function with respect to the weights, the gradient of the loss function is obtained. This

gradient indicates the direction of the fastest decrease of the loss function. The weights of

the network are then updated in the direction that minimizes the loss function, a process

known as backpropagation.

In the case of Stochastic Gradient Descent (SGD), a common optimization algorithm,

the rule for updating weights is given by:

W ′ = W − η∇WL(W ), (3.3)
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where W represents the current weights used by the network, W ′ represents the updated

weights, and η is the learning rate. The learning rate controls how large a step is taken

in the direction of the gradient during each update. A small learning rate leads to slow

convergence, while a large learning rate can cause the algorithm to overshoot the optimal

solution.

The process of backpropagation allows the network to learn how to adjust the weights

at each layer to reduce the value of the loss function. By applying this process iteratively

over a dataset, a network is able to learn the weights that better relate the input data

and their expected outputs, and can then be used to create labels for unlabeled data.

Neural networks are often employed to perform regression and classification tasks.

Regression tasks consist in predicting a value in a continuous space, whereas classification

tasks predict values in a discrete space, where each point represents a class. By appropri-

ately choosing a loss function, backpropagation can be used to perform both tasks, and

works particularly well with low dimensional data.

While networks comprised of fully-connected layers can be used to virtually any kind

of application, tasks that involve more complex or high dimensional data often benefit

from more complex architectures1 that allow for different operations to be performed. For

instance, tasks involving time series data are often better modeled by Recurrent Neural

Networks [44], algorithms that allow the information to flow in two directions within the

network. For image analysis, the complexities in high-dimensional, often multi-channel

images are usually analyzed using Convolutional Neural Networks (CNNs) [35, 36, 45].

3.1.1 Convolutional Neural Networks

With the goal of using neural networks to automate tasks of handwritten digit re-

cognition, Yann LeCun developed the modern formulation of the Convolutional Neural

Network in a work that became a milestone for AI development [42]. This special type

of neural network uses a convolution operation to recognize patterns in two-dimensional

data, making it well suited to image analysis.

A convolutional layer in a CNN works by sweeping an image, which can be thought of

as a matrix of pixel values, with a smaller matrix called a filter, which analyses a region of

the image and outputs the result of a convolution between the filter and that region of the

image. The result of the convolution process between a filter and a region of an image is a

single value that represents the existence of a certain feature in that region of the image.

By sliding the filter over each possible region of the image, a map is created, showing the

parts of the image that contain the feature that the filter is looking for. Thus, specially

tuned filters sweep through an image and check for the existence of different features in

each region of the image. The trainable parameters of convolutional layers are the pixel

1 Architecture is the term used to refer to the distribution of neurons in a network.
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values in the filters, such that the training process finds the filters that look for the most

relevant features in the image. A diagram describing a convolutional kernel can be seen

in Figure 3.2.

Figure 3.2 – Example of a convolutional layer. A filter sweeps through an image and
returns a feature map describing the location of a certain feature in an image.
A usual layer applies several filters to an image, returning a block of data
with as many channels as the number of filters used.

In addition to convolutional layers, pooling layers are also widely used in CNNs. These

layers also work by sweeping through the image, but instead of applying convolution with

a filter, they condense the values in that region to a single value according to a specific

function. Usual forms of pooling include max pooling, outputting the max value of a

region, and average pooling, resulting in the average value of a region. Pooling layers

are often applied to the feature maps generated by a convolutional layer, and are able

to reduce the dimensions of the maps by analyzing non-intersecting regions of the maps

and summarizing the information in these regions to a single value. This process makes

a network more robust to variations in the position of features in the image. A diagram

can be seen in Figure 3.3.

In most image analysis applications, convolutional Layers are the first layers of the

networks, and combined with pooling layers, are used to summarize the information in

images. This information is usually flattened to a single vector that is then used as an

input to a fully-connected network, which is trained together with the convolutional part,

sharing the same loss function. The convolutional layers are often referred to as the

feature extractor part of the network, while the fully connected part is responsible for

analysing the summarized information.

Throughout the 2010s, competitions such as the ImageNet Large Scale Visual Recog-

nition Challenge [46], active between 2010 and 2017, fostered the development of highly

specialized CNN architectures that very quickly surpassed the performance of humans in

image classification tasks. In addition, the development and popularization of Graphical

Processing Units (GPUs) played a major role in the AI boom of this era. As CNNs often

rely on matrix multiplication, the use of GPUs, initially developed for image rendering
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Figure 3.3 – Example of a pooling layer. Like in the convolutional layer, the pooling
kernel sweeps through a feature map performing an operation using the pixels
within the kernel. The shape of the output is generally smaller than the input
(i.e. w > w′, h > h′).

for video games and Computer-Aided Design software, proved to be very well suited,

drastically reducing training times for large CNN models. As a result, CNNs received a

lot of attention from researchers in many different fields, including physics and astronomy

[18, 19, 47, 48, 49, 50].

Although very capable in regression tasks, Neural Network based models are often

criticized over their suitability to estimate uncertainties [51]. While methods such as cross-

validation [36] can be employed to estimate epistemic uncertainties (those introduced

by the Networks imperfect modeling of the data, often due to sub-optimal training or

insufficient data), modeling aleatoric uncertainties, which arise from quality of the training

data is a more daunting task.

In recent years, many models of Variational Inference [52] have been proposed to

address this issue. Methods such as Bayesian Neural Networks (BNNs) [53] offer a proba-

bilistic approach to parameter inference by learning probability distributions for weights

instead of fixed values. For each forward pass of the network, the weights are sampled

from their probability distributions, making the output of the network non-deterministic.

Thus, by repeatedly showing a given input to a network, the probability distribution of

the inferred value can be constructed.

Some of the major drawbacks of BNNs include the fact that they rely on the assump-

tion that sampling the weights from simple probability distributions, often Gaussian, offers

enough variation to appropriately model the uncertainties in the data. Furthermore, em-

ploying a BNN to analyze training data with no regard for its prior distribution fails to

account for its influence on the posterior values, and therefore does not ensure a genui-

nely Bayesian approach. To address this limitation within a truly Bayesian framework,

we turn to a novel method known as Simulation-Based Inference (SBI).
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3.2 Simulation-Based Inference

Uncertainty estimation is an important aspect of statistical analysis. While traditional

frequentist statistics are able to provide point estimates and confidence intervals, many

problems require fully characterized posterior distributions in order to make reliable pre-

dictions from data. Bayesian statistics addresses this limitation by modeling unknown

variables as probability distributions rather than fixed values. These distributions are

refined from data, and incorporate both prior knowledge about the variable as well as its

observed uncertainty. This approach allows for a more nuanced estimation of uncertainty,

making Bayesian methods particularly valuable in complex inference tasks.

The task of parameter estimation can be posed in terms of Bayes Theorem, given by

P (θ|x) =
P (x|θ)P (θ)

P (x)
. (3.4)

We are interested in estimating the posterior distribution P (θ|x) of a parameter θ

given an observation (or, in this case, a simulation) x. For this, we depend on the prior

knowledge about the parameter P (θ) and on the likelihood distribution P (x|θ), which

is a probability density on x, but a function of θ. While there is a dependence on the

marginal term P (x), that only serves as a normalization factor.

In many applications involving images and other types of high dimensional data, the

likelihood term becomes intractable due to the complexity involved in constructing an

analytical form for it. Simulation-Based Inference [54] methods offer a likelihood-free ap-

proach to parameter inference by replacing the likelihood term with a stochastic simulator.

Instead of sampling values from an analytical likelihood distribution, in SBI, simulators

are used to generate synthetic data modelling the effect of the likelihood. By using si-

mulators that provide intrinsically uncertain data, SBI methods are able to account for

both epistemic and aleatoric uncertainties without relying on an analytic form for the

likelihood distribution. SBI can be performed using a number of different workflows, with

advantages and disadvantages to each based on the characteristics of their intended use.

Neural Posterior Estimation (NPE) [55] is an SBI workflow that offers a fast and

scalable approach to parameter inference. Unlike traditional approaches that rely on

Markov Chain Monte Carlo (MCMC) sampling to reconstruct distributions, NPE uses

a neural network to directly sample the posterior distribution. The direct sampling of

the posterior distribution makes NPE more suitable to inference of multiple parameters

(in other words, high-dimensional posteriors), avoiding costly MCMC calculations that

would become prohibitively expensive in such scenarios.

In NPE, a simulator generates synthetic data using parameters drawn from a prior

distribution. A neural network, acting as a density estimator, is then trained to appro-

ximate the posterior distribution. The training process minimizes a loss function based

on the probability density of the true value (i.e. the label) under the learned posterior.
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In practice the loss function used is the negative log-probability of the true value. The

negative sign ensures that minimizing the loss means maximizing the probabilities, while

using the logarithm of the probability helps with numerical stability.

For image analysis tasks, the network usually consists on two parts. A CNN employed

to summarize the features in the images, referred to as the embedding, and the density

estimator, a neural network-based algorithm that can be trained to model a complex

probability distribution.

3.2.1 Density Estimation with Normalizing Flows

Normalizing Flows (NFs) [56, 57] are a class of neural network-based algorithms that

can be employed to perform density estimation. In a normalizing flow, the input data

is used to define the parameters of a set of invertible and differentiable transformations

that are applied to a base distribution, with the goal of modeling a complex arbitrary

distribution.

Considering a random variable in D dimensions Z = {z1, z2, ..., zD} with an associa-

ted probability distribution pZ(Z)2, and a transformation f that is both invertible and

differentiable, the effect of this transformation on the variable creates a map Z ′ = f(Z),

such that the probability distribution on the new variable is given by

pZ′(Z ′) = pZ(Z)

∣∣∣∣det∂f−1

∂Z ′

∣∣∣∣ = pZ(Z)

∣∣∣∣det ∂f∂Z
∣∣∣∣−1

. (3.5)

Thus, an arbitrarily complex probability distribution pZn(Zn) can be constructed by re-

peatedly applying transformations on a base variable Z0,

Zn = fn ◦ fn−1 ◦ ... ◦ f1(Z0), (3.6)

pn(Zn) = pn−1(Zn−1)

∣∣∣∣det ∂fn∂Zn

∣∣∣∣−1

, (3.7)

= pn−2(Zn−2)

∣∣∣∣det ∂fn−1

∂Zn−1

∣∣∣∣−1 ∣∣∣∣det ∂fn∂Zn

∣∣∣∣−1

, (3.8)

= ... = p0(Z0)
n∏

i=1

∣∣∣∣det ∂fi∂Zi

∣∣∣∣−1

. (3.9)

In principle, this means that a distribution of interest (such as a posterior) can be obtained

from any arbitrarily simple distribution by applying a series of appropriate transformati-

ons. To determine these transformations, a functional form is chosen, and its parameters

are learned from data using neural networks. To be used as a trainable neural density

estimator, a transformation fi acting on the variable Zi−1 has its internal parameters Θi

2 Note that pZ(Z) : Rn → R, that is, it maps an n-dimensional variable to a single dimensional output,
as is expected of a probability distribution
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determined by a neural network that takes the variable Zi−1 as input:

zi = fi(Θi;Zi−1), (3.10)

Θi = NN(Zi−1). (3.11)

The weights of this neural network affect how the transformation changes the base

distribution, which in turn, affects the shape of the final distribution. This means that

the weights have an effect on the value of the loss function of a network containing these

transformations, and thus, the ideal weights can be learned through backpropagation. A

diagram showing the workflow of Neural Posterior Estimation using Normalizing Flows

can be seen in Figure 3.4.

Figure 3.4 – Workflow of Normalizing flows used for Neural Posterior Estimation. The
image is passed through an Embedding Network (usually a CNN), which
returns a vector of summarized features. This vector is used as inputs for
dense Neural Networks with a single hidden layer, and the outputs of those
networks are the parameters of the transformations between different varia-
bles. Then by sampling from the base distribution and applying the trans-
formations, it is possible to sample from the arbitrary modeled posterior.

There remains a question of what functional form should be used. This choice must

take into account two main factors. As the dimension of Z increases, computing the
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determinant of the Jacobian matrix becomes increasingly difficult. To deal with this

problem, the transformation can be constructed in a way that minimizes the complexity

of the calculation, usually by masking inputs in a way that causes the Jacobian to be a

lower triangular matrix, with the determinant being simply the product of the elements

in the main diagonal. Secondly, in order to mimic the intricacies of complex distributions,

the transformations need to be complex enough to sufficiently alter the form of the original

distribution. In other words, the transformations should be both tractable and expressive.

A typical transformation that acts elementwise, that is, alters a single dimension of

the vector Z = {zi}di=0, is the affine transformation, given by

z′i = gΘi
(zi) = αizi + βi. (3.12)

In this transformation, the parameters Θi = {αi, βi}di=0 are determined by the output of a

neural network that, in the general case, takes the vector Z as input. In order to increase

the tractability of the transformation, the input of the neural network can be restricted,

resulting in a simpler computation of the jacobian matrix.

3.2.1.1 Coupling Flows

One of the most commonly used ways to increase the tractability of a transfor-

mation without losing expressivity is by using a coupling transformation [58]. These

transformations create two complementary subsets of the dimensions of the input vector

ZA = {z1, ..., zd} and ZB = {zd+1, ..., zD}, and use one of them to find parameters of a

transformation h that acts on the dimensions of the other subset, following:

zA
′
i = hθi(z

A
i), (3.13)

θi = (αi, βi) = NNi(Z
B), (3.14)

zB
′
i = zBi. (3.15)

In other words, each dimension of the first part of the transformed vector ZA′
is given

by a transformation hθi whose parameters depend on the second input subset ZB. The

second part of the transformed vector is just a copy of the input vectors.

Coupling flows have a useful property: by using a subset of dimensions to generate

the transformations h, the Jacobian matrix of these transformations is block triangular,

and therefore, easy to calculate. Furthermore, when multiple transformations are chained

together, the expressive power of the coupling flow can be greatly improved by applying

a random permutation of the input dimensions, such that the subsets A and B of each

intermediary transformation correspond to different dimensions of the original vector Z.
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3.2.1.2 Autoregressive Flows

In autoregressive transformations [59], instead of using all dimensions of the vector Z

as the input of a neural network that determines all transformations gθ, the transformation

that acts on each dimension is determined by its own neural network that takes as input

only the dimensions lower than i.

z′i = gθi(zi), (3.16)

θi = {αi, βi} = NNi(Z1:i−1). (3.17)

Thus, an autoregressive affine transformation employs equation 3.12 using parameters αi

and βi following 3.16. The jacobian matrix for any autoregressive transformation is lower

diagonal, and its determinant is simply the product of the elements in the main diagonal.

As previously discussed, this property becomes increasingly useful as the dimension of Z

increases.

3.2.1.3 Neural Spline Flows

One way to increase the the expressivity of a transformation is to replace the affine

transformation with a more complex form. A Neural Spline Flow (NSF) [60] is a trans-

formation that uses rational-quadratic polynomial splines as replacements for the affine

transformation. A polynomial spline is a function that is defined piecewise, with each

piece being a polynomial that connects to its neighbors at the edges of the spline. For a

function to be rational quadratic, it must take the form of a quotient of two quadratic

polynomials. By dividing the space in splines, and defining different elementwise rational

quadratic transformations for each spline, NSFs offer increased expressivity compared to

affine transformations.

In a NSF, the input is first mapped to the interval [0, 1], which is then divided into K

bins, each associated with a transformation gθiK . The input vector Z (or limited sections

of it, when using coupling or autoregressive flows) is processed by a neural network, which

outputs a vector of 3K − 1 parameters, partitioned as θi = [θi
w, θi

h, θi
d].

To construct the piecewise transformation, the interval edges (knots) in the (z, z′)

space are determined by the parameters θi
w and θi

h, which represent the widths and

heights of the bins, respectively. The knots are the division points between adjacent bins,

and their coordinates are computed using the cumulative sums of these width and height

parameters. The derivative constraints are given by θi
d, which specifies the derivative of

the spline function at each knot. The two outermost knots have their derivatives fixed at

1 to ensure smooth boundary conditions.

By fixing the knots and the derivatives of the spline function at the knots, the quadratic

polynomial functions of each bin are defined, and act as a transformation gθiK that maps

z to z′. A visual example of this kind of transformation is shown in Figure 3.5.
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Figure 3.5 – Example of a transformation using a Neural Spline Flow. This transforma-
tion divides the interval [0, 1] in 6 subspaces, where the positions of the knots
(black dots) are the cumulative sums of θi

w, θi
h and the derivatives of the

transformation are fixed at the knots, and given by θi
d. That information

is enough to fit the rational quadratic polynomial splines that describe the
transformation from z to z′.

By combining the method described above with either the coupling or autoregressive

approach (i.e. defining each θi = NNi(Z1:i−1)), NSFs show very high expressivity while

maintaining tractability, and as such, become very powerful tools to perform tasks that

depend on density estimation such as Bayesian inference, probabilistic prediction algo-

rithms and even data generation. These transformations act as drop-in replacements to

the affine transformation, and show much higher expressivity.
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Chapter 4

Modeling Strong Lensing with

Deep Learning

The deep learning methods discussed in the previous chapter have had a great impact

on statistical analysis across many fields, including astrophysics and cosmology [61, 62]. In

the context of strong lensing parameter inference, deep learning methods are a promising

alternative to traditional likelihood-based methods, which would become prohibitively

expensive in face of the volume of data expected in the near future.

In the past, CNNs have successfully been employed to extract features from lensing

images [18, 19, 23], this approach provides limited capabilities for uncertainty estimation.

To this end, methods relying on Bayesian parameter inference have been used in the

past [23, 24, 25] using fully synthetic data to perform SBI, thus obtaining more reliable

uncertainty estimation. However, the use of fully synthetic data provides limited variation

in the image generating process, and could introduce biases related to the simulation

algorithms.

In this work, we incorporate real galaxy images in the simulation process in order

to increase the realism of the synthetic data generated. This approach ensures that

the images better reflect real-world observing conditions. Unlike past work, we train

our models to target parameters of the SIE lens model, including the redshifts of the

lens and source galaxies. One of the challenges in modeling strong lensing systems is

that redshifts are often not well modeled by currently available simulators, and may not

accurately reflect real observations. In this work, we address this issue by incorporating

real observational data for the lens galaxy in our simulations, which not only improves

performance on real data but also enhances the reliability of our inferred parameters by

better capturing the underlying cross-correlations between redshift and other lens model

parameters. Lastly, our methodology is validated by applying our models to real images

of strong lensing systems.
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4.1 Simulating Strong Lensing images

Realistic simulations of astrophysical phenomena have become a key component of

modern research, enabling scientists to test theories and interpret observations. These

simulations are not only useful for understanding complex astrophysical phenomena, but

can also be used to develop machine learning models tailored to analyze astrophysical and

cosmological data. As described in the previous chapter, simulations can be used to train

highly capable models to perform Bayesian inference. However, the effectiveness of these

models is intrinsically linked to the realism and diversity of the simulations. The use of

unrealistic simulations as training data could lead to models that show poor performance

in real data, and could lead to biased or otherwise incorrect conclusions when interpreting

results. Thus, it is necessary to ensure that the data used to train models is not only

realistic, but also diverse.

4.1.1 Raw image simulation

In this work, we develop a method to simulate strong lensing images using real images

of galaxies as a starting point. Our goal is to simulate data that resembles observations

obtained by the DECam Local Volume Exploration (DELVE) survey [63], a wide-area

optical survey designed to map over 21,000 square degrees of the southern sky using

the Dark Energy Camera (DECam). It reaches a depth of g ∼ 23.5 mag, enabling

the detection of faint stellar systems and low-surface-brightness structures in the nearby

universe. Thus, we generate images in the g, r, i and z bands, and include the instrumental

and observational characteristics of DELVE, such as noise properties, pixel scale, and flux

calibration.

To this end, we make use of two different packages to simulate each strong lensing

system. First, we employ LensPop1 [17] to simulate the parameters of a population of

DECam-observable single-source galaxy-galaxy lensing systems. We apply a number of

cuts to ensure detectability of lensing features by DECam. In particular, we make sure

that the magnitude of the lens galaxy and the observed magnitude of the lensed features

in the g band are below 21. We also employ cuts in the population in order to avoid

creating regions of low sample size in the parameter space, which could lead to difficult

training and inconsistent predictions by the network. We use Einstein radii (θE) between

0.6 and 2.2 arcsec, lens galaxy redshift (zl) between 0.05 and 0.6 and source galaxy redshift

(zs) between 0.6 and 3, with the aforementioned condition of magnitude <21 for lensed

features being the most restrictive. These cuts serve as limits for the prior distributions

of the parameters. The values for the selection criteria are described in Table 1.

Since LensPop reports the magnitudes of the source object but not the lensed features,

we model the magnification effect by first computing the flux f in each band using the

1 Available at https://github.com/tcollett/LensPop.

https://github.com/tcollett/LensPop
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Parameter Cut Applied
Lens Galaxy Magnitude (g band) < 21

Lensed Feature Magnitude (g band) < 21
θE [0.6, 2.2] arcsec
zl [0.05, 0.6]
zs [0.6, 3.0]

Table 1 – Parameter cuts applied to the simulated population to ensure detectability and
avoid low-sample regions in parameter space.

object’s absolute magnitude M and the zero-point magnitude of the observation M0,

multiplying the flux by the source magnification ratio µ reported by LensPop to obtain

the magnified flux f ∗, and then converting the lensed flux back to magnitude, following

f = 10
M−M0
−2.5 ,

f ∗ = µf,

Mlensed = M0 − 2.5 log10(f
∗). (4.1)

The process of simulating an image for a given system consists of sampling a set of

values for θE, zl and zs for a uniform prior using the intervals mentioned above, and

comparing it to the population generated by LensPop. We assign a score to each member

of the population by summing the squared difference between the sampled value and the

population value over these three parameters2. We then randomly pick one of the systems

with the ten highest scores and use its parameters to generate a simulation.

We compare the redshift of the lens galaxy with the redshifts available in a dataset of

real galaxy images taken by the DELVE survey. We initially attempted to use spectros-

copic redshifts, but the network failed to capture a relationship between the images and

the values. We switched to photometric redshifts, for which we had measurements for a

larger number of galaxies. We make a list of the three galaxies with redshifts closest to our

chosen value and pick randomly from it. Finally, we perform a data augmentation step in

order to increase the diversity of the simulated data. This step consists of choosing one

of eight possible permutations of a square image (i.e., 0◦, 90◦, 180◦ and 270◦ rotations as

well as a horizontally flipped version for each). We use the augmented image as a starting

point to the simulation.

We then employ Lenstronomy 3 [64, 65, 66], a state-of-the-art strong lensing simulation

package, to simulate the lensed features according to the parameters of the system chosen

from the population. We use observational parameters (read noise, gain, sky brightness,

zero-point magnitude) for each band taken from the real galaxy image, and generate an

2 I.E. the score Si of the i-th member of the population is given by Si =
∑

Θ(Θsampled − Θi)
2 for

parameters Θ = [θE , zl, zs].
3 Available at https://lenstronomy.readthedocs.io/en/latest/.

https://lenstronomy.readthedocs.io/en/latest/
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image of a dark galaxy acting as lens. The dark galaxy is simulated using magnitude

200, Sérsic index 4 and Sérsic radius taken from the value indicated in the population

generated by LensPop. Finally, the parameters of the source galaxy are taken from the

chosen member of the population of strong lensing systems generated by LensPop.

The simplifying assumptions used are that all images in all bands use 7 exposures and

have seeing sampled from a normal distribution with mean 1 and sigma 0.25. This value

is chosen empirically comparing lenstronomy simulations with real images. The output

generated by lenstronomy is a dark image where the only visible features pertain to the

source galaxy (i.e. the lensed image and the source galaxy itself, when visible), which is

then added to the original real galaxy image. It is worth noting that Lenstronomy uses

the magnitude of the lensed features to generate a simulation, which is obtained following

Equation 4.1. The fixed values used in the simulation process are shown in Table 2.

Parameter Value
Simulated lens galaxy magnitude 200

Simulated lens galaxy Sérsic Index 4
Number of Exposures 7

Seeing N (1, 0.25)

Table 2 – Fixed parameters used in Lenstronomy to simulate the images. The parameters
of the simulated lens galaxy (i.e., the dark galaxy).

The simulation process takes a parameter sampled from a prior distribution and mat-

ches it with a catalog in order to generate the final image. The ground-truth parameter

for the image can be interpreted as either the original sample from the prior distribution

or the value that is accepted during the matching process. As this choice can bias the

inference process, this work investigates the results using both sets separately. We refer to

the values taken from the prior distribution as the tentative set, and the values resulting

from the matching process, which are ultimately passed to lenstronomy to generate the

images, as the effective set. Both sets are reported in Figure 4.1. A diagram with the full

simulation procedure can be seen in Figure 4.2.

4.1.2 Image preparation

To prepare the both real and simulated images for use in deep learning applications,

we employ a number of steps that aim to improve visibility of relevant features, as well

as improve training stability and overall network performance. We follow the image

preparation described in [67] with some changes to better suit our application. First we

apply a cut to pixel values in the galaxy images used to create the simulations, with

a minimum allowed value of -400 and a maximum value of 6000 analog-to-digital units

(ADU). Then, after the images are simulated and the lensed features are added to the

galaxy images, we convert pixel values to flux units using each simulation’s zero-point
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Figure 4.1 – Tentative (blue) and Effective (orange) sets for θE (arcsec), σv (km/s), zl
and zs. Note that the velocity dispersion is not sampled in the tentative set,
so we only report the effective distribution for that parameter.

magnitudes and exposure times, following [68]. Then, we rescale the images by subtracting

the mean value of pixel counts and dividing by the standard deviation. Although this step

does not alter the final image, it effectively rescales the values shown to the network and

is known to help with training stability and model convergence. Additionally, the four

parameters used as labels to train the network are also normalized using the minimum and

maximum values in the simulated population for each parameter respectively, following

xnorm =
x− xmin

xmax − xmin

. (4.2)

This effectively constrains all values to the interval [0, 1], which also helps to improve

network performance. A diagram of the image preparation process can be seen in Figure

4.3.

The simulation and preparation processes yields a dataset of 30000 griz-band images

used for training as well as a test set consisting of 3000 images. These images are ready

to be shown to a neural network. Some examples of images are shown in Figure 4.4.
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Figure 4.2 – Diagram of the simulation process. The final products are the images and
the ground-truth parameters, which are used as labels to train the neural
networks. Both the images and the labels undergo additional preparations
steps before being shown to the networks.
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Raw image Clip pixel values to
[-400, 6000] ADU range

Convert pixel values
to flux units

Subtract mean, divide by
standard deviation Prepared image

Figure 4.3 – Diagram of the image preparation process. The prepared image is used to
train a the neural networks, along with the normalized ground-truth para-
meters.

Figure 4.4 – Examples of simulations generated by the method described in this chapter.
Aside from the described preparation, in order to display RGB images, we
perform a rescaling of the pixel values in each band separately and map the
bands i + z, r and g to R, G and B respectively.
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4.2 The Deep Learning Model

The goal of the training process is to obtain a model capable of inferring the four-

dimensional posterior distribution given an image, where each dimension corresponds to

one of the four parameters of interest. As explained in Chapter 3, neural networks are

well suited to that application. Thus, our training data is fed to a network that performs

Neural Posterior Estimation targeting the four-dimensional posterior distribution. We use

an inception-based architecture [69] as an embedding network that reduces the dimensi-

onality of the data. A diagram of the architecture can be seen in Figures 4.5 and 4.6.

The density estimation part of the network is done using a Neural Spline Flow. We also

explored using Mixture Density Networks and Gaussian Mixture Models for the density

estimation, but found that the NSF outperformed the other two methods.

Inception 
Block

Input

Conv

Batch Norm

ReLU

Max Pool

Conv

Batch Norm

Max Pool

Inception 
Block

Inception 
Block

Inception 
Block

Flatten

Dense

Figure 4.5 – Representation of the embedding network using the Inception-based archi-
tecture. The Conv and MaxPool layers are explained in Chapter 3. Relu
(Rectified Linear Unit) is the activation function used in these layers, given
by ReLU(x) = max(0, x). The size of the final output layer is determined
by the grid search. A detailed diagram of the Inception block can be seen in
Figure 4.6.

To determine the ideal values for some architecture choices of the network, a grid

search was performed over three key parameters: the number of output neurons in the

embedding network (nout), the number of transformations in the Neural Spline Flow

(ntransforms), and the number of hidden features in the one-layer neural network that
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Figure 4.6 – Diagram of an Inception block.

determines the parameters of each transformation in the NSF (nhidden). The explored

values for each of these choices are summarized in Table 3.

Architecture Choice Explored Values
nout {16, 32}

ntransforms {4, 6}
nhidden {24, 32, 48}

Table 3 – Explored architecture choices in the grid search. The parameter nout repre-
sents the number of output neurons in the embedding network. The parameter
ntransforms corresponds to the number of transformations in the Neural Spline
Flow. Finally, nhidden denotes the number of hidden features per transforma-
tion.

The training process is maintained for a maximum of 3000 epochs. We set aside 10%

of the data as a validation set, used to monitor the performance of the model in data that

is not used for weight optimization. This set is evaluated at the end of every epoch. With

the goal of avoiding excessive training that could lead to overfitting, we introduce an early

stopping protocol. If during training, the value of the loss function calculated with the

validation data does not improve for 100 epochs, the training training is stopped. We use

a batch size of 256 image-label pairs, and a learning rate of 10−3. The optimization is

handled by an Adam optimizer [70]. The values of the hyperparameters of the model are

summarized in Table 4.
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Parameter Value
Maximum Epochs 3000

Patience 100 epochs
Batch Size 256

Learning Rate 10−3

Optimizer Adam

Table 4 – Model hyperparameters used during the training process.

4.3 Analyzing the output of the model

The evaluation of the test set consists of applying the trained model to an unseen

image. To evaluate the test set, the image is passed through the network, which is

equivalent to taking a sample from the posterior distribution of the parameters given that

image. To estimate each posterior distribution, this process is repeated 10000 times for

each image, yielding an empirical distribution of values. Then, a statistical analysis can

be performed on each empirical distribution in order to derive an estimate for the value

of each parameter, as well as their confidence intervals.

The predicted values can be compared directly with the values used to generate that

simulation to ensure that they are consistent with each other. This can be done using the

Pearson Correlation Coefficient. It is also useful to use precision, defined as

P = 1 −
|(pred+1σ − pred−1σ)|

pred
, (4.3)

and fractional deviation, defined as

D =
|(true − pred)|

true
, (4.4)

as evaluation metrics. Since these are obtained for each image individually, we report the

median value obtained over the entire test set.

In some situations, simulation-based inference algorithms can produce unreliable un-

certainties [71]. The expectation for a well-calibrated model is that the percentage of true

values covered by a certain confidence interval should increase linearly as the confidence

interval increases. This expectation follows from the definition of confidence intervals:

if a model is well-calibrated, a p% confidence interval should contain the true value in

approximately p% of cases over many repeated samples. As a result, comparing the em-

pirical coverage of true values relative to their confidence interval offers a sense of how

well-calibrated the model is.

To assess the validity of the posterior distributions obtained by the model, a number

of Simulation-Based Calibration [72, 73] checks were employed, based on the analysis

of rank statistics. The rank of a posterior is given by the number of posterior samples

that fall under its true value. As such, for a well-calibrated model, the rank distribution

over a set of predicted posteriors is expected to be uniform. We employ two methods



4.3. Analyzing the output of the model 31

to summarize rank statistics: a Classifier Two-Sample Test (C2ST) [74] comparing the

ranks distribution to a uniform distribution and a Kolmogorov-Smirnov p-values test

(KS), testing the null-hypothesis that these two distributions are the same.
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Chapter 5

Results

The methods discussed in the previous chapter were used to design and train a neural

network using the simulated data described in Section 4.1. The training process was

carried out in a multi-GPU cluster using 8 Nvidia RTX 3090 GPUs. While each model

was trained on a single GPU, utilizing nearly all of the available 24 GB of VRAM, the

grid search over architecture choices was performed in parallel, making use of multiple

GPUs simultaneously. The hardware specifications are summarized in Table 5.

Component Specification
CPU Intel(R) Xeon(R) Platinum 8260
GPU 8 x NVIDIA GeForce RTX 3090 24 GB
RAM 1 TB
OS Ubuntu 24.04.1 LTS

Table 5 – Hardware specifications for the machine used to train the models discussed in
this work.

To decide on the best model, we evaluated the results obtained by the different archi-

tectures considering both precision and accuracy. As described in the previous chapter, we

used a combination of metrics such as median precision, median fractional deviation, and

Pearson correlation to evaluate accuracy, alongside uncertainty calibration metrics like

C2ST and KS-p-values to assess precision. We present results from models that achieve

the best balance between the aforementioned metrics.

The simulator described in Section 4.1 gives rise to two sets of ground-truth parame-

ters, referred to as the tentative set and the effective set. As the choice of set can result

in different behavior of the posterior distributions obtained by the model, the results for

both sets are presented separately.
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5.1 Tentative Set

5.1.1 Simulated Data

The training process for the best performing model took approximately 64 minutes,

which translates to 181 epochs. A summary of the training process can be seen in Figure

5.1. The evaluation of the test set took 1 minute and 24 seconds (0.03 seconds per image)

and yields all of the metrics discussed in the previous chapter. We report these results in

Figure 5.2, which shows a comparison of true and predicted values for all four parameters.

In these plots, the results are divided in bins over the true values, and the plot reports the

mean predicted value (yellow line), as well as the confidence intervals (blue for 1-sigma,

dark and light green for 2- and 3-sigma, respectively) calculated for each bin. We also

report the calculated values of the Pearson coefficient, precision and fractional deviation

in Table 6. We note that the use of the tentative set of ground-truth parameters results

in a mostly uniform distribution of ground-truth values for all parameters except for the

velocity dispersion, which is not contemplated in the tentative set and was trained using

ground-truth values from the effective set. The parameters of the architecture used to

obtain these results are shown in Table 7.

Metric θE σv zl zs
Median Precision 85.73% 98.05% 85.99% 81.29%

Median Fractional Deviation 11.95% 5.09% 29.06% 23.40%
Pearson 0.756 0.761 0.409 0.484

Table 6 – Evaluation metrics for the best-performing model.

Architecture choice Chosen value
Output features 32
Hidden features 48

Number of transforms 6

Table 7 – Architecture chosen from the result of the grid search done with models using
the tentative set.

For the Einstein radii, the model shows good performance, being able to accurately

predict values in most regions. The predictions tend to show worse performance in the

lower extreme (i.e. Einstein radius below 1 arcsec), which can be explained by the lower

sample size in the effective prior, causing the model to be shown simulations with less

diversity for this range of values, hurting its performance on unseen data. It is worth

noting that it becomes increasingly difficult to resolve lensed features from the lens galaxy

as the radius decreases, which could also lead to lower performance in these regions.

The predictions for the velocity dispersion tend to show very high deviation above 350

km/s, a region of critically low sample size in the prior distribution. Many regions also
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Figure 5.1 – Evolution of model performance over the epochs.

have true values lying outside of the 3 sigma intervals, showing low model performance.

Nevertheless, the median fractional deviation values show that predictions are not too far

from true values. The Pearson coefficient has a similar value to the one found for the

Einstein Radius, showing that the model has a general sense of the relation between true

values and predictions. The use of the effective prior to train the data could have led the

model to generate predictions with increased precision, an effect that is systematically

present in the results that will be discussed in Section 5.2.

For the redshift of the lens galaxy, the effective prior distribution has high variations

in sample size. The predictions show low performance anywhere outside of the central

region, which is likely to be a consequence of a network that is unsure what to predict,

and minimizes the squared error by predicting central values. Nevertheless, the Pearson

value of 0.5 indicates a moderate correlation between predictions and true values. The

low performance can be attributed to the realism in the simulations - since our simulator

uses real galaxy images to simulate the lens galaxy and we use a photometric estimate of

the redshift of the lens galaxy as the true value, the model effectively tries to relate a real

image to it’s photometric redshift, which is an active area of research [75, 76], and often

requires a more comprehensive approach.
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Figure 5.2 – Comparison of true and predicted values for the Einstein radius (top-left),
lens velocity dispersion (top-right), lens redshift (bottom-left) and source
redshift (bottom-right). The blue region corresponds to the one-sigma con-
fidence interval, and the dark and light green regions correspond to the two-
and three-sigma confidence intervals, respectively.

Finally, the predictions for the redshift of the source galaxy show adequate perfor-

mance for redshift below 1.5, but tend to deviate from true values above that. This is

again explained by the lower sample size of the effective prior distribution in those areas,

but also a consequence of the fact that objects with higher redshift tend to have fainter

magnitudes, thus are harder to detect and accurately model. These estimates also require

the network to account for magnification effects on top of the magnitudes and colors of

the lensed features, and as such, prove a more difficult task than other parameters.

As discussed in the previous chapter, we employ a number of metrics to verify the

quality of the posterior distributions reported by the model. We present a posterior
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coverage plot in Figure 5.3, where we report the empirical coverage of true values relative

to confidence interval. We also report values for KS test and C2ST in Table 8. The values

for the KS test indicate a vanishing probability that the rank distribution is sampled from

a normal distribution, which indicate poorly-calibrated uncertainties. This diagnostic

is further confirmed by the C2ST values, which represent the accuracy of a classifier

tasked with differentiating points from the predicted posterior distributions and uniform

distributions in the same range. The values that deviate from 0.5 indicated that the

C2ST classifier is systematically able to differentiate the two distributions. However,

the posterior coverage plots indicate that for all four parameters, the empirical coverage

grows faster than the confidence interval, which indicates that the posterior distributions

reported by the model are underconfident (i.e., wider than expected for a calibrated

model). Thus, we can expect the true value of a parameter to be covered within one-

sigma more frequently than the confidence interval suggests, providing a conservative

safety margin for the uncertainties.

Metric θE σv zl zs
C2ST 76.0% 86.5% 81.9% 81.6%

KS-pvals 0 0 0 0

Table 8 – Uncertainty calibration metrics for the best-performing model.
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Figure 5.3 – Comparison of empirical and expected coverages for the four parameters.

5.1.2 Real Data

As the final goal of this work is to enable fast and automated analysis of lensing pa-

rameters on images generated by future surveys, we apply our model to available real

Strong Lensing data as a way to gauge the preparedness of this approach to real world

applications. As mentioned in Chapter 1, one of the biggest challenges with strong len-

sing today is the lack of real data. Strong Lensing systems are not only relatively rare

occurrences, but also pose an observational challenge given the difficulty of identification.

Thus, we report the results of using our model on two different datasets of images taken by

the DELVE survey, demonstrating its ability to recover lensing parameters in real-world

scenarios. These results highlight both the strengths and limitations of the model when

applied to current observational data.

5.1.2.1 LaStBeRu Data

The Last Stand Before Rubin (LaStBeRu) [77] project aims to catalog all known

strong lensing data before the start of LSST [15]. We apply cuts to the catalog in order

to keep only single-source, galaxy-galaxy strong lensing systems that are located within
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the footprint of the DELVE survey, since this is what the simulations are tailored to

mimick. The resulting dataset contains 48 systems, with ground-truth values for all four

parameters of interest. We use the astrometric data reported in the LaStBeRu catalog

to generate image cutouts of the systems from the DELVE survey. As such, there is no

guarantee that the lensing features are clearly observable using DECam. We present a

comparison of our simulations and the cutouts in Figure 5.4. We deploy the model in

these images, and we report the results in Figure 5.5. While the low sample size prevents

any meaningful statistical analysis, we report the evaluation metrics in Table 9.

Figure 5.4 – Comparison between simulation (top row) and observations (bottom row)
for the dataset generated using LaStBeRu data.

Metric θE σv zl zs
Median Precision 84.45% 93.30% 81.67% 75.98%

Median Fractional Deviation 35.64% 21.40% 42.38% 72.44%
Pearson -0.063 0.152 0.434 0.233

Table 9 – Evaluation metrics for the best-performing model applied to the dataset gene-
rated using LaStBeRu data.
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Figure 5.5 – Comparison of true and predicted values for the Einstein radius (top-left),
lens velocity dispersion (top-right), lens redshift (bottom-left) and source
redshift (bottom-right) for the dataset generated using LaStBeRu data. The
vertical bars represent the 1-sigma confidence interval. The uncertainties in
true values are reported when available.

5.1.2.2 DELVE Data

The second dataset is a subset of the systems identified in [67]. We limit ourselves

to analyzing grade A candidates with a single source object, as this is the scenario used

to generate the simulations, yielding a set of 22 observations. A comparison between

some observations and simulation can be seen in Figure 5.6. For these images, the only

ground truth parameters available are the Einstein Radii, obtained by measuring the

separation between the lensed features and the lens galaxy in pixels and converting to

angular distance using the pixel scale of the survey. This process is not as accurate as
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traditional modeling, and tends to yield imprecise results, but is relatively fast to perform.

The main results can be seen in Figure 5.7. As with the first dataset, the low sample size

prevents a meaningful statistical analysis, but the evaluation metrics are reported in Table

10. It is worth mentioning that these results lie outside of the range of Einstein Radii

used for training. This could explain the hesitance of the network in predicting values

above 2 arcsec. Nevertheless, some of the results within the range of the simulations are

compatible with the available estimates.

Figure 5.6 – Comparison between simulation (top row) and observations (bottom row)
for the dataset generated using data from the DELVE survey.

Metric θE
Median Precision 71.76%

Median Fractional Deviation 43.02%
Pearson 0.032

Table 10 – Evaluation metrics for the best-performing model applied to the data from the
DELVE survey.
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Figure 5.7 – Comparison of true and predicted values for the Einstein radius using real
data from the DELVE survey. The vertical bars represent the 1-sigma con-
fidence interval. The uncertainties in true values are reported also reported.

5.2 Effective Set

5.2.1 Simulated Data

The training process for the best performing model trained with the effective set of

ground-truth parameters took approximately 75 minutes. This time translates to 241

epochs. The evaluation of the test set took 1 minute and 4 seconds (0.02 seconds per

image). Like in the previous section, the evolution of the loss function during training

is represented in Figure 5.8, and the evaluation metrics are shown in Table 11. The

parameters of the architecture used to obtain these results are shown in Table 12.

The results for the effective set are more precise compared to the results for the

tentative set. The matching process used for the tentative set introduces an extra layer

of separation between the values used to simulate an image and the ground-truth values,

which explains the wider uncertainty regions displayed by the models trained with the

tentative set. This effect is not present for the velocity dispersion, for which the ground-

truth values in both sets are the same.
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Metric θE σv zl zs
Median Precision 98.69% 99.08% 96.66% 97.05%

Median Fractional Deviation 2.22% 3.6% 17.26% 10.02%
Pearson 0.964 0.892 0.679 0.817

Table 11 – Evaluation metrics for the best-performing model trained with ground-truth
values taken from the effective prior.

Architecture choice Chosen value
Output features 32
Hidden features 24

Number of transforms 4

Table 12 – Architecture chosen from the result of the grid search done with models using
the effective set.

In general, the fractional deviations are smaller for the effective set. However, the high

precision obtained by the model often causes the true value to fall outside of the 3-sigma

confidence interval of the posterior distribution. These results are shown in Figure 5.9,

and follow the same logic as those shown in 5.1.

An important difference between the two sets is the distribution of ground-truth values.

The use of the effective set results in less control over the values, which can cause regions

of low sample size. These regions can be attributed to the simulation of the population

done by LensPop. There is a tendency for regions of high sample size to show lower

deviations between true and predicted values. The results for the uncertainty calibration

can be seen in Figure 5.10, as well as Table 13.

The predictions made by the model for the Einstein radius are generally in agreement

with the true values. Despite the good correlation, evidenced by the Pearson coefficient

values close to 1, some regions have true values falling outside the 3-sigma confidence

region. This can be attributed to the high precision obtained by the model. However, the

posterior coverage plots indicate that the uncertainty regions predicted by the model are

overconfident, even more than those obtained for the tentative set. This effect could be

a result of the model learning biases in the simulator, which become evident due to the

lower uncertainty introduced by the use of the effective set.

With the tentative set, the results for the velocity dispersion show the importance of a

uniform distribution of true values. The true values agree with predicted values in regions

of higher sample size (i.e., between 220 and 340 km/s), but show high deviation above 340

km/s, a region of critically low sample size. The low fractional deviation combined with

the relatively high Pearson coefficient values indicate that the model is able to predict

reasonable point estimates, but the caveats related to uncertainty estimation mentioned

for the Einstein radius also apply for the velocity dispersion. It is worth mentioning that

although the ground-truth values for velocity dispersion are the same between the two

sets, the models generate different predictions due to the different architecture, as well as
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Figure 5.8 – Evolution of model performance over the epochs for the model trained with
ground-truth values taken from the effective prior

the cross-correlation between the parameters.

For the lens redshift, the results are similar to those obtained with the tentative set,

possibly due to the variations in sample size. For the effective set, the high precision

obtained by the models causes true values to not agree with the predicted values for the

majority of the parameters space. However, the Pearson coefficient indicates a marginally

better correlation compared to the tentative set. This can be a consequence of the fact

that the redshift of the lens galaxy is taken from a real image, and therefore, using the

exact value for the redshift caused the network to perform better point estimates.

Lastly, the redshift of the source shows a behavior similar to the one obtained with

the tentative set. There is reasonable agreement between true and predicted values for

redshift below 1.5, but the results show a notable decrease in performance beyond that

threshold. The same considerations about observational limitations discussed in Section

5.1 also apply.

A common trend between the parameters is the better correlation between true and

predicted values compared to those obtained with the tentative set. The Pearson coef-

ficient values are systematically higher for the effective set. However, the high precision
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Figure 5.9 – Comparison of true and predicted values for the model trained with ground-
truth values taken from the effective prior for the Einstein radius (top-left),
lens velocity dispersion (top-right), lens redshift (bottom-left) and source
redshift (bottom-right). The blue region corresponds to the one-sigma confi-
dence interval, and the green regions correspond to the two- and three-sigma
confidence intervals.

obtained by the model combined with a posterior coverage plot indicating overconfidence

shows that the model might be learning biases in the simulation process. This effect is

less noticeable with the tentative set due to the higher separation between the simulated

images and the ground-truth values, causing the true values to be covered in the 3-sigma

confidence intervals in a bigger part of the parameter space.
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Figure 5.10 – Comparison of empirical and expected coverages for the model trained with
ground-truth values taken from the effective prior across the four parame-
ters.

Metric θE σv zl zs
C2ST 96.4% 93.8% 94.3% 95.0%

KS-pvals 0 0 0 0

Table 13 – Uncertainty calibration metrics for the best-performing model trained with
ground-truth values taken from the effective prior.

5.2.2 Real Data

5.2.2.1 LaStBeRu Data

We report the results obtained by the model applied to the LaStBeRu dataset. The

considerations made in section 5.1.2.1 still apply. The main results are shown in Table

14, as well as in Figure 5.11.
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Metric θE σv zl zs
Median Precision 97.58% 98.24% 95.27% 94.30%

Median Fractional Deviation 27.74% 18.48% 47.96% 101.05%
Pearson -0.048 0.175 0.380 0.116

Table 14 – Evaluation metrics for the best-performing model applied to the dataset gene-
rated using LaStBeRu data, with ground-truth values taken from the effective
prior.

5.2.2.2 DELVE Data

Lastly, we report the results obtained by the model applied to the DELVE dataset.

Like with the LaStBeRu data, The considerations made in section 5.1.2.2 still apply. The

main results are shown in Table 15, as well as in Figure 5.12.

Metric θE
Median Precision 98.19%

Median Fractional Deviation 40.84%
Pearson 0.166

Table 15 – Evaluation metrics for the best-performing model applied to the data from the
DELVE survey, with ground-truth values taken from the effective prior.
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Figure 5.11 – Comparison of true and predicted values for the model trained with ground-
truth values taken from the effective prior for the Einstein radius (top-left),
lens velocity dispersion (top-right), lens redshift (bottom-left) and source
redshift (bottom-right) for the dataset generated using LaStBeRu data. The
vertical bars represent the 1-sigma confidence interval. The uncertainties
in true values are reported when available.
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Figure 5.12 – Comparison of true and predicted values for the model trained with ground-
truth values taken from the effective prior for the Einstein radius using data
from the DELVE survey. The vertical bars represent the 1-sigma confidence
interval. The uncertainties in true values are also reported.
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Chapter 6

Concluding Remarks

In the next decade, the number of observed strong lensing systems is expected to

increase by up to three orders of magnitude, with current estimates placing this number

in the hundreds of thousands. This translates to the detection of dozens of lenses every

day. The current methods for parameter estimation show reliable results, but are not

suited to the new volume of data that future surveys can provide. Neural network based

models such as the one discussed in this work are possible solutions, showing promising

results. Our best performing model is capable of modeling a lensing system in 0.03

seconds, proving a suitable method of data analysis for the next generation of ground-

based surveys.

Despite the suitability to the task, there are still challenges to the large-scale adoption

of these methods as reliable parameter estimators. The models developed in this work are

not yet at a point where they can be used to analyze real data and provide meaningful

results. Nevertheless, this work serves as a step in the direction of the adoption of AI

based methods to perform fast and automated Bayesian parameter estimation in Strong

Lensing.

One of the most important factors that affect the performance of any SBI-based ap-

proach is the realism of the simulations. We have made an effort to go beyond the current

available simulators, generating simulations that present many real-world effects, inclu-

ding survey-specific read noise, gain, sky brightness, zero-point magnitudes. Using real

images of galaxies as a base for a simulated lens also introduces effects that are harder

to simulate such as cosmic ray absorption. These effects must be present in the training

data for any model robust enough to analyze real data. The difference between the re-

sults obtained in the training data and the real data show that there is still a significant

difference between the simulations and the real data, an issue that must be addressed in

future investigations.

Additionally, the results obtained in the training data are also not perfect. During the
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development of the work, a significant trade off could be noticed between the realism of

the simulations and the performance of the deep learning models. As the simulations were

made mode complex, more advanced architectures were required to maintain the same

level of performance. By utilizing more sophisticated deep learning models, it is likely

that the performance could be further improved, potentially leading to more accurate

predictions and better generalization across different simulation scenarios, even reducing

the impact of imperfect simulations.

Finally, the impact of the sample size in the prior distribution shows that simulations

that are significantly different from the average are unlikely to yield accurate classificati-

ons. This highlights one of the limitations of AI-based approaches when applied to large

datasets, where rare or exceptional cases that deviate from the norm may suffer from

reduced performance. Moreover, the influence of the sample size emphasizes the need for

larger and more diverse datasets in future studies in order to enhance model reliability

and performance.

In the coming decade, as the number of observed Strong Lensing systems increase,

the need for a fast and automated approach to parameter inference will become very

evident. While this work does not provide a fully developed, working model, it provides an

important step towards the adoption of AI-based approaches to this problem. Significant

challenges remain, especially regarding the realism of simulations and the need for more

sophisticated models to improve accuracy. Harnessing the benefits of AI-based methods is

crucial for the future of scientific discovery, but it is necessary to ensure that their results

are reliable. While this work is not yet a final solution, it lays the foundation for the

development of more robust, reliable, and scalable models to tackle parameter inference

in Strong Gravitational Lensing.
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Dimitrios Tanoglidis, and Joshua A. Frieman. Strong Lensing Parameter Estimation

on Ground-Based Imaging Data Using Simulation-Based Inference, November 2022.

arXiv:2211.05836 [astro-ph].

[25] Ronan Legin, Yashar Hezaveh, Laurence Perreault Levasseur, and Benjamin Wan-

delt. Simulation-Based Inference of Strong Gravitational Lensing Parameters, June

2022. arXiv:2112.05278 [astro-ph].

[26] Isaac Newton, G. W. Hemming, and donor DSI Burndy Library. Opticks: or, A

treatise of the reflections, refractions, inflexions and colours of light : also two

treatises of the species and magnitude of curvilinear figures. London : Printed for

Sam. Smith, and Benj. Walford ..., 1704.

[27] Stanley L. Jaki. Johann georg von soldner and the gravitational bending of light, with

an english translation of his essay on it published in 1801. Foundations of Physics,

8(11-12):927–950, 1978.

[28] F. Zwicky. Nebulae as gravitational lenses. Phys. Rev., 51:290–290, Feb 1937.

[29] F. Zwicky. On the Masses of Nebulae and of Clusters of Nebulae. ApJ, 86:217,

October 1937.

[30] Massimo Meneghetti. Introduction to gravitational lensing.

[31] Aggeliki Kassiola and Israel Kovner. Elliptic mass distributions versus elliptic po-

tentials in gravitational lenses. The Astrophysical Journal, 417(2):450–473, 1993.

[32] R. Kormann, P. Schneider, and M. Bartelmann. Isothermal elliptical gravitational

lens models. AAP, 284:285–299, April 1994.

[33] Glenn van de Ven, Rachel Mandelbaum, and Charles R. Keeton. Galaxy density

profiles and shapes - I. Simulation pipeline for lensing by realistic galaxy models.

MNRAS, 398(2):607–634, September 2009.

[34] C. R. Keeton and C. S. Kochanek. Gravitational lensing by spiral galaxies. The

Astrophysical Journal, 495(1):157, mar 1998.

[35] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

http://www.deeplearningbook.org


60 References

[36] Aurelien Geron. Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly

Media, Inc., 2nd edition, 2019.

[37] B J Copeland. The Essential Turing. Oxford University Press, 09 2004.

[38] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[39] F. Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 1958.

[40] M.L. Minsky and S. Papert. Perceptrons: An Introduction to Computational

Geometry. MIT Press, 1969.

[41] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (4th

Edition). Pearson, 2020.

[42] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Ai-

dan N. Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In

Proceedings of the 31st International Conference on Neural Information Processing

Systems, NIPS’17, page 6000–6010, Red Hook, NY, USA, 2017. Curran Associates

Inc.

[44] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural

Computation, 9(8):1735–1780, 11 1997.

[45] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into Deep

Learning. Cambridge University Press, 2023. https://D2L.ai.

[46] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale

Hierarchical Image Database. In CVPR09, 2009.

[47] Daniel George and E. A. Huerta. Deep Neural Networks to Enable Real-time Mul-

timessenger Astrophysics. Phys. Rev. D, 97(4):044039, 2018.

[48] Daniel George and E. A. Huerta. Deep Learning for Real-time Gravitational Wave

Detection and Parameter Estimation: Results with Advanced LIGO Data. Phys.

Lett. B, 778:64–70, 2018.

[49] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naf-

tali Tishby, Leslie Vogt-Maranto, and Lenka Zdeborová. Machine learning and the
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