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Abstract

The duration of our Universe, all of its content, and whether it had a beginning or

has always existed has long been the subject of intense investigation. As free particles

trajectories are given by geodesics, the inquisition of godesic completeness and extensions

become crucial for the investigation of possible eternal Universes. Nevertheless, General

Relativity’s invariance under diffeomorphisms imposes an additional difficulty to realize

whether the incompleteness has physical significance or if it is merely an inappropriate

coordinate choice. In this context, the singularity theorems provide sufficient conditions

for geodesic incompleteness without recurring to coordinate charts. However, kinematic

alternatives for classifying incomplete space-times that are expanding have been proposed,

leading to the Borde-Guth-Vilenkin (BGV) theorem, where no restriction on the matter

fields are necessary, such as energy conditions. Notwithstanding, whether the space time

admits a metric extension that is compatible with General Relativity, i.e, a 𝒞2 extension,

needs to be addressed.

In this dissertation, using the pivotal example of the flat patch of the de Sitter space,

we manage to find a new global chart for this space - which without considerations of

extensibility would be diagnosed as geodesically incomplete. Furthermore, we developed

a general protocol for a 𝐶2 extension of a flat Friedmann-Lemaître-Robertson-Walker

metric, and the necessary conditions for its application by exhausting all the possible cases

in the asymptotic limit, finding necessary and sufficient conditions for extensibility. The

incomplete spaces that violate the assumptions have either a scalar curvature singularity or

a parallelly propagated singularity, in which cases no 𝒞2 extension is allowed. Moreover,

we discuss results for possible cyclic scenarios proposed in the literature. The results

obtained in this work were published in Phys. Rev. D 111, 123531 (2025).

Key Words: GEODESIC COMPLETENESS, COSMOLOGICAL MODELS,
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Chapter 1

Introduction

The question of whether the Universe had a beginning has long pervaded human in-

quisitions, either in philosophy or in physics [1, 2, 3, 4]. In the physical description of

reality, there are four fundamental interactions in our Universe: the strong interaction,

responsible for the cohesion of the atomic nucleus, the electromagnetic, which mediates

interactions between charged particles, the weak interaction, which is responsible for the

decay of particles and gravity, an attractive interaction, described by General Relativity,

where the trajectory of particles is dictated by the curvature of the spacetime manifold.

On large scales, due to the average electric neutrality of bodies and the large distances

considered, the most relevant interaction for the dynamical evolution is gravity and, thus,

as far as Cosmological inquiries are concerned, such as the beginning of the Cosmos,

Einstein’s Field Equations (EFEs) are essential. In this framework, the whole Universe

is described by a four dimensional manifold ℳ endowed with a Lorentzian metric 𝑔𝜇𝜈 ,

whose geometry is described by the set of coupled non-linear second order Einstein’s Field

Equations [5],

𝑅𝜇𝜈 − 1
2𝑅𝑔𝜇𝜈 + Λ𝑔𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈 , (1.1)

where, on the left side of (1.1), we have contractions of the Riemann curvature tensor, i.e,

the Ricci tensor and scalar, which associate the curvature of the spacetime manifold ℳ

with the matter and energy content filling the spacetime, given by 𝑇𝜇𝜈 . The set (ℳ, 𝑔𝜇𝜈)

is what we regard as the spacetime. The solutions 𝑔𝜇𝜈 of EFEs will give us the local notion

of interval between two points in ℳ, which shall be extremized over geodesic curves. In

a sense, geodesics are the generalization of straight lines in Euclidean space, and as such,
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are used to describe the trajectory of free particles on ℳ. Since all free particles follow

geodesic curves on ℳ, they are a natural candidate for the investigation of the eternity of

the Universe: if all the free particles in the Universe observe an eternal duration, hence,

if all particle trajectories are complete, the Universe did not have a beginning, as it is

eternal for every observer. This can be conceptualized in terms of the invariant interval

along geodesics and the conditions for their completeness shall be the investigation of this

work. However, in what concerns Cosmology, a few philosophical assumptions, based on

observation1 are inferred, such as the Copernican2 Principle. According to this principle,

we are not in a privileged position in the universe: in other words, what we observe

from Earth must be, on large scales, about the same at any other point in the spacetime

manifold. Therefore, since we observe the background of the universe to be spatially

homogeneous and isotropic [6, 7, 8], we extrapolate this observational fact to the entirety

of the spacetime.

Assuming the Copernican Principle, and hence a global foliation of spacetime where

the space hypersurface are homogeneous and isotropic everywhere, we can decompose

the (3+1) manifold as the product ℐ × R3, or any other homogeneous and isotropic 3-

dimensional space, where the cosmic time 𝑡 ∈ ℐ. Despite being only a few empirical

assumptions, by imposing them on cosmological models we end up with very strong

restrictions on the possible geometries of the space sections, as we shall see now.

1.1 The Geometry of a Cosmological Spacetime

By assuming the Copernican principle for the cosmological solutions of EFEs, we assume

that there exists a foliation of the spacetime manifold in which the spatial section, for

being homogeneous and isotropic, is maximally symmetric and, therefore, possess the

maximum number of Killing vectors: due to homogeneity, translations in any of the three

spatial directions must leave the metric 𝑔𝜇𝜈 invariant, and due to isotropy rotations around

the three spatial axis must also keep 𝑔𝜇𝜈 unaltered. However, by imposing such a strong

principle on the spacetime geometry, we highly restrict the possible scenarios that satisfies

it3.
1Some observations such as the Cosmic Microwave Background
2Nicolau Copérnico (1473-1543)
3For the case of homogeneity, there are only 8 possible 3 dimensional geometries, as stated by the

Thurston Conjecture [9]. Additionally imposing isotropy reduces it to 3 possibilities.
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In the two-dimensional case, two trivial geometries with the above properties come to

mind: the two-sphere S2 and the plane. We can generalize this notion to a 3-dimensional

sphere, embedded in a 4-dimensional space, whose line element will be given by the

constraint

𝑥2 + 𝑦2 + 𝑧2 ± 𝑤2 = ±𝜅2, (1.2)

where 𝜅2 is a positive constant parameter. For the positive signs in the constraint equation

(1.2) we can easily identify it as a 3-sphere S3 embedded in the 4 dimensional Euclidean

space, while for the negative signs, we have an hyperboloid H3 embedded in a (3+1)-

Lorentzian space R1,3. By differentiating (1.2), we get a relation between infinitesimal

displacements

d𝑤 = ∓𝑥d𝑥 + 𝑦d𝑦 + 𝑧d𝑧

𝑤
= ∓ 𝑥d𝑥 + 𝑦d𝑦 + 𝑧d𝑧√

𝜅2 ∓ 𝑥2 ∓ 𝑦2 ∓ 𝑧2 . (1.3)

Therefore, we can write the line element d𝑙2 in function of the 3 coordinates (𝑥, 𝑦, 𝑧):

d𝑙2 = d𝑥2 + d𝑦2 + d𝑧2 ± (𝑥d𝑥 + 𝑦d𝑦 + 𝑧d𝑧)2

𝜅2 ∓ 𝑥2 ∓ 𝑦2 ∓ 𝑧2 . (1.4)

However, we see from (1.2) that Cartesian coordinates are degenerate since in these

coordinates equation (1.2) does not uniquely specifies the point, as for any coordinate

(𝑥, 𝑦, 𝑧), there corresponds a distinct antipodal point. We can make a coordinate trans-

formation into the more suitable spherical coordinates in the standard manner:

𝑥 = 𝑟 cos 𝜑 sin 𝜃,

𝑦 = 𝑟 sin 𝜑 sin 𝜃,

𝑧 = 𝑟 cos 𝜃.

(1.5)

In these coordinates, since 𝑥d𝑥 + 𝑦d𝑦 + 𝑧d𝑧 = 𝑟d𝑟, the line element is

d𝑙2 = d𝑟2 + 𝑟2(d𝜃2 + sin2 𝜃d𝜑2) ± 𝑟2d𝑟2

𝜅2 ∓ 𝑟2 =
[︃

d𝑟2

1 ∓ 𝑟2

𝜅2

]︃
+ 𝑟2(d𝜃2 + sin2 𝜃d𝜑2). (1.6)

Defining the curvature of the spatial section as 𝑘 ≡ 1/𝜅2, we see that, as the radius

goes to infinity 𝜅 → ∞, the curvature 𝑘 goes to zero, and we recover the metric of
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3-dimensional Euclidean space in spherical coordinates:

d𝑙2 = d𝑟2 + 𝑟2(d𝜃2 + sin2 𝜃d𝜑2), (1.7)

where the range of the coordinates is as usual: 𝑟 ∈ [0, ∞), 𝜃 ∈ [0, 𝜋], 𝜑 ∈ [0, 2𝜋). It is

useful to re-scale the line element (1.6), such that the curvature of the spatial sections

only assume the discrete values

𝑘 ∈ {−1, 0, 1}. (1.8)

The absolute value of the curvature can later be incorporated into the scale factor

of the 4 dimensional metric, which will give the size of each section at a given time.

Additionally to the flat case, where 𝑘 = 0, we can also obtain the metric for the scenario

with spatial negative curvature 𝑘 = −1. Defining coordinate 𝜒, such that d𝜒2 = d𝑟2

1+𝑟2 , by

simple integration we have

∫︁
d𝜒 =

∫︁ d𝑟√
1 + 𝑟2

⇒ 𝜒(𝑟) = sinh−1(𝑟), (1.9)

and the metric for the 𝑘 = −1 case can be written as

d𝑙2 = d𝜒2 + sinh2(𝜒)(d𝜃2 + sin2(𝜃)d𝜑2). (1.10)

Since 𝑟 is defined over the positive branch of R, the coordinates (𝜒, 𝜃, 𝜑) are defined

over 𝜒 ∈ [0, ∞), 𝜃 ∈ [0, 𝜋] and 𝜑 ∈ [0, 2𝜋). Finally, for the case where 𝑘 = +1, we find

∫︁
d𝜒 =

∫︁ d𝑟√
1 − 𝑟2

⇒ 𝜒(𝑟) = sin−1 𝑟, (1.11)

d𝑙2 = d𝜒2 + sin2 𝜒(d𝜃2 + sin2 𝜃d𝜑2), (1.12)

with coordinates limited to 𝜒 ∈ [0, 𝜋), 𝜃 ∈ [0, 𝜋] and 𝜑 ∈ [0, 2𝜋). Now that the possible

homogeneous and isotropic spatial geometries have been determined, the only way to add

an evolution in time without loosing homogeneity and isotropy is to make the spatial

geometry dependent on time through a function 𝑎(𝑡) which has no dependency on the

spatial coordinates
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d𝑙2(𝑡) = 𝑎2(𝑡)[d𝜒2 + 𝑟(𝜒)2(d𝜃2 + sin2 𝜃)]. (1.13)

Note that this element is only a 3-dimensional spatial interval, hence, it is not an invariant

under arbitrary coordinate transformations. This highly symmetric line element is the

spatial section as measured by a very special observer, which we refer to as the co-moving

observer, in whose coordinates all the symmetries of the space-time are made explicit

through the full space-time metric

d𝑠2 = 𝑔𝛼𝛽d𝑥𝛼d𝑥𝛽 = −d𝑡2 + 𝑎2(𝑡)[d𝜒2 + 𝑟(𝜒)2(d𝜃2 + sin2(𝜃)d𝜑2)]. (1.14)

This is called a Friedamann-Laimaître-Robertson-Walker (FLRW) metric. As perceived

through the element above, this metric is not necessarily invariant through time transla-

tion.

Backed up by the evidences of spatially flatness of the spacetime, let us restrict our

attention to the flat FLRW case (𝑘 = 0) for the time being. In such cases, the co-moving

metric is given by (1.14), with 𝜒 = 𝑟:

d𝑠2 = −d𝑡2 + 𝑎2(𝑡)[d𝑟2 + 𝑟2(d𝜃2 + sin2 𝜃d𝜑2)]. (1.15)

We can investigate the behavior of geodesics co-moving to the frame with coordinates

(𝑡, 𝑟, 𝜃, 𝜑). Since the invariant interval along two events is the proper time measured by the

observer in which these two events are at the same spatial coordinate, along a co-moving

geodesic, we have

d𝑠2 = −d𝑡2 ⇒ Δ𝑠 ∝
∫︁ 𝑡𝑓

𝑡𝑖

d𝑡. (1.16)

Thus we see that for flat FLRW, the invariant interval of co-moving observers will depend

only on the interval of cosmic time for which the function 𝑎(𝑡) is defined. In particular,

for models where 𝑡 ∈ (−∞, 𝑡0), the interval along any co-moving geodesic diverges, i.e,

the co-moving observers experience no beginning for the Universe, rendering them the

perception of an eternal Universe. The same, nevertheless, does not necessarily occurs

for free particles in movement with relation to the frame of metric (1.15) (which we will

refer to as the non co-moving observer). This would seem to be in contradiction with the
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relativity principle, in which all observers are equivalent. Let us consider a non space-like

radial geodesic curve parametrized by 𝜆, which is the proper time 𝜏 in the case of time-like

geodesics or an affine parameter in the case of light-like geodesics. A vector tangent to the

curve will be given by 𝑢𝜇 ≡ (d𝑡/d𝜆, d𝑟/d𝜆, d𝜃/d𝜆, d𝜑/d𝜆) = (𝑢𝑡, 𝑢𝑟, 0, 0). Given metric

(1.15) and the geodesic equation

d2𝑥𝜇

d𝜆2 + Γ𝜇
𝛼𝛽

d𝑥𝛼

d𝜆

d𝑥𝛽

d𝜆
= 0, (1.17)

we can write the equations of motion for a non co-moving geodesic4. For the time com-

ponent, 𝜇 = 0, we have

d2𝑡

d𝜆2 + 𝑎𝑎̇

(︃
d𝑟

d𝜆

)︃2

= 0, (1.18)

and for the radial component, 𝜇 = 1

d2𝑟

d𝜆2 + 2 𝑎̇

𝑎

(︃
d𝑟

d𝜆

)︃(︃
d𝑡

d𝜆

)︃
= 0. (1.19)

Since 𝑎̇d𝑡/d𝜆 = d𝑎/d𝜆, by multiplying the latter equation by 𝑎2(𝑡), we can rewrite it as

𝑎2(𝑡) d2𝑟

d𝜆2 + 2𝑎(𝑡)d𝑎

d𝜆

(︃
d𝑟

d𝜆

)︃
= d

d𝜆

[︃
𝑎2(𝑡) d𝑟

d𝜆

]︃
= 0. (1.20)

Thus, we see that, along the non co-moving geodesic parametrized by 𝜆, we have a constant

of motion, which we will define as

𝑎2(𝑡) d𝑟

d𝜆
≡ 𝑣0 = const. (1.21)

Thence, we can always write the radial component of the non co-moving observer as

d𝑟

d𝜆
= 𝑣0

𝑎2 . (1.22)

By choosing the normalization of the tangent vector to be either 𝛽 ≡ 0, −1, for the

null and time-like case, respectively:

−
(︃

d𝑡

d𝜆

)︃2

+ 𝑎2(𝑡)
(︃

d𝑟

d𝜆

)︃2

= −
(︃

d𝑡

d𝜆

)︃2

+ 𝑣2
0

𝑎2 = 𝛽. (1.23)

4See Appendix A for Christoffel’s symbols and curvature tensors evaluation.
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Thereby, we can relate the co-moving time coordinate 𝑡 with the affine parameter for null

geodesics, yielding:

d𝜆 = 1
𝑣0

𝑎(𝑡)d𝑡. (1.24)

For time-like non co-moving geodesics we find

d𝜏 = d𝑡√︁
1 + 𝑣2

0
𝑎2

. (1.25)

Given that the invariant interval Δ𝜏 and the affine parameter depend on the behavior

of the function 𝑎(𝑡), we might have a finite invariant interval even in cases where the

cosmological time is defined up to 𝑡 → −∞, and, since the proper time Δ𝜏 is an invariant,

i.e, it is unaltered under coordinate transformations, we say these curves are incomplete.5

Kinematically what happens is that, depending on the behavior of the scale factor, as

the non co-moving observer approaches the asymptotic past, it observes a time dilation

of the co-moving interval if 𝑎(𝑡 → −∞) → 0, which results in an infinite interval for the

co-moving observer, while the non co-moving one reaches the asymptotic limit in a finite

proper time. Additionally, due to spatial contraction, the spatial sections of a co-moving

observer contract infinitely in the past boundary, but the same might not be true for a

non co-moving frame, which might have finite, non null spatial section. Therefore, the

volume observed by the non co-moving frame can be finite in the past boundary, in which

cases it might be continuously extended across the past hypersurface.

1.2 Perfect Fluid with Linear Equation of State

An usual construction of the matter fields that fill up the homogeneous and isotropic

cosmological space is that the matter can be modeled by a perfect fluid with density 𝜌(𝑡)

and pressure 𝑝(𝑡)6. In a frame co-moving to metric (1.14), the energy-momentum tensor

is given by
5For the light case, 𝜆 is not an invariant. However, any other affine parameter will be of the form

𝜆′ = 𝑎𝜆 + 𝑏, and thus, if 𝜆 is finite, so is 𝜆′.
6Note that, in a general case 𝜌 = 𝜌(𝑡, 𝑥⃗) and 𝑝 = 𝑝(𝑡, 𝑥⃗). Nevertheless, due to isotropy, the fluid’s

properties cannot depend on the direction of 𝑥⃗ and due to homogeneity it cannot depend on the distance
|𝑥⃗|.
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𝑇𝜇𝜈 = (𝜌 + 𝑝)𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈 , (1.26)

where 𝑢𝜇 is the four-velocity of a co-moving observer/fluid, which are at mutually at

rest with respect to each other. A further step to determine the dynamics of the fluid’s

property is through energy conservation: although in general we lose the notion of global

energy conservation, locally, we should always expect that the variation in the energy

density in a infinitesimal element, in the absence of creation (or annihilation) of particles,

is due solely to the escape/entrance through its border, i.e, the four-divergence of 𝑇 𝜇
0

should vanish:

∇𝜇𝑇 𝜇
0 = 𝜕𝜇𝑇 𝜇

0 + Γ𝜇
𝜇𝛽𝑇 𝛽

0 − Γ𝛽
𝜇0𝑇

𝜇
𝛽 = 0,

−𝜌̇ − 3 𝑎̇

𝑎
(𝜌 + 𝑝) = 0.

(1.27)

Additionally to the assumption of a perfect fluid, it is useful to consider an equation

of state to relate the energy density and the pressure in the form

𝑝(𝑡, 𝑥⃗) = 𝜔𝜌(𝑡, 𝑥⃗), 𝜔 = const. (1.28)

In this case, the local conservation of energy yields

−d𝜌

d𝑡
− 3 𝑎̇

𝑎
(1 + 𝜔)𝜌 = 0,

d𝜌

𝜌
= −3(1 + 𝜔)d𝑎

𝑎
⇒ 𝜌(𝑎) ∝ 𝑎−3(1+𝜔).

(1.29)

Therefore, as expected, in an expanding Universe we have a decrease in the energy

density due to the expansion of the volume. For instance, fluids such as dust, 𝜔 = 0, the

only way for the energy density to change is through expansion or contraction. As for

radiation, 𝜔 = 1/3, besides the expansion of space, the frequency of photons is redshifted,

which causes the energy density to decrease even faster. So, for different fluids we have

different densities contributions for an epoch in cosmic evolution. Therefore, for each

epoch, we might consider one type of fluid to be dominant over the other.

However, to sort out the issue of geodesic completeness in such idealized models, we

will need one last further step: it does not suffice to know the evolution of the energy

density with the scale factor, we need to determine the evolution of the scale factor 𝑎

itself with the cosmic time 𝑡. Evidently, the matter content will dictate the evolution of
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the geometry through EFE’s. Therefore, for that, we turn to the dynamical Friedmann’s

equations to determine how the the dominant fluid in a model will impact the completeness

of non co-moving test particles congruences.

1.3 Friedmann’s Equations

Now that we have obtained the dependency of the invariant interval of non co-moving

geodesics on the scale factor in a flat FLRW, we shall proceed to the investigation of

the dynamics through EFEs to determine how the scale factor evolves depending on the

matter content of the Universe, since for metric (1.14) the geometry of the manifold is fully

determined with the scale factor 𝑎(𝑡) and the spatial curvature 𝑘. Given the line element

in equation (1.14), we can compute the left side of EFEs (1.1) to obtain the Friedmann’s

equations. However, a more convenient way to portray EFE is by first obtaining the trace

of the Ricci tensor as a function of the energy momentum tensor:

−𝑅 + 4Λ = 8𝜋𝐺𝑇, (1.30)

where 𝑇 is the trace of 𝑇𝜇𝜈 and R is the Ricci scalar. Then, the EFEs can be conveniently

recast as

𝑅𝜇𝜈 = 8𝜋𝐺
(︂

𝑇𝜇𝜈 − 1
2𝑇𝑔𝜇𝜈

)︂
+ Λ𝑔𝜇𝜈 . (1.31)

The resulting equations for the scale factor are7

𝑎̈

𝑎
= −8𝜋𝐺

3

(︂
𝑇00 + 1

2𝑇
)︂

+ Λ
3 , (1.32)

𝑎𝑎̈ + 2𝑎̇2 = 8𝜋𝐺
(︂

𝑇11 − 1
2𝑇𝑔11

)︂
+ Λ𝑔11. (1.33)

For the case of a perfect fluid giving rise to a metric with flat spatial sections (1.15),

whose components are given by (1.26), the dynamical equations (1.32) and (1.33) for the

scale factor can be recast as:

𝑎̈

𝑎
= −4𝜋𝐺

3 (𝜌 + 3𝑝) + Λ
3 , (1.34)

7See Appendix A.
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𝐻2 = 8𝜋𝐺

3 𝜌 + Λ
3 , (1.35)

which are know as the Friedmann’s equations. In order to solve equation (1.35), given the

local energy conservation of a perfect fluid, it is reasonable to suppose that the energy

density evolves as a power of the scale factor

𝜌(𝑎) ∝ 𝜌0𝑎
𝑛, 𝑛 ∈ R. (1.36)

Using equation (1.35), we can write

𝑎̇ =
√︃

8𝜋𝐺𝜌

3 𝑎 ⇒ 𝑎−(𝑛/2+1)d𝑎 =
√︃

8𝜋𝐺𝜌0

3 d𝑡. (1.37)

Then

∫︁ 𝑎(𝑡)

𝑎0
𝑎−(𝑛/2+1)d𝑎 ∝ 𝑡 − 𝑡0,

𝑎(𝑡) ∝ 𝑡− 2
𝑛 , 𝑛 ̸= 0.

(1.38)

From (1.29), we see that 𝑛 = −3(1+𝜔), yielding 𝑎(𝑡) ∝ 𝑡2/3(1+𝜔). Hence, for any perfect

fluid with an equation of state parameter 𝜔, we can determine the evolution of 𝑎(𝑡) with

the cosmic time as though it is the dominating matter component. Consequently, through

equation (1.25), we can integrate to determine for which values of 𝜔 the non co-moving

frame observes a finite proper time in the asymptotic past

∫︁ 𝜏

𝜏(𝑡→−∞)
d𝜏 =

∫︁ 𝑡

−∞

d𝑡√︁
1 + 𝑣2

0𝑡−4/3(1+𝜔)
. (1.39)

Considering space-times in which the cosmic time 𝑡 is defined up to −∞, we can divide

the scale factor in two categories in terms of 𝜔:

1. 𝑎(𝑡 → −∞) → ∞, which occurs for 𝜔 > −1.

2. 𝑎(𝑡 → −∞) → 0, which occurs for 𝜔 < −1.

In case 1, we have that

lim
𝑡→−∞

√︃
1 + 𝑣2

0
𝑎2 = 1. (1.40)
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Hence, the integral for the proper time of the non co-moving observer (1.39), if the Uni-

verse is dominated by a perfect fluid with 𝜔 > −1, will coincide with the co-moving cosmic

time in the asymptotic limit, rendering for both of them infinite proper time measure-

ments along each respective geodesic. Thus, for 𝜔 > −1, we have geodesic completeness in

the asymptotic past. This is expected, as for 𝜔 > −1 the picture is as follows: infinitely

in the past, the spatial section of the Universe is essentially infinite and, as time goes

on, the scale factor 𝑎(𝑡) decreases, describing a contracting phase. Since the scale factor

diverges, there is no convergence in the congruence of time-like observers.

For the second case, nonetheless, let us define 𝛼 ≡ 2/3(1 + 𝜔), such that, for 𝜔 < −1

we are working with 𝛼 < 0. In these cases, as 𝑡 → −∞

lim
𝑡→−∞

√︃
1 + 𝑣2

0
𝑎2 ≈ |𝑣0|

𝑎
. (1.41)

Thus, integral (1.39) can be written as

∫︁ 𝜏

𝜏(𝑡→−∞)
d𝜏 ≈ 1

|𝑣0|

∫︁ 𝑡0

−∞
𝑡−|𝛼|d𝑡 = 1

1 − |𝛼|
[𝑡1−|𝛼|]

⃒⃒⃒⃒𝑡0

−∞
. (1.42)

We see that, if |𝛼| < 1, the proper time of non co-moving observers diverges |Δ𝜏 | → ∞

for all 𝑡0. In terms of the fluid equation of state, since we are considering 𝜔 < −1, the

geodesically complete models correspond to 𝜔 < −5/3, for

2
3 < |1 + 𝜔|, (1.43)

which is only satisfied for 𝜔 < −5/3. However, when we consider the case |𝛼| > 1,

equation (1.42) converges, thus the non co-moving observer reaches the past boundary in

a finite proper time |Δ𝜏 | < ∞. Since |𝛼| > 1 only for −5/3 < 𝜔 < −1, we have that this

interval is geodesically incomplete.
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Figure 1.1: For 𝜔 > −1, 𝛼 is always positive, and hence, the integral diverges. For the
cases where 𝛼 < 0, there are 2 sub-cases: the incomplete interval, −5/3 < 𝜔 < −1; and
the complete one: 𝜔 < −5/3.

Despite the integral here evaluated being dependent on the coordinate system, which,

in turn, might not cover the entire space-time manifold, we shall see in Chapter 4 that this

incomplete interval portrays a deeper physical problem: it does not admit a metric 𝒞2-

extension, i.e, it is not possible to extend the metric components (1.15) with 𝒞2 functions

for the scale factor 𝑎(𝑡) ∝ 𝑡2/3(1+𝜔), −5/3 < 𝜔 < −1. These models correspond to some

pre Big-Bang models [10, 11, 12, 13]. Note that, space-times in this interval possess no

scalar curvature singularity, since, for the flat case8

lim
𝑡→−∞

ℛ = lim
𝑡→−∞

6(𝐻̇ + 2𝐻2) ∝ lim
𝑡→−∞

1
𝑡2 → 0,

lim
𝑡→−∞

𝒦 = lim
𝑡→−∞

12(𝐻̇2 + 2𝐻̇𝐻2 + 2𝐻4) ∝ lim
𝑡→−∞

1
𝑡4 → 0,

(1.44)

where ℛ and 𝒦 are the Ricci and Kretschmann scalars, respectively. Additionally, notice

that, several of the cases considered geodesically complete here violate some type of

energy condition. For the time being, we verify the geodesically completeness of models

dominated by a perfect fluid regardless of the energy conditions. Furthermore, a case that

was purposefully left out of the discussion is the case in which 𝑝 = −𝜌. Since this case is,

in particular, extremely relevant for Cosmology and for the main results in this work, we

discuss it in the next section.
8Appendix A.
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1.4 The de Sitter Spacetime

A case of special relevance to the cosmological investigation is one of the exact solution

to EFE’s, known as the de Sitter9 spacetime, either in the context of the late acceleration

observed in the Universe [14] or in the inflationary phase [15, 16], and whose properties

will be central to this work. This space is not only spatially maximally symmetric, but

4-dimensionally maximally symmetric, i.e, it possesses the maximum number of Killing

vectors. Physically, the de Sitter spacetime describes a vacuum solution with a cosmo-

logical constant Λ. Therefore, to obtain the line element that describes this geometry, let

us consider the solutions to equation (1.35) with cosmological constant Λ but no matter

content (𝜌 = 0). We have that Friedmann’s equation reduce to:

𝐻2 = Λ
3 − 𝑘

𝑎2 . (1.45)

There are 3 solutions for the scale factor 𝑎(𝑡) depending on the value of 𝑘, which

will alter not only the scale factor evolution in time, but also the spatial 3-dimensional

sub-manifold of the co-moving observer. First, let us consider the flat case, 𝑘 = 0, we

have that the Friedmann’s equation is simply

𝐻2 = Λ
3 ,

𝑎̇ =
√︃

Λ
3 𝑎 ⇒ 𝑎(𝑡) = 𝑒

√
Λ
3 𝑡,

(1.46)

yielding the line element:

d𝑠2
flat = −d𝑡2 + 𝑒2

√
Λ/3𝑡[d𝑟2 + 𝑟2(d𝜃2 + sin2 𝜃d𝜑2)],

𝑡 ∈ R, 𝑟 ∈ [0, ∞), 𝜃 ∈ [0, 𝜋], 𝜑 ∈ [0, 2𝜋).
(1.47)

This first scenario describes a spacetime in which the co-moving observer experiences

an exponential expansion of its flat spatial sections. This spacetime, by equation (A.4),

possesses a constant scalar curvature:

ℛ = 6
(︃

𝑎̈

𝑎
+
(︂

𝑎̇

𝑎

)︂2
+ 𝑘

𝑎2

)︃
= 4Λ (1.48)

Now, on the other hand, if we consider the vacuum solution with negative spatial
9Willem de Sitter (1872-1934)
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curvature, i.e, 𝑘 = −1 we have that the Friedmann’s equation is given by:

𝐻2 = Λ
3 + 1

𝑎2 ,

d𝑎

d𝑡
=
√︃

Λ
3 𝑎2 + 1 ⇒ 𝑎(𝑡) =

√︃
3
Λ sinh

⎛⎝√︃Λ
3 𝑡

⎞⎠ ,
(1.49)

and the line element is

d𝑠2
open = −d𝑡2 + 3

Λ sinh2

⎛⎝√︃Λ
3 𝑡

⎞⎠ [d𝜒2 + sinh2(𝜒)(d𝜃2 + sin2 𝜃d𝜑2)],

𝑡 ∈ (0, ∞), 𝜒 ∈ [0, ∞), 𝜃 ∈ [0, 𝜋], 𝜑 ∈ [0, 2𝜋).

(1.50)

Note that the time coordinate is defined over the positive branch of R, since lim𝑡→0 𝑎 = 0.

This, a priori, represents no physical problem, as the curvature is finite over the entire

chart:

ℛ = 6
[︃

Λ
3 + Λ

3

(︃
cosh2(Λ𝑡/3) − 1

sinh2(Λ𝑡/3)

)︃]︃
= 4Λ. (1.51)

Last, but certainly not least, we have the positive spatial curvature case. As we shall

see, out of all 3 possibilities for 𝑘, this chart in which the spacetime is foliated through

3-spheres S3 spatial sections is the only one that manifests the global structure of the de

Sitter geometry, rather than merely a sub-manifold. Consider 𝑘 = +1 in equation (1.33):

𝐻2 = Λ
3 − 1

𝑎2 ,

d𝑎

d𝑡
=
√︃

Λ
3 𝑎2 − 1 ⇒ 𝑎(𝑡) =

√︃
3
Λ cosh

⎛⎝√︃Λ
3 𝑡

⎞⎠ .
(1.52)

Thence, the line element of spatially closed sections is

d𝑠2
closed = −d𝑡2 + 3

Λ cosh2(
√︁

Λ𝑡/3)[d𝜒2 + sin2 𝜒(d𝜃2 + sin2 𝜃d𝜑2)],

𝑡 ∈ R, 𝜒 ∈ [0, 𝜋), 𝜃 ∈ [0, 𝜋], 𝜑 ∈ [0, 2𝜋),
(1.53)

and the Ricci scalar is

ℛ = 6
[︃

Λ
3 + Λ

3

(︃
sinh2(Λ𝑡/3) + 1

cosh2(Λ𝑡/3)

)︃]︃
= 4Λ. (1.54)

As we can see, additionally to being constant everywhere, the Ricci scalar ℛ is the

same throughout each chart here investigated. This suggests that, perhaps, each of the
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solutions for the vacuum with cosmological constant is just a different metric covering

different regions of the same 4-dimensional structure. Indeed, these 3 solutions can be

obtained by considering the 4-dimensional space-time to be a level surface with constant

curvature embedded in a 5-dimensional space. Consider the Euclidean 5 dimensional

space. A 4-dimensional hyperboloid is described by

−𝑣2 + 𝑤2 + 𝑥2 + 𝑦2 + 𝑧2 = 3
Λ . (1.55)

We can perform the coordinate transformation (𝑣, 𝑤, 𝑥, 𝑦, 𝑧) → (𝑡, 𝑥̂, 𝑦, 𝑧):

𝑡 =
√︃

3
Λ ln

⎡⎣√︃Λ
3 (𝑤 + 𝑣)

⎤⎦ , 𝑥̂ =
√︃

3
Λ

𝑥

𝑤 + 𝑣
, 𝑦 =

√︃
3
Λ

𝑦

𝑤 + 𝑣
, 𝑧 =

√︃
3
Λ

𝑧

𝑤 + 𝑣
(1.56)

By doing so, one recovers the line element (1.47) in Cartesian coordinates, and we can

identify the coordinate 𝑡 as the co-moving time. Therefore, the surfaces of constant time

is equivalent to the intersection of the hyperboloid with the planes of constant time,

𝑤 + 𝑣 = const. The Figure 1.2 illustrates this chart for a 2-dimensional hyperboloid.

However, this chart only covers half of the hyperboloid, as this transformation in only

defined for points above the plane 𝑤 + 𝑣 = 0.

Alternatively, we can introduce the coordinates (𝑡, 𝜒, 𝜃, 𝜑) over the hyperboloid through

the coordinate change:

𝑤 =
√︃

3
Λ sinh(Λ𝑡/3), 𝑣 =

√︃
3
Λ cosh(Λ𝑡/3) cos 𝜒, 𝑥 =

√︃
3
Λ cosh(Λ𝑡/3) sin 𝜒 cos 𝜃,

𝑦 =
√︃

3
Λ cosh(Λ𝑡/3) sin 𝜒 sin 𝜃 cos 𝜑, 𝑧 =

√︃
3
Λ cosh(Λ𝑡/3) sin 𝜒 sin 𝜃 sin 𝜑.

(1.57)

The line element in these coordinates is

d𝑠2 = −d𝑡2 + 3
Λ cosh2(Λ𝑡/3)[d𝜒2 + sin2 𝜒(d𝜃2 + sin2 𝜃d𝜑2)]. (1.58)

Note that the line element above is the same as (1.53), which is the only one that covers

the entire hyperboloid among the three possibilities. The spatially closed foliation for the

2-dimensional hyperboloid is illustrated below:
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(a) Flat de Sitter Foliation (b) Closed de Sitter Foliation

Figure 1.2: Surfaces of constant time displayed for: (a) 𝑘 = 0 case and (b) 𝑘 = 1 cases.

These two cases (𝑘 = 0, +1) are the most relevant in the context of geodesic complete-

ness: as we shall see, the time-like and null geodesics in the flat patch of the de Sitter

manifold are incomplete. However, it is evident that this issue is only a matter of coordi-

nate: the flat coordinates do not cover the entire geometry, which possesses no problem

of curvature singularities, admitting extensions to a broader manifold, in this case, the

entire hyperboloid. Nevertheless, a realistic beginning for the Universe cannot be an exact

de Sitter space, but this particular case will motivate us to inquire into conditions under

which geodesic incompleteness is not a physical problem for a general flat FLRW model

in which the scale factor vanishes in the asymptotic past, allowing an extension.

1.5 The Inflationary Paradigm

The main importance of the de Sitter case in what concerns geodesic completeness is due to

a phase in cosmic evolution called inflation. In the Standard Model of Cosmology ΛCDM,

a series of problems arise when confronted with observations regarding the homogeneity of

the large scale distribution of matter in the Universe since very early times. For instance, if

the Universe had a beginning10, causally disconnected regions of space have approximately

the same energy density distribution despite being outside each other causal region, not

having enough time to reach thermal equilibrium. Furthermore, given the set of energy
10It is relevant to emphasize that for alternative models in which the Universe had no beginning, the

horizon problem is not posed, since any particle would have enough time to reach thermic equilibrium
with the rest of the Universe.
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density at each point in space at an initial time, we would still need to know the set

of all the initial velocities in order to determine the complete evolution of the Universe.

Notwithstanding, in order to remain homogeneous and isotropic at late times, the initial

velocities necessary to explain the homogeneity and flatness would be exceedingly restrict.

Evidently, to get a full description of the dynamics at very early times, one would need a

theory of quantum gravity for such a high energy scale. In the absence of such a theory,

we restrict our analysis of "initial conditions" to the Planck11 time

𝑡𝑝 = 1
𝑐2

√︃
ℏ𝐺

𝑐
∼ 10−44𝑠. (1.59)

Let us denote the size of the present observable Universe, which is homogeneous, by

𝑑ℎ = 𝑐𝑡0, (1.60)

where 𝑡0 is the age of the Universe, 𝑡0 ∼ 1017𝑠. Since this region is highly homogeneous

and isotropic, the region it originated from would need to be at least the size of the present

horizon times the ratio of the respective scale factors

𝑑𝑝
ℎ = 𝑐𝑡0

𝑎𝑝

𝑎0
, (1.61)

where the index p denotes measures at 𝑡𝑝. At such early times, the causal distance

comprising every event inside the light cone from the Big Bang until 𝑡𝑝 was 𝑑𝑝
𝑐 = 𝑐𝑡𝑝.

Comparing this length with the homogeneous region we obtain

𝑑𝑝
ℎ

𝑑𝑝
𝑐

= 𝑐𝑡0

𝑐𝑡𝑝

(︂
𝑎𝑝

𝑎0

)︂
. (1.62)

We can get an estimate of this ratio by noting that for a perfect fluid model

𝐻 ∝ 1
𝑡

⇒ 𝑎̇ ∼ 𝑎

𝑡
. (1.63)

Thence

𝑑𝑝
ℎ

𝑑𝑝
𝑐

∼ 𝑎̇𝑝

𝑎̇0
, (1.64)

and if gravity acts only as an attractive interaction, then the expansion at earlier times
11Max K. E. L. Planck (1858-1947)
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is always greater than late times, 𝑎̇𝑝 > 𝑎̇0, and the homogeneous region has not been

completely in causal contact. Furthermore, a great ratio of 𝑎̇𝑝/𝑎̇0 is also related to the

initial curvature of the spatial sections. Recasting Friedmann equation (1.33) as

Ω − 1 = 𝑘

(𝑎𝐻)2 , (1.65)

where Ω ≡ 8𝜋𝐺𝜌/3𝐻2 = 𝜌/𝜌𝑐𝑟𝑖𝑡 (being 𝜌𝑐𝑟𝑖𝑡 the critical density for the Universe to be

spatially flat), we can relate the equation above at the initial time and today using (1.63):

Ω𝑝 − 1 = (Ω0 − 1)
(︃

𝑎0𝐻0

𝑎𝑝𝐻𝑝

)︃2

= (Ω0 − 1)
(︃

𝑎̇0

𝑎̇𝑝

)︃2

. (1.66)

Thus, a large ratio of 𝑎̇𝑝/𝑎̇0 implies Ω𝑝
𝑘 ∼ 0. In fact, if we consider that at the initial

time the Universe was dominated by radiation, 𝑎 ∼ 1/𝑇 , using the age of the Universe

and the Planck temperature, 𝑇𝑝 = 𝑐2
√︁
ℏ𝑐/𝐺/𝑘𝐵 ∼ 1032𝐾, in (1.62) we get an estimate of

𝑎̇𝑝

𝑎̇0
∼ 𝑑𝑝

ℎ

𝑑𝑝
𝑐

= 𝑡0

𝑡𝑝

𝑎𝑝

𝑎0
∼ 1017

10−44
1
𝑇𝑝

∼ 1029 (1.67)

which implies that the Universe must have started in a very homogeneous and isotropic

state. Still, it could be argued that the set of initial conditions necessary to explain

observations is a privileged one since it manifestly possesses many more symmetries when

compared to other arbitrary possible sets. However, setting the initial conditions to the

required specific values of very homogeneous energy density and highly isotropic velocity

distribution does not explain all observation, as the space is not perfectly homogeneous,

having inhomogeneities that exhibit correlations in distances outside the casual regions,

implying that, regardless of the initial set, this regions must have been in causal contact

at some moment of time. Surprisingly, a solution to all of the issues mentioned here relies

in a epoch of the Universe history known as inflation [15, 16]: an epoch where gravity

acted as a repulsive force in which the Universe underwent an accelerated expansion.

1.5.1 Accelerated Expansion

All of the initial condition problems presented so far are related to the expansion rate

𝑎̇𝑝/𝑎̇0. The larger this ratio, the more the homogeneous region exceed the causal region

and the more flat the initial spatial section needs to be. Thereby, in order to solve both

these issues, we need the Universe to undergo a phase of accelerated expansion, which
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is a necessary but not sufficient condition to solve all the issues previously mentioned.

Through equation (1.32), we note that an acceleration in the expansion rate implies

𝑎̈ = −4𝜋𝐺

3 (𝜌 + 3𝑝)𝑎 > 0. (1.68)

Thus, necessarily, 𝜌 + 3𝑝 < 012. An example of space-time that satisfies this condition is

the flat de Sitter case. However, inflation can not be described by a de Sitter phase due

to the following: to leave inflation into a regular non accelerating phase, we need 𝐻̇ to

become negative, for

𝑎̈ = 𝑎(𝐻2 + 𝐻̇). (1.69)

Additionally, the Hubble function must vary, which is never the case for the de Sitter

case. Hence inflation must begin in a quasi-de Sitter scenario and, towards its end, we

should have that ˙|𝐻|/𝐻2 ∼ 1. Nevertheless, the main point remains: the Universe needs a

phase of accelerated expansion. Then, if the Universe is ever expanding, it must have been

smaller and smaller in the past, to a point where all the matter content in the Universe

must have been condensed in a infinitely dense point, entailing in a singular initial state,

where General Relativity fails to give predictions. In such cases, given the fact that an

event in the spacetime manifold is missing13, we shall always have geodesic incompleteness,

once any curve passing through such point would be incomplete, as for instance, in the

Standard Model of Cosmology. However, this is not a necessary condition for a spacetime

to be singular. In fact, even in the absence of an event with infinite curvature, it is possible

that at least one non space-like geodesic have an endpoint given that a few physically

reasonable conditions are satisfied. This is the content of the singularity theorems. An

alternative to a model with an initial curvature singularity could be inflation: we know

that inflation is not future eternal, but could it be eternal in the past? In this scenario,

we should have 𝑎(𝑡 → −∞) → 0, but as discussed, the infinite time as measured by

a co-moving observer does not imply that non co-moving ones will observe the same.

Therefore, since an inflationary epoch cannot be exactly de Sitter, it is possible that at

least one of the non space-like geodesics are incomplete. In fact, as we will see in the
12In accelerated expansion, it is imperative that the Strong Energy Condition is violated.
13It is not appropriate to consider singular points as a part of the space-time since EFE’s do not hold

at these events
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next section, this is the content of the Borde-Guth-Vilenkin14 theorem, which states that

inflationary space-times cannot be eternal in the past if not extensible.

14Arvind Borde, Alan Guth, Alexander Vilenkin
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Chapter 2

The Borde-Guth-Vilenkin Theorem

The question of whether inflation might extend eternally in the past has been extensively

discussed in the literature [3, 17, 18, 4, 19]. The singularity theorems [20, 21, 22, 23, 24, 25]

guarantee the incompleteness of at least one non space-like geodesic under a few condi-

tions regarding energy conditions satisfied by the matter fields, the causal structure of the

space-time, and on topological assumptions on the space-like surfaces. Notwithstanding,

once one of the hypothesis is evaded, the geodesic incompleteness is not assured neither

dismissed. As previously discussed, since inflationary models require some energy con-

dition violation, some of the hypothesis might not be satisfied by some models, which

does not imply their geodesic completeness. For instance, inflationary models necessarily

violate the strong energy condition, and therefore the theorems do not necessarily hold.

Nevertheless, we cannot assume that the model is complete since, in these cases, the for-

mation of singularity might be avoided. In this context, the Borde-Guth-Vilenkin (BGV)1

theorem [3, 26] establishes another set of conditions for the geodesic incompleteness for

non-static models, without the necessity of homogeneity or isotropy of the spatial sections

of the spacetime. The only condition for incompleteness is that the average expansion

along time-like and null geodesic congruences is positive. Let us start with a simple

FLRW flat metric given by (1.15). For the sake of simplicity, we shall consider geodesics

moving along only the radial direction. Let 𝜆 be an affine parameter that describes a null

geodesic. Therefore, we can write:
1Originally proposed to show that inflationary spacetimes cannot be geodesically complete in past

directions.
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d2𝑥𝜇

d𝜆2 + Γ𝜇
𝛼𝛽

d𝑥𝛼

d𝜆

d𝑥𝛽

d𝜆
= 0. (2.1)

For the radial trajectory, the geodesic equation and the null normalization yield

d
d𝜆

[︃
𝑎2 d𝑟

d𝜆

]︃
= 0 ⇒ 𝑎2 d𝑟

d𝜆
≡ 𝑣0, (2.2)

−
(︃

d𝑡

d𝜆

)︃2

+ 𝑎2
(︃

d𝑟

d𝜆

)︃2

= 0. (2.3)

Then

d𝑡

d𝜆
= ±𝑣0

𝑎
⇒ d𝜆 ∝ 𝑎d𝑡. (2.4)

Thus, the affine parameter grows with the scale factor. This result can be understood

in terms of redshift: if we choose an affine parameter such that the tangent vector is

proportional to the wave vector, 𝑘𝜇 ∝ d𝑥𝜇/d𝜆, then, for the zeroth component, d𝜆 ∝ d𝑡/𝜔.

So the frequency is redshifted in an expanding spacetime, as usual. To relate the expansion

rate 𝐻 ≡ 𝑎̇/𝑎 along the null geodesic over an interval (𝜆𝑖, 𝜆𝑓 ), without loss of generality,

normalize the tangent by the final value of the scale factor 𝑎(𝑡𝑓 ):

d𝜆 = 𝑎(𝑡)
𝑎(𝑡𝑓 )d𝑡. (2.5)

Let us then integrate the expansion rate along a null geodesic. Since 𝐻 ≡ 𝑎̇/𝑎, we can

write 𝐻d𝜆 as

∫︁ 𝜆𝑓

𝜆𝑖

𝐻(𝜆(𝑡))d𝜆 =
∫︁ 𝑡(𝜆𝑓 )

𝑡(𝜆𝑖)

𝑎̇(𝜆(𝑡))
𝑎(𝜆(𝑡))

𝑎(𝜆(𝑡))
𝑎(𝜆(𝑡𝑓 ))d𝑡

= 1
𝑎(𝜆(𝑡𝑓 ))

∫︁ 𝑡(𝜆𝑓 )

𝑡(𝜆𝑖)

d𝑎

d𝑡
d𝑡 = 1

𝑎(𝜆𝑓 )(𝑎(𝜆𝑓 ) − 𝑎(𝜆𝑖)).
(2.6)

Since 𝑎(𝜆) is always a positive function

∫︁ 𝜆𝑓

𝜆𝑖

𝐻(𝜆)d𝜆 = 1 − 𝑎(𝜆𝑖)
𝑎(𝜆𝑓 ) ≤ 1, (2.7)

where the equality is true only when the initial scale factor 𝑎(𝜆𝑖) vanishes. In any other

case the integral of the expansion rate will be less than unity. Thus, if we define the

average expansion ℋ𝑎𝑣 as the expansion over the interval divided by the interval, we
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conclude that

ℋ𝑎𝑣 ≡ 1
𝜆𝑓 − 𝜆𝑖

∫︁ 𝜆𝑓

𝜆𝑖

𝐻(𝜆)d𝜆 ≤ 1
𝜆𝑓 − 𝜆𝑖

. (2.8)

Since 𝜆𝑓 is arbitrary but fixed, if the average expansion is positive, ℋ𝑎𝑣 > 0, then we can

write the inequality

0 < ℋ𝑎𝑣 ≤ 1
𝜆𝑓 − 𝜆𝑖

. (2.9)

Thereby, we get a contradiction if the initial parameter is unbounded as 𝑡 → 𝑡𝑖, since

if this is the case, 𝑙𝑖𝑚𝜆𝑖→−∞1/(𝜆𝑓 − 𝜆𝑖) → 0. Therefore, if there is a null geodesic with

average positive expansion, the spacetime given by metric (1.15) cannot be null geodesi-

cally complete, since there is a geodesic with finite parameter. A similar derivation can be

obtained for the case of timelike congruences: now we shall parametrize the geodesic with

the proper time 𝜏 along the curve. As shown in equation (1.25), the proper time of any

non co-moving observer along a time-like geodesic can be written as d𝜏 = d𝑡/
√︁

1 + 𝑣2
0/𝑎2,

where each 𝑣0 defines a congruence and, the case 𝑣0 = 0 describes the co-moving observer

itself. Thus, along the geodesic between the two arbitrary events at the boundary of an

interval (𝜏𝑖, 𝜏𝑓 ), we can integrate the Hubble parameter:

∫︁ 𝜏𝑓

𝜏𝑖

𝐻d𝜏 =
∫︁ 𝜏

𝜏𝑖

𝑎̇

𝑎

d𝑡√︁
1 + 𝑣2

0
𝑎2

=
∫︁ 𝑎𝑓

𝑎𝑖

d𝑎√︁
𝑎2 + 𝑣2

0

= ln
[︂
𝑎 +

√︁
𝑎2 + 𝑣2

0

]︂ ⃒⃒⃒⃒⃒⃒
𝑎𝑓

𝑎𝑖

, (2.10)

where 𝑎𝑖 ≡ 𝑎(𝜏𝑖) and 𝑎𝑓 = 𝑎(𝜏𝑓 ). Therefore, defining the average expansion over the

interval as

ℋ𝑎𝑣 ≡ 1
Δ𝜏

∫︁ 𝜏𝑓

𝜏𝑖

𝐻(𝜏)d𝜏, (2.11)

we find that:

ℋ𝑎𝑣𝑔 = 1
𝜏𝑓 − 𝜏𝑖

∫︁ 𝜏𝑓

𝜏𝑖

𝐻(𝜏)d𝜏 = 1
𝜏𝑓 − 𝜏𝑖

ln
⎡⎣𝑎𝑓 +

√︁
𝑎2

𝑓 + 𝑣2
0

𝑎𝑖 +
√︁

𝑎2
𝑖 + 𝑣2

0

⎤⎦ . (2.12)

Thus, for a space that has expanded, on average, 𝑎𝑓 > 𝑎𝑖:

ln
⎡⎣𝑎𝑓 +

√︁
𝑎2

𝑓 + 𝑣2
0

𝑎𝑖 +
√︁

𝑎2
𝑖 + 𝑣2

0

⎤⎦ ≤ ln
[︁
𝑎𝑓 +

√︁
𝑎2

𝑓 + 𝑣2
0

]︁
. (2.13)
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Thence, for a geodesic with positive average expansion, ℋ𝑎𝑣 > 0, we have:

0 < ℋ𝑎𝑣 ≤ 1
𝜏𝑓 − 𝜏𝑖

ln
[︂
𝑎(𝜏𝑓 ) +

√︁
𝑎(𝜏𝑓 )2 + 𝑣2

0

]︂
. (2.14)

Once again we see that, since 𝑎(𝜏𝑓 ) is an arbitrary positive value, in order to avoid a

contradiction, 𝜏𝑖 > −∞. Despite its simplicity for being a kinematic theorem making no

assumption on energy conditions, the BGV theorem has recently been target to criticism

[27] regarding a possible loophole, which shall be discussed later on.

2.1 The Average Expansion of More General Space-

times

Despite having a very direct evaluation for cosmological models where there is isotropy

and homogeneity of the spatial sections – which is very restrictive, not only for the model

but also for the choice of reference frame – the results of the BGV theorem can be applied

to more general expanding space-times. For that, we need a more general definition of the

average expansion, which we shall use for anisotropic foliations, but that should recover

the usual definition of 𝐻 ≡ 𝑎̇/𝑎 for homogeneous and isotropic spaces. Consider an

observer2 𝒪, with four-velocity 𝑣𝜇 crossing two test particles in a co-moving congruence

with four-velocity given by 𝑢𝜇. At an instant 𝜏𝑖 measured by the observer it crosses

the trajectory of particle 1 and measures its four-velocity to be 𝑢𝜇(𝜏𝑖). Later, at instant

𝜏𝑓 = 𝜏𝑖+Δ𝜏 , it crosses the trajectory of test particle 2, where it measures the four-velocity

to be 𝑢𝜇(𝜏𝑓 ) as illustrated in Figure 2.1:
2We call this geodesic "the observer" for simplicity, but 𝑣𝜇 could be a null geodesic.
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Figure 2.1: Worldline of the observer crossing two test particles of a co-moving congruence

Consider that the observer 𝒪 makes the two observations at very close events, i.e,

with Δ𝜏 being infinitesimal. We can calculate the separation of the two test particles at

equal times in their frame. To compute this vector Δ𝑟𝜇, which is perpendicular to the test

particle worldlines 𝑢𝜇, we project the vector −𝑣𝜇Δ𝜏 onto 𝑢𝜇 to subtract the projection

along the movement.3 Thus:

Δ𝑟𝜇 = −𝑣𝜇Δ𝜏 + 𝜎𝑢𝜇Δ𝜏, (2.15)

where 𝜎 ≡ −𝑢𝜈𝑣𝜈 . The norm squared of this vector is given by

|Δ𝑟𝜇|2 = 𝑔𝜇𝛼(𝑣𝜇 − 𝜎𝑢𝜇)(𝑣𝛼 − 𝜎𝑢𝛼)Δ𝜏 2

= [𝑔𝜇𝛼𝑣𝜇𝑣𝛼 + 2𝜎2 + 𝜎2𝑔𝜇𝛼𝑢𝜇𝑢𝛼]Δ𝜏 2

= [𝜅 + 𝜎2]Δ𝜏 2,

(2.16)

where the metric 𝑔𝜇𝜈 need not be homogeneous nor isotropic and 𝜅 is -1 for timelike or

0 for null geodesics. We can verify that the vector Δ𝑟𝜇 is indeed perpendicular to 𝑢𝜇 by

calculating Δ𝑟𝜇𝑢𝜇:

Δ𝑟𝜇𝑢𝜇 = 𝑔𝜇𝜈Δ𝑟𝜇𝑢𝜈

= −𝑔𝜇𝜈𝑣𝜇𝑢𝜈⏟  ⏞  
𝜎

Δ𝜏 + 𝜎[𝑔𝜇𝜈𝑢𝜇𝑢𝜈⏟  ⏞  
−1

]Δ𝜏

= Δ𝜏(𝜎 − 𝜎) = 0,

(2.17)

3Note by Figure 2.1 that the negative sign is so that 𝑣𝜇Δ𝜏 has the same orientation as Δ𝑟𝜇.
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The norm of the displacement measured at equal times by the co-moving test particles

is Δ𝑟𝜇 =
√

𝜅 + 𝜎2Δ𝜏 . So, the observer 𝒪 can measure the variation in the four-velocity

of the test particles Δ𝑢𝜇 by parallelly propagating the vector 𝑢𝜇 along its geodesic from

𝜏𝑖 to 𝜏𝑓 , so Δ𝑢𝜇 = (𝐷𝑢𝜇/d𝜏)Δ𝜏 . Then, locally, what 𝒪 will use to define the expansion

is the radial component of the variation of the four-velocity Δ𝑢𝑟, defined by projecting

Δ𝑢𝜇 along the normalized spatial separation Δ𝑟𝜇:

Δ𝑢𝑟 ≡ Δ𝑢𝜇Δ𝑟𝜇

Δ𝑟
. (2.18)

We can now define the generalized Hubble parameter 𝐻𝐵𝐺𝑉 as the rate of the radial

velocity variation with respect to the radial distance to evaluate how the velocity of the

congruence changes with the distance:

𝐻𝐵𝐺𝑉 ≡ Δ𝑢𝑟

Δ𝑟
= Δ𝑢𝜇Δ𝑟𝜇

|Δ𝑟|2

= Δ𝜏 2(𝐷𝑢𝜇/d𝜏)(−𝑣𝜇 + 𝜎𝑢𝜇)
Δ𝜏 2(𝜅 + 𝜎2) = −𝑣𝜇(𝐷𝑢𝜇/d𝜏)

𝜅 + 𝜎2 ,

(2.19)

where in the last equality we used that

𝐷(−𝜎)
d𝜏

= 𝐷

d𝜏
(𝑣𝜈𝑢𝜈𝑢𝜇𝑢𝜇) = − 𝐷

d𝜏
(𝑣𝜈𝑢𝜈) = −𝜎𝑢𝜇

𝐷𝑢𝜇

d𝜏
+ 𝑢𝜇 𝐷

d𝜏
(𝑣𝜈𝑢𝜈𝑢𝜇)

= −𝜎𝑢𝜇
𝐷𝑢𝜇

d𝜏
+ 𝑢𝜇

�
�
���

0
𝐷𝑣𝜈

d𝜏
𝑢𝜈𝑢𝜇 − 𝑣𝜈

𝐷𝑢𝜈

d𝜏
− 𝜎𝑢𝜇 𝐷𝑢𝜇

d𝜏

= −2𝜎𝑢𝜇
𝐷𝑢𝜇

d𝜏
− 𝑣𝜈

𝐷𝑢𝜈

d𝜏
,

(2.20)

Since 𝑣𝜇(𝜏) is a tangent vector to the observer’s 𝒪 geodesic, we can write the last term

in the last equality as −𝐷(𝑣𝜈𝑢𝜈)/d𝜏 . Thus, we conclude that

− 𝐷

d𝜏
(𝑣𝜈𝑢𝜈) = −2𝜎𝑢𝜇

𝐷𝑢𝜇

d𝜏
− 𝐷

d𝜏
(𝑣𝜈𝑢𝜈)

⇒ 𝜎𝑢𝜇
𝐷𝑢𝜇

d𝜏
= 0.

(2.21)

Therefore, the generalized Hubble parameter in equation (2.19) does not have contribu-

tions from this term. Thence, using again that 𝑣𝜇(𝜏) is a geodesic, we can write the

generalized Hubble parameter 𝐻𝐵𝐺𝑉 as
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𝐻𝐵𝐺𝑉 = −d𝜎/d𝜏

𝜅 + 𝜎2 . (2.22)

If 𝒪 corresponds to a light geodesic (𝜅 = 0), we can write the expression above as a

total derivative

𝐻𝐵𝐺𝑉 = − 1
𝜎2

d𝜎

d𝜆
= d

d𝜆
𝜎−1. (2.23)

By integrating the generalized Hubble parameter along the null geodesic from 𝜆𝑖 to 𝜆𝑓 ,

we find that

∫︁ 𝜆𝑓

𝜆𝑖

𝐻𝐵𝐺𝑉 d𝜆 =
∫︁ 𝜆𝑓

𝜆𝑖

(︃
d

d𝜆
𝜎−1

)︃
d𝜆 = 𝜎−1(𝜆𝑓 ) − 𝜎−1(𝜆𝑖) ≤ 𝜎−1(𝜆𝑓 ), (2.24)

where the last inequality comes from the fact that, for the null case, 𝜎 > 0. Thence, if

the average expansion is positive, ℋ𝑎𝑣 > 0, then:

0 < ℋ𝑎𝑣 ≤ 𝜎−1(𝜆𝑓 )
𝜆𝑓 − 𝜆𝑖

, (2.25)

where ℋ𝑎𝑣 ≡ (Δ𝜆)−1 ∫︀ 𝐻𝐵𝐺𝑉 d𝜆. Therefore, 𝜆𝑖 > −∞ and the geodesic is incomplete.

In the case where the curve 𝒪 is a timelike geodesic we have that, by equation (2.22),

the generalized Hubble parameter can also be written as a total derivative, this time given

by:

𝐻𝐵𝐺𝑉 = − 1
𝜎2 − 1

d𝜎

d𝜏
= d

d𝜏

[︂1
2 ln

(︂
𝜎 + 1
𝜎 − 1

)︂]︂
. (2.26)

Then

∫︁ 𝜏𝑓

𝜏𝑖

𝐻𝐵𝐺𝑉 d𝜏 =
∫︁ 𝜏𝑓

𝜏𝑖

d
d𝜏

[︂1
2 ln

(︂
𝜎 + 1
𝜎 − 1

)︂]︂
d𝜏 = 1

2 ln
(︂

𝜎 + 1
𝜎 − 1

)︂ ⃒⃒⃒⃒⃒⃒
𝜏𝑓

𝜏𝑖

. (2.27)

Since 𝜎 is the relative Lorentz factor, 𝜎 = 𝑣𝜈𝑢𝜈 = 1/
√︁

1 − 𝑣2
𝑟𝑒𝑙, which is always 𝜎 ≥ 1:

∫︁ 𝜏𝑓

𝜏𝑖

𝐻𝐵𝐺𝑉 d𝜏 = 1
2 ln

(︂
𝜎 + 1
𝜎 − 1

)︂ ⃒⃒⃒⃒⃒⃒
𝜏𝑓

𝜏𝑖

≤ 1
2 ln

(︃
𝜎𝑓 + 1
𝜎𝑓 − 1

)︃
. (2.28)

Therefore, if the average is positive we get once again that the initial parameter cannot

be arbitrary close to −∞, given the inequality
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0 < ℋ𝑎𝑣𝑔 ≤ 1
2(𝜏𝑓 − 𝜏𝑖)

ln
(︂

𝜎 + 1
𝜎 − 1

)︂
. (2.29)

Thence, the kinematic theorem shows that causal curves which possess an average pos-

itive expansion as defined by (2.22) are necessarily incomplete, regardless of any energy

condition.

2.2 The Loophole in the BGV theorem

As previously stated, the BGV Theorem contains a loophole that stems from the fact that

we cannot take the parameter value to be exactly −∞ since, if it could be done, then the

geodesic parameter can be made arbitrarily close to −∞ and the geodesic is, therefore,

complete. Recently, an amendment for the theorem was proposed in [27] in order to solve

this issue. Let a causal geodesic be parametrized by 𝜆 ∈ (𝜆𝑖, 𝜆𝑓 ). If there exists a Δ > 0

such that

ℋ𝑎𝑣 ≡ 1
𝜆𝑓 − 𝜆0

∫︁ 𝜆𝑓

𝜆0
𝐻(𝜆)d𝜆 ≥ Δ, ∀𝜆0 ∈ (𝜆𝑖, 𝜆𝑓 ), (2.30)

then the geodesic is incomplete in the past. The difference between the theorems is

subtle: in the original theorem, the average only needed to be positive, but it could be

arbitrarily close to zero. Therefore, as we approach 𝜆𝑖 → −∞, the inequality is not

necessarily contradicted because ℋ𝑎𝑣 might go to zero always being less than 1/Δ𝜆. In

the amended theorem, on the other hand, ℋ𝑎𝑣 is bounded from below, which means that

as we approach 𝜆𝑖 → −∞ the average does not goes to zero as well, since Δ > 0. In that

case, the inequality

0 < Δ ≤ ℋ𝑎𝑣 ≤ 1
𝜆𝑓 − 𝜆𝑖

, (2.31)

will unavoidably reach a contradiction if ℋ𝑎𝑣 is bounded from below for any parameter

in (𝜆𝑖, 𝜆𝑓 ).

Either way, whether applying the original or the amended version, the issue of geodesic

incompleteness by the BGV theorem is restricted solely to the question of whether the

spacetime can be extended, which, in its original proposal, spaces with a contraction phase

are discarded using physical arguments instead of definitions. However, any method of

28



geodesic incompleteness verification that aims to act as a singularity theorem must be

applied only to maximal space-times, otherwise, the incompleteness might be merely a

chart limitation. In the next section, we implement a local extension to the flat patch of

de Sitter spacetime as a pivotal case to derive a more general procedure of extension for

arbitrary space-times that could, in principle, be diagnosed as incomplete by the BGV

theorem.
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Chapter 3

Geodesically Complete Extension of

the Spatially Flat de Sitter

Spacetime

Despite using the original BGV theorem or its proposed amendment, the problem of mis-

diagnosing space-times as incomplete still remains, as long as the question of extensibility

is not addressed. For instance, by both theorems, the flat patch de Sitter spacetime,

whose line element in spherical coordinates is given by

d𝑠2 = −d𝑡2 + 𝑎2(𝑡)[d𝑟2 + 𝑟2(d𝜃2 + sin2 𝜃d𝜑2)], 𝑎(𝑡) ≡ 𝑒𝛼𝑡, 𝑡 ∈ (−∞, ∞), (3.1)

should be incomplete. In the original proposal, we can calculate the average expansion

along a non co-moving geodesic:

ℋ𝑎𝑣 = 1
𝜏𝑓 − 𝜏𝑖

∫︁ 𝜏𝑓

𝜏𝑖

𝐻d𝜏 = 𝛼 > 0, ∀𝜏𝑖 ∈ (−∞, 𝜏𝑓 ). (3.2)

For the case of the original proposal of the theorem, the average expansion over any

interval is positive and, hence, the space-time must be geodesically incomplete. Moreover,

for the amended theorem, the criteria for incompleteness is also satisfied, if we choose

trivially Δ = 𝛼, we see that for any interval (𝜏𝑖, 𝜏𝑓 ), the average is always greater or

equal to the positive value 𝛼 so the parameter 𝜏 along the geodesic cannot be extended

arbitrarily close to minus infinity. However, as discussed in Chapter 1, it is known that
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metric (3.1) only covers half of the de Sitter full manifold. Furthermore, the de Sitter

space-time possesses well behaved and constant curvature scalars, such as the Ricci and

Kretschmann scalars

ℛ = 𝑅𝜇𝜈𝑅𝜇𝜈 = 4Λ,

𝒦 = 𝑅𝛼𝛽𝜇𝜈𝑅𝛼𝛽𝜇𝜈 = 8Λ2

3 .
(3.3)

Hence, the incompleteness of the geodesics diagnosed by the BGV theorem must be merely

a coordinate problem rather than a physical pathology of the spacetime manifold when

applied to a spacetime that is not maximal. Indeed, one of the assumptions of all the

singularity theorems is that the space-time (ℳ, 𝑔𝜇𝜈) is 𝒞𝑘-inextensible, i.e, that there does

not exist a space-time (ℳ′, 𝑔′) such that there is an isometric 𝒞𝑘 embedding:

Φ : ℳ → ℳ′,

where ℳ ⊂ ℳ′. Therefore, through the BGV theorem, the issue of geodesic completeness

is reduced to whether or not the space-time under consideration admits an extension, i.e,

given a manifold ℳ and a metric 𝑔𝜇𝜈 , what are the necessary conditions for it to be

possible to find a metric extension. With this in mind, we turn our attention to the de

Sitter space-time as a pivotal example. The spatially closed de Sitter foliation (𝑘 = 1)

is a patch in which all geodesics are complete, since the foliation with topology R × S3

covers the entire regular manifold, recovering its global structure. However, in order to

find a more general procedure to extend the geodesics for arbitrary cases, we turn to a

local transformation physically motivated by the non co-moving observers, where their

worldlines shall be considered as a coordinate chart to see their fate by their own point

of view. In order to inquire about the fate of the incomplete non co-moving observers,

we shall now construct a radial congruence of non co-moving geodesics and analyze its

behavior in the past asymptotic limit 𝑎 → 0. First, we start by constructing a time-like

vector field tangent to the curves on the congruence. By equation (2.2), we can write the

time component of the tangent vector using the constant of motion 𝑣0 that characterizes

a congruence and the normalization condition:

−
(︃

d𝑡

d𝜏

)︃2

+ 𝑎2
(︃

d𝑟

d𝜏

)︃2

= −1, (3.4)
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to obtain:

𝑢𝑡 ≡ d𝑡

d𝜏
=
√︃

1 + 𝑣2
0

𝑎2 ≡ 𝛾, 𝑢𝑟 ≡ d𝑟

d𝜏
= 𝑣0

𝑎2 . (3.5)

By direct integration of the time component 𝑢𝑡 in (3.5), given that the scale factor of

the flat patch is 𝑎𝑑𝑆 = 𝑒𝛼𝑡, we obtain

𝜏 − 𝜏0 =
∫︁ 𝜏

𝜏0
d𝜏 =

∫︁ 𝑡

𝑡0

d𝑡√︁
1 + 𝑣2

0𝑒−2𝛼𝑡
= 1

𝛼

∫︁ 𝑎(𝑡)

𝑎0

d𝑎√︁
𝑎2 + 𝑣2

0

= 1
𝛼

ln
(︂

𝑎𝑑𝑆 +
√︁

𝑎2
𝑑𝑆 + 𝑣2

0

)︂ ⃒⃒⃒⃒𝑎
𝑎0

.

(3.6)

From the above equation, we see that in the limit 𝑣0 → 0, 𝑎𝑑𝑆 = 𝑎0𝑒
𝛼(𝜏−𝜏0), which

is the expected scale factor for the co-moving observer. Without loss of generality, we

choose 𝜏0 = 0 so that, we relate the scale factor with the proper time of the observer:

𝑎𝑑𝑆 +
√︁

𝑎2
𝑑𝑆 + 𝑣2

0 = 𝐴0𝑔(𝑙)𝑒𝛼𝜏 , (3.7)

where 𝐴0 ≡ 𝑎(𝜏0) +
√︁

𝑎(𝜏0)2 + 𝑣2
0 and 𝑔(𝑙) is a function of a parameter 𝑙 which will label

each different geodesic in the congruence. We see that, when 𝑎 = 0, the proper time is a

finite value, which explicits the incompleteness of non co-moving geodesics, since

lim
𝑎→0

𝜏 = 1
𝛼

ln
(︃

|𝑣0|
𝐴0𝑔(𝑙)

)︃
. (3.8)

As shown in Appendix B, for a cosmological model all geodesic congruences have null

vorticity and so we can define the vector tangent to a curve as hypersurface orthogonal,

such that the covector of 𝑢𝜇 defined in (3.5) is the gradient of some function 𝜑(𝑡, 𝑟, 𝑣0):

𝑢𝜇 = 𝜕𝜇𝜑(𝑡, 𝑟, 𝑣0). (3.9)

Since 𝑢𝑡 = −𝛾 and 𝑢𝑟 = 𝑣0, we have that:

𝑢𝑟 = 𝜕𝑟𝜑 ⇒ 𝜑 =
∫︁

𝑣0d𝑟 = 𝑣0𝑟 + 𝑐1(𝑡),

𝑢𝑡 = 𝜕𝑡𝜑 ⇒ 𝜑 = −
∫︁ ⎯⎸⎸⎷1 + 𝑣2

0
𝑎2

𝑑𝑆

d𝑡 + 𝑐2(𝑟).
(3.10)

Comparing both equations, we obtain that the function 𝜑(𝑡, 𝑟, 𝑣0) is given by:
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𝜑(𝑡, 𝑟, 𝑣0) = 1
𝛼

⎡⎣
⎯⎸⎸⎷1 + 𝑣2

0
𝑎2

𝑑𝑆

− ln
[︂
𝑎𝑑𝑆 +

√︁
𝑎2

𝑑𝑆 + 𝑣2
0

]︂⎤⎦ ⃒⃒⃒⃒⃒⃒
𝑎𝑑𝑆

𝑎0

+ 𝑣0𝑟. (3.11)

A convenient parametrization of the function of the coordinate 𝑟 is:

𝑟 = 𝑙 − 1
𝛼𝑣0

⎛⎝
⎯⎸⎸⎷1 + 𝑣2

0
𝑎2

𝑑𝑆

−

⎯⎸⎸⎷1 + 𝑣2
0

𝑎2
0

⎞⎠ , (3.12)

So that as 𝑣0 → 0 the parameter 𝑙 can be identified with the radius coordinate of the

co-moving observer. In order to see this, we can write the binomial expansion for the

square root term to find that

√︃
1 + 𝑣2

0
𝑎2 = 1 +

∞∑︁
𝑛=1

(︃
1/2
𝑛

)︃(︃
𝑣2

0
𝑎2

)︃𝑛

. (3.13)

Applying the same expansion for the square root term evaluated at 𝑎0 leads to

√︃
1 + 𝑣2

0
𝑎2 −

⎯⎸⎸⎷1 + 𝑣2
0

𝑎2
0

=
∞∑︁

𝑛=1

(︃
1/2
𝑛

)︃(︂
𝑣0

𝑎

)︂2𝑛

−
∞∑︁

𝑛=1

(︃
1/2
𝑛

)︃(︂
𝑣0

𝑎0

)︂2𝑛

. (3.14)

Since the lowest power in the expansion (3.14) is of order 𝑣2
0, both terms go to zero

faster than 𝑣0 in the denominator of equation (3.12), so lim𝑣0→0 𝑟 = 𝑙, and the parameter

is identified with the radial co-moving coordinate, as intended. Now, substituting the

parametrization of 𝑟 in equation (3.11) and making 𝜑 = 𝑘 = const., we get

−𝛼𝑘 + 𝛼𝑣0𝑙 = ln
[︂ 1
𝐴0

(︂
𝑎𝑑𝑆 +

√︁
𝑎2

𝑑𝑆 + 𝑣2
0

)︂]︂
, (3.15)

and

𝑎𝑑𝑆 +
√︁

𝑎2
𝑑𝑆 + 𝑣2

0 = 𝐴0𝑓(𝜏)𝑒𝛼𝑣0𝑙, (3.16)

where 𝑓(𝜏) is a function of 𝜏 , but which is constant over the non co-moving observer’s

hypersurface. Comparing the equations (3.7) and (3.16) which display the scale factor

dependence on 𝜏 and 𝑙, we find that 𝑓(𝜏) = 𝑒𝛼𝜏 and 𝑔(𝑙) = 𝑒𝛼𝑣0𝑙. Thus we have an

equation for the scale factor as a function of both the proper time of the non co-moving

observer and its spatial parameter

𝑎𝑑𝑆 +
√︁

𝑎2
𝑑𝑆 + 𝑣2

0 = 𝐴0𝑒
𝛼(𝜏+𝑣0𝑙). (3.17)
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Manipulating the equation above to obtain a scale factor in terms of 𝜏 and 𝑙,

2𝑎2
𝑑𝑆 + 2𝑎𝑑𝑆

√︁
𝑎2

𝑑𝑆 + 𝑣2
0 + 𝑣2

0 = 𝐴2
0𝑒

2𝛼(𝜏+𝑣0𝑙),

2𝑎2
𝑑𝑆 + 𝑣2

0 − 𝐴2
0𝑒

2𝛼(𝜏+𝑣0𝑙)⏟  ⏞  
≡𝐶

= −2𝑎𝑑𝑆

√︁
𝑎2

𝑑𝑆 + 𝑣2
0,

4𝑎4
𝑑𝑆 + 4𝑎2

𝑑𝑆𝐶 + 𝐶2 = 4𝑎2
𝑑𝑆(𝑎2

𝑑𝑆 + 𝑣2
0),

4𝑎2
𝑑𝑆(𝑣2

0 − 𝐶) = 𝐶2 ⇒ 𝑎𝑑𝑆 = − 𝐶

2
√︁

𝑣2
0 − 𝐶

, (3.18)

then

𝑎𝑑𝑆 = 𝐴0

2

(︃
𝑒2𝛼(𝜏+𝑣0𝑙) − 𝑣2

0
𝐴2

0

)︃
𝑒−𝛼(𝜏+𝑣0𝑙) = |𝑣0| sinh(Θ − Θ0), (3.19)

where we define Θ ≡ 𝛼(𝜏 + 𝑣0𝑙) and Θ0 ≡ ln (|𝑣0|/𝐴0). Once again, as 𝑣0 → 0 we recover

the co-moving observer scale factor,

lim
𝑣0→0

|𝑣0| sinh
[︃
𝛼(𝜏 + 𝑣0𝑙) − ln

(︃
|𝑣0|
𝐴0

)︃]︃
= lim

𝑣0→0

|𝑣0|
2

(︃
𝐴0

|𝑣0|
𝑒𝛼(𝜏+𝑣0𝑙) − |𝑣0|

𝐴0
𝑒−𝛼(𝜏+𝑣0𝑙)

)︃
= 𝐴0

2 𝑒𝛼𝜏 .

(3.20)

Now that we have obtained the dependency of the scale factor on the time and spatial

parameters of the non co-moving observer, we can proceed to construct a coordinate basis

in its local coordinates in order to fully determine its geometry.

3.1 The geometry of non co-moving observers

Replacing the scale factor (3.19) in the parametrization 𝑟(𝜏, 𝑙) and deriving it w.r.t. 𝑙, we

obtain:

𝜕𝑟

𝜕𝑙
= 1 − 𝜕

𝜕𝑙
coth (Θ − Θ0) = 1 + csch2(Θ − Θ0) = 1 + 𝑣2

0
𝑎2 . (3.21)

The derivative of 𝑡 with respect to 𝑙 reads:

𝜕𝑡

𝜕𝑙
= 𝜕

𝜕𝑙

[︂ 1
𝛼

ln(𝑎(𝜏, 𝑙))
]︂

= 𝑣0

√︃
1 + 𝑣2

0
𝑎2 . (3.22)

Thus, we can define a vector 𝑣𝜇 tangent to the spatial sections of the observer, which

components are given by
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𝑣𝑡 ≡ 𝜕𝑡

𝜕𝑙
= 𝑣0

√︃
1 + 𝑣2

0
𝑎2 , 𝑣𝑟 ≡ 𝜕𝑟

𝜕𝑙
= 1 + 𝑣2

0
𝑎2 . (3.23)

Note that the hypersurface here is defined by a curve because we are only working in

the (𝑡, 𝑟)-plane. The 3 dimensional nature of the hypersurface is only manifested when we

include the angular coordinates. Since this vector is tangent to the spatial hypersurface

of the observer, it is evidently orthogonal to the vector 𝑢𝜇 tangent to the non co-moving

geodesic:

𝑔𝜇𝜈𝑢𝜇𝑣𝜈 = −𝑢𝑡𝑣𝑡 + 𝑎2𝑢𝑟𝑣𝑟 = −𝑣0𝛾
2 + 𝑎2 𝑣2

0
𝑎2 𝛾2 = 0. (3.24)

Furthermore, the norm of the vector 𝑣𝜇 is

𝑔𝜇𝜈𝑣𝜇𝑣𝜈 = −𝑣2
0𝛾2 + 𝑎2𝛾4 = −𝑣2

0

(︃
1 + 𝑣2

0
𝑎2

)︃
+ 𝑎2

(︃
1 + 2𝑣2

0
𝑎2 + 𝑣4

0
𝑎4

)︃
= 𝑎2 + 𝑣2

0. (3.25)

In the limit 𝑎 → 0, the norm of the vector neither diverges nor vanishes. Therefore, we

choose the vectors 𝑢𝜇, 𝑣𝜈 as a basis for the non co-moving observers. We aim to describe

the metric of de Sitter from (𝑡, 𝑟)-coordinates to (𝜏, 𝑙)-coordinates. For that, we shall use

the matrix transformation

[︃
𝜕𝑥

𝜕𝑥′

]︃
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑡
𝜕𝜏

𝜕𝑟
𝜕𝜏

𝜕𝜃
𝜕𝜏

𝜕𝜑
𝜕𝜏

𝜕𝑡
𝜕𝑙

𝜕𝑟
𝜕𝑙

𝜕𝜃
𝜕𝑙

𝜕𝜑
𝜕𝑙

𝜕𝑡
𝜕𝜃′

𝜕𝑟
𝜕𝜃′

𝜕𝜃
𝜕𝜃′

𝜕𝜑
𝜕𝜃′

𝜕𝑡
𝜕𝜑′

𝜕𝑟
𝜕𝜑′

𝜕𝜃
𝜕𝜑′

𝜕𝜑
𝜕𝜑′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛾 𝑣0
𝑎2 0 0

𝑣0𝛾 𝛾2 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.26)

and its inverse

[︃
𝜕𝑥′

𝜕𝑥

]︃
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝜏
𝜕𝑡

𝜕𝑙
𝜕𝑡

𝜕𝜃′

𝜕𝑡
𝜕𝜑′

𝜕𝑡

𝜕𝜏
𝜕𝑟

𝜕𝑙
𝜕𝑟

𝜕𝜃′

𝜕𝑟
𝜕𝜑′

𝜕𝑟

𝜕𝜏
𝜕𝜃

𝜕𝑙
𝜕𝜃

𝜕𝜃′

𝜕𝜃
𝜕𝜑′

𝜕𝜃

𝜕𝜏
𝜕𝜑

𝜕𝑙
𝜕𝜑

𝜕𝜃′

𝜕𝜑
𝜕𝜑′

𝜕𝜑

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛾 − 𝑣0
𝑎2𝛾

0 0

−𝑣0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.27)

Then, the metric components in the non co-moving basis is
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𝑔′
00 = 𝜕𝑥𝛼

𝜕𝜏

𝜕𝑥𝛽

𝜕𝜏
𝑔𝛼𝛽 = −

(︃
1 + 𝑣2

0
𝑎2

)︃
+ 𝑎2 𝑣2

0
𝑎4 = −1,

𝑔′
11 = 𝜕𝑥𝛼

𝜕𝑙

𝜕𝑥𝛽

𝜕𝑙
𝑔𝛼𝛽 = −𝑣2

0

(︃
1 + 𝑣2

0
𝑎2

)︃
+ 𝑎2

(︃
1 + 𝑣2

0
𝑎2

)︃2

= 𝑎2 + 𝑣2
0 = 𝑣2

0 cosh2(Θ − Θ0),

𝑔′
22 = 𝜕𝑥𝛼

𝜕𝑥′2
𝜕𝑥𝛽

𝜕𝑥′2 𝑔𝛼𝛽 = 𝑎2𝑟2(𝜏, 𝑙),

𝑔′
33 = 𝜕𝑥𝛼

𝜕𝑥′3
𝜕𝑥𝛽

𝜕𝑥′3 𝑔𝛼𝛽 = 𝑎2𝑟2(𝜏, 𝑙) sin2 𝜃,

and the line element can be written as

d𝑠2 = −d𝜏 2 + 𝑣2
0 cosh2(Θ − Θ0)d𝑙2 + 𝑣2

0 sinh2(Θ − Θ0)𝑟2(𝜏, 𝑙)(d𝜃2 + sin2 𝜃d𝜑2). (3.28)

Note that, the radial function is now a function of both 𝜏 and 𝑙. Thus, from the

line element above, we see that in the non co-moving frame the metric is anisotropic, as

the scale factor 𝑎 and the angular component (𝑎𝑟) no longer depend solely on the time

coordinate, but also on the observer’s spatial coordinate. Another important observation

is that, in the past asymptotic limit, as 𝑎(𝑡 → −∞) → 0, which in the non co-moving

frame is equivalent to Θ → Θ0, the metric (3.28) is non-degenerate, as all the components

are non null. Despite the hyperbolic sine dependency on the angular component, from

equation (3.12) we have that the radial coordinate is given by

𝑟 = 𝑙 − 1
𝛼𝑣0

[coth(Θ − Θ0) + coth(Θ0)]. (3.29)

In the asymptotic limit, the angular component (𝑎𝑟)2 goes as

𝑎𝑟 = |𝑣0|𝑙 sinh(Θ − Θ0) − |𝑣0|
𝛼𝑣0

[cosh(Θ − Θ0) + sinh(Θ − Θ0) coth(Θ0)],

lim
Θ→Θ0

𝑎𝑟 = −|𝑣0|
𝛼𝑣0

⇒ lim
Θ→Θ0

(𝑎𝑟)2 = 1
𝛼2 ,

(3.30)

and the metric as seen by the non co-moving observer at the boundary (𝑎 → 0) reads

d𝑠2 = −d𝜏 2 + 𝑣2
0d𝑙2 + 1

𝛼2 (d𝜃2 + sin2 𝜃d𝜑2), (3.31)
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which is not singular. Furthermore, the dependency of the metric determinant near the

Θ = Θ0 surface can be evaluated from the metric (3.28):

√
−𝑔 = |𝑣0| cosh(Θ − Θ0)(𝑎𝑟)2 sin 𝜃. (3.32)

Thus, at the past boundary, we have that the limit of the metric determinant is given by:

lim
Θ→Θ0

√
−𝑔 = |𝑣0|

sin(𝜃)
𝛼2 , (3.33)

and the metric determinant reaches a velocity dependent minimum, that occurs at Θ =

Θ0. Since the determinant is related to the four-divergence of the congruence ∇𝜇𝑢𝜇, we

see that no caustics are formed in the asymptotic limit, for

∇𝜇𝑢𝜇 = 𝜕𝜇𝑢𝜇 + Γ𝜇
𝜇𝛽𝑢𝛽

= 𝜕𝜇𝑢𝜇 + 𝑢𝜇𝜕𝜇 ln(
√

−𝑔) = 1√
−𝑔

𝜕𝜇(𝑢𝜇√
−𝑔)

= 1
𝑎2
√︁

𝑎2 + 𝑣2
0

𝜕𝜏

(︂
𝑎2
√︁

𝑎2 + 𝑣2
0

)︂
+ 2

𝑟
𝜕𝜏 𝑟

= 𝑎̇

𝑎

⎛⎝2

√︁
𝑎2 + 𝑣2

0

𝑎
+ 𝑎√︁

𝑎2 + 𝑣2
0

⎞⎠+ 2 𝑣0

𝑎2𝑟
.

(3.34)

For the de Sitter case under consideration:

∇𝜇𝑢𝜇 = 𝛼 tanh(Θ − Θ0) + 2𝛼

[︃
(𝛼𝑣0𝑙 + coth Θ0) coth(Θ − Θ0) − 1
𝛼𝑣0𝑙 − coth(Θ − Θ0) + coth(Θ0)

]︃
. (3.35)

At Θ = Θ0, the congruence divergence becomes ∇𝜇𝑢𝜇 = 2𝛼(𝛼𝑣0𝑙+coth Θ0), which is never

infinite. Moreover, given the hyperbolic cosine dependency of √
−𝑔, we already expect

that, when attempting to extend this incomplete patch, a natural extension for the de

Sitter manifold will be by allowing Θ < Θ0, which, as we go further in the past, means

that the congruence divergence grows again, and the hyperboloid can be covered by two

disconnected flat patches [19]: the upper half expanding and the lower half contracting

as defined by co-moving observers.
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3.2 The de Sitter Extension

The non co-moving observer reaches the 𝑎 = 0 boundary of the co-moving patch in a finite

proper time, as shown by equation (3.8). However, since the de Sitter space is a regular

solution with no divergences, a natural way to extend the metric (3.28) is by allowing

Θ < Θ0:

𝛼(𝜏 + 𝑣0𝑙) < ln
(︃

|𝑣0|
𝐴0

)︃
. (3.36)

Formally, we can define a new time 𝑡′ and a new radial coordinate 𝑟′ for the contracting

sheet with metric

d𝑠2 = −d𝑡′2 + 𝑒−𝛼𝑡′ [d𝑟′2 + 𝑟′(𝜏, 𝑙)(d𝜃2 + sin2 𝜃d𝜑2)], (3.37)

and perform transformations (3.5) and (3.23) to find the non co-moving metric on the

lower half. By implementing this procedure, we find1:

𝑒−𝛼𝑡′ = −|𝑣0| sinh[𝛼(𝜏 + 𝑣0𝑙) − 𝛼(𝜏𝑖 + 𝑣0𝑙𝑖) + Θ0], (3.38)

𝑟′ = 𝑙 − 𝑙𝑖 − 1
𝛼𝑣0

[coth(Θ − Θ0) − coth(Θ0)], (3.39)

where we deliberately display the initial conditions 𝜏𝑖, 𝑙𝑖 in order to match the coordinates

(𝑡′, 𝑟′) with (𝑡, 𝑟) at the boundary. Comparing (𝑡′, 𝑟′) with (3.19) and (3.29) we find that

they need to be such that:

𝛼(𝜏𝑖 + 𝑣0𝑙𝑖) = 2Θ0,

𝑙𝑖 = 2 coth(Θ0)/𝛼𝑣0.
(3.40)

Notice, however, that this frame is only defined for the lower half, which means that, a

co-moving observer in this patch never crosses to the expanding sheet. Similarly, a co-

moving observer in the expanding flat de Sitter never observes a contracting phase of the

Universe. In the meantime, the non co-moving observer is covered by both charts along its

worldline. The scenario, as perceived by the non co-moving observer is as follows: along

its geodesic, it has a fixed value of 𝑙, so the changes in Θ are due to its proper time 𝜏 . As
1See Appendix D for a detailed calculation of the flat patch de Sitter with 𝑎 = 𝑒−𝛼𝑡.
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𝜏 → −∞, Θ → −∞, and it observes an infinitely large space. As 𝜏 increases, the space

contracts, until it reaches the 𝑎 = 0 surface, where it enters the expanding de Sitter phase.

This contracting behavior followed by an expanding phase can be explicitly seen by the

average geodesic expansion 𝐻𝐵𝐺𝑉 , as defined in (2.19). Let us consider the observer 𝒪 in

the BGV’s construction to be the co-moving observer in the expanding sheet with tangent

vector given by components (1, 0, 0, 0). The generalized Hubble parameter reads

𝐻𝐵𝐺𝑉 = −𝑣𝜇(𝐷𝑢𝜇/d𝑡)
𝜎2 − 1 . (3.41)

Since 𝜎 = 𝑢𝜈𝑣𝜇 = 𝛾

𝐻𝐵𝐺𝑉 = 𝑎2

𝑣2
0

d
d𝑡

𝛾 = 𝑎2

𝑣2
0

𝑣2
0 𝑎̇

𝑎3
√︁

1 + 𝑣2
0/𝑎2

= 𝑎𝛼√︁
𝑎2 + 𝑣2

0

= 𝛼 tanh(Θ − Θ0).
(3.42)

Thence, we see that for Θ > Θ0 the congruence is expanding, vanishing when Θ = Θ0

(which is the 𝑎 = 0 surface) and contracting for Θ < Θ0. Moreover, as the observer tends

to the asymptotic past (future), where Θ − Θ0 << 1 (Θ − Θ0 >> 1), we recover the usual

de Sitter expansion 𝐻𝐵𝐺𝑉 = -𝛼 (𝐻𝐵𝐺𝑉 = 𝛼). This is expected, as in the asymptotic limits

co-moving and non co-moving observers coincide. Furthermore, since Θ is a function of

both 𝜏 and 𝑙, for a surface of simultaneity in the non co-moving frame, i.e, 𝜏 = const., the

local expansion depends on the spatial coordinate 𝑙, meaning that the hypersurface has

regions of contraction and regions of expansion. Nevertheless, despite the hypersurface of

simultaneity not being homogeneously expanding or contracting like in usual bounces, the

structure of a contracting extension is manifested through the local expansion of geodesic

congruences, as seen through equation (3.42). This result shall be used when we attempt

to generalize the extension procedure for an arbitrary space-time.
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Chapter 4

Conditions For the Extension of a

General Spatially Flat FLRW Metric

So far, we have only worked with the spatially flat de Sitter spacetime. We can, however,

investigate what conditions are necessary and/or sufficient to generalize the construction

of an orthogonal space-like hypersurface for the case of a non co-moving observer in a

general spatially flat FLRW spacetime, with metric

d𝑠2 = −d𝜏 2 + 𝑎2(𝑡)[d𝑟2 + 𝑟2(d𝜃2 + sin2 𝜃d𝜑2)]. (4.1)

As shown in Appendix B, in such spaces congruences of time-like geodesics have null

vorticity, and hence, can always be made orthogonal to a hypersurface. More precisely, in

an attempt to evade the BGV theorem, we focus on FLRW space-times that are geodesi-

cally incomplete in the past and inquire into whether they admit an extension or not.

For that, we exclude models in which the domain of the cosmological time 𝑡 does not go

to minus infinity, i.e, models such that 𝑡 ∈ (𝑡𝑖, 𝑡𝑓 ), 𝑡𝑖 > −∞, for either the scale factor

is null at the boundary (𝑎(𝑡𝑖) = 0), (and hence we have a scalar singularity avoiding a

spacetime completion of class 𝒞2 of differentiability, which is not in accordance with Gen-

eral Relativity), or the scale factor is non-null at a finite time (𝑎(𝑡 → 𝑡𝑖) = const. ̸= 0),

in which case the extension is trivial [28]. Furthermore, in the cases where the cosmic

time goes up to minus infinity, if the scale factor does not vanish at the boundary, then

either the spacetime is already complete (𝑎(𝑡 → −∞) = const. ̸= 0) and the proper

time measured along non co-moving geodesics is divergent, or the scale factor vanishes as

𝑡 → −∞, 𝑎(𝑡 → −∞) = 0. The latter case shall be our first assumption on the models
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to be extended:

Assumption 1. The cosmological time 𝑡 of the spatially flat FLRW spacetime, as seen

by the co-moving observer, is defined up to 𝑡 → −∞, with a vanishing scale factor at the

past boundary, i.e, lim𝑡→−∞ 𝑎(𝑡) = 0.

Besides, although the absence of scalar curvature singularities does not imply geodesic

completeness, the existence of scalar curvatures singularities is a sufficient condition for

the nonexistence of a 𝒞2 extension. As the goal here is to find an extension for an arbitrary

model that is compatible with General Relativity, from equations (A.6) and (A.7) for the

Ricci and Kretschmann scalars of a spatially flat FLRW metric, we enunciate Assumption

2:

Assumption 2. We consider spatially flat FLRW space-times, with no scalar curvature

singularity, i.e, lim𝑡→−∞ 𝐻(𝑡) = 𝑐1, lim𝑡→−∞ 𝐻̇(𝑡) = 𝑐2, where |𝑐1|, |𝑐2| < ∞.

Even though the cosmic time of the co-moving observer is defined up to minus infinity,

the past-incompleteness of apparent eternal spaces satisfying Assumptions 1 and 2 is

manifested in the convergence of the invariant interval in the case of non co-moving time-

like geodesics

Δ𝜏(𝑡) =
∫︁ 𝑡0

−∞

d𝑡√︁
1 + 𝑣2

0
𝑎2

< ∞, ∀𝑡0 ∈ R, (4.2)

or convergence of the affine parameter of null geodesics

Δ𝜆(𝑡) =
∫︁ 𝑡0

−∞
𝑎d𝑡 < ∞, ∀𝑡0 ∈ R. (4.3)

However, the notion of null and time-like incompleteness in flat FLRW models are

equivalent, as shown in the following Lemma:

Lemma 1. A space-time satisfying Assumptions 1 and 2 is time-like incomplete if and

only if it is null incomplete.

Proof. From assumption 1, we have that 𝑎(𝑡 → −∞) = 0. Therefore, since 𝑡0 is arbitrary,

we can choose it such that 𝑎2(𝑡0) << 𝑣2
0, so that

√︁
1 + 𝑣2

0
𝑎2 ≈ |𝑣0|

𝑎
. Thus

Δ𝜏(𝑡) =
∫︁ 𝑡0

−∞

d𝑡√︁
1 + 𝑣2

0
𝑎2

≈
∫︁ 𝑎d𝑡

|𝑣0|
= Δ𝜆(𝑡)

|𝑣0|
. (4.4)
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If the space-time is null incomplete, then Δ𝜆(𝑡) < ∞.

The converse is also true: if the spacetime is time-like complete, then it is null com-

plete. This result is expected as time-like observers tend to null geodesics in the asymp-

totic limit.

From here onward, we attempt to construct a basis for non co-moving time-like

geodesics in order to find conditions for a 𝒞2 extension. For a flat FLRW spacetime,

any congruence of non co-moving observers has tangent vector field given by the vectors

𝑢𝜇 defined in (3.5). The vector field perpendicular to the congruence at each point which

will be used to define a local orthogonal hypersurface reads

𝑣𝜇 =
⎛⎝𝑣0

√︃
1 + 𝑣2

0
𝑎2 , 1 + 𝑣2

0
𝑎2 , 0, 0

⎞⎠ . (4.5)

This tangent vector defines a parameter 𝑙 such that

𝑣𝜇 ≡
(︃

d𝑡

d𝑙
,
d𝑟

d𝑙

)︃
. (4.6)

Thereby, we have the elements of the transformation matrix to obtain the metric in the

non co-moving observer coordinates 𝜏, 𝑙 for an arbitrary space:

[︃
𝜕𝑥𝛼

𝜕𝑥′𝛽

]︃
=

⎡⎢⎣
√︁

1 + 𝑣2
0

𝑎2 𝑣0

√︁
1 + 𝑣2

0
𝑎2

𝑣0
𝑎2 1 + 𝑣2

0
𝑎2

⎤⎥⎦ . (4.7)

Therefore

𝑔′
00 = 𝜕𝑥𝛼

𝜕𝜏

𝜕𝑥𝛽

𝜕𝜏
𝑔𝛼𝛽 = −

(︃
1 + 𝑣2

0
𝑎2

)︃
+ 𝑎2 𝑣2

0
𝑎4 = −1,

𝑔′
11 = 𝜕𝑥𝛼

𝜕𝑙

𝜕𝑥𝛽

𝜕𝑙
𝑔𝛼𝛽 = −𝑣2

0

(︃
1 + 𝑣2

0
𝑎2

)︃
+ 𝑎2

(︃
1 + 𝑣2

0
𝑎2

)︃2

= 𝑎2 + 𝑣2
0,

𝑔′
22 = 𝜕𝑥𝛼

𝜕𝑥′2
𝜕𝑥𝛽

𝜕𝑥′2 𝑔𝛼𝛽 = 𝑎2𝑟2,

𝑔′
33 = 𝜕𝑥𝛼

𝜕𝑥′3
𝜕𝑥𝛽

𝜕𝑥′3 𝑔𝛼𝛽 = 𝑎2𝑟2 sin2 𝜃.

(4.8)

Thus, in the non co-moving observer frame, the metric reads

d𝑠2 = −d𝜏 2 + (𝑎2 + 𝑣2
0)d𝑙2 + 𝑎2𝑟2(𝜏, 𝑙)(d𝜃2 + sin2 𝜃d𝜑2). (4.9)
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From this metric, we get that the metric determinant is

√
−𝑔 =

√︁
𝑎2 + 𝑣2

0(𝑎𝑟)2 sin 𝜃. (4.10)

Since 𝑢𝜇, 𝑣𝜈 form an integrable basis, we can integrate 𝜕𝑟/𝜕𝑙 = 1 + 𝑣2
0/𝑎2 and 𝜕𝑟/𝜕𝜏 =

𝑣0/𝑎2, to find for the general case that

𝑟 = 𝑙 + 𝑣2
0

∫︁ d𝑙′

𝑎2 . (4.11)

In the limit 𝑎 → 0, we want the metric determinant,

lim
𝑎→0

√
−𝑔 = |𝑣0| sin 𝜃 lim

𝑎→0

(︃
𝑎𝑙 + 𝑣2

0𝑎
∫︁ 𝑙

0

d𝑙′

𝑎2

)︃2

, (4.12)

to be well defined at the boundary. Despite not knowing the dependence of the scale

factor on the coordinates 𝜏, 𝑙 for an arbitrary model, we know that the cosmic time 𝑡 of

the co-moving observer is always a function of 𝜏 + 𝑣0𝑙:

𝜕𝑡

𝜕𝜏
=
√︃

1 + 𝑣2
0

𝑎2 ⇒ 𝜏 =
∫︁ d𝑡√︁

1 + 𝑣2
0/𝑎2

≡ 𝒢(𝑡)

𝜕𝑡

𝜕𝑙
= 𝑣0

√︃
1 + 𝑣2

0
𝑎2 ⇒ 𝑣0𝑙 =

∫︁ d𝑡√︁
1 + 𝑣2

0/𝑎2
≡ 𝒢(𝑡)

(4.13)

Hence, by adding both equations we see that 𝑡 = 𝒢−1(𝜏 + 𝑣0𝑙). Therefore, from now

on, we shall always treat any function of 𝑡 as a function of 𝜏 and 𝑙 in this particular

combination. We can switch the integration variable by doing:

d𝑎

d𝑡
= 𝜕𝑎

𝜕𝜏

𝜕𝜏

𝜕𝑡
+ 𝜕𝑎

𝜕𝑙

𝜕𝑙

𝜕𝑡
= d𝑎

d𝑙

(︃
𝛾

𝑣0
− 𝑣0

𝛾𝑎2

)︃
= 1

𝑣0𝛾

d𝑎

d𝑙
. (4.14)

Thus

d𝑙 = 1
𝑣0

d𝑎

𝛾𝑎𝐻
, (4.15)

or, alternatively

d𝑙 = d𝑡

𝑣0𝛾
. (4.16)

Thence, we can substitute the differential (4.15) in the determinant close to the boundary,
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such that 𝑎2(𝑡0) << 𝑣2
0

lim
𝑎→0

√
−𝑔 = |𝑣0| sin 𝜃 lim

𝑎→0

⎛⎝𝑎𝑙 + 𝑣0𝑎
∫︁ d𝑡′

𝑎
√︁

𝑎2 + 𝑣2
0

⎞⎠2

≈ |𝑣0| sin 𝜃 lim
𝑎→0

𝑣0

|𝑣0|

(︃∫︁ 𝑡

𝑡0

d𝑡′

𝑎

)︃2

= 𝑣0 sin 𝜃 lim
𝑡→−∞

[𝑎(𝑡)𝜂(𝑡)]2 ,

(4.17)

where 𝜂(𝑡) is the primitive of 1/𝑎(𝑡). Notice, however, that in order for the determinant

to be finite and non null, 𝜂(𝑡) cannot converge. This is in fact the case, given Assumption

2. The proof goes by contradiction: let us assume that lim𝑎→0 𝜂(𝑡) < ∞, then we can

write

𝜂(𝑡) = 𝑎(𝑡)𝜂(𝑡)
𝑎(𝑡) ⇒ lim

𝑎→0
𝜂(𝑡) = lim

𝑎→0

𝑎(𝑡)𝜂(𝑡)
𝑎(𝑡) . (4.18)

Since we supposed 𝜂(𝑡) converges, we can apply L’Hôpital rule

lim
𝑎→0

𝜂(𝑡) = 1 + 𝑎̇𝜂

𝑎̇
= lim

𝑎→0

1
𝑎̇

+ lim
𝑎→0

𝜂(𝑡). (4.19)

Therefore, we need that

lim
𝑎→0

1
𝑎̇

= 0, (4.20)

and 𝑎̇ must diverge. But this cannot be true since 𝐻 is limited, by Assumption 2. If 𝑎̇

were to diverge as 𝑎 → 0, then 𝐻 would dirverge as well. Thence, we conclude that:

lim
𝑎→0

𝜂(𝑡) → ∞. (4.21)

Then, knowing that 𝜂(𝑡) diverges, we can apply L’Hôpital rule to the term 𝑎(𝑡)𝜂(𝑡) in

the metric determinant

lim
𝑎→0

𝑎(𝑡)𝜂(𝑡) = lim
𝑎→0

𝜂

1/𝑎
= − lim

𝑎→0

1
𝐻

, (4.22)

hence

lim
𝑎→0

√
−𝑔 = 𝑣0 sin 𝜃 lim

𝑡→−∞

1
𝐻2 . (4.23)

This gives us a third assumption for the construction of the metric in the non co-moving
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frame:

Assumption 3. The Hubble parameter 𝐻, as measured by the co-moving observer does

not vanish in the asymptotic limit, i.e, lim𝑡→−∞ 𝐻 ̸= 0.

The cases where lim𝑎→0 𝐻 → 0, despite having no scalar curvature singularity, are

a curious case: either they are geodesically complete - and therefore, do not need an

extension such as the one we are trying to build - or they have a parallelly propagated

curvature singularity, as the one discussed in Appendix C, that prevents its completion.

In the following Lemma we show that the cases lim𝑎→0 𝐻 → 0 that are incomplete cannot

be extended, neither by the method here presented or any other protocol, as they have a

parallelly propagated curvature singularity:

Lemma 2. Let a spatially flat FLRW with line element given by (4.1). If lim𝑡→−∞ 𝐻 → 0

and the space-time is geodesically past incomplete, it cannot be extended past the asymp-

totic boundary, as it possesses a parallelly propagated curvature singularity in the asymp-

totic limit.

Proof. If the spacetime is incomplete (time-like and null incompleteness are equivalent,

according to Lemma 1), then:

Δ𝜆(𝑡0) =
∫︁ 𝑡0

−∞
𝑎d𝑡 ≡ 𝐹 (𝑡0) − lim

𝑡→−∞
𝐹 (𝑡) < ∞. (4.24)

The primitive of 𝑎(𝑡), 𝐹 (𝑡), tends to a finite value 𝐹 * < ∞. However, assuming that

𝐻/𝑎 is finite as 𝑡 → −∞, we get a contradiction

lim
𝑡→−∞

𝐹 (𝑡) = lim
𝑡→−∞

𝑎(𝑡)𝐹 (𝑡)
𝑎(𝑡) = lim

𝑡→−∞

𝑎2 + 𝑎̇𝐹 (𝑡)
𝑎̇

= lim
𝑡→−∞

(︂
𝐹 (𝑡) + 𝑎

𝐻

)︂
= 𝐹 * + 1

𝜅
̸= 𝐹 *.

(4.25)

Thus, we need that 𝜅 → ∞, and therefore lim𝑎→0 𝐻/𝑎 → ∞. Because 𝐻 → 0, we can use

L’Hôpital to finally obtain:

lim
𝑎→0

𝐻2

𝑎2 = lim
𝑎→0

2𝐻𝐻̇

2𝑎𝑎̇
= lim

𝑎→0

𝐻̇

𝑎2 . (4.26)

Then, if 𝐻/𝑎 → ±∞, so does 𝐻̇/𝑎2, which represents a parallelly propagated curvature

singularity 1, as proven in equation (C.18).
1For a detailed derivation, see Appendix C.
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As shown by contradiction, if a space-time is geodesically incomplete in the past, it

is imperative that the limit of the ratio 𝐻/𝑎 as 𝑎(𝑡 → −∞) → 0 diverges. Thus, as an

immediate consequence, we have that, for incomplete space-times that are ’asymptotically

Minkowski’ (lim𝑎→0 𝐻 = 0), the incompleteness implies in a singularity parallelly propa-

gated along light curves [29], since the ratio 𝐻̇/𝑎2 diverges, and therefore, the spacetime

is inextensible past the asymptotic boundary. Notice, however, that while the geodesic

incompleteness of a spacetime implies in the divergence of 𝐻/𝑎, the converse is not nec-

essarily true, hence, a priori, a spacetime might be geodesically complete and have such

divergence. The implications of this property for the extension of certain models are

immediate: for the case of pre-Big-Bang (pBB) models, for instance, where

𝑎(𝑡) ∝ 𝑡−𝛼, 𝛼 > 1. (4.27)

As discussed in Chapter 1, for a perfect fluid with state equation given by 𝑝 = 𝜔𝜌, the

pBB models correspond to fluids with 𝜔 in the interval

2
3(𝜔 + 1) < −1 ⇒ −5

3 < 𝜔.

Adding the condition that the scale factor goes with an inverse power of 𝑡, we have that

𝜔 is limited in the interval

−5
3 < 𝜔 < −1, (4.28)

and the Hubble factor for such a model is given by

𝐻 ≡ 𝑎̇

𝑎
∝ 1

𝑡
. (4.29)

Thus, as 𝑎(𝑡 → −∞) → 0, the Hubble parameter tends to zero, and hence, these models

which were shown to be incomplete are also inextensible. Now, we manage to show

that the pBB models are precisely the cases in which we have a curvature singularity

parallelly propagated. The interval of 𝜔 for which Cosmological Models are incomplete

is the interval which accepts 𝒞2 metric extension. Calculating the ratio 𝐻̇/𝑎2 for scale

factor of the form (4.27), we have that
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𝐻̇

𝑎2 ∝ 𝑡2(𝛼−1). (4.30)

We see that as 𝑡 → −∞ this diverges for 𝛼 > 1, which yields condition (4.28). Thus, we

conclude that the pBB models are inextensible due to a curvature singularity parallelly

propagated. Furthermore, since 𝐻(𝑎 → 0) → 0, the presented continuous extension does

not apply, since (𝑎𝑟) diverges.

Thus far, our 3 assumptions alone are sufficient for metric (4.9) to be continuously

extended through the past boundary. However, in order for the metric components to be

of class 𝒞2 we need to compute its derivatives:

𝜕𝜏 𝑔11 = 𝜕𝜏 (𝑎2 + 𝑣2
0) = 1

𝑣0
𝜕𝑙(𝑎2 + 𝑣2

0) = 2𝑎𝐻
√︁

𝑎2 + 𝑣2
0;

𝜕2
𝜏 (𝑎2 + 𝑣2

0) = 1
𝑣2

0
𝜕2

𝑙 (𝑎2 + 𝑣2
0) = 1

𝑣0
𝜕𝑙𝜕𝜏 (𝑎2 + 𝑣2

0) = 2[(𝑎2 + 𝑣2
0)𝐻̇ + (2𝑎2 + 𝑣2

0)𝐻2];
(4.31)

Denoting the limit 𝑎 → 0 as 𝜉 ≡ 𝜏 + 𝑣0𝑙 → 𝜉* we get:

lim
𝜉→𝜉*

𝜕𝜏 𝑔11 = lim
𝜉→𝜉*

𝜕𝜏 (𝑎2 + 𝑣2
0) = 1

𝑣0
𝜕𝑙(𝑎2 + 𝑣2

0) = 0;

lim
𝜉→𝜉*

𝜕2
𝜏 𝑔11 = lim

𝜉→𝜉*
𝜕2

𝜏 (𝑎2 + 𝑣2
0) = 1

𝑣2
0

lim
𝜉→𝜉*

𝜕2
𝑙 (𝑎2 + 𝑣2

0) = 2𝑣2
0(𝐻̇ + 𝐻2).

(4.32)

For the angular component 𝑔22 = (𝑎𝑟)2 (the result is analogous for 𝑔33, since 𝜃 and 𝜑

do not depend on 𝜏, 𝑙):

𝜕𝜏 (𝑎𝑟) =
√︁

𝑎2 + 𝑣2
0
𝐻

𝑎
(𝑎𝑟) + 𝑣0

𝑎
,

𝜕𝑙(𝑎𝑟) = 𝑣0

[︂√︁
𝑎2 + 𝑣2

0
𝐻

𝑎
(𝑎𝑟) + 𝑣0

𝑎

]︂
+ 𝑎.

(4.33)

Using (4.22), we find that

lim
𝜉→𝜉*

√︁
𝑎2 + 𝑣2

0
𝐻

𝑎
(𝑎𝑟) = |𝑣0|𝑙 lim

𝜉→𝜉*
𝐻 − lim

𝜉→𝜉*

𝑣0

𝑎
,

thus,

lim
𝜉→𝜉*

𝜕𝜏 (𝑎𝑟) = |𝑣0|𝑙 lim
𝜉→𝜉*

𝐻 = lim
𝜉→𝜉*

1
𝑣0

𝜕𝑙(𝑎𝑟). (4.34)

Thence, the first derivative of the metric component (𝑎𝑟)2:
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𝜕𝜏 (𝑎𝑟)2 = 2(𝑎𝑟)
[︂√︁

𝑎2 + 𝑣2
0
𝐻

𝑎
(𝑎𝑟) + 𝑣0

𝑎

]︂
,

𝜕𝑙(𝑎𝑟)2 = 2𝑣0(𝑎𝑟)
[︂√︁

𝑎2 + 𝑣2
0
𝐻

𝑎
(𝑎𝑟) + 𝑣0

𝑎

]︂
+ 2𝑎(𝑎𝑟).

(4.35)

In the limit 𝜉 → 𝜉*

lim
𝜉→𝜉*

𝜕𝜏 (𝑎𝑟)2 = lim
𝜉→𝜉*

2(𝑎𝑟) lim
𝜉→𝜉*

[︂√︁
𝑎2 + 𝑣2

0
𝐻

𝑎
(𝑎𝑟) + 𝑣0

𝑎

]︂
= −2|𝑣0|𝑙,

lim
𝜉→𝜉*

𝜕𝑙(𝑎𝑟)2 = lim
𝜉→𝜉*

2𝑣0(𝑎𝑟) lim
𝜉→𝜉*

[︂√︁
𝑎2 + 𝑣2

0
𝐻

𝑎
(𝑎𝑟) + 𝑣0

𝑎

]︂
+ lim

𝜉→𝜉*
2𝑎(𝑎𝑟) = −2𝑣0|𝑣0|𝑙.

(4.36)

Furthermore, the second order derivatives are given by

𝜕2
𝜏 (𝑎𝑟)2 = 2

{︁
[𝜕𝜏 (𝑎𝑟)]2 + (𝑎𝑟)𝜕2

𝜏 (𝑎𝑟)
}︁

= 2
{︃

[𝜕𝜏 (𝑎𝑟)]2 + (𝑎𝑟)2
[︃
𝐻2 + (𝑎2 + 𝑣2

0)𝐻̇

𝑎2

]︃}︃
,

(4.37)

𝜕2
𝑙 (𝑎𝑟)2 = 2

{︃
[𝜕𝑙(𝑎𝑟)]2 + 𝑣2

0(𝑎𝑟)2
[︃
(𝑎2 + 𝑣2

0)𝐻̇

𝑎2 + 𝐻2
]︃

+ 2𝑣0𝐻(𝑎𝑟)
√︁

𝑎2 + 𝑣2
0

}︃
, (4.38)

𝜕𝑙𝜕𝜏 (𝑎𝑟)2 = 2(𝑎𝑟)
{︂

[𝜕𝑙(𝑎𝑟)[𝜕𝜏 (𝑎𝑟)] + (𝑎𝑟)2[(𝑎2 + 𝑣2
0)𝐻̇ + 𝐻2] + 𝐻

√︁
𝑎2 + 𝑣2

0

}︂
. (4.39)

Taking the limit 𝜉 → 𝜉* of the second order derivatives:

lim
𝜉→𝜉*

𝜕2
𝜏 (𝑎𝑟)2 = 2𝑣2

0𝑙2 + 2 lim
𝜉→𝜉*

[︃
1 + 𝑣2

0
𝐻2

𝐻̇

𝑎2 + 𝐻̇

𝐻2

]︃
, (4.40)

lim
𝜉→𝜉*

𝜕2
𝑙 (𝑎𝑟)2 = 2 lim

𝜉→𝜉*
[𝜕𝑙(𝑎𝑟)]2 + 2 lim

𝜉→𝜉*
𝑣2

0

[︃
1 + 𝐻̇

𝐻2 + 𝑣2
0

𝐻2
𝐻̇

𝑎2

]︃
− 4𝑣0|𝑣0|, (4.41)

lim
𝜉→𝜉*

𝜕𝑙𝜕𝜏 (𝑎𝑟)2 = 2𝑣0 lim
𝜉→𝜉*

𝜕2
𝜏 (𝑎𝑟)2 + 2|𝑣0|𝐻. (4.42)

Through expressions (4.40), (4.41) and (4.42) we see that a last assumption needs to be
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made:

Assumption 4. lim𝑎→0
𝐻̇
𝑎2 = 𝑐, where 𝑐 ∈ R.

Note that, as shown in Lemma 2, if the space-time is past incomplete and if lim𝑎→0 𝐻 =

0, then lim𝑎→0 𝐻̇/𝑎2 necessarily diverges. However, the fact that a space-time is incom-

plete, solely, does not guarantee this divergence without knowledge of the limit of 𝐻. That

is why Assumption (iv) is needed in order to have a 𝒞2 metric extension. This assumption

happens to be the condition for no parallelly propagated curvature singularity. Moreover,

regarding the extension, an interesting result arises from the calculation of derivatives of

𝑎2 with respect to the function 𝜉:

𝜕𝑎

𝜕𝜏
= 𝜕𝑎

𝜕𝜉

𝜕𝜉

𝜕𝜏
= 𝜕𝜉𝑎 = 𝐻

√︁
𝑎2 + 𝑣2

0. (4.43)

Therefore, we have that

𝜕𝜉𝑎
2 = 2𝑎𝜕𝜉𝑎 = 2𝑎𝐻

√︁
𝑎2 + 𝑣2

0,

lim
𝜉→𝜉*

𝜕𝜉𝑎
2 = 0,

(4.44)

which signalizes a point of either maximum or minimum of 𝑎2 at the boundary. Addition-

ally, the second derivative is positive in the asymptotic limit:

𝜕2
𝜉 𝑎2 = 2(𝜕𝜉𝑎)2 + 2𝑎𝜕2

𝜉 𝑎 = 2𝐻2(𝑎2 + 𝑣2
0) + 2𝑎

(︂
𝐻̇
√︁

𝑎2 + 𝑣2
0 + 2𝑎𝐻2

)︂
,

lim
𝜉→𝜉*

𝜕2
𝜉 𝑎2 = 2𝑣2

0𝐻2 > 0.
(4.45)

Thus, we have that 𝜉 = 𝜉* is a local minimum of 𝑎2, and the extension, locally, must

have a bounce. This can be seen through the local expansion of geodesics: let us compute

the 𝐻𝐵𝐺𝑉 between a co-moving 𝑣𝜇 = (1, 0, 0, 0) and a non co-moving observer 𝑢𝜇 =

(𝛾, 𝑣0/𝑎2, 0, 0):

𝐻𝐵𝐺𝑉 = − 𝑣𝜇𝐷𝑢𝜇/d𝑡

(𝑢𝜇𝑣𝜇)2 − 1 = 𝑎𝐻√︁
𝑎2 + 𝑣2

0

. (4.46)

Note that this goes to zero as 𝑎 → 0. Furthermore, given that 𝜕𝜏 𝑎2 = 𝜕𝜉𝑎
2 = 2𝑎𝜕𝜏 𝑎, using

equation (4.43) the BGV expansion (4.46) can be recast in the more convenient manner
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𝐻𝐵𝐺𝑉 =
𝑎𝐻

√︁
𝑎2 + 𝑣2

0

(𝑎2 + 𝑣2
0) = 𝑎𝜕𝜏 𝑎

(𝑎2 + 𝑣2
0) = 1

2
𝜕𝜉𝑎

2

(𝑎2 + 𝑣2
0) . (4.47)

We can picture
√︁

𝑎2 + 𝑣2
0𝐻𝐵𝐺𝑉 as a generalization of the local expansion between the

geodesics without the normalization factor. For instance, if we take the co-moving limit,

we see that as 𝑣0 → 0,
√︁

𝑎2 + 𝑣2
0𝐻𝐵𝐺𝑉 → 𝑎̇. Thus, we can write the generalized expansion

as

√︁
𝑎2 + 𝑣2

0𝐻𝐵𝐺𝑉 = 1
2

𝜕𝜉𝑎
2√︁

𝑎2 + 𝑣2
0

, (4.48)

which is null at 𝑎 = 0 and with positive derivative since 𝜕2
𝜉 𝑎2 = 2𝑣2

0𝐻2 > 0. Even though

the bounce is not homogeneous nor isotropic, the nature of the contracting phase needed

in whatever extension one has in mind is explicit through the second derivative 𝜕2
𝜉 𝑎2 being

positive, which implies a point of local minimum in the expansion. Additionally, a novelty

of this extension procedure is that there is no need of the null energy condition2 (NEC)

violation, as for example, the de Sitter extension here presented. Since for de Sitter case

𝑝 = −𝜌, we have that 𝜌 + 𝑝 = 0 and the NEC is intact. Another example with no NEC

violation that could be extended through the protocol here presented is the toy model

𝑎(𝑡) ∝ sech 𝑡, ∀𝑡 ∈ (−∞, 𝑡0). Note that such model satisfies all the four assumptions

required

(i) lim
𝑡→−∞

𝑎(𝑡) = lim
𝑡→−∞

sech(𝑡) = 0,

(ii) lim
𝑡→−∞

𝐻 = lim
𝑡→−∞

− tanh(𝑡) = 1 < ∞,

lim
𝑡→−∞

𝐻̇ = lim
𝑡→−∞

− sech2(𝑡) = 0,

(iii) lim
𝑡→−∞

𝐻 ̸= 0,

(iv) lim
𝑡→∞

𝐻̇

𝑎2 = −1 < ∞.

(4.49)

Thus, this model satisfies all the conditions for a 𝐶2 extension. Furthermore, from Fried-

mann’s equation:

𝜌 = 3
8𝜋𝐺

𝐻2 = 3
8𝜋𝐺

(1 − 𝑎2), (4.50)

2For the case of a perfect fluid, the NEC can be expressed as 𝜌 + 𝑝 ≥ 0
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𝐻̇ = −4𝜋𝐺(𝜌 + 𝑝),

𝑎2 = −4𝜋𝐺
[︂ 3
8𝜋𝐺

(1 − 𝑎2) + 𝑝
]︂

,

⇒ 𝑝

𝜌
= 𝜔(𝑎) =

[︁
5
3𝑎2 − 1

]︁
1 − 𝑎2 .

(4.51)

We see that our toy model tends to a space with cosmological constant in the asymptotic

past, and

𝑝 + 𝜌 = 𝑎2

4𝜋𝐺
> 0, ∀𝑡 ∈ (−∞, 𝑡0). (4.52)
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Chapter 5

Cyclic Cosmological Models and

Geodesic Completeness

We have exhausted all the possibilities for the asymptotic behavior of the Hubble param-

eter. However, one last interesting case concerning geodesic completeness of cosmological

model is the cyclic model. The question of whether the Universe could exhibit a strictly

periodic behavior has long been sorted out in literature. Since the works of Richard

Tolman1, it is known that a strictly cyclic cosmological model, in which the co-moving

observer sees its isotropic and homogeneous spatial sections oscillating between a mini-

mum scale factor, 𝑎min, and a maximum, 𝑎max, within a periodic time interval Δ𝑡 = 𝑇

𝑎(𝑡) = 𝑎(𝑡 + 𝑇 ), ∀𝑡 ∈ R,

0 < 𝑎min ≤ 𝑎(𝑡) ≤ 𝑎max < ∞,
(5.1)

is not thermodynamically allowed. However, it is trivial to show that, if it was not for

thermodynamical considerations, for a reasonable strictly periodic eternal Universe, any

observer, regardless of his state of movement w.r.t to the background, would measure an

infinite proper time from the asymptotic past, once that, if 𝑎(𝑡) satisfies (5.1), so does√︁
1 + 𝑣2

0/𝑎2(𝑡). Thus, let 𝐶 be the integral of one period. Assuming 𝑎(𝑡) has a finite

maximum, we have

∫︁ 𝑡

𝑡−𝑇

d𝑡√︁
1 + 𝑣2

0
𝑎2

= 𝐶 < ∞. (5.2)

1Richard C. Tolman (1881 - 1948)
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If we change the integration limit to cover two previous periods, we have

∫︁ 𝑡

𝑡−2𝑇

d𝑡√︁
1 + 𝑣2

0
𝑎2

= 2𝐶. (5.3)

By mathematical induction, if we integrate over N periods:

∫︁ 𝑡

𝑡−𝑁𝑇

d𝑡√︁
1 + 𝑣2

0
𝑎2

= 𝑁𝐶. (5.4)

Therefore, to evaluate the limit of this integral in the asymptotic past, we must integrate

over an infinite number of past periods 𝑁 → ∞:

∫︁ 𝑡

𝑡→−∞
d𝜏 = lim

𝑁→∞

∫︁ 𝑡

𝑡−𝑁𝑇

d𝑡√︁
1 + 𝑣2

0
𝑎2

= lim
𝑁→∞

𝑁𝐶 → ∞, (5.5)

and hence all time-like geodesics should have infinite parameter. A similar reasoning can

be carried out for the null case since Δ𝜆 ∝
∫︀ 𝑡

𝑡−𝑇 𝑎d𝑡.

5.1 A Model with Entropy Dissipation

Despite being geodesic complete, it is not physically reasonable for our Universe to be

strictly cyclic, as these models can not satisfy both the conditions for periodicity and

conditions for thermodynamical reversible process that would need to take place in order

to have a cyclic cosmos [30, 31].

However, numerous models with somewhat cyclic properties have been proposed ever

since, as for instance a model with a scale factor growing from one cycle to the other but

with strictly periodic Hubble parameter [32].

To solve the problem of incompatibility between the reversibility of thermodynamical

process and a strictly periodic solution, a new kind of cyclic model was proposed [33],

where the assumption of periodicity of 𝑎(𝑡) is put aside. Instead, the Hubble parameter

is periodic in time

𝐻(𝑡) = 𝐻(𝑡 + 𝑇 ), ∀𝑡 ∈ R. (5.6)

In this model, in order to dissipate entropy outside the Hubble horizon, such that, in

the observable Universe the thermodynamic processes are reversible, the scale factor is
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allowed to grow exponentially from one cycle to the next:

𝑎(𝑡 + 𝑇 ) = 𝑒𝑁𝑎(𝑡), ∀𝑡 ∈ R. (5.7)

This space satisfies assumption 1, that the scale factor vanishes at the past boundary.

However, when we consider the scale factor of form (5.7), we have a Hubble function of

the type

𝐻(𝑡) = 𝑁

𝑇
+ 𝑃̇ (𝑡)

𝑃 (𝑡) , (5.8)

where 𝑃 (𝑡) is periodic in the cosmic time. Even if the periodic function is bounded by a

maximum finite value, this does not guarantee that the extension is possible, as 𝐻 does

not approach a definite value in the asymptotic past. This means that, as the limit of

the Hubble parameter does not exist and, since the curvature scalars are proportional to

powers of 𝐻2, no 𝒞2 extension for this space is possible, since the curvature scalars do

not have a definite value, even in bounded cases. What happens is that, the co-moving

reference observes evenly time intervals between each cycles. However, a non co-moving

observer does not agree with the period of each phase, as can be seen through his proper

time. Consider the time elapsed as measured by a non co-moving observer during on

single cycle

Δ𝑇 (𝑡) =
∫︁ 𝑡+𝑇

𝑡

d𝑡√︁
1 + 𝑣2

0
𝑎2

. (5.9)

Since 𝑎 → 0, we can choose the starting time to measure the oscillation such that 𝑎(𝑡)2 <<

𝑣2
0, such that a period measured by the non co-moving observer is

Δ𝑇 (𝑡) ≈ 1
|𝑣0|

∫︁ 𝑡+𝑇

𝑡
𝑎(𝑡)d𝑡 = 1

|𝑣0|

∫︁ 𝑡+𝑇

𝑡
𝑃 (𝑡)𝑒𝑁𝑡/𝑇 d𝑡. (5.10)

Since the function 𝑃 (𝑡) is periodic oscillating between a maximum 𝑃max and a minimum

𝑃min

𝑃min ≤ 𝑃 (𝑡) ≤ 𝑃max, ∀𝑡 ∈ R, (5.11)

we have that integral (5.10) will always be bounded by
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∫︁ 𝑡+𝑇

𝑡
𝑃min𝑒𝑁𝑡/𝑇 d𝑡 ≤ Δ𝑇 (𝑡) ≤

∫︁ 𝑡+𝑇

𝑡
𝑃max𝑒𝑁𝑡/𝑇 d𝑡,

𝑇

𝑁
𝑃min𝑒𝑁𝑡/𝑇 (𝑒𝑁 − 1) ≤ Δ𝑇 (𝑡) ≤ 𝑇

𝑁
𝑃max𝑒𝑁𝑡/𝑇 (𝑒𝑁 − 1).

(5.12)

Thus the period is always bounded from above and below. However, as 𝑡 → −∞:

lim
𝑡→−∞

𝑇

𝑁
𝑃min𝑒𝑁𝑡/𝑇 (𝑒𝑁 − 1) = lim

𝑡→−∞

𝑇

𝑁
𝑃max𝑒𝑁𝑡/𝑇 (𝑒𝑁 − 1) = 0, (5.13)

and hence the bounds go to zero, forcing the period oscillation of the Universe as seen

by the non co-moving observer to vanish and consequently, to see an infinite frequency of

oscillation between the cycles.

Another interesting cyclic model is Penrose’s Conformal Cyclic Cosmologies (CCC),

proposed in Ref. [34]. In these scenarios the asymptotic future limit is matched to the

asymptotic past through a conformal transformation, thus connecting different cycles

(referred to as aeons) by a conformal re-escaling

𝑔𝐹
𝜇𝜈 = (Ω𝐹 )2𝑔𝜇𝜈 = (Ω𝑃 )2𝑔𝜇𝜈 = 𝑔𝑃

𝜇𝜈 , (5.14)

where the superscripts F and P correspond to the future and past conformal factors,

respectively, and metric 𝑔𝜇𝜈 is a metric used to connect the two asymptotic limits. One

of the many realizations of such scenarios which is cosmologically relevant due to the late

time cosmic expansion is the connection of subsequent phases of expansion followed by

a conformal matching to a contracting phase. In this scenario, the asymptotic future

behavior would be de Sitter, dominated by a cosmological constant. It was previously

argued in Ref. [35] that non co-moving observers would be described by a co-moving

frame in the de Sitter metric with spatially negative curvature (𝑘 = −1), and hence,

would observe its geodesic to be finite in the past, due to coordinate singularity at 𝜏 = 0

in 𝑎 = sinh(𝛼𝜏). Constructing a bounding de Sitter space on each aeon and matching its

null boundaries 𝒥 ± would map the aeon expanding in the past with the one contracting in

the future. Thus, any non co-moving observer in the expanding aeon would see incomplete

geodesics in the past due to the incompleteness of the open coordinates. As was shown

in this work, this is not true since, despite having a hyperbolic sine dependency, the non

co-moving frame is neither homogeneous nor isotropic, and hence, the open patch does

not correspond to a non co-moving observer, which could allow a CCC extension.
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Chapter 6

Concluding Remarks

In this dissertation we discussed the issue of geodesic completeness in Cosmological Models

where the co-moving observer sees an eternal Universe in the past. However, we have

found that the same is not necessarily true for an observer in movement with respect to

the homogeneous and isotropic background. For a cosmological model filled by a perfect

fluid with equation of state 𝑝 = 𝜔𝜌, we obtained that the interval −5/3 < 𝜔 < −1 is

incomplete and 𝒞2 inextensible. Moreover, in the context of the Standard Cosmological

Model, which needs an inflationary phase where the scale factor undergoes an accelerated

expansion, the BGV theorem ascertains its incompleteness (or any space with an average

positive expansion), rendering past eternal inflationary models still incomplete regardless

of the infinite co-moving interval. Notwithstanding, in order for the past incompleteness

to portray a physical issue, in what concerns General Relativity, the model can admit no

𝒞2-extension in order to be truly singular rather than only coordinate incomplete. For that

purpose, since the finitude of the parameter is always displayed through non co-moving

observers, we have established a method through which any incomplete extensible flat

FLRW metric can be 𝐶2 extended past the asymptotic boundary and the criteria for the

incomplete space to be extensible can be summed up by the following definition:

Definition 6.0.1. A spatially flat FLRW space that satisfies assumptions (i), (ii), (iii),

and (iv) is said to be asymptotically de Sitter.

Theorem 1. Consider an incomplete spatially flat FLRW model with line element given

by (4.1) in which 𝑎 → 0 in the asymptotic past, 𝑡 → −∞. The space-time admits a 𝒞2

extension through the asymptotic boundary if and only if it is asymptotically de Sitter, as

per Definition 6.0.1.
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Proof. Assumption (i) guarantees that the space-time is defined up to minus infinity,

thus, the scale factor does not vanish for a finite value of 𝑡, preventing a Big Bang type

of singularity [28]. If assumption (ii) is not fulfilled, then we have scalar curvature sin-

gularities since one of the curvature scalars, which are linearly independent polynomials

of 𝐻 and 𝐻̇, will diverge, preventing a 𝒞2 extension. If assumption (iii) is not fulfilled,

lim𝑎→0 𝐻 = 0, we have shown through Lemma 2, that it possess a parallelly propagated

curvature singularity. Since these exaust all the possibilities for the limit of 𝐻, the only

cases in which there is no type of singularity is the case 0 < lim𝑎→0 𝐻 < ∞. Moreover,

if assumption (iv) is not fulfilled, lim𝑎→0 𝐻̇/𝑎2 → ±∞ and there is a parallelly propa-

gated curvature singularity. Therefore, to be 𝒞2 extensible the space must satisfy all the

assumptions, and hence, it must be asymptotically de Sitter.

Furthermore, despite not being de Sitter, a space-time does not need to possess all the

symmetries of the exact de Sitter space, which would consequently discard the possible

completion of any realistic inflationary model. For a spatially flat FLRW model to have

a 𝒞2 extension compatible with General Relativity, it is sufficient to be asymptotically de

Sitter, satisfying assumptions (𝑖)−(𝑖𝑣). In fact, it is not only sufficient, but also necessary.
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Appendix A

Curvature Tensors in FLRW

Some useful computation throughout this dissertation are summed in this appendix. For

a FLRW metric, given by

d𝑠2 = −d𝑡2 + 𝑎2(𝑡)[d𝜒2 + 𝑟2(𝜒)(d𝜃2 + sin2 𝜃d𝜑2)], (A.1)

where

𝑟(𝜒) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sin(𝜒) 𝑘 = +1,

𝜒 𝑘 = 0,

sinh(𝜒) 𝑘 = −1.

(A.2)

The non-null Christoffel symbols for this metric are:

Γ𝑡
𝑟𝑟 = 𝑎𝑎̇

(1 − 𝑘𝑟2) , Γ𝑡
𝜃𝜃 = 𝑎𝑎̇𝑟2, Γ𝑡

𝜑𝜑 = 𝑎𝑎̇𝑟2 sin2 𝜃, Γ𝑟
𝑟𝑟 = 𝑘𝑟

1 − 𝑘𝑟2 ;

Γ𝑡
𝑟𝑡 = Γ𝜃

𝑡𝜃 = Γ𝜑
𝑡𝜑 = 𝑎̇

𝑎
, Γ𝑟

𝜃𝜃 = −𝑟(1 − 𝑘𝑟2), Γ𝑡
𝜑𝜑 = −𝑟(1 − 𝑘𝑟2) sin2 𝜃;

Γ𝜃
𝑟𝜃 = Γ𝜑

𝑟𝜑 = 1
𝑟

, Γ𝜃
𝜑𝜑 = − sin 𝜃 cos 𝜃, Γ𝜑

𝜃𝜑 = cot 𝜃.

The non-null components of the Ricci Tensor are:

65



𝑅00 = −3 𝑎̈

𝑎
;

𝑅11 = 𝑎𝑎̈ + 2𝑎̇2 + 2𝑘

1 − 𝑘𝑟2 ;

𝑅22 = 𝑟2(𝑎𝑎̈ + 2𝑎̇2 + 2𝑘);

𝑅33 = 𝑟2(𝑎𝑎̈ + 2𝑎̇2 + 2𝑘) sin2 𝜃.

(A.3)

Consequently, the Ricci scalar is given by

ℛ = 6
(︃

𝑎̈

𝑎
+ 𝑎̇2

𝑎2 + 𝑘

𝑎2

)︃
, (A.4)

and the Kretschmann scalar

𝒦 ≡ 𝑅𝜇𝜈𝛼𝛽𝑅𝜇𝜈𝛼𝛽 = 12
(︃

𝑎̈2

𝑎2 + (𝑘 + 𝑎̇2)2

𝑎4

)︃
. (A.5)

In particular, in the flat case:

ℛ = 6(𝐻̇ + 2𝐻2), (A.6)

𝒦 = 𝐻̇2 + 2𝐻2(𝐻̇ + 𝐻2). (A.7)
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Appendix B

Geodesic Congruences and

Orthogonal Hypersurfaces

An important analysis for the implementation of a general extension procedure is the

inquiry of congruences, in particular, for the case of geodesic completeness as a criteria for

singularity-free space-times, it is essential that we investigate the evolution of kinematic

parameters of geodesic congruences. In this Appendix, we aim to show that, for a timelike

congruence of geodesics in a spatially flat FRLW model, the vorticity 𝜔𝛼𝛽 is null, i.e, the

vector field tangent to the geodesics is hypersurface orthogonal, and the spacetime can

be foliated by a sequence of hypersurfaces. First, let us consider a time-like geodesic

congruence defined by a vector field 𝑢𝜇(𝜏, 𝑙) such that at each event 𝒫 , there exists only

one curve passing through 𝒫 . We can consider the separation vector between two geodesics

in this congruence 𝜂𝛼:

𝑢𝜇∇𝜇𝜂𝛼 = 𝜂𝜇∇𝜇𝑢𝛼, (B.1)

Since the congruence is compost by geodesics, with 𝑢𝜇𝑢𝜇 = −1, we have that 𝑢𝜇∇𝜇𝑢𝛼 =

𝑢𝜇∇𝛼𝑢𝜇 = 0. Thus, the tensor 𝐷𝜇
𝛼 ≡ ∇𝛼𝑢𝜇 is orthogonal to 𝑢𝜇, so that in the rest frame

of the congruence 𝐷𝜇
𝛼 is purely spatial. We can decompose 𝐷𝜇

𝛼 in its antisymmetric and

symmetric part, and the latter can be decomposed in a traceless term and a term propor-

tional to identity 𝛿𝜇
𝛼, with the trace as proportionality constant. So, writing the projection

of ∇𝛼𝑢𝜇, we find
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∇𝛼𝑢𝛽 = 𝑃 𝜇
𝛼 ∇𝜇𝑢𝛽 + 1

3𝜃𝑃𝛽𝛼 − 1
3𝜃𝑃𝛽𝛼, (B.2)

where we have added and subtracted 𝜃 ≡ ∇𝜇𝑢𝜇, which is the expansion of the spatial

sections. We can define the symmetric shear tensor, 𝜎𝛼𝛽, and the antisymmetric vorticity

tensor, 𝜔𝛽𝛼:

𝜎𝛼𝛽 ≡ 1
2(𝑃 𝜇

𝛼 ∇𝜇𝑢𝛽 + 𝑃 𝜇
𝛽 ∇𝜇𝑢𝛼) − 1

3𝜃𝑃𝛽𝛼, (B.3)

𝜔𝛽𝛼 ≡ 1
2
(︁
𝑃 𝜇

𝛼 ∇𝜇𝑢𝛽 − 𝑃 𝜇
𝛽 ∇𝜇𝑢𝛼

)︁
. (B.4)

With these definitions, we can rewrite equation (B.2) as

∇𝑗𝑢𝑖 = 𝜎𝑖𝑗 + 𝜔𝑖𝑗 + 1
3𝜃𝑃𝑖𝑗. (B.5)

Note that the above equation only applies for the case of a geodesic congruence since for

more general curves the acceleration term 𝑎𝑖𝑢𝑗 will be non-vanishing.

This decomposition is particularly useful for the case when a geodesic congruence

is hypersurface orthogonal, i.e, when the timelike tangent vector can be written as the

gradient vector of a spacelike hypersurface

𝑢𝜇 = 𝑓(𝑥)𝜕𝜇𝑔(𝑥), (B.6)

for two functions 𝑓(𝑥) and 𝑔(𝑥). In this case the covariant derivative is given by

∇𝛼𝑢𝜇 = 𝑓(𝑥)∇𝛼∇𝜇𝑔(𝑥) + 𝜕𝛼𝑓(𝑥)𝜕𝜇𝑔(𝑥). (B.7)

If this is the case, the vorticity of the geodesic congruence is null. Notwithstanding,

for our purposes, it is more convenient to prove the converse is also true: if a geodesic con-

gruence has null vorticity, its tangent vector can always be made hypersurface orthogonal.

By the definition (B.4) we have that

𝜔𝛽𝛼 = 1
2
[︁
(𝛿𝜇

𝛼 + 𝑢𝜇𝑢𝛼)∇𝜇𝑢𝛽 − (𝛿𝜇
𝛽 + 𝑢𝜇𝑢𝛽)∇𝜇𝑢𝛼

]︁
. (B.8)

Since 𝑢𝜇 is tangent to a geodesic, 𝑢𝜇∇𝜇𝑢𝛼 = 0. Thence, what remains is:
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𝜔𝛽𝛼 = 1
2[∇𝛼𝑢𝛽 − ∇𝛽𝑢𝛼]. (B.9)

For a Riemannian geometry with no torsion, Γ𝜇
𝛼𝛽 = Γ𝜇

𝛽𝛼:

𝜔𝛽𝛼 = 1
2[𝜕𝛼𝑢𝛽 − Γ𝜇

𝛼𝛽𝑢𝜇 − 𝜕𝛽𝑢𝛼 + Γ𝜇
𝛽𝛼𝑢𝜇] = 1

2(𝜕𝛼𝑢𝛽 − 𝜕𝛽𝑢𝛼). (B.10)

Thence, if 𝜔𝛽𝛼 = 0

𝜕𝛼𝑢𝛽 − 𝜕𝛽𝑢𝛼 = 0, (B.11)

which the gradient of any function 𝑓(𝑡, 𝑟) satisfies. Let 𝑢𝜇 be a vector field tangent to

a non co-moving congruence of geodesics in a flat FLRW. Its components can always be

written as

𝑢𝑡 =
√︃

1 + 𝑣2
0

𝑎2 , 𝑢𝑟 = 𝑣0

𝑎2 , 𝑣0 = const. (B.12)

Then the covariant components are given by

𝑢𝑡 = 𝑔𝑟𝜇𝑢𝜇 = −
√︃

1 + 𝑣2
0

𝑎2 ,

𝑢𝑟 = 𝑔𝑟𝜇𝑢𝜇 = 𝑣0,

(B.13)

and the vorticity of any geodesic congruence results in

𝜔𝛽𝛼 = 1
2(𝜕𝛽𝑢𝛼 − 𝜕𝛼𝑢𝛽) (B.14)

Since the components only depend on time, 𝜔𝑟𝛼 = 0. The only component that could be

non vanishing is

𝜔𝑡𝛼 = 1
2𝜕𝑡𝑢𝛼, 𝛼 ̸= 𝑡. (B.15)

As the covariant components with index different from zero are either 𝑣0 or 0, we conclude

that

𝜔𝛽𝛼 = 0, (B.16)

and therefore, as a consequence of vanishing vorticity, Frobenius Theorem guarantees that
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we can always make

𝑢𝜇 = 𝜕𝜇𝑓(𝑡, 𝑟), (B.17)

for some function 𝑓(𝑡, 𝑟).
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Appendix C

Curvature Singularity Paralelly

Propagated Along Light Geodesics

in flat FLRW

In this appendix we follow the Ref. [29] to show sufficient conditions for the presence of

a parallelly propagated curvature singularity in a flat FLRW model with metric

d𝑠2 = −d𝑡2 + 𝑎2(𝑡)[d𝑟2 + 𝑟2(d𝜃2 + sin2 𝜃d𝜑2)]. (C.1)

Let us construct a tetrad basis ê𝐴

(ê0)𝜈 = (𝑎, 0, 0, 0) = 𝑎d𝜂; (C.2)

(ê1)𝜈 = (0, 𝑎, 0, 0) = 𝑎d𝑟; (C.3)

(ê2)𝜈 = (0, 0, 𝑎𝑟, 0) = 𝑎𝑟d𝜃; (C.4)

(ê3)𝜈 = (0, 0, 0, 𝑎𝑟 sin 𝜃) = 𝑎𝑟 sin 𝜃d𝜑. (C.5)

Since this is a tetrad basis, the vectors satisfy 𝑔𝜇𝜈(ê𝐴)𝜇(ê𝐵)𝜈 = 𝜂𝐴𝐵 where 𝜂𝐴𝐵 is the

Minkowski metric in the tetrad indices. However, this tetrad basis is not parallelly prop-

agated along a null geodesic with affine parameter given by 𝜆 ∝ 𝑎d𝑡, since

𝑘𝜇∇𝜇(𝑒0)𝜈 ∝ 𝐻dr, (C.6)
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𝑘𝜇∇𝜇(𝑒1)𝜈 ∝ 𝐻d𝑟, (C.7)

and the vectors (ê2) and (ê3) are parallelly propagated along 𝑘𝜇. The main point here

is to construct a tetrad basis that is parallelly propagated along the null geodesic and

evaluate the Ricci tensor 𝑅𝜇𝜈 along such basis in order to verify what condition prevents

singularity on the asymptotic limit. For that, we notice that two tetrad basis are related

to each other through a Lorentz transformation. Thus, let us consider a new tetrad

basis e𝑖 (without the hat superscript), such that it is related to ê𝐴 through the Lorentz

transformation:

e0 = cosh 𝜁(𝜂, 𝑟)ê0 + sinh 𝜁(𝜂, 𝑟)ê1, (C.8)

e1 = sinh 𝜁(𝜂, 𝑟)ê0 + cosh 𝜁(𝜂, 𝑟)ê1. (C.9)

The rapidity 𝜁 must be such that, at the initial point (𝜂0, 𝑟0), 𝜁 = 0. Then, we can

compute the covariant derivative of the new basis:

𝑘𝜇∇𝜇e0 = ê0(𝑘𝜇∇𝜇 cosh 𝜁) + cosh 𝜁 (𝑘𝜇∇𝜇ê0)⏟  ⏞  
(𝐻/𝑎)ê1

+ê1(𝑘𝜇∇𝜇 sinh 𝜁) + sinh 𝜁 (𝑘𝜇∇𝜇ê1)⏟  ⏞  
(𝐻/𝑎)ê0

= (𝜕𝜂𝜁 + 𝜕𝑟𝜁)
𝑎2 [ê0 sinh 𝜁 + ê1 cosh 𝜁]⏟  ⏞  

e1

+𝐻

𝑎
[ê1 cosh 𝜁 + ê0 sinh 𝜁]⏟  ⏞  

e1

.

Then

𝑘𝜇∇𝜇e0 = 1
𝑎3 [𝜕𝜂𝑎 + 𝑎(𝜕𝜂𝜁 − 𝜕𝑟𝜁)]e1. (C.10)

Similarly, we have for the parallel transport of e1

𝑘𝜇∇𝜇e1 = 1
𝑎3 [𝜕𝜂𝑎 + 𝑎(𝜕𝜂𝜁 − 𝜕𝑟𝜁)]e0. (C.11)

Therefore, to be parallelly transported, the right side of both equations (C.10) and (C.11)

must be null. Hence, we get that the rapidity of the Lorentz transformation that will

transform the tetrad basis 𝑒 in a parallelly propagated one is
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𝜁 = − ln
(︂

𝑎

𝑎0

)︂
. (C.12)

Replacing solution (C.12) in the new basis defined in (C.8, C.9) we obtain:

e0 = 𝑎0

2𝑎

(︃
1 + 𝑎2

𝑎2
0

)︃
ê0 + 𝑎0

2𝑎

(︃
1 − 𝑎2

𝑎2
0

)︃
ê1, (C.13)

e1 = 𝑎0

2𝑎

(︃
1 − 𝑎2

𝑎2
0

)︃
ê0 + 𝑎0

2𝑎

(︃
1 + 𝑎2

𝑎2
0

)︃
ê1, (C.14)

or, by inverting the relations above,

ê0 = 𝑎0

2𝑎

(︃
1 + 𝑎2

𝑎2
0

)︃
e0 − 𝑎0

2𝑎

(︃
1 − 𝑎2

𝑎2
0

)︃
e1, (C.15)

ê1 = − 𝑎0

2𝑎

(︃
1 − 𝑎2

𝑎2
0

)︃
e0 + 𝑎0

2𝑎

(︃
1 + 𝑎2

𝑎2
0

)︃
e1. (C.16)

Thus, the Ricci tensor components in the parallelly propagated tetrad basis can be written

as

𝑅𝛼𝛽d𝑥𝛼d𝑥𝛽 = 𝐻̇𝑎2
0

2𝑎2

⎡⎣−
(︃

1 + 𝑎2

𝑎2
0

)︃2

𝑒0 ⊗ 𝑒0 +
(︃

1 − 𝑎4

𝑎4
0

)︃
𝑒0 ⊗ 𝑒1

+
(︃

1 − 𝑎4

𝑎4
0

)︃
𝑒1 ⊗ 𝑒0 −

(︃
1 − 𝑎2

𝑎2
0

)︃2

𝑒1 ⊗ 𝑒1

⎤⎦+ (3𝐻2 + 𝐻̇)𝜂𝐴𝐵e𝐴 ⊗ e𝐵

(C.17)

Thence, in order for the Ricci tensor components not to diverge, we need, additionally to

𝐻 < ∞ and |𝐻̇| < ∞ that

lim
𝑎→0

𝐻̇

𝑎2 → 𝑐, (C.18)

where c ∈ R.
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Appendix D

Contracting de Sitter Covering and

Matching Conditions

In this appendix we proceed to apply the same coordinate transformations used in the

expanding de Sitter patch for the contracting sheet with metric given by

d𝑠2 = −d𝑡′2 + 𝑒−2𝛼𝑡′ [d𝑟′2 + 𝑟′2(d𝜃2 + sin2 𝜃d𝜑)], (D.1)

where we use the prime notation to differentiate between the cosmic time in the expanding

flat patch, and the co-moving time in the contracting sheet. Since a tangent vector to a

non co-moving geodesic parametrized by 𝜏 can always be written as

𝑢𝜇 ≡ d𝑡

d𝜏
=
√︃

1 + 𝑣2
0

𝑎2 , (D.2)

we can integrate with the scale factor 𝑎 = 𝑒−𝛼𝑡 to find:

𝜏 − 𝜏0 =
∫︁ d𝑡′√︁

1 + 𝑣2
0

𝑎2

. (D.3)

By performing the transformation d𝑡′ = −d𝑎/𝛼𝑎 we obtain

𝜏 − 𝜏0 = − 1
𝛼

∫︁ 𝑎

𝑎0

d𝑎√︁
𝑎2 + 𝑣2

0

⇒ −𝛼(𝜏 − 𝜏0) = ln
[︂
𝑎 +

√︁
𝑎2 + 𝑣2

0

]︂ ⃒⃒⃒⃒⃒⃒
𝑎

𝑎0

. (D.4)

Then
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𝑒−𝛼(𝜏−𝜏0) = 1
𝐴0

[︂
𝑎 +

√︁
𝑎2 + 𝑣2

0

]︂
, (D.5)

where 𝐴0 ≡ 𝑎0 +
√︁

𝑎2
0 + 𝑣2

0. Then, we write

𝑎 +
√︁

𝑎2 + 𝑣2
0 = 𝐴0𝑔(𝑙)𝑒−𝛼(𝜏−𝜏0), (D.6)

where 𝑔(𝑙) carries the dependency of the scale factor on the spatial parameter. Now, let

us consider 𝑢𝜇 to be hypersurface orthogonal such that 𝑢𝜇 = 𝜕𝜑 for some function 𝜑 to

be determined. By integrating in the 𝑟 coordinate we find

𝜑(𝑡′, 𝑟, 𝑣0) =
∫︁

𝑣0d𝑟 = 𝑣0𝑟 + ℱ(𝑡′), (D.7)

where ℱ(𝑡′) is a function of the cosmic time 𝑡′. Integrating 𝜕𝑡′𝜑 we obtain

𝜑(𝑡′, 𝑟, 𝑣0) = −
∫︁ √︃

1 + 𝑣2
0

𝑎2 d𝑡 = ℱ(𝑡′) + 𝑣0𝑟. (D.8)

The above integral returns

− 1
𝛼

⎡⎣√︃1 + 𝑣2
0

𝑎2 − 1
𝛼

ln
(︂

𝑎 +
√︁

𝑎2 + 𝑣2
0

)︂⎤⎦ ⃒⃒⃒⃒⃒⃒
𝑡′

𝑡′
0

. (D.9)

Thence, the function 𝜑(𝑡′, 𝑟, 𝑣0) can be written as

𝜑 = − 1
𝛼

⎡⎣√︃1 + 𝑣2
0

𝑎2 −

⎯⎸⎸⎷1 + 𝑣2
0

𝑎2
0

⎤⎦+ 1
𝛼

ln
[︂ 1
𝐴0

(︂
𝑎 +

√︁
𝑎2 + 𝑣2

0

)︂]︂
+ 𝑣0𝑟. (D.10)

Let us parametrize 𝑟 by

𝑟 = (𝑙 − 𝑙𝑖) + 1
𝛼𝑣0

⎧⎨⎩
√︃

1 + 𝑣2
0

𝑎2 −

⎯⎸⎸⎷1 + 𝑣2
0

𝑎2
0

⎫⎬⎭ . (D.11)

Then, we can write 𝜑 as

𝜑 = 1
𝛼

ln
[︂ 1
𝐴0

(︂
𝑎 +

√︁
𝑎2 + 𝑣2

0

)︂]︂
+ 𝑣0(𝑙 − 𝑙𝑖). (D.12)

For surfaces of 𝜑 = const. ≡ 𝑘 we have
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𝛼𝑘 − 𝛼𝑣0(𝑙 − 𝑙𝑖) = ln
[︂ 1
𝐴0

(︂
𝑎 +

√︁
𝑎2 + 𝑣2

0

)︂]︂
= 𝐴0𝑓(𝜏)𝑒−𝛼𝑣0(𝑙−𝑙𝑖).

(D.13)

By comparing eq. (D.13) with (D.6) we see that

√︁
𝑎2 + 𝑣2

0 + 𝑎 = 𝐴0𝑒
−𝛼[(𝜏−𝜏0)+𝑣0(𝑙−𝑙𝑖)], (D.14)

which returns the scale factor

𝑎 = −|𝑣0| sinh
{︃

𝛼[(𝜏 − 𝜏0) + 𝑣0(𝑙 − 𝑙𝑖)] + ln
(︃

|𝑣0|
𝐴0

)︃}︃

= −|𝑣0| sinh {Θ − 𝛼(𝜏0 + 𝑣0𝑙𝑖) + Θ0} ,

(D.15)

where once again we define Θ ≡ 𝛼(𝜏 + 𝑣0𝑙) and Θ0 ≡ ln(|𝑣0|/𝐴0). Therefore, in order to

match the expanding solution at 𝑎 = 0, we need that Θ𝑖 ≡ 𝛼(𝜏0 + 𝑣0𝑙𝑖) = 2Θ0 and by

replacing the scale factor (D.15) in (D.11) we get

𝑟 = 𝑙 − 𝑙𝑖 − 1
𝛼𝑣0

[coth(Θ − Θ0) − coth(Θ0)]. (D.16)

Then

𝑙𝑖 = 2
𝛼𝑣0

coth Θ0. (D.17)
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