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Resumo

A Distribuição Quântica de Chaves (QKD, do inglês Quantum Key Distribution) é uma das
aplicações mais relevantes da teoria da informação quântica, especialmente no contexto dos
computadores quânticos, que podem, no futuro, comprometer os esquemas de criptografia
utilizados no dia a dia. A QKD utiliza os princípios fundamentais da mecânica quântica
para permitir que duas ou mais partes compartilhem uma sequência de bits, denominada
chave, que é secreta e segura—ou seja, as partes podem verificar que apenas elas conhecem
o valor dessa chave. Esse campo tem despertado o interesse de prestigiadas instituições de
pesquisa ao redor do mundo e amadureceu a ponto de permitir aplicações em um futuro
próximo, utilizando configurações de baixo custo relativo.

O objetivo desta dissertação é introduzir o leitor ao funcionamento da QKD, explicando
por que e quando ela pode ser considerada segura, além de abordar os principais protocolos
de QKD que impactaram a área. Por fim, apresentamos a primeira tentativa do Brasil de
implementar uma rede quântica em escala metropolitana, denominada Rede Rio Quântica.

A Rede Rio Quântica é uma rede multiusuário que interliga diversas instituições de pesquisa
na cidade do Rio de Janeiro. O protocolo analisado é uma variante do protocolo Twin Field
QKD (TF-QKD), classificado como Measurement Device Independent QKD (MDI-QKD),
o que elimina a necessidade de suposições de segurança sobre os dispositivos de medição.
Em vez de Alice e Bob possuírem fontes de fótons em seus laboratórios, eles realizam
modulações de fase e amplitude em um sinal enviado pelo nó central, Charlie, para executar
o protocolo. Devido à topologia em anel da rede, essa implementação funciona como um
protocolo Twin Field QKD baseado em Interferômetro de Sagnac. Demonstraremos como
a comunicação é estabelecida entre as partes, os detalhes da geração de chaves seguras e
uma análise de segurança com a expressão da taxa de chave secreta para essa variante do
protocolo.
Palavras-chave: Distribuição Quântica de Chaves, Critpografia Quântica, Informação
Quântica
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Abstract

Quantum Key Distribution (QKD) is one of the most relevant applications of quantum
information theory, especially on the verge of quantum computers potentially breaking our
day-to-day encryption schemes. QKD uses the foundations of quantum mechanics to allow
two or more parties to exchange a shared string of bits, called a key, which is secret and
secure, meaning the parties can verify that only they know the value of this exchanged key.
This field has gotten the interest of prestigious research institutions all over the world,
and has matured to the point of near-term applications using relative low budget set ups.

The scope of this thesis is to introduce the reader on how QKD works, why and when it
can be called secure, while talking about the main QKD protocols that have impacted the
field. Finally, we present Brazil’s first attempt at making a metropolitan-wide quantum
network, called Rio Quantum Network (RQN).

The RQN is a multi-user network involving multiple research institutions in the city of Rio
de Janeiro. The protocol we will be analyzing is a variant of a Twin Field QKD protocol,
which is a type of a Measurement Device Independent QKD protocol. This means that
no safety assumptions are needed for the measurement devices. Instead of Alice and Bob
each having a source in their lab, they will perform phase and amplitude modulations
on a signal sent by the central-node, Charlie, in order to execute the protocol. Since the
network has a ring topology, this protocol works as a Sagnac Based Twin Field QKD. We
will show how exactly communication will be established between the parties, the details
of how the parties can create a secure key and provide a security analysis with a secret
key rate expression for this variant protocol.

Keywords: Quantum Key Distribution, Quantum Cryptography, Quantum Information
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1 Introduction and Motivation

Cryptography has been a topic of great interest in human society since ancient Greece,
particularly in the context of exchanging secret messages during times of war [Singh
2000]. Throughout history, the primary goal of encryption schemes has been to achieve
unconditional security. This means ensuring that even if a malicious third party intercepts
an encrypted message, it would remain indecipherable, even under the assumption of
infinite computational power and resources. However, achieving this level of security has
proven to be a formidable challenge.

Numerous cryptographic schemes have been developed—and subsequently bro-
ken—over the years. One of the earliest known methods is the Caesar Cipher, which
encrypts a message by substituting each letter with another letter of the alphabet, shifted
by a fixed number of positions [Singh 2000]. Later, the Vigenère Cipher introduced a
refinement by assigning a distinct shift to each letter in the message, based on a repeating
keyword, or cryptographic key. Despite these advancements, both ciphers can eventually be
cracked with sufficient time and resources; once the underlying shifting rule is discovered,
the encrypted message can be deciphered.

In the modern era of information and technology, the need for robust privacy and
security has become more critical than ever. Most of our digital communication relies
on the RSA (Rivest-Shamir-Adleman) protocol [Rivest, Shamir e Adleman 1978], which
is based on the mathematical properties of one-way functions, such as the difficulty of
factoring the product of two large prime numbers. In this scheme, two parties, commonly
referred to as Alice and Bob, each possess a secret prime number as their individual private
keys. A public key is generated by performing operations with their private keys and is
used to encrypt the parties’ original message. This public key is shared openly, however,
only the private keys of Alice and Bob can be used to recover the original message. This
allows secure communication while ensuring that, given sufficiently large prime numbers,
the public key remains computationally infeasible to factor and recover their private keys.
Although the most powerful classical computers would take years to break RSA encryption,
the protocol’s security is inherently tied to the limitations of current computational power.
As computing technology advances, this security assumption weakens. Moreover, the
advent of quantum computers poses an even greater threat, as algorithms such as Shor’s
algorithm [Shor 1994] enable efficient factorization of large integers, effectively breaking
RSA and similar protocols.

In the 1920s, Vernam proposed one of the first encryption schemes to achieve
information-theoretic security: the Vernam Cipher, commonly known as the one-time



pad [Vernam 1926]. In this scheme, two parties possessing identical bit strings, referred to
as the key, can encrypt and decrypt messages by performing a binary sum (XOR operation)
between the key and the message, both of which must have at least the same length. While
the one-time pad is theoretically unbreakable [Shannon 1948], its security depends on two
stringent conditions: the key must be shared in complete secrecy, and a new key must be
used for every communication. Meeting these conditions in practice remains a significant
challenge.

Quantum Key Distribution (QKD) has emerged as a promising solution to the
challenges faced by classical cryptographic protocols. By leveraging the fundamental
principles of quantum mechanics, QKD enables two distant parties to perform experiments
and securely generate a shared key, even in the presence of potential eavesdroppers. The
first QKD protocol, known as BB84, was proposed by [Bennett e Brassard 1984]. This
protocol encodes classical bits into quantum bits (qubits), which are physical realizations
of two-level quantum systems, such as the polarization states of photons. If For instance,
the parties can exchange photons, measure their polarizations, and thereby establish a
shared string of bits, known only to them.

This development not only addresses the impending obsolescence of RSA encryption
and alike, but also marks a fundamental paradigm shift in cryptography. While post-
quantum cryptography is often regarded as a viable replacement for RSA schemes [Bern-
stein, Buchmann e Dahmen 2009], it ultimately relies on the same underlying principle—the
security depends on current computational capabilities and existing algorithms. As history
has shown, any cryptographic scheme might eventually be compromised by future scientific
breakthroughs. In contrast, QKD represents an entirely different approach. Rather than
engaging in the centuries-old cat-and-mouse game of algorithmic updates, QKD uses
the principles of quantum mechanics—nature itself—to ensure security. In this context,
potential vulnerabilities arise not from the protocol but from the physical devices used in
communication. Moreover, certain QKD protocols, such as Device-Independent QKD, first
proposed by [Ekert 1991], eliminate reliance on assumptions about device safety, offering
an even higher level of security.

Since the advent of BB84, numerous QKD protocols have been developed. Advances
in research have significantly enhanced their security and efficiency, leading to practical
implementations over increasing distances. Research institutions worldwide are actively
conducting long-distance QKD experiments, but these efforts also highlight practical
challenges such as quantum signal loss and high implementation costs. Consequently,
experimental adaptations are necessary to develop more accessible and cost-effective QKD
solutions. The successful deployment of metropolitan-scale quantum networks capable of
performing QKD protocols is a significant step toward making secure communication both
feasible and widespread. The Rio Quantum Network stands as an ambitious initiative to
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establish a metropolitan quantum communication network connecting research institutions
in Rio de Janeiro. This network faces high urban signal loss, cost constraints, and hybrid
quantum-classical integration. These hurdles highlight the need for protocol optimizations
tailored to practical environments.

This thesis is organized as follows: In chapter 2, we introduce the foundational
concepts of information theory, encompassing both classical and quantum domains, and
explain the criteria for secure communication. Chapter 3 provides an introduction to
QKD, focusing on the BB84 protocol as a fundamental and robust example of quantum
cryptography. Chapter 4 explores advancements in QKD theory, with an emphasis on
protocols that eliminate the need for trusted measurement devices, known as Measurement
Device Independent (MDI) QKD protocols. Finally, chapter 5 presents a theoretical security
analysis of a QKD protocol adapted for the Rio Quantum Network based on a Sagnac
interferometer structure.
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2 Introduction to Quantum Information The-
ory

In order to properly discuss Quantum Key Distribution, we need to understand a
few concepts of Quantum Mechanics and Quantum Information Theory. We will briefly
discuss those concepts and mathematical tools in this chapter, focusing on the concept of
Entropy and how it is fundamental to Information Theory (both classical and quantum).
This chapter is mainly based on [Nielsen e Chuang 2000] and [Wilde 2013].

2.1 Linear Algebra and Quantum Mechanics

Using the Dirac notation, a quantum state is described by a ket |ψ⟩, which is a
normalized vector of a Hilbert space H with dimension d. A Hilbert space is by definition
a complete complex vector space equipped with an inner product. To every ket |ψ⟩ in a
finite-dimension Hilbert space H, there is a corresponding dual vector ⟨ψ|, called bra, in
the also finite-dimension dual Hilbert space H∗.

A ket |ψ⟩ defines a linear map ⟨ψ| ∈ H∗ that maps any other ket |ϕ⟩ ∈ H to a
complex number through the inner product ⟨ψ|ϕ⟩ or bra-ket, meaning H∗ is the space of
linear maps from H to C. Two kets |ψ⟩ and |ϕ⟩ are orthogonal if their inner product is
zero. Also, the inner product induces a norm in the Hilbert space, so for every |ψ⟩ ∈ H,
the norm is defined by || |ψ⟩ || =

√
⟨ψ|ψ⟩. A |ψ⟩ is a normalized vector if || |ψ⟩ || = 1 and

a set of vectors {|ψi⟩} is called orthonormal if ⟨ψi|ψj⟩ = δi,j, where δi,j is the Kronecker
delta.

The outer-product, or ket-bra, between to vectors |ψ⟩ and |ϕ⟩ is defined by |ψ⟩ ⟨ϕ|.
We can use it to define a linear operation |ψ⟩ ⟨ϕ| : H → H. For example, given a ket
|ξ⟩ ∈ H, the outer product |ψ⟩ ⟨ϕ| maps it to the vector ⟨ϕ|ξ⟩ |ψ⟩, meaning (|ψ⟩ ⟨ϕ|) |ξ⟩ is
simply the ket |ψ⟩ multiplied by the complex number ⟨ϕ|ξ⟩. In other words, |ψ⟩ ⟨ϕ| is an
operator acting on a Hilbert space.

An orthonormal basis for a d-dimensional Hilbert Space is composed of a set of
linearly independent and orthonormal vectors {|ψi⟩}di=1 that span the whole dimension of
the space. Given an orthonormal basis {|ψi⟩}di=1, any vector |ϕ⟩ can be written as a linear
combination called superposition, such as |ϕ⟩ = ∑d

i=1 ψi |ψi⟩, where ψi is the resulting
complex number of the inner product ⟨ψi|ϕ⟩. Since this is true for all vectors |ϕ⟩ ∈ H, it



follows that
d∑
i=1

|ψi⟩ ⟨ψi| = I, (2.1)

where I is the identity operator. This is called the completeness relation.

Given an orthonormal set of vectors {|ψi⟩}di=1, we can also use the outer product
to represent any linear operator A acting on H as:

A =
d∑

i,j=1
⟨ψi|A |ψj⟩ |ψi⟩ ⟨ψj| . (2.2)

A linear operator A can be written as a d × d matrix, and the term ⟨ψi|A |ψj⟩
represents the element Ai,j of that matrix, with respect to the basis {|ψi⟩}di=1. The adjoint
operator of A is called A† and by definition:

(⟨ϕ|A† |ψ⟩)∗ = ⟨ψ|A |ϕ⟩ (2.3)

for any |ψ⟩ , |ϕ⟩ ∈ H. The operator A is called self-adjoint if A = A†; in finite-dimensional
Hilbert spaces, A is also Hermitian. One of its properties are that its eigenvalues ai are
real numbers and its eigenvectors {|αi⟩}di=1 form an orthonormal basis. It follows that we
can write A in its spectral decomposition:

A =
d∑
i=1

ai |αi⟩ ⟨αi| (2.4)

The evolution of a quantum system is described by the action of a unitary operator
U . An operator is said to be unitary if UU † = U †U = I. The unitary operator preserves
the inner product:

⟨ψ|ϕ⟩ = ⟨ψ|U †U |ϕ⟩ = ⟨ψ′|ϕ′⟩ (2.5)

where |ψ′⟩ = U |ψ⟩ and |ϕ′⟩ = U |ϕ⟩. Unitary operators also map one orthonormal basis
{|ψi⟩}di=1 into another orthonormal basis {|ψ′

i⟩}di=1 in H, so we can write |ψ′
i⟩ = U |ψi⟩.

An operator P is call a projector if P 2 = P , and given an orthonormal basis
{|ψi⟩}di=1:

P =
∑
i∈S

|ψi⟩ ⟨ψi| (2.6)

where S ⊆ (1, ..., d). It projects any vector of the Hilbert space into the subspace spanned
by the vectors {|ψi⟩}i∈S. Finally, given an orthonormal basis for H, {|ψi⟩}di=1, we define
the trace of an operator A as:

Tr(A) =
d∑
i=1

⟨ψi|A |ψi⟩ . (2.7)

One of the main properties is that the trace of a product of operators in invariant
under cyclic permutations: Tr(ABC) = Tr(CAB) = Tr(BCA) and therefore its definition
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does not depend on the orthonormal basis chosen, since the change of basis is represented
by the action of a unitary operator:

Tr(A) =
d∑
i=1

⟨ψi|A |ψi⟩ =
d∑
i=1

⟨ϕi|U †AU |ϕi⟩ = Tr
(
U †AU

)
= Tr

(
AUU †

)
= Tr(A). (2.8)

2.2 Density Operator
A quantum state fully characterized by a single state vector |ψ⟩ is termed a pure state.
For cases where a system’s state cannot be described by a single state vector—such as
statistical mixtures of states—a more general framework is required. The density operator
formalism provides a unified description for both mixed states and pure states. For a pure
state |ψ⟩, the density operator is defined as:

ρ = |ψ⟩ ⟨ψ| . (2.9)

A mixed state arises when the state of a quantum system is described by an
ensemble of vector states {|ψi⟩}ni=1, each occurring with probability pi. The density operator
generalizes to:

ρ =
n∑
i=1

pi |ψi⟩ ⟨ψi| , (2.10)

where ∑n
i=1 pi = 1, pi ≥ 0. Like all quantum operators, the density operator can be

expressed as a matrix. To represent a valid physical description of the quantum state of a
system, the density matrix must satisfy two conditions: it must be positive semi-definite
(all eigenvalues are non-negative) and its trace must equal unity (Tr[ρ] = 1), as this is a
direct consequence of the normalization and positivity of the probability distribution pi.
These properties ensure the matrix corresponds to a physically realizable quantum state,
encapsulating both probabilistic mixtures and coherent superpositions. Finally, note that
if a quantum state ρ is pure, it follows that ρ2 = ρ and thus Tr[ρ2] = 1. Consequently, ρ is
a mixed state if Tr[ρ2] < 1.

2.3 POVMs
A Positive Operator-Valued Measurement (POVM) is a form of quantum measurement
that uses a set of positive operators {Em}nm=1 that satisfy ∑n

m=1 Em = I, where each
operator Em corresponds to a possible measurement outcome. The probability of obtaining
outcome m ∈ M for a state described by density operator ρ is:

p(m) = Tr[Emρ]. (2.11)

POVMs are particularly useful when analyzing measurement statistics without
requiring knowledge of the post-measurement state. When it is not the case, any measure-
ment described by operators {Mm} can be expressed as a POVM with Em = M †

mMm. The

25



probability of obtaining an outcome m from a measurement of the state ρ is defined by:

p(m) = Tr
[
M †

mMmρ
]

(2.12)

and the state after the measurement reads:

ρm = MmρM
†
m

Tr
[
M †

mMmρ
] . (2.13)

A special case is the projective measurement, where the POVM elements Em are
orthogonal projectors (Em = Mm = Pm) described in (2.6). When all Pm are rank-one
projectors (i.e., Pm = |ψm⟩ ⟨ψm|), the measurement is termed a von Neumann measurement.
Finally, the average outcome of a POVM is defined by the expectation value of the
observable E = ∑

m λmEm:
⟨E⟩ρ = Tr[Eρ]. (2.14)

2.4 Entanglement
Given two different quantum states in different quantum systems, |ψ⟩A ∈ HA and |ϕ⟩B ∈
HB, we use the tensor product to represent a composite or bipartite state as:

|Ψ⟩AB = |ψ⟩A ⊗ |ϕ⟩B (2.15)

with |Ψ⟩AB ∈ HA ⊗ HB. Another possible notation for |ψ⟩A ⊗ |ϕ⟩B is |ψAϕB⟩. Any state
that can be written as (2.15), or is a mixture of states of this form, is called a separable
state. If a state cannot be written that way, meaning it is not separable, it is called an
entangled state. A pure state |Ψ⟩AB is entangled if it cannot be written as a product state
|ψ⟩A ⊗ |ϕ⟩B for any choice of states |ψ⟩A and |ϕ⟩B.

If two parties, Alice and Bob prepare their local states |ψi⟩A and |ψi⟩B using a
shared classical probability distribution {pi}, their joint state is a separable state and
takes the form:

ρAB =
n∑
i=1

pi |ψi⟩ ⟨ψi|A ⊗ |ψi⟩ ⟨ψi|B . (2.16)

Here, all correlations between Alice and Bob arise classically from the shared
probabilities {pi}, which can be established via LOCC (Local Operations and Classical
Communication). LOCC refers to protocols where Alice and Bob perform quantum opera-
tions on their individual subsystems and exchange classical information, but cannot share
quantum resources (e.g., entangled particles). Crucially, LOCC cannot create entanglement.

By contrast, entangled states (e.g., |Φ+⟩ = 1√
2(|00⟩ + |11⟩)) cannot be decomposed

into such a mixture. Their correlations cannot be explained by classical statistics alone,
as demonstrated by violations of Bell inequalities [Bell 1964]. This type of quantum
correlation is fundamental to quantum cryptography.
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2.4.1 Partial Trace and Purification

Given a composite state ρAB on HAB, one can find the reduced density operator ρA by
taking the partial trace of ρAB over the subsystem B:

ρA = TrB[ρAB]. (2.17)

The partial trace is defined by:

TrB[|ψ⟩ ⟨ψ|A ⊗ |ϕ⟩ ⟨ϕ|B] = |ψ⟩ ⟨ψ|A Tr[|ϕ⟩ ⟨ϕ|B]. (2.18)

In a similar manner, the reduced density operator ρB can be found by taking the
partial trace of ρAB over the subsystem A.

Given two orthonormal basis {|ai⟩}i and {|bk⟩}k for the two subsystems A and B,
the action of the partial trace can be computed as follows:

TrB[ρAB] = TrB
[ ∑
i,j,k,l

λi,j,k,l |ai⟩ ⟨aj| ⊗ |bk⟩ ⟨bl|
]

=
∑
i,j,k,l

λi,j,k,l |ai⟩ ⟨aj| ⊗ Tr[|bk⟩ ⟨bl|]

=
∑
i,j,k,l

λi,j,k,l |ai⟩ ⟨aj| ⟨bk|bl⟩ =
∑
i,j,k,l

λi,j,k,l |ai⟩ ⟨aj| δk,l = ρA,
(2.19)

where λi,j,k,l = ⟨aibk| ρAB |ajbl⟩ are the matrix elements of ρAB.

Given a quantum state ρA of a system A, it is always possible to introduce a second
system E and define a pure state |Ψ⟩AE ∈ HAE, called purification of ρA, such that:

ρA = TrE[|Ψ⟩ ⟨Ψ|AE]. (2.20)

This procedure is called purification. Without making any assumption about ρA,
we can define the pure state of the composite system as:

|Ψ⟩AE =
∑
i

√
λi |ψi⟩A ⊗ |ξi⟩E . (2.21)

With this, it follows that

TrE[|Ψ⟩ ⟨Ψ|AE] =
∑
i,j

√
λiλj |ψi⟩ ⟨ψj|A Tr

[
|ξi⟩ ⟨ξj|E

]
=

∑
i,j

√
λiλj |ψi⟩ ⟨ψj|A δi,j = ρA.

(2.22)

2.4.2 State Distinguishability

The trace norm of an operator ρ is defined by the sum of its singular values:

||ρ||1 = Tr
[√

ρρ†
]
. (2.23)
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This norm introduces a natural distance measure for quantum states, called the
trace distance. The trace distance between two density operators ρ and τ is:

T(ρ, τ) = 1
2 ||ρ− τ ||1 = 1

2 Tr
[√

(ρ− τ)2
]

= 1
2

∑
i

|λi|. (2.24)

where {λi}i are the eigenvalues of the operator (ρ− τ).

Two quantum states ρ and τ are ε-close if T(ρ, τ) ≤ ε, and we say ρ ≈ε τ (i.e.
those states are indistinguishable except for a probability at most ε/2). It is also useful to
define an ε-ball around ρ. It is the set of all states ρ′ which are ε-close to ρ:

Bε(ρ) := {ρ′|ρ′ ≥ 0,Tr(ρ′) = 1,T(ρ, ρ′) ≤ ε}. (2.25)

Finally, the fidelity is another common measure for closeness of quantum states. For two
states ρ and τ , it is defined as:

F (ρ, τ) = Tr
[√√

ρτ
√
ρ

]2
. (2.26)

If ρ = |ψ⟩ ⟨ψ| and τ = |ϕ⟩ ⟨ϕ| are pure states, the fidelity between them can be
simplified to

F (ρ, τ) = | ⟨ψ|ϕ⟩ |2. (2.27)

The fidelity by itself is not considered a metric on the space of density operators since it’s
role is to quantify similarity rather than distance. By introducing the purified distance,
one can use the fidelity in order to find a distance measure. The purified distance between
two quantum states ρ, τ is defined as:

P (ρ, τ) =
√

1 − F (ρ, τ). (2.28)

In order to establish the relationship between the fidelity and the trace distance, we recur
to the following theorem:

Theorem 2.1. The following relationship holds for the fidelity and the trace distance
between two quantum states ρ, τ :

1 −
√
F (ρ, τ) ≤ 1

2 ||ρ− τ ||1 ≤
√

1 − F (ρ, τ). (2.29)

Finally, we can use Uhlmann’s Theorem to define the fidelity using the purification
of states.

Theorem 2.2 (Ulhmann’s Theorem). Suppose ρA and τA are states of a quantum system
A and let R be a second quantum system which is a copy of A. Then:

F (ρA, τA) = max
|ψρ⟩,|φτ ⟩

| ⟨ψρ|φτ ⟩ |2 (2.30)

where the maximization is over all purifications |ψρ⟩ of ρA and |φτ ⟩ of τA into system
A⊗R.

The proof for both of the above theorems can be found in [Wilde 2013].

28



2.5 Quantum Operations

A physical process acting on a system in a given state ρ is generally described by a
quantum operation, or quantum channel E , with E(ρ) being the final state of the system
after the process. However, a map E is only considered a quantum channel if it obeys the
following properties:

1. A map E acting on the state ρ must preserve the hermicity and positivity of ρ. It
also must be trace preserving: Tr[ρ] = Tr[E(ρ)].

2. E must be convex-linear on the set of density operators, or E
( ∑

i piρ
(i)

)
= ∑

i piE(ρ(i))
for any probability distribution pi ≥ 0 ∀i and ∑

i pi = 1.

3. E must be completely positive, meaning it must be a positive operator for every input
state ρ. Also, for every composite state ρAB on HA ⊗ HB, the operator (IA ⊗ E)ρAB
is positive on HA ⊗ HB.

Properties 1 and 3 are needed to ensure that the output of a quantum channel
acting on a density operator is also a density operator, even when it acts on a subsystem
of a composite system.

We can use the Choi-Kraus Theorem to give a better characterization of quantum
operations. It states:

Theorem 2.3 (Choi-Kraus Theorem). A map E : HA → HB is linear, completely positive
and trace-preserving if and only if there exists a set of operators called Kraus operators
{Ki} such that:

E(ρA) =
d∑
i=1

KiρAK
†
i (2.31)

with Ki : HA → HB for all i ∈ {1, ..., d} and

d∑
i=1

K†
iKi = IA, (2.32)

and d need not be any larger than dim(HA) dim(HB).

The proof for this theorem can be read in [Wilde 2013].

2.6 Qubits and Bell States
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Quantum bits or qubits, are a type of quantum system represented by any two-level
system, such as photon polarization or the state of particles with spin 1

2 . Qubits can be
written as vectors in a bi-dimensional Hilbert space and are described by the superposition
of kets:

|ψ⟩ = α |0⟩ + β |1⟩ (2.33)

with |0⟩ =
1

0

, |1⟩ =
0

1

 and α, β ∈ C. Note that in order to be a valid qubit state, |ψ⟩

needs to be normalized, or |α|2 + |β|2 = 1. The numbers α and β are called amplitudes
of |ψ⟩ and represent the probability of obtaining outcomes "0" or "1", respectively, when
measuring with respect to that basis, which is called the computational basis consisting of
{|0⟩ , |1⟩}. Another very useful basis, is the Hadamard basis, which consists of {|+⟩ , |−⟩}
with:

|+⟩ = 1√
2

(|0⟩ + |1⟩), |−⟩ = 1√
2

(|0⟩ − |1⟩). (2.34)

Those two bases form mutually unbiased bases (MUBs) and are commonly used
in set ups for Quantum Key Distribution protocols, and the fact that they are not
orthogonal in respect to one another is crucial in order for two parties to exchange secure
information—when a system is prepared in an eigenstate of one of the bases, all outcomes
of the measurement with respect to the other basis are predicted to occur with an equal
probability of 1/2.

2.6.1 Pauli Matrices

There is a very notable set of operators called Pauli operators that are important in the
description of qubits. They are called X, Z and Y , or in some notations σX , σZ , σY . Their
matrix representation is as follows:

X =
0 1

1 0

 , Z =
1 0

0 −1

 , Y =
0 −i
i 0

 . (2.35)

They are Hermitian operators, with null trace and eigenvalues ±1. Also, X2 =
Z2 = Y 2 = I. They also respect the following relation:

σiσj = δi,jI +
3∑

k=1
ϵijkσk (2.36)

where σ1 = σX = X, σ2 = σY = Y and σ3 = σZ = Z and ϵijk is the Levi-Civita
symbol. Another very interesting property of the Pauli operators is that their action on a
qubit represents possible errors that can happen in qubit operations. In the computational
basis, the X operator produces a bit flip:

X |0⟩ = |1⟩ , X |1⟩ = |0⟩ (2.37)
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Z produces a phase flip:
Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩ (2.38)

and Y produces both a phase and a bit flip, since Y = iXZ:

Y |0⟩ = i |1⟩ , Y |1⟩ = −i |0⟩ . (2.39)

However, when the Pauli operators act on a qubit in the Haddamard basis, Z
produces a bit flip: Z |+⟩ = |−⟩ and Z |−⟩ = |+⟩, and X produces a phase flip: X |+⟩ = |+⟩
and X |−⟩ = − |−⟩. The computational basis is also called the Z-basis and the Haddamard
basis is also called the X-basis.

Finally, any mixed qubit state can be described by a density operator ρ in terms of
the identity and Pauli operators:

ρ = I + r⃗ · σ⃗
2 (2.40)

with r⃗ ∈ R3, ||r⃗|| ≤ 1 and where σ⃗ = (X, Y, Z)T . The purity of a qubit state is Tr[ρ2] =
(1 + ||r⃗||2)/2, and therefore the state is pure if the norm of r⃗ equals to 1 and is mixed if it
less than 1. The case where the norm of r⃗ is zero is called the maximally mixed state.

2.6.2 Depolarizing Channel

One of the main characterizations of quantum loss, or noise, is described by the Depolarizing
Channel. It is defined by the channel:

E(ρ) = (1 − p)ρ+ p

3

3∑
i=1

σiρσ
†
i . (2.41)

The Kraus operators, in this case, are:

K0 =
√

1 − p I, Ki =
√
p

3σi (2.42)

with i = (1, 2, 3). Meaning that with probability 1 − p the state remains unchanged, but
with probability p/3 it is affected by one of the Pauli operators. This channel is useful in
testing the robustness of a given quantum information protocol against quantum noise.
However, given the properties of Pauli operators, we can calculate

ρ+
3∑
i=1

σiρσi = 2I (2.43)

and substituting in (2.41) we can write the channel as:

E(ρ) = (1 − q)ρ+ q
I
2 , (2.44)

where q = 3p/4. In practice, the action of the Depolarizing Channel is that, with probability
q, it replaces any given qubit state ρ with the maximally mixed state I/2.

31



2.6.3 Bell States

A very useful and important set of states are the so called Bell states. Given two qubit
systems A and B, we can define the Bell states acting on HAB as:∣∣∣ϕ+

〉
= 1√

2
(|00⟩ + |11⟩),

∣∣∣ϕ−
〉

= 1√
2

(|00⟩ − |11⟩),∣∣∣ψ+
〉

= 1√
2

(|01⟩ + |10⟩),
∣∣∣ψ−

〉
= 1√

2
(|01⟩ − |10⟩).

(2.45)

These four states can be written in the compact form:

|ψij⟩ = 1√
2

(|0, j⟩ + (−1)i |1, 1 − j⟩ (2.46)

with i, j ∈ {0, 1}. Note that they form a basis, called Bell basis {|ψij⟩}1
i,j=0, and thus we

can express a bi-partite state in terms of Bell states.

2.6.4 No-cloning Theorem

One of the key factors of quantum mechanics that allows QKD to exist is what is called
the No-Cloning Theorem. This theorem states that pure qubit states cannot be universally
copied. Therefore, there is no operation that an eavesdropper that intercepts a message can
make in order to universally copy any quantum state, keep the copy for future measurements
and send the original state back along the intended path. This is a fundamental difference
between classical information theory and quantum information theory, and it is crucial for
the security of QKD protocols.

This theorem was first formulated in [Wootters e Zurek 1982], and its proof is quite
simple. Say that, by the way of contradiction, exists and unitary U that can copy any
state, meaning that:

U(|ψ⟩ ⊗ |0⟩) = |ψ⟩ ⊗ |ψ⟩ . (2.47)

Then, assuming this cloning machine works for any state, it should also follow that
U(|ϕ⟩ ⊗ |0⟩) = |ϕ⟩ ⊗ |ϕ⟩, and since U is unitary, we have U †U = I, thus:

⟨ψ|ϕ⟩ = ⟨ψ|ϕ⟩ ⟨0|0⟩

= (⟨ψ| ⊗ ⟨0|)U †U(|ϕ⟩ ⊗ |0⟩)
= (⟨ψ| ⊗ ⟨ψ|)(|ϕ⟩ ⊗ |ϕ⟩) = (⟨ψ|ϕ⟩)2

(2.48)

and therefore it is only valid when |ψ⟩ and |ϕ⟩ are either orthogonal, meaning ⟨ψ|ϕ⟩ = 0,
or they are equal to each other. Therefore, whenever 0 < | ⟨ψ|ϕ⟩ | < 1, a copying unitary
U cannot exist.

Additionally, any information gain by Eve introduces disturbance on the system
[Nielsen e Chuang 2000]—in the attempt to distinguish non-orthogonal quantum states in
a quantum signal, any information gain is accompanied by a disturbance on the signal.
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Let |ψ⟩ and |ϕ⟩ be two non-orthogonal quantum states. We can use a generic
quantum operation (i.e. a unitary acting on one of the states and an ancilla |u⟩) to
represent Eve’s action on a signal. Let us assume, by contradiction, that Eve’s action
leaves the signal states unchanged:

U(|ψ⟩ ⊗ |u⟩) = |ψ⟩ ⊗ |v⟩ , (2.49)

U(|ϕ⟩ ⊗ |u⟩) = |ϕ⟩ ⊗ |v′⟩ . (2.50)

Eve’s goal is to distinguish |ψ⟩ and |ϕ⟩ via the outcomes of this operation, |v⟩ and |v′⟩. By
trying to distinguish them, we obtain:

⟨ϕ|ψ⟩ = ⟨ϕ|ψ⟩ ⟨v′|v⟩ , (2.51)

which implies that |v⟩ = |v′⟩. This means that any successful attempt to distinguish two
non-orthogonal states implies the disturbance of at least one of them.

2.7 Entropy

A good method of quantifying information is by measuring entropies. Those
quantities are very important in information theory, as they generally are used to measure
the amount of uncertainty about the state of a system, be it classical or quantum. Therefore
it is a tool required to prove security of a cryptographic protocol. In this section we will
go through some of the most important entropies for QKD as well as their physical and
operational meaning.

2.7.1 Shannon Entropy

The Shannon entropy was defined by Shannon [Shannon 1948] and it quantifies the
uncertainty about a classical random variable.

Definition 2.4 (Shannon entropy). Let X be a random variable whose outcome x is
drawn from an alphabet X with probability px. The Shannon entropy of X is given by:

H(X) = H({px}) = −
∑
x∈X

px log(px), (2.52)

where here log is referring to the base-2 logarithm. For convenience, this is the case for
the rest of the thesis. Also, by convention, we take 0 log 0 = 0.

The binary entropy is useful when studying binary systems, and can be written in
the form:

h(p) := −p log(p) − (1 − p) log(1 − p). (2.53)
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The Shannon entropy can be used to describe the joint information of two random
variables X and Y , as well as the conditional and mutual information between the two.
The joint Shannon entropy of X and Y distributed according to a probability distribution
p(x, y) is:

H(XY ) = −
∑
x,y

px,y log(px,y) (2.54)

and it describes the joint uncertainty about those variables. The conditional entropy is
given by the quantity:

H(X|Y ) = H(XY ) −H(Y ) (2.55)

and it quantifies the uncertainty about the variable X given the known information about
Y . Note that the Shannon conditional entropy cannot assume negative values, since the
joint uncertainty about both variables is always going to be greater than the uncertainty
about one of them. The mutual information H(X : Y ) is given by:

H(X : Y ) = H(X) −H(X|Y ) = H(X) +H(Y ) −H(XY ) (2.56)

and it measures the amount of information gained on X when knowing the value of Y . In
other words, it is the total information of X minus the uncertainty we have about X after
knowing the outcome of Y .

2.7.2 Von Neumann Entropy

In quantum information theory, a system’s uncertainty is quantified by the von Neumann
entropy, which is defined by:

Definition 2.5 (von Neumann entropy). Given a quantum state ρ with eigenvalues {λi},
the von Neumann entropy of the state is:

H(ρ) = − Tr[ρ log(ρ)] = −
∑
i

λi log(λi). (2.57)

Note that the von Neumann entropy of a quantum state can be written as the
Shannon entropy of its eigenvalues, which by themselves describe a probability distribution
associated with the state. An important property that the von Neumann entropy has is
that 0 ≤ H(ρ) ≤ log(d), for every state ρ on a d-dimensional Hilbert space. Note that
H(ρ) = 0 when ρ is a pure state and H(ρ) = log(d) when it is maximally mixed: of course,
the pure state has no uncertainty about it and the maximally mixed state is the most
uncertain one.

The von Neumann entropy also can be extended to bipartates state with the joint
quantum entropy:

H(ρAB) = H(AB)ρ = − Tr[ρAB log(ρAB)]. (2.58)
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The conditional quantum entropy of the state ρA of subsystem A conditioned on state ρB
of subsystem B is:

H(A|B)ρ = H(AB)ρ −H(B)ρ, (2.59)

where H(B)ρ = H(ρB) is the von Neumann entropy of the reduced state from subsystem
B. If ρAB is a product state, then H(A|B)ρ = H(A)ρ, meaning that the known information
of subsystem B is completely uncorrelated with subsystem A. A useful entropy property
is the following:

Theorem 2.6. Conditioning does not increase the entropy of a quantum state. For a
bipartite quantum state ρAB, the following holds for the marginal entropy H(A)ρ and the
conditional quantum entropy H(A|B)ρ:

H(A)ρ ≥ H(A|B)ρ (2.60)

with equality if and only if ρAB is a separable state.

The proof of this theorem can be found in [Wolf 2021]. Given a tripartite state,
ρABC , it follows that:

H(A|BC)ρ ≤ H(A|B)ρ, (2.61)

where H(A|B)ρ is evaluated by taking the partial trace on the state ρABC and calculating
its conditional entropy. This is particularly useful when talking about classical-quantum
states, which play a very important role in the security analysis of QKD protocols.

A classical-quantum state (c-q state) is defined by:

ρXQ =
∑
x

p(x) |x⟩ ⟨x|X ⊗ ρxQ, (2.62)

where X is a random variable that can assume a value x with probability p(x) and Q

is a quantum system whose state ρxQ depends on the outcome of X. Such states are
foundational in quantum key distribution (QKD) because they model scenarios where
classical information (e.g., Alice’s key bits) is correlated with quantum systems accessible
to an eavesdropper (Eve). Specifically, in QKD protocols, Eve’s potential knowledge is
encoded in a purification of the shared quantum state, making c-q states essential for
analyzing adversarial information. The entropy of Q conditioned on X can be expressed
as:

H(Q|X)ρ =
∑
x

p(x)H(ρxQ). (2.63)

and quantifies the average uncertainty about the quantum system Q given knowledge of
the classical variable X. In QKD, this entropy directly bounds Eve’s information about
the key: a lower H(Q|X)ρ implies greater information leakage to Eve, while a higher value
signifies stronger secrecy.
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Finally, the conditional von Neumann entropy can assume negative values and this
is observed to happen in entangled states [Wilde 2013]. Thus, the von Neumman entropy
of a subsystem can be larger than the entropy of the composite system, and therefore it
does not hold in general that H(AB)ρ ≥ H(A)ρ.

We can use one of the Bell states described in (2.45) as an example: ρAB =
|ϕ+⟩ ⟨ϕ+|AB. Since it is a pure state, it follows that H(AB)ρ = 0, but we can see that
H(A)ρ = H(B)ρ = 1, since ρA = ρB = |0⟩⟨0|+|1⟩⟨1|

2 = I
2 . Therefore, H(A|B)ρ = −1. This is

unique to quantum systems, and if the conditional entropy of a state ρAB is negative, we
know that it is entangled.

2.7.3 Min- and Max-Entropy

The entropies previously discussed are very useful when studying the case in which
the probabilities are independently and identically distributed (i.i.d.). Under the i.i.d.
assumption, repeated trials of an experiment are statistically independent and governed by
the same probability distribution. This guarantees that the experimental repetitions yield
well-defined and stable probabilities, enabling precise asymptotic predictions. However,
practical QKD protocols run experiments a limited number of times, and in order to
properly quantify information, other forms of entropy are needed. First, we will discuss the
conditional min-entropy and the conditional max-entropy [Konig, Renner e Schaffner 2009].
These entropies are also called "one-shot entropies" and play a crucial role when talking
about privacy amplification, one of the steps present in most QKD protocols. During this
step, Alice and Bob need to transform their classical bit strings, which are correlated
with Eve’s quantum system, into a uniformly random string that is independent of Eve’s
knowledge.

Definition 2.7 (Conditional min-entropy). For a bipartite quantum state ρAB, the min-
entropy of system A conditioned on B is defined via the optimization:

Hmin(A|B)ρ = − log min
σB

{Tr(σB) : σB ≥ 0, (IA ⊗ σB) − ρAB ≥ 0}, (2.64)

where the minimization is over all positive semi-definite operators σB on subsystem B.

Definition 2.8 (Conditional max-entropy). Let ρABC be a purification of a bipartite
quantum state ρAB. The max-entropy of A conditioned on B of the state ρAB is defined as:

Hmax(A|B)ρ = −Hmin(A|C)ρ. (2.65)

The above definitions are also valid for classical probability distributions pX , one
needs only to evaluate the min- or max- entropy on the state ρX = ∑

x pX(x) |x⟩ ⟨x| for
some orthonormal basis {|x⟩}x. The conditional min- and max-entropy are related to the
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conditional von Neumann entropy as follows [Tomamichel, Colbeck e Renner 2009]:

Hmin(A|B) ≤ H(A|B) ≤ Hmax(A|B). (2.66)

In privacy amplification, the min-entropy of a cq-state quantifies the amount of
nearly uniform random bits that can be reliably extracted from a classical source—even
when it is correlated with a quantum system—ensuring that the extracted key is inde-
pendent of any quantum side information. Conversely, the max-entropy measures the
minimal number of bits into which the original classical data can be compressed, while
still allowing the original data to be reconstructed perfectly when given access to the
correlated quantum system.

We can use the following operational interpretation to further visualize the impor-
tance of those entropy measures for quantum cryptography. Consider the case in which
Alice possesses a random key K that she intends to keep secret from an adversary, Eve.
We say Eve has a state ρkE on a quantum system E that is correlated with the value of
Alice’s key K. The cq state representing this scenario is:

ρKE =
∑
k∈K

pK(k) |k⟩ ⟨k| ⊗ ρkE (2.67)

where {|k⟩}k is an orthonormal basis representing Alice’s possible keys with probability
distribution {pk}k. Min-entropy of classical distribution can be viewed as a guessing
probability [Konig, Renner e Schaffner 2009], called Pguess. It can be interpreted as the
probability of Eve correctly guessing K while using the best possible strategy at her
disposal (i.e. an optimal measurement strategy on her state ρkE). We can describe this
scenario by defining this probability that Eve correctly guesses K when using an optimal
measurement strategy as:

Pguess(K|E) = max
{Ek}

∑
k∈K

pK(k) Tr
[
Ekρ

k
E

]
(2.68)

with {Ek} being the POVM elements of a generic quantum measurement on system E.
Eve’s guessing probability on Alice’s key can then be related to the min-entropy of the
state (2.67) [Konig, Renner e Schaffner 2009]:

Hmin(K|E)ρ = − logPguess(K|E) (2.69)

Thus, higher min-entropy implies greater secrecy, as Eve’s probability of guessing K

diminishes exponentially.

2.7.4 Smooth Min- and Max-Entropy

A powerful generalization of the Shannon and von Neumann entropies is in the form
of the smooth min- and max- entropies. They are optimizations of their corresponding
non-smooth versions over a region of states surrounding ρAB and are useful in order to
account for errors and imperfections on a given protocol.
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Definition 2.9 (Smooth entropies). Let ρAB be a bipartite quantum state. The smooth
min- and max- entropy of A conditioned on B of that state are given by:

Hε
min(A|B)ρ = max

σ∈Bε(ρAB)
Hmin(A|B)σ (2.70)

Hε
max(A|B)ρ = min

σ∈Bε(ρAB)
Hmax(A|B)σ (2.71)

where Bε(ρAB) is a ball of ε-close states centered in ρAB.

The smooth min- and max- entropies have a particularly notable property, called
the quantum asymptotic equipartition property, shown in [Tomamichel, Colbeck e Renner
2009]:

H(A|B)ρ = lim
ε→0
n→∞

1
n
Hε

min(An|Bn)ρ⊗n (2.72)

H(A|B)ρ = lim
ε→0
n→∞

1
n
Hε

max(An|Bn)ρ⊗n . (2.73)

This property provides a rigorous link between the smooth min- and max-entropies
and the von Neumann entropy. In the limit of large, i.i.d. states, the one-shot entropies
converge to the von Neumann entropy, thereby extending its applicability to practical,
finite-key scenarios. This connection is crucial in QKD as it bridges the gap between
idealized, asymptotic security proofs and the realistic, error-prone conditions encountered
in experiments.
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3 Quantum Key Distribution

In this chapter, we delve into the foundations of Quantum Key Distribution (QKD).
The primary objective of a QKD protocol is to enable two distant parties to establish a
shared secret key, with its secrecy quantified by the secret key rate. The secret key rate
represents the fraction of the key that is provably secure from eavesdropping.

We begin by introducing the one-time pad, an encryption scheme known for its
theoretically-perfect security, provided the parties can securely generate and share a
random secret key—the task addressed by QKD. We then discuss the basic structure of
QKD protocols, which typically consist of two main phases: quantum transmission and
classical post-processing. As a concrete example, we examine the BB84 protocol [Bennett
e Brassard 1984], widely regarded as the most fundamental and robust QKD protocol, and
demonstrate its security in the asymptotic regime.

3.1 The One-Time Pad
The Vernam cipher, or one-time pad [Vernam 1926], is one of the earliest encryption
schemes proven to be unconditionally secure. In this scheme, two parties, Alice and Bob,
communicate a message m securely, provided they share a secret key k. The message can
be any type of information that the parties could exchange and the key is anything that
can be used to encrypt the message. For simplicity, we assume both the message and the
key are represented as bit strings (sequences of 0s and 1s).

Suppose Alice and Bob previously met in person and secretly shared a key k ∈ {0, 1}l

of length l before returning to their distant locations. To send a message m ∈ {0, 1}l of
the same length in secrecy, Alice uses the one-time pad encryption scheme, applying a
binary XOR operation between the message and her key:

e = (e1, e2, ..., el) = (m1 ⊕ k1,m2 ⊕ k2, ...,ml ⊕ kl) = m⊕ k. (3.1)

The resulting ciphertext e is transmitted to Bob over a public channel accessible to
eavesdroppers. Upon receiving e, Bob decrypts it using his copy of the key k by applying
XOR to the chipertext, e ⊕ k. Since XOR is its own inverse, Bob recovers the original
message as long as they have matching keys:

e⊕ k = (m⊕ k) ⊕ k = m. (3.2)

This demonstrates that the one-time pad is correct: it allows the intended recipient
to retrieve the original message. However, an encryption scheme also needs to be secure.



Definition 3.1 (Security). An encryption scheme is secure or secret if for all prior
distributions p(m) over messages and all messages m, we have

p(m) = p(m|e), (3.3)

where e is the cipher text.

In other words, an encryption scheme is called secure if the probability of obtaining
the message is completely uncorrelated from the publicly transmitted cyphertext. To show
that the one-time pad is secure, we will assume that the key k is uniformly random over all
l−bit strings. Since for each bit el the probability of correctly guessing ml is 1/2, we have:

p(e|m) = p(m⊕ k|m) = p(k|m) = p(k) = 1
2l . (3.4)

Consequently, for all prior distributions over m, the probability of e is:

p(e) =
∑
m

p(m)p(e|m) = 1
2l . (3.5)

We can apply the Bayes rule to find:

p(m|e) = p(m, e)
p(e) = p(e|m)p(m)

p(e) = p(m), (3.6)

and thus it is secure.

Despite its theoretical appeal, the one-time pad has significant practical limitations.
For the scheme to remain secure, the following assumptions must hold:

• The key needs to be truly random, meaning the bits that compose it are not correlated
with each other (i.e. knowing the n-first bits does not reveal any information about
the n+ 1−th bit).

• The key must be at least as long as the message.

• Each key can only be used once. Reusing keys compromises security, as an eaves-
dropper could eventually infer information about the messages.

• The keys must remain confidential and inaccessible to potential eavesdroppers.

These requirements make the one-time pad impractical for most real-world appli-
cations, as securely generating and sharing long random keys between distant parties is
challenging. This is where Quantum Key Distribution provides a compelling solution. By
leveraging the inherent randomness of quantum mechanics, the no-cloning theorem (dis-
cussed in Section 2.6.4) and other quantum properties, QKD enables the secure generation
of random keys at a distance, overcoming the practical hurdles of the one-time pad.
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3.2 The Framework of a QKD protocol

As mentioned earlier, the goal of a generic Quantum Key Distribution (QKD)
protocol is to enable two distant parties, typically referred to as Alice and Bob, to
establish a shared secret key, secure from a potential adversary, commonly named Eve.
For any QKD protocol, Alice and Bob are assumed to have two communication channels
at their disposal: a quantum channel, used to exchange quantum states with bits of
information encoded in them (e.g., via photon polarization), and a classical channel, which
is authenticated—meaning Alice and Bob can verify each other’s identities—but which is
also accessible to Eve. The general structure of a QKD protocol can be outlined as follows:

1. Quantum transmission. Alice and Bob exchange quantum information via the
quantum channel, which is vulnerable to eavesdropping since Eve is assumed to have
full access to it. This step can involve either a Prepare-and-Measure (PM) strategy,
where one party sends quantum states to the other, or an Entanglement-Based (EB)
strategy, where both parties receive subsystems of an entangled state generated by
an untrusted source. The equivalence of these two approaches will be demonstrated
in the next section.

2. Quantum measurement. In each round, Bob (and Alice, in the EB strategy)
performs measurements on the incoming quantum signal in order to retrieve the
encoded information. After M rounds of the protocol, Alice and Bob should share a
key of length M , which contain errors that may be caused by Eve’s tampering.

3. Sifting. Alice and Bob communicate via the authenticated classical channel to
compare their chosen basis for preparations and measurements (or only measurements,
in the EB strategy). They will discard the rounds in which their chosen basis differ,
obtaining a raw key each.

4. Classical parameter estimation. Using the authenticated classical channel, Alice
and Bob exchange partial information to align their data. They disclose a subset of
their raw keys to estimate the error rate and detect potential eavesdropping. If the
error rate exceeds a predefined threshold, they abort the protocol.

5. Information reconciliation. Alice and Bob apply error-correction protocols to
reconcile their raw keys. After the protocol is done, they use information reconciliation
protocols in order to verify that the keys match.

6. Privacy amplification. To eliminate any information Eve might have gained,
Alice and Bob apply randomness extractors on their keys. This process compresses
the reconciled key into a shorter, secure key. The final keys KA and KB should
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be identical with a small probability of mismatch, ensuring high confidence in the
protocol’s security and correctness.

While many QKD protocols follow this general framework, several key assumptions
are necessary for efficient key generation:

• Quantum Mechanics is a correct theory. The correctness of quantum informa-
tion theory underpins QKD. If quantum states behaved differently in practice (e.g.,
violating the no-cloning theorem), the protocol would not be safe.

• Alice and Bob have isolated labs. Alice’s and Bob’s laboratories must be secure
from external interference. If Eve could access their preparations and measurements,
the protocol’s security would be compromised.

• Alice and Bob have trusted devices. The devices used, such as detectors or
photon sources in PM setups, must function reliably and be free from Eve’s tampering.
Some protocols relax this assumption, as discussed in the next chapter.

• Classical communication is authenticated. Alice and Bob must confirm they
are communicating directly with each other, even if Eve intercepts the classical
messages. Authentication ensures that error correction and privacy amplification are
performed correctly.

QKD protocols generally comprise two phases: quantum transmission and classical
post-processing. The first phase involves quantum experiments to generate raw keys. In
an ideal scenario without loss or errors, these keys should be identical. The second phase
uses classical algorithms to correct errors and minimize information leakage. Even with
the above assumptions, Eve is assumed to have full access to both quantum and classical
channels, enabling her to correlate her system with the transmitted information. However,
QKD protocols are designed to detect Eve’s presence through measurable parameters such
as the error rate and to quantify security via the secret key rate, which reflects the amount
of key material uncorrelated with Eve’s information.

In the next section, we will introduce the foundational QKD protocol, BB84 [Bennett
e Brassard 1984], and use it as a case study to explore potential attacks by Eve and the
strategies Alice and Bob can employ to ensure the protocol’s security.
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3.3 The BB84 Protocol

The BB84 protocol [Bennett e Brassard 1984], named after its inventors Charles
Bennet and Gilles Brassard, was the first Quantum Key Distribution (QKD) protocol to
be conceptualized. It remains the most fundamental and widely studied QKD protocol due
to its simplicity and robust theoretical security. The protocol can be implemented using
either a Prepare-and-Measure (PM) strategy or an Entanglement-Based (EB) strategy.

In the PM version, Alice has a source of single photons in her lab, using the photon’s
polarization to encode bits of information. Alice and Bob will then agree on using two sets
of bases for the experiment: the Z basis, defined by the horizontal (0°) and the vertical
(90°) directions, and the X basis, defined by the diagonal (45°) and anti-diagonal (-45°)
directions. These bases correspond to the eigenstates of a two-dimensional Hilbert space,
and the bits of information are encoded in qubits representing states in those bases. The Z
basis consists in {|0⟩ , |1⟩} and the X basis consists in {|+⟩ |−⟩}, with |±⟩ = (|0⟩± |1⟩)/

√
2.

These states are not orthogonal between bases, as ⟨0|±⟩ = 1/
√

2 and ⟨1|±⟩ = ±1/
√

2.

The steps of the protocol are as follows:

1. Quantum transmission. Alice randomly selects a basis (Z or X) then randomly
prepare a state in the selected basis. She encodes the bits a by associating the bit
value a = 0 with the states |0⟩ and |+⟩ and the bit value a = 1 with the states
|1⟩ and |−⟩. Alice then sends the prepared quantum state to Bob via a quantum
channel.

2. Quantum measurement. Bob randomly selects a basis (Z or X) for each incoming
state and measures it accordingly. He records the outcome b using the same bit
encoding as Alice. This process is repeated M times, resulting in bit strings AM for
Alice and BM for Bob.

3. Sifting. Alice and Bob communicate via an authenticated classical channel to reveal
their chosen basis for each round. They discard the rounds where their basis choice
differ. If Bob’s measurement basis matches Alice’s preparation basis in a given round,
he (in principle) correctly learns the encoded bit. If his basis differs, his result is
random with a 50% probability for each bit value. By the end of this step, they
retain sifted bit strings Am and Bm, with length m ≈ M/2.

4. Parameter estimation. Alice and Bob reveal a subset of their bit strings in order
to estimate the quantum bit error rates (QBERs). They calculate the QBER for the
Z basis as EZ = pZZ(a ̸= b) and for the X basis as EX = pXX(a ̸= b). The QBERs
are the probabilities of bit disagreements in rounds where the same basis was used.
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After discarding the revealed subset, Alice and Bob are left with their raw keys, RA

and RB.

5. Information reconciliation. Alice and Bob perform error correction protocols. We
will discuss the case in which they use a one-way error correction process, where Alice
sends information to Bob to help him correct his raw key RB. This ensures that Bob’s
corrected key R̃B matches Alice’s raw key: RB → R̃B = RA. They need to verify if
the procedure was successful, so Alice applies a randomly chosen two-universal hash
function (further discussed in the security analysis) to her key with output hA. Bob
then applies the same function to his key, obtaining output hB. They compare the
outputs of this procedure, and if hA ̸= hB, they don’t have the same keys and the
protocol is aborted.

6. Privacy amplification. Alice and Bob compress their key by removing the informa-
tion leaked to Eve in the previous steps of the protocol via a randomness extractor.
In the end, RA → ka ∈ {0, 1}ℓ and R̃B → kb ∈ {0, 1}ℓ, with ka and kb secret and ℓ is
the length of the secret key.

At the protocol’s conclusion, Alice and Bob must share identical keys ka = kb. The
protocol satisfies correctness if the probability of key mismatch is bounded by:

p(ka ̸= kb) ≤ ϵcor, (3.7)

where ϵcor is the pre-agreed correctness error tolerance. For secrecy, the final key must
be statistically independent of Eve’s quantum system E. This is quantified by the trace
distance between the real protocol state ρkaE: a c.q. state consisting of Alice’s final key,
ka, and Eve’s quantum side information E, and an ideal scenario where Eve’s state ρE is
uncorrelated with Alice’s uniform key τka :

∥ρkaE − τka ⊗ ρE∥1 ≤ ϵsec, (3.8)

where ϵsec is the secrecy error tolerance, and τka represents the maximally mixed state over
all possible ℓ-bit keys:

τka = 1
2ℓ

∑
k∈{0,1}ℓ

|k⟩ ⟨k|A . (3.9)

The protocol is deemed secure if the total security parameter ϵ = ϵcor + ϵsec remains
within acceptable bounds. A key performance metric is the secret key rate—the number of
secure key bits ℓ generated per protocol round M :

r = ℓ

M
(3.10)

For simplicity, we compute this rate in the asymptotic regime (M → ∞), where finite-
size effects vanish. While unrealistic, this regime provides a fundamental performance
benchmark for QKD protocols.
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Figure 1 – Entanglement-Based BB84 protocol schematic. An untrusted source distributes
entangled states to Alice and Bob via a quantum channel. In each round,
Alice and Bob randomly choose measurement bases (Z or X) and record
outcomes. After transmission, they publicly compare a subset of bases to
perform parameter estimation: mismatched bases test for eavesdropping (via
error rates), while matched bases generate raw key bits. Final key distillation
uses classical post-processing (error correction and privacy amplification) to
eliminate Eve’s information. Security relies on certifying entanglement through
observed correlations.

Source: [Grasseli 2021]

We analyze the entanglement-based (EB) variant of BB84, described in Fig. (1),
where Eve prepares one of the Bell states

|ψij⟩ = 1√
2

(|0, j⟩ + (−1)i |1, 1 − j⟩), (3.11)

with i, j ∈ {0, 1}, and distributes qubits to Alice and Bob via the quantum channel.
Both parties randomly measure their qubits in the Z- or X-basis, mirroring the prepare-
and-measure (PM) protocol’s outcomes. Note that those strategies are equivalent: since
the state Bob receives is conditioned on Alice’s measurement, they will obtain perfectly
correlated outcomes if they measure in the same basis and random outcomes otherwise.
However, the EB framework strengthens security claims by granting Eve full control over
the distributed quantum state.

Finally, we assume Eve performs collective attacks, where she prepares identical
mixed states ρAB for each round while holding the purifying system E. The global state
|ϕABE⟩ remains pure, and Alice and Bob’s shared state across M rounds is i.i.d. as ρ⊗M

AB .
Eve’s presence manifests as errors in Alice and Bob’s correlated measurement outcomes,
which are detected during parameter estimation.

We can extend the security proof done in the next section to a more general case
where Eve directly distributes the state ρMAB while holding the purified state ρMABE. In this
case, Eve executes a coherent attack, a stronger adversarial strategy where she correlates
her actions across all rounds (i.e., the states in each round are not necessarily i.i.d.). This
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extension can be done using the postselection technique [Christandl, König e Renner 2009],
as long as the dimension d = dim(HA ⊗ HB) of Alice’s and Bob’s quantum system is
known. Specifically, if an M -round QKD protocol is ϵ-secure against collective attacks, it
remains (M + 1)d2−1ϵ-secure against coherent attacks, provided the final key length ℓ is
reduced by 2(d2 − 1) log(M + 1) bits.

In the asymptotic regime, coherent attacks can be reduced to collective attacks
because the parameters M → ∞ and ϵ → 0 exponentially fast, making the corrections
to the secret key rate due to PST negligible. Furthermore, the Quantum de Finetti
theorem [Renner 2008] states that any symmetric quantum state can be approximated
to a mixture of i.i.d. states. Since statistical fluctuations vanish in the asymptotic limit,
the state ρMABE is symmetric, thus implying that coherent and collective attacks become
effectively equivalent when M → ∞.

3.3.1 Security Analysis

In order to provide a security analysis for the BB84 protocol, we first need to
define some of the post-processing used in the information reconciliation and privacy
amplification steps of the protocol. First, the correctness condition (3.7) needs to be
verified at the end of the information reconciliation step. In order to do so, Alice and Bob
apply a two-universal hash function fIR to their raw keys RA and R̃B, obtaining outcomes
hA and hB of length l = ⌈log(1/ϵcor)⌉, where ⌈x⌉ denotes the smallest integer ≥ x. They
randomly select fIR from a family of two-universal hashing functions FIR.

A family F = {f : {0, 1}m → {0, 1}l} is defined as two-universal if for all distinct
x, x′ ∈ {0, 1}m,

Pr
f∈F

(f(x) = f(x′)) ≤ 1
2l . (3.12)

This means that the probability that the two outputs fIR(RA) = hA and fIR(R̃B) = hB

coincide given that the inputs RA and R̃B are different is given by 2−⌈log(1/ϵcor)⌉:

p(hA = hB|RA ̸= R̃B) ≤ 2−⌈log(1/ϵcor)⌉ = ϵcor. (3.13)

The subsequent post-processing steps are identically applied to both Alice and Bob’s raw
keys. Therefore, if hA = hB, they have matching raw keys (except for probability ϵcor) and
their final keys ka and kb are ϵcor-correct, as described in (3.7). Note that this process leaks
information to Eve, which can be denoted by Γ = leakIR +log(1/ϵcor) ≤ leakIR +log(2/ϵcor).

To verify the secrecy condition, we need to look into the privacy amplification step.
Let us assume that Alice and Bob apply a different hashing function fPA : {0, 1}m → {0, 1}ℓ

to their raw keys RA and R̃B, producing final keys ka = fPA(RA) and kb = fPA(R̃B). Here,
the hash function is used for its randomness extraction property—the goal is to transform
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Alice and Bob’s raw keys into a smaller, uniformly random bit string that is independent
of Eve’s system.

The Quantum Leftover Hash Lemma [Tomamichel et al. 2011] provides an upper
bound for the trace distance between the final key state and an ideal uniform key. Let
ρRAE denote the classical-quantum (c.q.) state comprising Alice’s raw key RA and Eve’s
quantum side information E. Applying a random fPA ∈ FPA to Alice’s raw key in ρRAE

generates the final state ρkaE.

Lemma 3.1 (Quantum Leftover Hash Lemma). For a c.q. state ρRAE and a randomly
selected two-universal hash function f ∈ F , the following inequality holds:

∥ρkaFE − τka ⊗ ρFE∥1 ≤ 2ε+ 1
2

√
2ℓ−Hε

min(RA|E), (3.14)

where τka is the maximally mixed state on Alice’s key, ka, and F represents the subsystem
storing the chosen hash function f .

Note that during the information reconciliation and privacy amplification steps, Eve
gains classical information on the key. Therefore, her subsystem Etotal could be described
by a subsystem which is quantum in E and classical in C, and the smooth min-entropy
Hϵ

min(RA|EC)ρ satisfies:

Hϵ
min(RA|EC)ρ ≥ Hϵ

min(RA|E)ρ − log |C|. (3.15)

Here, C comprises the information leaked during PE and IR steps, namely log |C| =
leakPE + leakIR + log(2/ϵcor). In the asymptotic limit, the leakage for PE, which consists
mostly on the fraction of the key revealed to estimate QBERs, becomes negligible compared
to the total number of rounds, and therefore vanishes.

By the end of the PA step, Alice and Bob can set the key length ℓ as:

ℓ = Hϵ
min(RA|E)ρ − leakIR − log 2

ϵcor
− 2 log 1

2ϵpa
. (3.16)

To obtain a secrecy parameter, we can rewrite (3.14) with the secrecy condition (3.8) and
substitute ℓ:

∥ρkaFE − τka ⊗ ρFE∥1 ≤ ϵsec ≤ 2ε+ 1
2

√
2ℓ−Hε

min(RA|E)ρ+leakIR+log 2/ϵcor

≤ 2ε+ 1
2

√
2log(2ϵPA)2 = 2ε+ ϵPA.

(3.17)

Thus, the protocol is ϵsec−secret, with ϵsec ≤ 2ε+ ϵPA. Combining this with the correctness
condition, this protocol is ϵ−secure, with ϵ ≤ 2ε+ ϵPA + ϵcor.

The asymptotic secret key rate r∞, defined as secret bits per round, is:

r∞ = lim
M→∞

ℓ

M
. (3.18)
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Over many rounds, the size of the key is such that the terms related to the parameters
ϵcor and ϵPA vanish, resulting in:

r∞ = lim
M→∞

Hϵ
min(RA|E)ρ − leakIR

M
. (3.19)

Considering an one-way error correction protocol, the leakage term referring to the IR step
can be interpreted as the minimal amount of information Alice sends to Bob that allows
him to correct his key given his noisy bit string. This can be quantified by the smooth
max-entropy between Alice’s and Bob’s raw keys: leakIR ≈ Hε

max(RA|RB)ρ, neglecting
finite-key terms. Also, the entropies are computed on the i.i.d. states ρ⊗M

RARBE
shared across

M rounds, which allows us to use the quantum asymptotic equipartition property defined
in (2.72) and (2.73) to obtain:

r∞ = lim
ε→0
M→∞

1
M

(Hϵ
min(RA|E)ρ −Hε

max(RA|RB)ρ) = H(RA|E)ρ −H(RA|RB)ρ. (3.20)

We can use the definition of mutual information to recover the Devetak-Winter
rate [Devetak e Winter 2005] for protocols with one-way error correction:

rDW = H(RA : RB) −H(RA : E), (3.21)

where H(RA : RB) and H(RA : E) quantifies the mutual information shared between
Alice and Bob and Alice and Eve, respectively. Thus, the secret key rate is, in essence,
the amount of information that Alice and Bob’s raw keys bits have in common minus the
amount of information that Eve has gained on Alice’s key bit. From here, we will omit the
subscript ρ and use the following description for the secret key rate:

r = H(RA|E) −H(RA|RB). (3.22)

Our goal is to express (3.22) in terms of the quantum bit error rates (QBERs) EZ and
EX , enabling a direct link between observed errors and achievable secrecy.

For efficiency, we consider an asymmetric protocol where the Z-basis is used
for both key generation and PE, while the X-basis is reserved for PE. By choosing a
small probability of X basis rounds, pX , the probability of key-generating Z-basis rounds
pZ = 1 − pX dominates, maximizing the usable key fraction.

The classical-quantum-classical (c.c.q.) state ρRARBE governing the entropy cal-
culations in (3.22) arises from Alice and Bob’s Z-basis measurements on the tripartite
pure state |ΦABE⟩ distributed by Eve. Let {|a⟩}1

a=0 and {|b⟩}1
b=0 denote the computational

basis states. The state after the quantum measurement step is:

ρRARBE =
1∑

a,b=0
(|a⟩ ⟨a| ⊗ |b⟩ ⟨b| ⊗ IE) |ΦABE⟩ ⟨ΦABE| (|a⟩ ⟨a| ⊗ |b⟩ ⟨b| ⊗ IE) . (3.23)
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Without loss of generality, we assume Eve prepares a Bell-diagonal state ρ̃AB for
Alice and Bob:

ρ̃AB =
1∑

i,j=0
λij |ψij⟩ ⟨ψij| , (3.24)

where {|ψij⟩} are Bell states defined in (2.46):

|ψij⟩ = 1√
2

(|0, j⟩ + (−1)i |1, 1 − j⟩) (3.25)

with i, j ∈ {0, 1} and λij satisfy 0 ≤ λij ≤ 1 with ∑
ij λij = 1. This can be done via

symmetrization maps EX and EZ , defined as:

EX(ρAB) = 1
2 (I ⊗ I) ρAB (I ⊗ I) + 1

2 (X ⊗X) ρAB (X ⊗X) , (3.26)

EZ(ρAB) = 1
2 (I ⊗ I) ρAB (I ⊗ I) + 1

2 (Z ⊗ Z) ρAB (Z ⊗ Z) . (3.27)

The combined operation (EX ◦ EZ) symmetrizes the state into:

ρ̃AB = 1
4

[
ρAB + (Z ⊗ Z)ρAB(Z ⊗ Z)

+ (X ⊗X)ρAB(X ⊗X) + (Y ⊗ Y )ρAB(Y ⊗ Y )
]
,

(3.28)

This can be done because, from the parties’ point of view, the only observing effect
of this operation is the symmetrization of the marginals: the action of the map (EX ◦ EZ) is
equivalent to a simultaneous bit flip of both Alice’s and Bob’s bits, thus not affecting the
QBERs or their raw keys correlations. This operation is also not disadvantageous to Eve:
since she is preparing the state ρ̃AB, she also holds its purification and her uncertainty
on Alice’s (or Bob’s) key does not increase with this symmetrization. In other words,
H(RA|E)ρ ≥ H(RA|E)ρ̃. The proof for this argument can be found in the Appendix
Section A.

Since the QBERs are defined by the probability of Alice and Bob obtaining different
measurement outcomes when choosing the same basis, we can write that:

EZ = Tr [(|0⟩ ⟨0| ⊗ |1⟩ ⟨1| + |1⟩ ⟨1| ⊗ |0⟩ ⟨0|) ρ̃AB] = λ01 + λ11, (3.29)
EX = Tr [(|+⟩ ⟨+| ⊗ |−⟩ ⟨−| + |−⟩ ⟨−| ⊗ |+⟩ ⟨+|) ρ̃AB] = λ10 + λ11. (3.30)

First, we compute the conditional entropy H(RA|E) appearing in (3.22), which
quantifies Eve’s uncertainty about Alice’s raw key RA. Since Eve holds the purifying
system of the symmetrized Bell-diagonal state ρ̃AB, the global state shared between Alice,
Bob, and Eve is pure and can be expressed as:

|ΦABE⟩ =
1∑

i,j=0

√
λij |ψij⟩AB ⊗ |φij⟩E , (3.31)
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where {|φij⟩}1
i,j=0 ∈ HE forms an orthonormal basis for Eve’s subsystem.

To derive ρRAE, we trace out Alice and Bob’s subsystems after Alice performs her
Z-basis measurement:

ρRAE =
1∑

a=0
|a⟩ ⟨a|RA

⊗ TrAB [(|a⟩ ⟨a| ⊗ IBE) |ΦABE⟩ ⟨ΦABE|]

=
1∑

a=0
|a⟩ ⟨a|RA

⊗
1∑

i,j,k,l=0

√
λijλkl TrAB [(|a⟩ ⟨a| ⊗ IB) |ψij⟩ ⟨ψkl|AB] ⊗ |φij⟩ ⟨φkl|E

=
1∑

a=0
p(a) |a⟩ ⟨a|RA

⊗
1∑

i,j,k=0

√
λijλkj(−1)(i+k)a |φij⟩ ⟨φkj|E .

(3.32)

where p(a) = 1/2 is the probability of obtaining outcome a on Alice’s Z-basis measurement.

This allows us to define Eve’s conditional state ρaE for each outcome a:

ρaE =
1∑

i,j,k=0

√
λijλkj(−1)(i+k)a |φij⟩ ⟨φkj|E . (3.33)

The non-zero eigenvalues of ρaE are {λ00 + λ10, λ01 + λ11}, which remain independent of
a. This can be shown if we divide ρaE into two parts (j = 0 and j = 1) and take their
respective eigenvalues:

ρaE =
1∑

i,k=0

√
λi0λk0(−1)(i+k)a |φi0⟩ ⟨φk0| +

√
λi1λk1(−1)(i+k)a |φi1⟩ ⟨φk1| . (3.34)

For the first term,

γ2 − (λ00 + λ10)γ + λ00λ10 − λ00λ10 = γ(γ − (λ00 + λ10)) = 0 (3.35)

and thus the eigenvalues are γ = 0 and γ = λ00 + λ10. The same logic applies for j = 1,
yielding eigenvalues 0 and λ01 + λ11. Note that the phase factor (−1)a squares to 1 when
computing the eigenvalues of ρaE.

To compute H(RA|E), we use the entropy chain rule:

H(RA|E) = H(E|RA) +H(RA) −H(E). (3.36)

The first term is calculated for the state (3.32) while using the expression for the conditional
entropy of a c.q. state (2.63), and it reads:

H(E|RA) =
1∑

a=0
p(a)H(ρaE) = H({λ00 + λ10, λ01 + λ11}). (3.37)

Since EZ = λ01 + λ11 and ∑1
i,j=0 λij = 1, we can write:

H(E|RA) = −EZ log(EZ) − (1 − EZ) log(1 − EZ) = h(EZ). (3.38)
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The symmetry of Alice’s raw key ensures

H(RA) = −
1∑

a=0
p(a)log(p(a)) = −(1

2 log
1
2 + 1

2 log
1
2) = 1. (3.39)

Since |ΦABE⟩ is pure, H(ABE) = 0. Moreover, the reduced density matrixes derived
from |ΦABE⟩, ρ̃AB and ρE, have the same eigenvalues {λij}1

i,j=0 and we can write H(E) =
H(AB) = H({λij}). Thus,

H(RA|E) = 1 + h(EZ) −H({λij}). (3.40)

The observed error rates EZ and EX only partially constrain the eigenvalues {λij},
leaving residual freedom in their values. To account for Eve’s maximal possible knowledge
of the key, we adopt a worst-case security analysis by minimizing H(RA|E) over all valid
eigenvalue configurations. These configurations must satisfy the QBER definitions in (3.29)
and (3.30), along with the normalization condition ∑1

i,j=0 λij = 1. This minimization
results in [Scarani et al. 2009]:

H(RA|E) = 1 + h(EZ) − (h(EX) + h(EZ)) = 1 − h(EX). (3.41)

The conditional Shannon entropy H(RA|RB) is computed on the probability distri-
butions represented by Alice and Bob’s Z-basis outcomes, mainly EZ = p(a ̸= b) = p(a =
0, b = 1) + p(a = 1, b = 0), and since those probabilities are symmetrized, it follows that:

H(RA|RB) = H(RA, RB) −H(RB) = −
1∑

a,b=0
p(a, b) log p(a, b) − 1

= −(1 − EZ) log 1 − EZ
2 − EZ log EZ2 − 1

= −(1 − EZ) log(1 − EZ) − EZ logEZ + 1 − EZ + EZ − 1
= h(EZ)

(3.42)

where we used the fact that analogously to H(RA), H(RB) = 1 and p(a = b) = 1 − EZ .

Combining these results, the asymptotic secret key rate for the asymmetric BB84
protocol becomes:

r∞ = pZZ (1 − h(EX) − h(EZ)) , (3.43)

where pZZ represents the probability of both parties selecting the Z-basis for measurement.
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4 QKD Protocols With Imperfect Devices

This chapter addresses the physical and operational challenges inherent in real-world
QKD implementations. While these challenges can often be mitigated, such adaptations
risk introducing vulnerabilities that adversaries might exploit to compromise security. We
begin by analyzing practical implementations based on attenuated laser pulses—so-called
weak coherent pulses—and strategies to ensure robustness against specific attacks. Next,
we examine Device-Independent QKD (DI-QKD), which eliminates trust assumptions
on both light sources and detectors but faces severe experimental barriers despite its
theoretical security. Finally, we explore two protocols—Measurement-Device-Independent
QKD (MDI-QKD) and its enhanced variant, Twin-Field QKD (TF-QKD)—that retain
trusted source assumptions while relaxing security requirements on detectors, thereby
offering improved practicality without sacrificing security.

4.1 Practical Implementations of Light Sources

Implementing ideal single-photon sources remains experimentally challenging
[Scarani et al. 2009], prompting most QKD protocols to adopt weak coherent pulses
(WCPs) as a practical alternative. These pulses can be represented by coherent states of
the form:

|α⟩ = e−|α|2/2
∞∑
n=0

αn√
n!

|n⟩ , (4.1)

where |n⟩ denotes a Fock state with n photons, and |α|2 << 1 represents the average
photon number per pulse. The photon number follows a Poisson distribution:

p(n) = e−|α|2 |α|2n

n! , (4.2)

resulting in a non-negligible probability of multiphoton emissions:

pmulti = 1 − e−|α|2 − |α|2e−|α|2 > 0. (4.3)

This practical implementation turns into a vulnerability, enabling attacks such as
the photon number splitting (PNS) attack. Considering a PM scenario, Eve substitutes
the lossy quantum channel with a lossless one and performs nondestructive quantum
non-demolition (QND) measurements to probe the photon number in each pulse without
disturbing their polarizations. For single-photon pulses, she probabilistically blocks them



Figure 2 – Photon number splitting (PNS) attack strategy. Eve replaces the quantum chan-
nel with a lossless link and uses quantum non-demolition (QND) measurements
to sort pulses by photon number: vacuum states (n = 0) are forwarded to Bob
(no detection); single-photon pulses (n = 1) are selectively blocked to mimic
channel loss; multiphoton pulses (n ≥ 2) are split, with one photon stored in
Eve’s quantum memory and the rest sent to Bob. After basis reconciliation,
Eve measures stored photons to deduce the key, while unblocked single photons
may trigger errors via intercept-resend attacks.

Source: [Wolf 2021]

according to the loss probability of the network, so Alice and Bob still observe the network’s
regular loss statistics and Eve’s tampering goes unnoticed. For multiphoton pulses, she
extracts and stores one photon in a quantum memory while forwarding the remainder
to Bob. This way, Bob still receives a signal and Eve can wait until the bases chosen
are revealed to perform her measurements. After basis reconciliation, Eve measures her
retained photons in the correct basis, thereby gaining exact information on the key bits
for each multiphoton round while remaining undetected.

This analysis implies that security hinges on single-photon pulses. In practice,
weak coherent pulses (WCPs) with average photon number |α|2 = 0.1 predominantly emit
vacuum states, as the vacuum probability p(0) = e−|α|2 ≈ 90.5% dominates. Single-photon
events occur with p(1) ≈ 9%, while multiphoton events remain rare (pmulti ≈ 0.5%).
Although further laser attenuation could suppress multiphoton emissions, it severely
compromises the protocol’s efficiency. This motivates the use of the decoy-state strategy
to mitigate risks without sacrificing performance.

While PNS attacks provide a challenge to PM setups in QKD protocols using
WCPs, they are not a threat to QKD protocols based on distribution of entangled states
from an untrusted source. The security proof shown in section 3.3.1 allows Eve to be in
control of the light source as well as the channel, thus allowing her to extract photons and
perform PNS attacks. In this context, a PNS attack is equivalent to a collective attack
where Eve attaches ancilla photons to entangled states intended for Alice and Bob, already
accounted for in the security proof.
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4.1.1 Decoy States Strategy

The decoy-state method was first proposed by [Lo 2004], then further developed
by [Lo, Ma e Chen 2005]. By randomly varying the intensity of transmitted laser pulses,
legitimate users introduce "decoy" signals that mimic ordinary signals but serve a critical
diagnostic role. Decoy states allow Alice and Bob to statistically detect eavesdropping
attempts, even if the attacker targets multi-photon pulses. The core insight is that Eve
cannot distinguish decoy pulses from true signal pulses, forcing any attack to perturb both
types equally. By comparing detection rates and errors across different intensities, Alice
and Bob can isolate the contribution of single-photon pulses—the only ones trusted for
key generation—and bound the eavesdropper’s knowledge.

In order to eliminate phase coherence, Alice prepares a phase-randomized WCP.
Assuming that the phase θ of a coherent state

∣∣∣√µeiθ〉 is randomized for all signals,
the coherent state transforms into a statistical mixture of Fock states with a Poisson
photon-number distribution:

ρµ = 1
2π

∫ 2π

0
dθ

∣∣∣√µeiθ〉 〈√
µeiθ

∣∣∣ =
∞∑
n=0

e−µµ
n

n! |n⟩ ⟨n| , (4.4)

where µ = |α|2 is the average photon number per pulse, and p(n) = e−µµn/n! gives the
probability of the source emitting n photons. The probability P (n) of Alice sending n

photons and Bob registering a detection is:

P (n) = e−µµ
n

n! Y
(n), (4.5)

where Y (n), the n-photon yield, represents the conditional probability that Bob has a
detection event given that Alice sent n photons. These yields cannot be directly observed
but are critical for security analysis.

In a typical PM QKD protocol using decoy-states, Alice transmits two types of
pulses: signal states (ρµ), used for key generation, and decoy states (ρµi

), used for parameter
estimation. The decoy states will have their intensity values randomly drawn from a set
{µi}i with µi ̸= µ being the only property that differs the signal states from the decoy
states. Therefore, Eve cannot distinguish a decoy state from a signal state—to Eve, this is
the same scenario as Alice picking a Fock state |n⟩ ⟨n| according to a unknown probability
distribution and sending it through the quantum channel.

The total gains Pµi
(probability of Bob detecting a signal) and error rate Eµi

for
intensities µi are expressed as:

Pµi
=

∞∑
n=0

e−µi
µni
n! Y

(n) (4.6)
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Figure 3 – Example of the decoy-state strategy. Alice uses two weak laser sources: a signal
source with low photon number (e.g., µS = 0.1) and a decoy source with higher
photon number (e.g., µD = 0.8). She mixes decoy states (e.g., 5% of pulses)
randomly with signal states. After transmission, Alice tells Bob which pulses
were decoys. Bob then checks the loss in the signal states—if Eve tried a PNS
attack, the signal loss will be much higher than expected, exposing the attack.

Source: [Wolf 2021]

Eµi
Pµi

=
∞∑
n=0

e−µi
µni
n! Y

(n)e(n), (4.7)

where e(n) is the QBER of an n-photon signal. The gains Pµi
and error rates Eµi

can be
experimentally measured by Alice and Bob, and since the relations between the variables
are linear, they can solve equations (4.6) and (4.7) to derive bounds for Y (n) and e(n)

according to the number of different intensities µi used. Thus, the more number of decoy
intensities µi used, the tighter those bounds are.

Prior knowledge of the channel’s expected behavior (e.g., baseline loss and noise
levels) allows Alice and Bob to define plausible ranges for Y (n) and e(n), which are the
quantities that reflect Eve’s action on the quantum channel. Therefore, an attack performed
by Eve that changes the value of those parameters will be caught with high probability.

For example, the Prepare-Measure BB84 with the decoy-state strategy works
with Alice preparing the states {|0⟩ , |1⟩ , |+⟩ , |−⟩} encoded in the polarization of phase
randomized WCPs (4.4). It is generally more practical to use an asymmetric version of
this strategy. Here, Alice uses the Z basis (key generation) with probability pZ , where
she modulates the pulse intensity to µ (signal state) with probability q or to a decoy
intensity µi with probability 1 − q. In the X-basis rounds, chosen with probability 1 − pZ ,
she only generates decoy states. Bob will then choose to measure the incoming pulses in
the Z basis with probability pZ or in the X basis with probability 1 − pZ . In the end of
transmission, Alice reveals the intensity setting as well as the basis chosen every round.
Bob instead reveals all the X-basis outcomes (since they are not used for key generation)
to estimate the QBERs Eµi

X and some of the Z-basis outcomes to estimate Eµi
Z . The rest

of the protocol remains unchanged, and the secret key rate becomes [Wei et al. 2013]:

rdecoy ≥ p2
Zq

[
P (0↓) + P

(1↓)
Z (1 − h(e(1↑)

X )) − P µ
Zh(Eµ

Z)
]
, (4.8)

where P µ
Z and Eµ

Z are the gain and QBER of the signal state, while P (0↓) (P (1↓)
Z ) is a lower
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bound on the probability that Alice sent 0 (1) photon and Bob had a detection event,
given that Alice sent a signal state: P (0↓) = e−µY (0↓) and P

(1↓)
Z = e−µµY

(1↓)
Z . Here, the

yields Y (0↓) and Y
(1↓)
Z are estimated from the set of equations in (4.6). Finally, e(1↑)

X is
an upper bound on the X-basis error rate on single-photon signals, estimated via (4.7).
Note that by considering the ideal case, we recover the secret key rate in (3.43): all states
are signal states q = 1 and all detection events are caused by single-photons P (0↓) = 0,
P

(1↓)
Z = P µ

Z = 1 and e
(1↑)
X = EX .

4.2 Device Independent QKD

One of the assumptions previously discussed when talking about QKD protocols
is that the honest parties, Alice and Bob, have trusted devices. We have also seen those
assumptions relaxed in the case of quantum light sources in the Entanglement-Based
BB84. Initially proposed in [Ekert 1991], Device-Independent QKD (DI-QKD) relies on
"black boxes" (Fig. 4) that perform unknown measurements on an entangled state and give
outcomes based on different inputs performed by the parties. By performing test rounds,
the parties estimate violations of Bell inequalities [Bell 1964]—statistical bounds satisfied
by classical systems but violated by strong quantum correlations. A Bell violation certifies
that their outputs are intrinsically quantum and possibly uncorrelated with any external
system (including an eavesdropper). To contextualize DI-QKD security, we first outline
Bell inequalities.

4.2.1 Bell Inequalities

Bell’s theorem [Bell 1964] demonstrates that quantum mechanics cannot be described by
local hidden variable theories. A Bell inequality is usually given by a linear constraint on
measurement correlators that holds for classical systems but fails for entangled quantum
states.

The Clauser–Horne–Shimony–Holt (CHSH) inequality [Clauser et al. 1969] is a
canonical example. Consider Alice and Bob each with a black box (Fig. 4) accepting inputs
x, y ∈ {0, 1} and producing outputs a, b ∈ {−1, 1}. Their joint statistics p(a, b|x, y) define
the CHSH polynomial:

S = ⟨a0b0⟩ + ⟨a0b1⟩ + ⟨a1b0⟩ − ⟨a1b1⟩, (4.9)

where ⟨axby⟩ = ∑
a,b=±1 ab p(a, b|x, y). For classical systems, S ≤ 2. To see this, note that

any classical assignment gives a0(b0 +b1)+a1(b0 −b1) = ±2. Averaging over all assignments
preserves |⟨S⟩| ≤ 2.
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Figure 4 – Characterizing black boxes without internal assumptions. Alice and Bob interact
with their devices by selecting inputs (e.g., pressing buttons labeled x or
y) and recording outputs a and b. Repeated trials reveal the input-output
statistics {p(a, b|x, y)}, which describe how the boxes behave—without requiring
knowledge of their internal mechanisms.

Source: [Wolf 2021]

Quantum mechanics can violate this bound. Suppose Alice and Bob share the Bell
state |ϕ+⟩ = 1√

2(|00⟩ + |11⟩), rewritten using the Pauli operators:
∣∣∣ϕ+

〉 〈
ϕ+

∣∣∣ = 1
4 (I ⊗ I +X ⊗X + Z ⊗ Z − Y ⊗ Y ) . (4.10)

Let Alice’s measurements be A0 = X, A1 = Z, and Bob’s be B0 = (X + Z)/
√

2,
B1 = (X − Z)/

√
2. The correlators ⟨AiBj⟩ = Tr(Ai ⊗Bjρ) yield:

S = ⟨A0B0⟩ + ⟨A0B1⟩ + ⟨A1B0⟩ − ⟨A1B1⟩

=
√

2
〈
ϕ+

∣∣∣X ⊗X
∣∣∣ϕ+

〉
+

√
2

〈
ϕ+

∣∣∣X ⊗X
∣∣∣ϕ+

〉
= 2

√
2,

(4.11)

violating the CHSH inequality. This maximal violation (S = 2
√

2) certifies their shared state
is maximally entangled. This maximal entanglement is crucial because of the monogamy
of entanglement: if Alice and Bob share a maximally entangled state, Eve cannot be
significantly correlated with their state without reducing the degree of entanglement
between them. In the context of DI-QKD protocols, this means that any attempt by Eve
to gain information about the key would necessarily disturb the quantum correlations,
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leading to a lower CHSH violation that Alice and Bob could detect. Thus, Alice and
Bob need not know their devices’ internal workings—they verify Bell inequality violations
through observed statistics to guarantee security.

4.2.2 DI-QKD Protocol Based on the CHSH Inequality

In the Ekert-91 (E91) protocol [Ekert 1991], the users can verify the potential action of
an eavesdropper by testing the CHSH inequality, and aborting the protocol if needed.
Later, [Acín et al. 2007] developed a security proof for this type of protocol by using the
CHSH inequality as a parameter in the secret key rate.

Eve distributes possibly entangled states to Alice and Bob, which in turn can
perform measurements on these states using uncharacterized measurement devices. Alice’s
measurement device has three inputs, Ax, x ∈ {0, 1, 2}, each with possible outcomes
a ∈ {−1,+1} while Bob’s device has two inputs, By, y ∈ {1, 2}, with b ∈ {−1,+1}. Before
initiating the protocol, Alice and Bob agree on a set of parameters: the total number of
rounds M , the probability in which they perform a test round 0 < pt < 1, the expected
CHSH value 2 < Sexp ≤ 2

√
2, and its tolerance 0 < δ < (2

√
2 − 2). The step-by-step can

be described as:

1. Quantum transmission. For each round, Alice and Bob receive a quantum state
from an untrusted source. With probability pt, they perform a test round; otherwise,
they execute a key-generation (KG) round.

2. Quantum measurement. KG rounds use the input pair (A0, B1) to generate raw
keys RA and RB. Test rounds utilize inputs (A1, A2, B1, B2) to compute the CHSH
polynomial S (Eq. 4.9).

3. Parameter estimation. Alice and Bob disclose all test-round inputs and outputs
to evaluate S. If S < Sexp −δ, the protocol aborts. They also reveal a few of their raw
keys to estimate the quantum bit error rate (QBER) E01 = p(a ̸= b|x = 0, y = 1).

4. Classical post-processing. They proceed with error correction and privacy ampli-
fication on RA and RB.

In the ideal scenario, Alice and Bob share a maximally entangled state (such as
|ϕ+⟩) and achieve S = 2

√
2. For the parties to have perfectly correlated raw key bits, they

must measure the same observable in the KG rounds. This can be done, for example, given
that they are expected to receive the state |ϕ+⟩, by having A0 = B1 = Z.

The secret key rate of this protocol against collective attacks [Acín et al. 2007] is
given from the Devetak-Winter rate [Devetak e Winter 2005]:

rDI = I(A0 : B1) − χ(B1 : E) ≥ rDW . (4.12)
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Here, we consider the mutual information between Alice and Bob’s measurements used in
KG rounds, as well as the Holevo quantity given by:

χ(B1 : E) = H(E)ρ − 1
2

∑
b1=±1

H(ρE|b1) ≥ I(B1 : E) (4.13)

The usage of Bob’s measurements statistics instead of Alice’s is because χ(A0 : E) ≥ χ(B1 :
E) [Acín, Massar e Pironio 2006], and therefore it is more beneficial for the communication
of post-processing to be made from Bob to Alice (i.e. reversal reconciliation).

The first term of (4.12) is calculated in a similar manner as the BB84. Since Alice
and Bob can assume uniform marginals in their probability distributions (⟨ai⟩ = ⟨bi⟩ = 0),
we can write:

I(A0 : B1) = 1 − h(E). (4.14)

The second term is calculated in [Acín et al. 2007] and is bounded in terms of the
CHSH polynomial:

χ(B1 : E) ≤ h
(1 +

√
(S/2)2 − 1

2

)
, (4.15)

and therefore:

rDI ≥ 1 − h(E01) − h
(1 +

√
(S/2)2 − 1

2

)
. (4.16)

Differently from the BB84, the generalization of this result to coherent attacks is a
challenging task. However, the Entropy Accumulation Theorem (EAT) [Dupuis e Fawzi
2019,Arnon-Friedman et al. 2018,Dupuis, Fawzi e Renner 2020] has allowed the reduction
of the whole protocol to that of a single round, thus allowing the generalization to coherent
attacks. A detailed security proof using the EAT can be found in [Arnon-Friedman, Renner
e Vidick 2019].

DI-QKD protocols represent a profound achievement in quantum cryptography.
By eliminating the need to trust measurement devices as well as light sources, DI-QKD
essentially bypasses critical vulnerabilities that QKD protocols often face with imperfect
devices. This further represents quantum cryptography’s shift in paradigm from regular
cryptography—the security relies on the properties of nature itself. However, the theoretical
elegance of DI-QKD contrasts sharply with its experimental demands. First, closing
the “detection loophole” requires near-perfect detection efficiency, as missed detections
artificially suppress Bell violations [Pearle 1970]. Second, DI-QKD suffers from drastically
reduced key rates compared to device-dependent protocols. The need to sacrifice rounds for
Bell tests, coupled with finite-size effects and statistical estimation, often results in rates
orders of magnitude lower than BB84 or decoy-state protocols. Third, generating high-
fidelity entanglement over long distances remains challenging, as channel losses degrade
correlations and amplify errors. The groundbreaking effort to overcome the challenges of
achieving loophole-free Bell tests earned Alain Aspect, John Clauser, and Anton Zeilinger
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the 2022 Nobel Prize in Physics, highlighting the role of such experiments in advancing
quantum information theory.

In the following section, we will discuss a type of protocol that relaxes the assump-
tions on measurement devices only, maintaining the need of secure light sources. This
is still a great argument towards universal security—imperfect measurement devices are
often exploited for eavesdropping attacks [Zhao et al. 2008].

4.3 Measurement-Device-Independent QKD

Measurement-Device-Independent Quantum Key Distribution (MDI-QKD) ad-
dresses critical detector-side vulnerabilities in quantum cryptography by eliminating the
need to trust measurement devices. In MDI-QKD, Alice and Bob independently prepare
and transmit encoded quantum states to an untrusted relay, which performs a measure-
ments and publicly broadcasts its outcomes. These announcements reveal only the parity
between Alice and Bob’s key bits according to the measurement results, without disclosing
their private encoding choices to anyone, including Eve. By post-selecting events where
the relay reports a successful Bell-state measurement and their bases align, Alice and
Bob distill a secret key through classical error correction and privacy amplification. The
security analysis of MDI-QKD relies on the quantum correlations intrinsic to entanglement-
based protocols, while the protocol itself retains the practicality of prepare-and-measure
architectures.

A practical implementation first idealized in [Lo, Curty e Qi 2012] uses linear optics
to perform Bell-state measurements and the decoy states strategy discussed in (4.1.1) to
guarantee security against PNS attacks, as shown in Fig.5.

• Quantum transmission. In each round, Alice and Bob independently prepare
phase-randomized WCPs, encoding random bits in the polarization state of the
pulses. Each party randomly select the horizontal/vertical (Z) basis or the 45°/-45°
(X) basis and encode bits 0/1 accordingly. The two pulses are sent to the central,
untrusted relay.

• Quantum measurement. The relay’s 50:50 BS interferes incoming pulses. Polariz-
ing beam-splitters at each output port separate horizontal (DCH

, DDH
) and vertical

(DCV
, DDV

) polarizations for detection.

• Sifting. The parties compare their basis chosen in each round and discard the rounds
in which they chose different basis. Additionally, the central relay publicly announces
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Figure 5 – Experimental scheme for MDI-QKD [Lo, Curty e Qi 2012]. Alice and Bob
encode random bits in polarization states of phase-randomized WCPs, with
amplitude modulators implementing decoy intensities. Their pulses interfere at
an untrusted relay containing a 50:50 beam splitter (BS) and PBSs directing
photons to four single-photon detectors (DCH

, DCV
, DDH

, DDV
). Detector

clicks herald Bell-state measurement outcomes, which the relay broadcasts.
Source: [Grasseli 2021]

the detection events and the parties discard the rounds in which only one detector
clicked.

• Parameter estimation and classical post-processing. Alice and Bob reveal
a part of their bit strings in order to estimate QBERs. They can proceed with the
usual error correction and privacy amplification steps on their raw keys.

Discarding single-detector events is critical, as these reveal polarization encodings
to Eve. An important characteristic of MDI-QKD is that the events in which both detectors
DCH

and DDH
or detectors DCV

and DCV
simultaneously click cannot happen due to the

Hong-Ou-Mandel (HOM) effect [Hong, Ou e Mandel 1987]. When two indistinguishable
photons simultaneously enter the input ports of a 50:50 beam splitter, they must exit
together through the same output port. The other possible rounds are caused by a
projection of the pulses in Bell states. This can be visualized by using a virtual qubit
scenario, where Alice and Bob each have a virtual qubit entangled with the polarization
state of the photons they are sending.

Say Alice and Bob each prepare an entangled state between a virtual qubit they
store in their respective labs and a single photon polarized either horizontally or vertically.

|ψA⟩ = 1√
2

(|H⟩A |1⟩AH
+ |V ⟩A |1⟩AV

),

|ψB⟩ = 1√
2

(|H⟩B |1⟩BH
+ |V ⟩B |1⟩BV

),
(4.17)

where the kets |H⟩A(B) and |V ⟩A(B) denote Alice’s (Bob’s) qubit in the computational basis
according to the polarization state of the single photon, while the Fock states |1⟩AH(BH)
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and |1⟩AV (BV ) describe Alice’s (Bob’s) single photon polarized horizontally or vertically.
Note that Alice and Bob measuring their qubits in the Z or X basis is equivalent to them
preparing the single-photon signal in a random polarization state of the corresponding
basis, which is exactly the protocol described without the virtual qubits.

After they send the signals through the network, the global quantum state right
before interference at the 50:50 BS reads:

|ψA⟩ ⊗ |ψB⟩ = 1
2

[
|HH⟩AB |11⟩AHBH

+ |HV ⟩AB |11⟩AHBV

+ |V H⟩AB |11⟩AV BH
+ |V V ⟩AB |11⟩AV BV

]
.

(4.18)

We can rewrite the Fock states in terms of the creation operators a† and b† acting on the
vacuum state |0⟩ (e.g. |1⟩AH

as a†
H |0⟩) and represent the action of the 50:50 BS by labelling

c† and d† as the creation operators of the photons exiting the left and right outputs,
respectively. The unitary action of the 50:50 BS on the signal consists of a† → (c† +d†)/

√
2

and b† → (c† − d†)/
√

2. Since the creation operators relative to different optical paths or
different polarizations commute, the final state after exiting the BS is:

|ΨBS⟩ = 1
2

[
|HH⟩AB

( |2⟩CH
− |2⟩DH

2

)
+ |V V ⟩AB

( |2⟩CV
− |2⟩DV

2

)
+

( |HV ⟩ + |V H⟩√
2

)
AB

( |1⟩CH
|1⟩CV

− |1⟩DH
|1⟩DV√

2

)

−
( |HV ⟩ − |V H⟩√

2

)
AB

( |1⟩CH
|1⟩DV

− |1⟩CV
|1⟩DH√

2

)]
,

(4.19)

where |n⟩C(D)H(V )
denotes n photons polarized horizontally (vertically) on the left (right)

output port of the BS. It can also be written as:

|ΨBS⟩ = 1
2

[
|HH⟩AB

( |2⟩CH
− |2⟩DH

2

)
+ |V V ⟩AB

( |2⟩CV
− |2⟩DV

2

)
+

∣∣∣ψ+
〉
AB

( |1⟩CH
|1⟩CV

− |1⟩DH
|1⟩DV√

2

)
−

∣∣∣ψ−
〉
AB

( |1⟩CH
|1⟩DV

− |1⟩CV
|1⟩DH√

2

)]
.

(4.20)

Note that the virtual qubit states become the Bell states |ψ+⟩ and |ψ−⟩ in two of the
possible outcomes: the first with successful detections in detectors DCH

, DCV
or DDH

, DDV
,

and the second with DCH
, DDV

or DCV
, DDH

. Those are used for key generation, since
Alice and Bob will know that their bits are anti-correlated and they can perform bit flips
in order to obtain the same raw key. Since Alice and Bob’s measurements commute with
the detection at the relay, they can be delayed until the photon detection has occurred.
This virtual approach plays an important role in proving the security of MDI-QKD
protocols. Specifically, after the relay performs its Bell-state measurement, Alice and Bob
effectively share either a |ψ+⟩ or |ψ−⟩ Bell state, depending on the outcome. They can then
independently measure their virtual qubits in the Z or X basis, just as in EB-BB84, and
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proceed with sifting, parameter estimation, and classical post-processing. This equivalence
enables the security proof of MDI-QKD to follow the same steps as the decoy-state BB84
protocol described earlier. The asymptotic secret key rate of the protocol described here
is [Lo, Curty e Qi 2012]:

rMDI = P 1,1
Z (1 − h(e1,1

X )) − PZh(EZ), (4.21)

where PZ and EZ are the gains and QBERs, respectively, of the signal state in the Z basis,
P 1,1
Z is the gain with both parties sending a single photon each in the Z basis and e1,1

X is
the error rate in the X basis given that both parties sent one photon each. Similarly to
the BB84 with decoys states, the later two quantities can be bounded. In the ideal setup
and in the asymptotic limit for the key’s length, the secret key rate is simply given by the
probability that a useful detection event happened in the case where Alice and Bob both
prepared a single photon in the Z basis:

rideal
MDI = P 1,1

Z . (4.22)

Preparing indistinguishable photons from two independent and distant light sources
and obtaining good HOM interference is crucial for this type of protocol. This is very hard
to achieve [Lo, Curty e Qi 2012], especially accounting for long-distance and high-loss
scenarios, rendering this type of protocol challenging to implement efficiently.

4.4 Fundamental Limits of Quantum Communication

In [Pirandola et al. 2017], the authors established a fundamental bound on the
secret key rate achievable by any QKD protocol over a lossy channel with transmittance η.
Termed the Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound, this limit is expressed
as:

rPLOB = − log(1 − η), (4.23)

where η quantifies the probability of a photon traversing the channel intact. For optical
fiber links, η is determined by the attenuation coefficient γ (typically γ ≈ 0.2 dB/km for
modern fibers) and the transmission distance L via:

η = 10−γL/10. (4.24)

In high-loss regimes (η ≪ 1), the PLOB bound asymptotically simplifies to rPLOB ≈ 1.44η,
revealing that the secret key rate scales linearly with η—and thus decays exponentially
with distance L. This emphasizes the severe impact of channel loss on long-distance QKD.

The PLOB bound represents a critical benchmark for all QKD protocols. While
numerous strategies aim to mitigate loss-induced rate reductions, none circumvent the
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exponential dependence on distance inherent to η. For example, the MDI-QKD protocol
discussed previously splits the total channel into two segments of transmittance √

η, each
linking Alice and Bob to an intermediate relay. However, successful detection requires
both photons to survive their respective channels, yielding an overall success probability
(√η)2 = η—identical to the single-channel case. Quantum repeaters [Briegel et al. 1998]
and memories [Panayi et al. 2014,Abruzzo, Kampermann e Bruß 2014] theoretically enable
rate scaling with √

η or better, but their practical realization faces incredible challenges,
including high-fidelity entanglement swapping and long-lived quantum storage.

In the following section, we analyze Twin-Field QKD (TF-QKD), a protocol that
circumvents the PLOB bound by encoding key information in single-photon detection
events at a remote relay. By exploiting phase correlations between Alice and Bob’s signals,
TF-QKD achieves a secret key rate scaling as √

η, dramatically outperforming conventional
protocols in high-loss regimes. This breakthrough positions TF-QKD as a promising
candidate for practical, long-distance quantum communication.

4.5 Twin-Field QKD

Twin-Field QKD (TF-QKD), initially proposed in [Lucamarini et al. 2018], is based
on the same principles of MDI-QKD while re-imagining the role of the intermediate relay:
instead of requiring simultaneous detection of photons from Alice and Bob, TF-QKD
encodes key information in single-photon interference events at the relay, achieving a secret
key rate scaling with √

η. The initial versions of TF-QKD suffered the technical challenges
of phase stabilization and synchronization between Alice and Bob’s independent lasers,
which resulted in many rounds being discarded due to phase post-selection.

The protocol CAL-19, introduced in [Curty, Azuma e Lo 2019], removes the need
for global phase tracking, significantly increasing the protocol’s performance and better
aligning with existing laser technology. We will first outline an idealized version of the
protocol involving single-photon states in order to properly show the intuition behind
secret key generation. Then, we will describe a practical version of the protocol utilizing
the decoy state strategy.

4.5.1 Ideal Protocol

In order to explain the protocol and show the intuition behind key generation, we
first explain the protocol while using "virtual" qubits in Alice and Bob’s labs. The virtual,
single-photon scenario of the CAL-19 protocol is as follows:
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• Quantum transmission. In each round, Alice and Bob prepare an optical signal
entangled with a qubit in their respective labs:

|Φ⟩Aa = √
q |00⟩Aa +

√
1 − q |11⟩Aa (4.25)

with 0 ≤ q ≤ 1, |0⟩a and |1⟩a are the Fock states representing the vacuum and
single-photon state while {|0⟩A , |1⟩A} are qubit states on the Z-basis. Bob’s state
|Φ⟩Bb is described analogously. They then send their optical modes (a and b) through
optical channels with transmittance √

η.

• Quantum measurement. Upon arriving at the central node, Alice and Bob’s
signals interfere on a 50:50 beam splitter with output ports connected to detectors
Dc and Dd, as shown in Figure 6. The relay broadcasts the outcomes kc, kd ∈ {0, 1}
of the respective detectors. Independently from each other, Alice and Bob perform
measurements in their qubits. With probability pX , they perform a measurement in
the X basis, while with probability pZ = 1 − pX they perform a measurement in the
Z basis, recording the outcomes bA and bB, respectively, for each measurement.

• Sifting. Alice and Bob publicly compare their basis chosen in each round and discard
the rounds in which they chose different basis for measurement. They only use the
rounds in which only one of the relay’s detectors clicked (kc ⊕ kd = 1), discarding the
rest. They can choose an asymmetric strategy, where they keep the X-basis rounds
for key generation and use the Z-basis rounds for parameter estimation.

• Parameter estimation. Alice and Bob compare all of their Z-basis outcomes to
estimate their QBER EZ and some of the X-basis rounds to estimate EX .

• Classical post-processing Alice and Bob can proceed with the usual error correc-
tion and privacy amplification steps on their raw keys.

In order to see how they are able to distill a secret key from this, we can calculate
the final state of the protocol after the interference at the BS in the central relay (without
considering the effect of losses). Right before interference, Alice and Bob’s signal reads:

|Φ⟩Aa ⊗ |Φ⟩Bb =q |00⟩AB |00⟩ab +
√
q(1 − q) |01⟩AB |0⟩a b

† |0⟩b +√
q(1 − q) |10⟩AB a

† |0⟩a |0⟩b + (1 − q) |11⟩AB a
†b† |00⟩ab .

(4.26)

We can describe the unitary action of the BS on the signal as a† → (c† + d†)/
√

2 and
b† → (c† − d†)/

√
2. After the interference, the state reads:

|Φ⟩BS =q |00⟩AB |00⟩cd +
√
q(1 − q)

∣∣∣ψ+
〉
AB

|10⟩cd

−
√
q(1 − q)

∣∣∣ψ−
〉
AB

|01⟩cd + (1 − q) |11⟩AB
1
2(|2, 0⟩cd + |0, 2⟩cd),

(4.27)
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Figure 6 – Experimental setup for practical Twin-Field QKD (CAL-19 protocol) [Curty,
Azuma e Lo 2019]. Alice and Bob independently select the X basis (probability
pX) or Z basis (probability pZ). In X-basis rounds, Alice encodes a random
bit bA in the phase of a weak coherent pulse (WCP) with intensity αA, while
Bob encodes bB in a WCP of intensity αB. For Z-basis rounds, they prepare
phase-randomized WCPs with decoy intensities µi and νi, respectively. Signals
traverse lossy channels (transmittance √

ηA, √
ηB) to a central relay, where a

50:50 beam splitter (BS) interferes them. Threshold detectors at the BS outputs
(Dc, Dd) record clicks kc, kd ∈ {0, 1}, which the relay broadcasts. Rounds with
kc ⊕ kd ̸= 1 or mismatched bases are discarded. The raw key is formed by bits
bA and bB ⊕ kd.

Source: [Grasseli 2021]

where |ψ±⟩AB = (|01⟩ ± |10⟩)/
√

2. Here, we fully visualize how Alice and Bob generate
their keys. The rounds in which they both sent vacuum states are discarded. In order
to ensure that almost all the detection events are caused by single-photon events, Alice
and Bob can choose (1 − q) << 1, meaning they are preparing mostly vacuum states.
Thus, the probability of two-photon interference is minimal. In a detection event they
most probably share a Bell state |ψ±⟩AB, and their measurement outcomes (i.e. bit values)
are correlated. However, just as in the MDI-QKD protocol described in Section 4.3, the
detection outcomes reveal to Eve only that Alice and Bob have different bit values. Since
the parties only use the rounds in which kc ⊕ kd = 1, Eve cannot identify which of the
two sent the signal—the beam splitter creates a coherent superposition of the states,
and the information of who sent the photon is lost. They can then measure their qubit,
choosing randomly between the X and Z basis, and the rest of the protocol follows an
entanglement-based BB84 protocol with different error rates.

By rewriting |ψ+⟩ in the X basis, we obtain (|++⟩ − |−−⟩)/
√

2, therefore Alice
and Bob’s bits should be equal when kd = 0 and different when kd = 1, since |ψ−⟩ =
−(|+−⟩ − |−+⟩)/

√
2. In the Z basis, they should ideally follow bA = bB ⊕ 1. Thus, the

QBERs EX and EZ are:

EX = pXX(bA ̸= bB ⊕ kd|kc ⊕ kd = 1), (4.28)

EZ = pZZ(bA = bB|kc ⊕ kd = 1). (4.29)
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However, TF-QKD has intrinsic error rates, especially when accounting for the
transmittance of the network. In this case, the detection events caused by single photons
happen with probability

psingle = √
η(1 − q)q + (1 − q)2√η(1 − √

η), (4.30)

in which the first term is the ideal case with one photon being emitted and successfully
transmitted and the second term is the case when two photons are emitted but only one
of them arrives at the BS. The detection events caused by two-photon signals happen with
probability:

ptwo = 1
2(1 − q)2η. (4.31)

Thus, the probability of a single detector (either Dc or Dd) clicking is given by pclick =
psingle + ptwo. It is clear that any two-photon emission followed by a detection event cannot
be used for key generation (since Alice and Bob’s bits will be revealed) but also cannot be
distinguished from the ideal, useful case. By normalizing the probabilities in respect to a
successful detection event, the intrinsic error probability of the protocol can be written as:

perror = psingle

pclick

(1 − q)2√η(1 − η)
psingle

+ ptwo

pclick
= psingle

pclick

(1 − q)(1 − √
η)

q + (1 − q)(1 − √
η) + ptwo

pclick
(4.32)

The asymptotic secret key rate of the protocol is given by the BB84 protocol key
rate weighted by the probability 2pclick of a successful detection event by Dc or Dd:

rTF = 2pclick(1 − h(EZ) − h(EX)) (4.33)

One thing to note is that the parties can optimize their error rates by adjusting the
parameter q in their preparation for the protocol. A sufficient high value for q ensures that
perror ≈ 0 and 2pclick ≈ 2q(1 − q)√η, since we neglect the terms (1 − q)2. Thus, the secret
key rate scales with √

η as predicted.

In practice, this protocol can be executed without the use of virtual entangled
qubits, instead turning the protocol into a prepare-and-measure where Alice and Bob can
randomly choose the value of their bits and encode the signal accordingly. First, since
the measurements performed by Alice and Bob commute with all the other operations
performed in the protocol, they can be done before sending the signal. This transforms
the protocol into the following PM setup: Alice randomly selects the X or Z basis with
probabilities pX and pZ . In X-basis rounds, she prepares an optical pulse:

|X⟩bAa
:= √

q |0⟩a + (−1)bA
√

1 − q |1⟩a , (4.34)

where bA is her randomly chosen bit. For Z-basis rounds, she sends a Fock state:

|Z⟩bAa
:= |bA⟩a , (4.35)
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with bA = 0 (vacuum) or bA = 1 (single photon) chosen with probabilities q and 1 − q,
respectively. Bob prepares his states analogously. From Eve’s perspective, this prepare-
and-measure protocol is indistinguishable from the virtual scenario version. Thus, this PM
version is equivalent in terms of security and secret key rate.

4.5.2 Practical Protocol

The practical version of TF-QKD described in [Curty, Azuma e Lo 2019] employs
the decoy state strategy in order to account for vulnerabilities caused by practical photon
sources. Since the parameter q is chosen with high values suggests that the X-basis states
can be replaced by WCPs

∣∣∣(−1)bAαA
〉

and
∣∣∣(−1)bBαB

〉
with |α|2 << 1. The decoy-state

method can also be used in the Z-basis states in order to better estimate the phase-error
rate EZ , since they do not contribute to key generation. In this manner, Alice and Bob do
not rely on single-photon states and can use practical laser sources to execute the protocol.
The states sent by Alice in the X-basis rounds are:∣∣∣(−1)bAαA

〉
= e|αA|2/2

∞∑
n=0

((−1)bAαA)n√
n!

|n⟩ , (4.36)

while the states sent in the Z-basis are:

ρµi
=

∞∑
n=0

e−µi
µni
n! |n⟩ ⟨n| , (4.37)

with intensity µi randomly drawn from a set {µi}. Bob prepares his states analogously,
with both bit values bB and amplitude αB not necessarily equal to Alice’s, and phase-
randomized WCPs ρνj

with intensity νj randomly drawn from the set {νj}, that also need
not be equal to Alice’s. The sets containing the possible decoy intensities are publicly
agreed upon by the parties. When executing this protocol, the quantities observed by Alice
and Bob are the gains:

• pXX(kc, kd|bA, bB): Probability that the relay announces the detection pattern kc, kd

given that Alice and Bob prepared the coherent states
∣∣∣(−1)bAαA

〉
and

∣∣∣(−1)bBαB
〉
.

• pZZ(kc, kd|µi, νj): Probability that the relay announces the detection pattern kc, kd

given that Alice and Bob prepared states ρµi
and ρνj

.

The QBERs EX are observed by the parties and can be given by (4.28), just as with
the ideal case. In order to estimate the error in the Z-basis, we note that Eve cannot
distinguish the case in which Alice and Bob send decoy states ρµi

and ρνj
from the case in

which they send number states |n⟩a and |m⟩b according to a Poissonian distribution Pµi

and Pνj
:

Pµi
(n) = e−µi

µni
n! , Pνj

(m) = e−νj
νmj
m! (4.38)
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This implies that Eve’s announcement of kc and kd follows a probability distribution
pZZ(kc, kd|n,m), and:

pZZ(kc, kd|µi, νj) =
∞∑

n,m=0
pZZ(kc, kd|n,m)Pµi

(n)Pνj
(m). (4.39)

Once Alice and Bob know pZZ(kc, kd|µi, νj) for any given µi and νj, they can use the
decoy-state method of Section 4.1.1 to estimate pZZ(kc, kd|n,m) based on their knowledge
of Pµi

(n) and Pνj
(m).

Next, we remark that if Alice and Bob chose the X-basis, Eve cannot distinguish
the practical scenario from the entanglement-based version of the protocol. In Eve’s point
of view, Alice (and Bob, analogously) could be preparing the following state

|Φ⟩Aa = |+⟩A |α⟩a + |−⟩A |−αA⟩a√
2

, (4.40)

while delaying the X measurement on the qubit until the detection event at the relay.
Thus, the global state of the parties’ qubits and signals after the announcement of kc, kd is:

∣∣∣χkc,kd

〉
Aa′Bb′

:=
Mkc,kd

a,b |Φ⟩Aa |Φ⟩Bb√
pXX(kc, kd)

, (4.41)

where Mkc,kd
a,b is the Kraus operator that describes the action of the relay on the signals. In

order to prove security, we need to relate the conditional probabilities pZZ(kc, kd|n,m) to
the phase-error rate ekc,kd

Z , which measures the coherence between the bit-error rates in
the Z-basis and the incoming signal on the key generation rounds:

ekc,kd
Z =

∑
j=0,1

||AB
〈
jj

∣∣∣χkc,kd

〉
Aa′Bb′

||2. (4.42)

The probability that the relay announces detection event kc, kd given that Alice
and Bob sent n and m photons in Z-basis rounds is given by the yields Y kc,kd

nm :

Y kc,kd
nm := pZZ(kc, kd|n,m). (4.43)

As seen before, the decoy state method allows us to estimate Y kc,kd
nm by observing the gains

on the Z-basis, since they are constrained by the set of equations:

pZZ(kc, kd|µi, νj) =
∞∑

n,m=0
e−µi−νj

µni ν
m
j

n!m! Y
kc,kd
n,m , (4.44)

with µi ∈ {µi} and νj ∈ {νj}. In the scenario where Alice and Bob use an infinite number
decoy intensity settings, they can precisely estimate each yield value. The yields can be
used to derive an upper bound on (4.42) and obtain (The calculations are detailed in the
Appendix B):

ēkc,kd
Z = 1

pXX(kc, kd)

[( ∞∑
n,m=0

Ca
2nC

b
2m

√
Y kc,kd

2n,2m

)2
+

( ∞∑
n,m=0

Ca
2n+1C

b
2m+1

√
Y kc,kd

2n+1,2m+1

)2]
,

(4.45)
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where Ca
n = e

−|αA|2
2

αn
A√
n! and Cb

m = e
−|αB |2

2
αm

B√
m! . The asymptotic secret key rate of the

practical CAL-19 protocol is given by [Curty, Azuma e Lo 2019]:

rTF ≥ r1,0
TF + r0,1

TF, (4.46)

where rkc,kd
TF is the secret key rate for each detection event with kc ⊕ kd = 1:

rkc,kd
TF = pXX(kc, kd)[1 − h(Ekc,kd

X ) − h(ēkc,kd
Z )]. (4.47)

The term pXX(kc, kd) is the probability of having a detection event kc, kd when Alice and
Bob chose the X-basis; since those events are caused primarily by a single photon arriving,
sent by either Alice or Bob, it scales with √

η, and thus the secret key rate scales with √
η

as in the ideal case. The secret key rate has a lower bound corresponding to the upper
bounds on the yields. In the realistic finite-scenario, one can derive the upper bound for a
subset of yields—typically the most likely cases in attenuated lasers (small n and m) and
trivially upper-bound the remaining yields by 1.

TF-QKD has emerged as a transformative approach in quantum communication,
overcoming the fundamental rate-distance limit of conventional QKD protocols by exploit-
ing single-photon interference at a central relay. This paradigm shift enables a secret key
rate scaling proportional to √

η, which shows a promising result for QKD even in high-loss
scenarios. However, practical implementations further grapple with the limitations of weak
coherent photon sources, which necessitate decoy-state methods to bound multi-photon
contributions. Advanced superconducting nanowire single-photon detectors (SNSPDs),
with near-unity efficiency and ultralow dark counts, have proven indispensable in state-of-
the-art experimental realizations [Boaron et al. 2018], yet their high cost and cryogenic
requirements highlight the need for scalable alternatives.

In spite of this, recent experiments show promising practical results. Secure key
distribution over 1000 km of ultralow-loss fiber has been achieved [Liu et al. 2023] using
the metropolitan Beijing-Shanghai backbone, with key rates surpassing traditional QKD
by orders of magnitude at comparable distances, while demonstrating compatibility with
existing infrastructure. Very recent experiments also managed to execute free-space TF-
QKD over 14km urban atmospheric channels [Li et al. 2025]. These achievements, however,
mask unresolved challenges. Long-term phase stabilization in dynamic environments
remains an open engineering problem, with current solutions relying on resource-intensive
active feedback systems [Zhou et al. 2023]. Furthermore, the integration of TF-QKD into
multi-user networks demands standardization of synchronization protocols and wavelength
allocation to ensure interoperability with classical communication systems [Liu et al. 2023].
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5 The Rio Quantum Network

The Rio Quantum Network (RQN) is a collaborative initiative designed to imple-
ment a metropolitan-scale quantum network connecting multiple research institutions
across Rio de Janeiro, as shown in Figure 7. A primary objective of this project is to enable
secure point-to-point communication between any two network nodes through quantum
key distribution (QKD) protocols. The network’s operational conditions—characterized by
high channel losses and extended transmission distances between nodes—pose significant
technical challenges. Given the absence of quantum repeaters in the initial deployment
phase, the network requires a QKD protocol capable of maintaining efficiency in high-loss
environments.

5.1 Motivation

As demonstrated in previous chapters, Twin-Field QKD (TF-QKD) offers promising
solutions in high loss scenarios by surpassing fundamental limits of conventional QKD,
such as the PLOB bound. However, practical implementation of TF-QKD in the RQN
faces several constraints. First, the original protocol proposed in [Lucamarini et al. 2018]
necessitates a stable phase reference between communicating parties to enable interference
at the central relay—a requirement that becomes increasingly difficult to satisfy in a
metropolitan network with distributed nodes, leading to suboptimal secret key rates.
Second, the RQN’s multi-user architecture generates asymmetric channel conditions
between arbitrary node pairs, necessitating the introduction of compensatory fibers (and
associated losses) to align channel parameters with the symmetric assumptions required by
phase-stable frameworks such as [Curty, Azuma e Lo 2019]. Third, conventional TF-QKD
implementations impose substantial operational costs, and this infrastructure burden
complicates scalability and limits the feasibility of adding new users.

Recent advances in Sagnac interferometer-based TF-QKD protocols, as proposed by
[Zhong et al. 2019], [Zhong et al. 2021] and [Zhong et al. 2022], present a viable framework for
addressing common challenges. The Sagnac architecture inherently ensures phase stability
between users by them having a shared laser source, thereby eliminating phase-reference
mismatches. Additionally, the protocol’s tolerance for channel asymmetries—achieved
through common-path signal propagation—aligns well with the RQN’s heterogeneous
topology. Crucially, this approach centralizes critical components such as light sources



Figure 7 – Basic overview of the Rio Quantum Network’s structure and the institutes
connected by it. The distances are measured in a straight line. The bold lines
represent connection by optical fibers, while the dotted line represents a free-
space link.

Source: Google Maps

and detectors, significantly reducing per-user infrastructure costs and simplifying network
expansion. However, this improvement comes at the cost of a √

η scaling for the secret
key rate. The signal must travel twice the distance compared to the original TF-QKD
protocols, which results in a key rate that falls below the PLOB bound 1. In the next
sections, we will elaborate on the protocol’s operational principles, security analysis, and
information exchange mechanisms for establishing secure communication between nodes.

5.2 Sagnac-based TF-QKD: Ideal Scenario

A untrusted central node, Charlie, is located outside the loop and is in possession
of a light source and photon detectors. He is responsible for preparing and sending a signal
through the network, as well as performing measurements upon the signal’s return. Alice
and Bob will apply phase shifts to the signal, which will then affect the interference pattern
and Charlie’s measurement’s results, as shown in Figure 8. When assuming single-photon
emissions, the protocol is described as follows:

1. Quantum Transmission. In each round, the central node, Charlie, prepares a state

|ψ⟩ = 1√
2

(|⟳⟩ + |⟲⟩) (5.1)
1 The authors in [Zhong et al. 2019,Zhong et al. 2021,Zhong et al. 2022] claim to have simulations with

key rates that surpass the PLOB bound. Their model, however, is similar to the one in [Curty, Azuma
e Lo 2019], which may have caused this key rate scaling.
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by sending a photon through a 50:50 Beam Splitter. Each output port of the BS
determines the direction the signal travels. Alice and Bob will act on the counter-
clockwise mode of the signal by independently and randomly choosing between two
different phases within two different sets and applying it to the signal. Each set
corresponds to a choice of basis, and each phase is associated with a bit value. See
table 1 for details.

This results in the following state:

|ψ⟩C = 1√
2

(|⟳⟩ + ei(ϕA+ϕB) |⟲⟩). (5.2)

2. Quantum Measurement. The two different modes interfere in the same BS back
at Charlie’s lab, which has a detector in each of the output ports, labeled D⟳ and
D⟲. Just before detection, the state can be written as:

|ψ⟩BS = 1
2[(1 + ei(ϕA+ϕB)) |⟳⟩ + (1 − ei(ϕA+ϕB)) |⟲⟩]. (5.3)

Charlie performs a measurement and records the outcomes k⟳ and k⟲ where k⟳(⟲) = 0
corresponds to a no-click event and k⟳(⟲) = 1 corresponds to a click event. This step
is repeated until they complete a predetermined M number of rounds. Since there
was a bit value associated with each possible phase applied by Alice and Bob, they
each hold now a bit string of length M .

3. Sifting. Alice and Bob will publicly and classically communicate to each other which
set they chose in each round and discard the rounds in which they chose different
sets. The relay publicly announces the outcome of his measurements k⟳ and k⟲ of
detectors D⟳ and D⟲ for each round to Alice and Bob, and they discard the rounds
in which k⟳ ⊕ k⟲ ≠ 1. After this step, Alice and Bob should each have a bit string
of length ≈ M/2.

4. Parameter Estimation. Alice and Bob will compare part of their bit strings, and
consequently the phase values applied, for a part of the rounds. Meaning they will
publicly share a random subset of their bit strings, S ⊂ M , and compare them
bit-by-bit. They use this data to evaluate the quantum bit error rates (QBERs) EZ
and EY .

5. Information Reconciliation. Alice and Bob can then proceed with the usual error
correction and privacy amplification protocols of their choice.

The phases Alice and Bob apply can assume values {0, π2 , π,
3π
2 }, divided among

two different sets. The values {0, π} are assigned to the Z set and the values {π/2, 3π/2}
are assigned to the Y set. The 0 and 1 bit values are assigned for each set’s first and
second value, respectively, as shown in the table:
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Figure 8 – Two-parties QKD in Rio Quantum Network using a Sagnac-based topology:
experimental setup. Charlie prepares a optical signal and sends it to the network.
A 50:50 BS acts on the signal creating a uniform superposition between the
clockwise and anti-clockwise modes. Alice and Bob independently apply a phase
shift on the anti-clockwise mode randomly sampling the phase value from four
possible settings. The signal then goes back to Charlie’s lab, where it interferes
back at the BS, and it is followed by two detectors D⟳ and D⟲. The relay
announces detection results k⟳ and k⟲. The parties keep the rounds in which
they choose the same basis and k⟳ ⊕ k⟲ = 1, all the other rounds are discarded.
The network has optical switches that can be used to allow other users to
communicate.

bit Z set Y set
0 0 π/2
1 π 3π/2

Table 1 – Possible phase values and their respective sets, as well as the bit value associated
with each phase value.

We can see from (5.3) that the probability of Charlie obtaining a particular outcome
depends on the phase applied by the parties. If they apply phases from different sets, each
detector in Charlie’s lab will have a 50% chance of clicking, and this is why those rounds
are not used for QKD. More explicitly, by choosing from different sets, ϕA + ϕB will be
equal to π/2 or 3π/2, and therefore ei(ϕA+ϕB) = ±i.

| ⟨⟳|ψ⟩BS |2 = |12(1 ± i)|2 = 1
2 (5.4)

If they applied phases from the same set, ϕA + ϕB will be equal to 0 or π, and therefore
ei(ϕA+ϕB) = ±1.

For instance, in the Z set, whenever they both apply 0 (π), ei0 = 1 (ei(2π) = 1) and
the D⟳ detector will click with 100% probability. Whenever they apply different phases,
ei(π) = −1 and the D⟲ detector will click 100% probability. The same goes for the Y
set, but applying the same phase will result in a click on the D⟲ detector and applying
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different phases will result in a click on the D⟳ detector.

This is precisely why Alice and Bob are able to distill a secret key from this protocol.
Essentially, the only information available to an eavesdropper (Eve) is the sum of phases
applied on the signal. The information on each individual phase applied either by Alice or
Bob is lost due to the interference, and therefore it is only available to them. However,
since Alice knows which phase she applied in each round, as well as the detection pattern
(i.e. the sum of phases), she automatically knows which phase Bob applied and vice-versa
(as long as they chose the same set). Thus, they know each other’s bit value for each round.

In order to properly distill a secret key rate for the protocol, we will use the following
strategy: by introducing a "virtual" qubit in Alice’s and Bob’s labs and considering an
infinite number of rounds, we can trace an equivalence to the entanglement-based BB84
protocol in the asymptotic scenario, and therefore use the Devetak-Winter rate for this
protocol. As previously mentioned, this is the same strategy typically used in other
MDI-QKD protocols to derive an expression for the secret key rate.

5.3 Equivalence to EB-BB84: Virtual scenario

In order to show that this protocol is equivalent to the Entanglement-Based BB84
protocol, we introduce a virtual qubit in Alice’s and Bob’s labs which they can perform
measurements on. Also, instead of randomly selecting a phase and applying it to the signal,
they will instead correlate their qubit with the signal by performing a conditional unitary
operation on the joint state. Here, |0⟩A(B) and |1⟩A(B) denotes Alice’s (Bob’s) qubit state
in the Z basis.

|ψ⟩CAB = 1√
2

(|⟳⟩ + |⟲⟩) ⊗ 1√
2

(|0⟩A + |1⟩A) ⊗ 1√
2

(|0⟩B + |1⟩B). (5.5)

The unitary for Alice can be written as:

UA = (IC ⊗ |0⟩ ⟨0|A + ZC ⊗ |1⟩ ⟨1|A) ⊗ IB, (5.6)

and for Bob:
UB = IA ⊗ (IC ⊗ |0⟩ ⟨0|B + ZC ⊗ |1⟩ ⟨1|B), (5.7)

where Z is the pauli matrix Z = |⟳⟩ ⟨⟳| − |⟲⟩ ⟨⟲| and I is the identity operator. This
operation introduces a π phase on the counter-clockwise mode. This results in:

UBUA |ψ⟩CAB = 1
2
√

2

[
(|⟳⟩ + |⟲⟩) |00⟩AB + (|⟳⟩ − |⟲⟩) |01⟩AB

+ (|⟳⟩ − |⟲⟩) |10⟩AB + (|⟳⟩ + |⟲⟩) |11⟩AB
]
.

(5.8)
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After returning to the final BS, the state right before detection reads:

|ψ⟩final =
( |00⟩AB + |11⟩AB

2

)
|⟳⟩ +

( |01⟩AB + |10⟩AB
2

)
|⟲⟩ . (5.9)

Note that, after the application of the unitary operations, performing measurements
on the qubit on the Z or Y basis introduces the corresponding phase onto the signal.
As the measurement on the qubits commutes with the interferometer propagation, such
measurements can be postponed. To clarify the phase difference between the Z and Y

bases in the protocol, we outline the action of the unitary (5.6) on the signal:

UA(|ψ⟩C ⊗ |ψ⟩A) = 1
2(|⟳⟩ + |⟲⟩) |0⟩A + 1

2(|⟳⟩ + eiπ |⟲⟩) |1⟩A

= 1
2(|⟳⟩ + |⟲⟩)C |0⟩A + 1

2(|⟳⟩ − |⟲⟩)C |1⟩A .
(5.10)

Here, we naturally see the Z set phases, {0, π} applied to the counter-clockwise mode. If
we rewrite Alice’s qubits on the Y basis (i.e. Alice decides to her qubit on the Y basis), we
have the following:

UA(|ψ⟩C ⊗ |ψ⟩A) = 1
2(|⟳⟩ + |⟲⟩)

( |R⟩A + |L⟩A√
2

)
+ 1

2(|⟳⟩ − |⟲⟩)
( |R⟩A − |L⟩A

i
√

2

)
= 1

2

[(1 − i)√
2

|⟳⟩ + (1 + i)√
2

|⟲⟩
]

|R⟩A + 1
2

[(1 + i)√
2

|⟳⟩ + (1 − i)√
2

|⟲⟩
]

|L⟩A .

=
( |⟳⟩ + ei

π
2 |⟲⟩

2

)
e−iπ

4 |R⟩A +
( |⟳⟩ + ei

3π
2 |⟲⟩

2

)
ei

π
4 |L⟩A ,

(5.11)

where we see the Y -set phases, {π/2, 3π/2}, being applied to the counter-clockwise mode.
Following this, the final state where Alice and Bob’s qubits states are written on the Y
basis:

|ψ⟩final =
( |RL⟩AB + |LR⟩AB

2

)
|⟳⟩ +

( |RR⟩AB + |LL⟩AB
2

)
|⟲⟩ . (5.12)

From here, Bob can perform bit flips accordingly such that they always have the
1
2(|00⟩ + |11⟩)AB state, which is also the final state of an EB-BB84 protocol. Now, we can
consider the secret key rate described in (3.43) as the secret key rate to be used in the
RQN protocol:

rideal = pclick(1 − h(EZ) − h(EY )), (5.13)

where EZ and EY are the QBERs in the Z and Y basis, and pclick is the probability of a
successful detection event, which in the ideal scenario is simply given by the transmittance
of the network, η. In the RQN case, we can analyze equations (5.9) and (5.12) to define
the QBERs as:

EZ = pZZ [ba ̸= bb ⊕ k⟲|k⟳ ⊕ k⟲ = 1], (5.14)

EY = pY Y [ba ̸= bb ⊕ k⟳|k⟳ ⊕ k⟲ = 1]. (5.15)

78



We remark that only the rounds where k⟳ ⊕ k⟲ = 1 (only one detector clicked) are
considered for the protocol, since any other case can only happen due to multiple photons
being sent or dark counts in detectors. When using single photon sources, the protocol’s
security analysis ends here. One can observe the results and easily estimate the QBERs
on step 3, and therefore calculate the secret key rate for the protocol.

5.4 The practical protocol
As seen in Chapter 4, a more practical implementation of single-photon sources can be

done via highly attenuated lasers producing Weak Coherent Pulses (WCPs), which can be
represented by coherent states with |α|2 << 1:

|α⟩ = e− |α|2
2

∞∑
n=0

αn√
n!

|n⟩ . (5.16)

In this practical scenario, Charlie will be sending WCPs into the network, with
Alice and Bob performing phase shifts in a similar manner as the single-photon case. The
action of the BS divides the signal into two different modes (clockwise and anti-clocwise)
with amplitudes α/

√
2:

|Ψ⟩C =
∣∣∣∣∣ 1√

2
α

〉
C⟳

∣∣∣∣∣ 1√
2
α

〉
C⟲

= e− |α|2
2

∞∑
n,m=0

(
α√
2

)n(
α√
2

)m 1√
n!m!

|n,m⟩C⟳C⟲
. (5.17)

The unitaries Alice and Bob apply to the signal are changed to:

U ′
A = (IC ⊗ |0⟩ ⟨0|A + eiπc

†
⟲c⟲ ⊗ |1⟩ ⟨1|A) ⊗ IB (5.18)

and
U ′
B = IA ⊗ (IC ⊗ |0⟩ ⟨0|B + eiπc

†
⟲c⟲ ⊗ |1⟩ ⟨1|B), (5.19)

respectively. Here, c†
⟲ and c⟲ are the creation and annihilation operators of the counter-

clockwise mode. The operator eiπc
†
⟲c⟲ = Π is called the parity operator, and its action on

a coherent state reads Π |α⟩ = |−α⟩.

However, protocols using WCPs are only secure when the parties can guarantee
they are only using the rounds in which the detection event was caused by a single photon.
This is very hard to achieve, especially since Alice and Bob do not have control of the
light source. Besides, since Eve can be in control of the channel, she can perform PNS
attacks on the stretch of the network in between Alice and Bob’s labs, thus gaining the
information of the individual phase (and therefore bit value) applied in some of the rounds.
The decoy states strategy is used to ensure that Eve cannot perform this type of attack.

Here, when they choose the Z set, the protocol remains the same, however, when
the Y set is chosen, Alice (Bob) will independently introduce a random phase ΦA(B) with
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0 ≤ ΦA(B) ≤ 2π and modulate the amplitude with intensities µi (νj) drawn from a set
{µi} ({νj}), as shown in Table (2). Only the Z-set rounds are used for key generation,
while the Y -set rounds are used for parameter estimation. Additionally, in step 4 of the
protocol, Alice and Bob also publicly disclose their amplitude settings for each round. The
remaining steps of the protocol are the same.

Set Phases Amplitude
Z {0, π} -
Y 0 ≤ ΦA(B) ≤ 2π µi(νj)

Table 2 – Different phase and amplitude modulations depending on the set chosen by
Alice (Bob).

5.5 Security analysis and secret key rate estimation

In order to distill the secret key rate for this protocol, we need to analyze the error
rates in each given basis. The key generating rounds using the Z basis have the same error
rates as previously mentioned in (5.14):

EZ = pZZ [ba ̸= bb ⊕ k⟲|k⟳ ⊕ k⟲ = 1]. (5.20)

However, since the Y basis rounds are not generating keys and have randomized
phases and intensities, we will use the phase-error rate eY instead. In summary, we are
measuring the coherence between the bit-error rates in the Y-basis and the incoming signal
on the key generation rounds. The phase-error rate is essentially the Y-basis error that
affects the Z-basis rounds, which is by definition:

ek⟳,k⟲Y =
1∑
j=0

||AB
〈
j, j ⊕ k⟲

∣∣∣Zk⟳,k⟲
〉
C⟳C⟲AB

||2, (5.21)

where here |0⟩ (|1⟩) are equal to Alice and Bob’s |R⟩ (|L⟩) Y-basis state.
∣∣∣Zk⟳,k⟲

〉
C⟳C⟲AB

is the state after Charlie’s untrusted relay’s detection in the Z basis rounds, which is given
by: ∣∣∣Zk⟳,k⟲

〉
C⟳C⟲AB

= 1
2

√
pZZ(k⟳, k⟲)

Mk⟳,k⟲
C⟳C⟲

|ψ⟩C⟳C⟲AB
, (5.22)

with pZZ(k⟳, k⟲) being the probability that both Alice and Bob chose the Z basis for a
given round with a detection event and Mk⟳,k⟲

C⟳C⟲
is the Kraus operator representing the

relay’s action on the two incoming modes of the signal. We can write the |ψ⟩C⟳C⟲AB
state
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as being the one right before returning to the central relay:

|ψ⟩ABC⟳C⟲
= UBUA

( ∣∣∣∣∣ 1√
2
α

〉
C⟳

∣∣∣∣∣ 1√
2
α

〉
C⟲

⊗ 1√
2

(|0⟩A + |1⟩A) ⊗ 1√
2

(|0⟩B + |1⟩B)
)

= 1
2

[ ∣∣∣∣∣ 1√
2
α

〉
C⟳

∣∣∣∣∣ 1√
2
α

〉
C⟲

|00⟩AB +
∣∣∣∣∣ 1√

2
α

〉
C⟳

∣∣∣∣∣(−1)√
2
α

〉
C⟲

|01⟩AB +

+
∣∣∣∣∣ 1√

2
α

〉
C⟳

∣∣∣∣∣(−1)√
2
α

〉
C⟲

|10⟩AB +
∣∣∣∣∣ 1√

2
α

〉
C⟳

∣∣∣∣∣ 1√
2
α

〉
C⟲

|11⟩AB
]
.

(5.23)

The phase-error rate in (5.21) for each detection pattern in which k⟳ ⊕ k⟲ = 1 is:

e1,0
Y = 1

4pZZ(1, 0)

(
||AB ⟨RR|M1,0

C⟳C⟲
|ψ⟩C⟳C⟲AB

||2 + ||AB ⟨LL|M1,0
C⟳C⟲

|ψ⟩C⟳C⟲AB
||2

)
.

(5.24)
We then evaluate:

AB ⟨RR|M1,0
C⟳C⟲

|ψ⟩C⟳C⟲AB
= M1,0

C⟳C⟲
(AB⟨RR|ψ⟩C⟳C⟲AB

)

= M1,0
C⟳C⟲

(−i)
∣∣∣∣∣ 1√

2
α

〉
C⟳

∣∣∣∣∣(−1)√
2
α

〉
C⟲

,
(5.25)

where we use ⟨RR| = 1
2(⟨00| − i ⟨01| − i ⟨10| − ⟨11|). Similarly for ⟨LL| = 1

2(⟨00| + i ⟨01| +
i ⟨10| − ⟨11|), we have:

AB⟨LL|M1,0
C⟳C⟲

|ψ⟩C⟳C⟲AB
= M1,0

C⟳C⟲
i

∣∣∣∣∣ 1√
2
α

〉
C⟳

∣∣∣∣∣(−1)√
2
α

〉
C⟲

. (5.26)

Substituting in (5.24):

e1,0
Y = 1

4pZZ(1, 0)

(
||M1,0

C⟳C⟲
(−i)

∣∣∣∣∣ α√2

〉
C⟳

∣∣∣∣∣−α√
2

〉
C⟲

||2 + ||M1,0
C⟳C⟲

i

∣∣∣∣∣ α√2

〉
C⟳

∣∣∣∣∣−α√
2

〉
C⟲

||2
)

= 1
4pZZ(1, 0)

(
||M1,0

C⟳C⟲

∞∑
n,m=0

(−i)CnC−
m |n,m⟩C⟳C⟲

||2 + ||M1,0
C⟳C⟲

∞∑
n,m=0

iCnC
−
m |n,m⟩C⟳C⟲

||2
)

≤ 1
2pZZ(1, 0)

( ∞∑
n,m=0

(CnC−
m)2||M1,0

C⟳C⟲
|n,m⟩C⟳C⟲

||2
)

= 1
2pZZ(1, 0)

( ∞∑
n,m=0

CnC
−
m

√
Y 1,0
n,m

)2
,

(5.27)

where Cn = e
−|α|2

2 ( α√
2)n/

√
n! and C−

m = e
−|α|2

2 (−α√
2 )m/

√
m!. Here, we considered α ∈ R.

Note that the yields appear in the phase-error rate expression and are defined by:

Y k⟳,k⟲
n,m := ||Mk⟳,k⟲

C⟳C⟲
|n,m⟩C⟳C⟲

||2 = pY Y (k⟳, k⟲|n,m). (5.28)
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Similarly for e0,1
Y we have:

e0,1
Y = 1

4pZZ(0, 1)

(
||AB ⟨RL|M0,1

C⟳C⟲
|ψ⟩C⟳C⟲AB

||2 + ||AB ⟨LR|M0,1
C⟳C⟲

|ψ⟩C⟳C⟲AB
||2

)

≤ 1
2pZZ(0, 1)

( ∞∑
n,m=0

(CnCm)2||M0,1
C⟳C⟲

|n,m⟩C⟳C⟲
||2

)

= 1
2pZZ(0, 1)

( ∞∑
n,m=0

CnCm

√
Y 0,1
n,m

)2
.

(5.29)

By defining Ck⟳
m = e

−|α|2
2 ((−1)k⟳α/

√
2)m/

√
m!, we can write:

ek⟳,k⟲Y = 1
2pZZ(k⟳, k⟲)

( ∞∑
n,m=0

CnC
k⟳
m

√
Y k⟳,k⟲
n,m

)2
. (5.30)

These yields are constrained by the following set of equations, each one corresponding to
the particular pair of decoy intensities (µi, νj) chosen by Alice and Bob:

pY Y (k⟳, k⟲|µiνj) =
∞∑

n,m=0
e−µi−νj

µni ν
m
j

n!m! Y
k⟳,k⟲
n,m , (5.31)

with µi ∈ {µi}, νj ∈ {νj}. One needs to derive upper bounds on the yields in (5.30) in
order to achieve a lower bound on the key rate. The power of the decoy states strategy,
as well as its necessity, is shown here. In a PNS attack, Eve needs to substitute the lossy
channel for a lossless one and emulate the original loss in order to remain undetected by
Alice and Bob. Alice and Bob will estimate upper bounds on the yields in (5.30), which
depend on the intensity values as well as the gains observed experimentally. If Eve would
attempt a PNS attack, Alice and Bob could verify that those upper bounds for the yields
would be different and potentially broken—the loss Eve tries to recreate would result in
different values for the gains and higher values for some yields, breaking the expected
upper bound).

The phase-error rate (5.30) will be consequentially upper bounded by the yields’
upper bounds, but will also contain the coefficients for the other yields trivially bounded
by 1. This will result in a lower bound on the secret key rate. In summary, we upper bound
the yields Y k⟳,k⟲

nm for (n,m) ∈ S where S is a subset of {(n,m)|n,m ∈ N0} which depends
on the number of decoy settings used. The phase-error rate will be then bounded by:

ek⟳,k⟲Y ≤ 1
2pZZ(k⟳, k⟲)

[ ∑
(n,m)∈S

CnC
k⟳
m

√
Ȳ k⟳,k⟲
n,m +

∑
(n,m) ̸∈S

CnC
k⟳
m

]2
. (5.32)

The secret key rate can be written as:

rRQN ≥ r1,0
RQN + r0,1

RQN , (5.33)

where rk⟳,k⟲RQN is the key rate resulting of a detection event k⟳, k⟲ with k⟳ ⊕ k⟲ = 1 and is
defined as:

rk⟳,k⟲RQN = pZZ(k⟳, k⟲)[1 − h(Ek⟳,k⟲
Z ) − h(ēk⟳,k⟲Y )]. (5.34)
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5.6 Upper bound estimation for the yields

In order to gain a better understanding of the average key rate, one can analytically
obtain upper bounds for the yields according to different decoy settings used on the
protocol. In this section, we will follow the same strategy used in [Grasselli e Curty 2019]
to show how to obtain upper bounds for four different yields using two different possible
decoy values. For simplicity, we assume that Alice and Bob both have the same set of
two decoy intensities {µ0, µ1} and apply them independently of one another. We will also
omit the indices associated with detection (k⟳, k⟲) since they do not affect the bounds
estimations. We can then use (5.31) to write pY Y (k⟳, k⟲|µi, µj) := pi,j and

P̃ i,j = eµi+µjpi,j =
∞∑

n,m=0

µni µ
m
j

n!m! Yn,m. (5.35)

We also constrain the yields on the fact that they represent a probability, such that for all
n,m:

0 ≤ Yn,m ≤ 1. (5.36)

In order to derive the upper bounds on the yields, we can combine different gains
(5.35) and maximize a specific yield while minimizing the others. For example, to obtain
an upper bound on the yield Y11, we evaluate

G11 = P̃ 0,0 + P̃ 1,1 − P̃ 0,1 − P̃ 1,0 =
∞∑

n,m=0

1
n!m!Yn,m(µn0 − µn1 )(µm0 − µm1 ), (5.37)

and it is clear to see that for n = 0 or m = 0, the coefficients for the yields are zero. So we
can rewrite (5.37) as

G11 = Y11(µ0 − µ1)2 +
∞∑

n,m=1
n+m>2

Yn,m(µn0 − µn1 )(µm0 − µm1 ). (5.38)

Now, in order to estimate an upper bound on Y11, we need to minimize all other Yn,m
yields in each sum component of (5.38). Since the coefficients are always positive, we can
do that by setting all other yields to zero, resulting in:

Y 11 ≤ G11

(µ0 − µ1)2 = P̃ 0,0 + P̃ 1,1 − P̃ 0,1 − P̃ 1,0

(µ0 − µ1)2 . (5.39)

Note that by combining the gains in (5.38) we eliminate the contributions of all the
yields Y0m and Yn0, resulting in Y11 being the yield with the highest contribution (bigger
coefficients) in the equation. We can use the same logic to find upper bounds on yields
Y01, Y10 and Y00.

By writing

G01 = µ1P̃
0,0 +µ0P̃

1,1 −µ1P̃
0,1 −µ0P̃

1,0 =
∞∑

n,m=0

1
n!m!Yn,m(µ1µ

n
0 −µ0µ

n
1 )(µm0 −µm1 ), (5.40)
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we can easily see that the coefficients of the yields when n = 1 or m = 0 are zero, and we
can write:

G01 = −Y01(µ0 − µ1)2 −
∞∑
m=2

1
m!Y0m(µ0 − µ1)(µm0 − µm1 )

+
∞∑
n=2
m=1

µ0µ1

n!m!Ynm(µn−1
0 − µn−1

1 )(µm0 − µm1 ).
(5.41)

In order to obtain an upper bound for Y01, we need to consider the minimal value for
the remaining yields. In other words, Y01 is maximal when the yields with the same sign
coefficients are minimal and the yields with opposite sign coefficients are maximal. We can
do that by setting Y0m with m ≥ 2 to zero and Ynm with n ≥ 2 and m ≥ 1 to 1, resulting
in

Ȳ01 ≤ 1
(µ0 − µ1)2

[
−G01 +

( ∞∑
m=1

µm0
m! − µm1

m!

)( ∞∑
n=2

µ1
µn0
n! − µ0

µn1
n!

)]
, (5.42)

and finally:

Ȳ01 ≤ (eµ0 − eµ1)(µ0 − µ1 + µ1e
µ0 − µ0e

µ1) −G01

(µ0 − µ1)2 . (5.43)

For the yield Y10, we can write:

G10 = µ1P̃
0,0 +µ0P̃

1,1 −µ0P̃
0,1 −µ1P̃

1,0 =
∞∑

n,m=0

1
n!m!Yn,m(µn0 −µn1 )(µ1µ

m
0 −µ0µ

m
1 ). (5.44)

The coefficients for the yields Yn1 and Y0m are zero, therefore:

G10 = −Y10(µ0 − µ1)2 −
∞∑
n=2

1
n!Yn0(µ0 − µ1)(µn0 − µn1 )

+
∞∑
n=1
m=2

µ0µ1

n!m!Ynm(µn0 − µn1 )(µm−1
0 − µm−1

1 ).
(5.45)

Following the same previous logic, in order to obtain Ȳ10 we can set Yn0 with n ≥ 2 to
zero and Ynm with n ≥ 1 and m ≥ 2 to 1:

Ȳ10 ≤ 1
(µ0 − µ1)2

[
−G10 +

( ∞∑
n=1

µn0
n! − µn1

n!

)( ∞∑
m=2

µ1
µm0
m! − µ0

µm1
m!

)]
, (5.46)

and finally:

Ȳ10 ≤ (eµ0 − eµ1)(µ0 − µ1 + µ1e
µ0 − µ0e

µ1) −G10

(µ0 − µ1)2 . (5.47)

In order to calculate an upper bound on Y00 we write:

G00 = µ2
1P̃

0,0+µ2
0P̃

1,1−µ0µ1P̃
0,1−µ0µ1P̃

1,0 =
∞∑

n,m=0

1
n!m!Yn,m(µ1µ

n
0 −µ0µ

n
1 )(µ1µ

m
0 −µ0µ

m
1 ).

(5.48)
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Since the coefficients for Y1m and Yn1 are zero, we have:

G00 = Y00(µ0 − µ1)2 − µ0µ1(µ0 − µ1)
[ ∞∑
m=2

1
m!Y0m(µm−1

0 − µm−1
1 ) +

∞∑
n=2

1
n!Yn0(µn−1

0 − µn−1
1 )

]

+
∞∑

n,m=2

µ2
0µ

2
1

n!m!Ynm(µn−1
0 − µn−1

1 )(µm−1
0 − µm−1

1 ).

(5.49)

By setting to zero the yields with the same sign as Y00, namely the yields Ynm with
n,m ≥ 2, and setting the yields with opposite sign (Y0m and Yn0) to 1, we have:

Ȳ00 ≤ µ0µ1

(µ0 − µ1)

[( ∞∑
m=2

µm−1
0
m! − µm−1

1
m!

)( ∞∑
n=2

µn−1
0
n! − µn−1

1
n!

)]
+ G00

(µ0 − µ1)2 . (5.50)

And finally:
Ȳ00 ≤ 2(µ1e

µ0 − µ0e
µ1 + µ0 − µ1)

(µ0 − µ1)
+ G00

(µ0 − µ1)2 . (5.51)

5.7 Secret key rate estimation
Since we do not have experimental statistics for the gains of the protocol, and thus the
quantities Gij, we will estimate the yields directly. We remark that in a more realistic
simulation or experimental scenario, the yields are calculated via those quantities. To
approximate a near-optimal secret key rate for the Rio Quantum Network (RQN), we
model quantum bit error rates (QBERs) and detection yields using generalized parameter
values such as network loss, laser intensities and dark count probabilities. For preliminary
estimations, errors in the Z basis are expressed as [Gisin et al. 2002]:

E
(1,0)
Z = E

(0,1)
Z = perror

pclick
=
edη(1 − e−µs) + Y00

2
Y00 + η(1 − e−µs) , (5.52)

where Y00 ≈ 10−6 corresponds to the vacuum yield from detector dark counts, ed ≈ 0.01
represents intrinsic device misalignment, and µs = |α|2 ≈ 0.02 is the signal intensity.
The phase-error rate ek⟳,k⟲Y in the decoy-state framework is derived using yields for up to
two photons, assuming Poissonian photon statistics. Single-photon yields (Y01, Y10) and
two-photon yields (Y11, Y02, Y20) are approximated as µde−µdη and µ2

d

2! e
−µdη, respectively,

where µd ≈ 0.1 denotes the decoy intensity. With Alice and Bob selecting the Z-basis
90% of the time, the joint probability pZZ becomes 0.81, while pZZ(1, 0) and pZZ(0, 1)
are calculated as (pZZ/2)pclick. Here, pclick = Y00 + η(1 − e−µs) defines the total detection
probability. This framework enables the computation of the secret key rate (Equation
(5.33)) as a function of total channel loss.

Figure 9 plots the secret key rate per pulse (logarithmic scale) against total channel
loss for the RQN protocol, benchmarked against the PLOB bound [Pirandola et al. 2017]
and the Gottesman-Lo-Lütkenhaus-Preskill (GLLP) analysis for BB84 with weak coherent
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Figure 9 – Secret key rate per pulse in logarithmic scale for the Rio Quantum Network as
a function of the overall loss of the network. The solid line represents the secret
key rate for the RQN protocol. We compare it to the PLOB-bound [Pirandola
et al. 2017], and to the GLLP secret key rate for a BB84 protocol using
WCPs [Gottesman et al. 2004].

pulses (WCPs) [Gottesman et al. 2004]. The GLLP key rate vanishes at approximately
38.6 dB loss, whereas the RQN protocol sustains a non-zero rate up to around 65 dB,
demonstrating superior resilience in high-loss regimes. While the RQN key rate does not
surpass the PLOB bound—a fundamental limit for repeaterless quantum communication—
it remains competitive, operating closer to this theoretical threshold than conventional
protocols under high-loss conditions.

For a transmittance of η = 0.5, the model predicts a secret key rate of rRQN ≈
0.0072 per round. At MHz pulse repetition rates, this corresponds to approximately 7200
secure bits per second—a promising result under idealized conditions. This simplified
analysis assumes stable parameter values and neglects operational imperfections such as
temporal phase drift or polarization misalignment. Future refinements could incorporate
dynamic channel fluctuations and finite-key effects to better approximate real-world
performance. The RQN’s ability to approach the PLOB bound while outperforming
the GLLP benchmark aligns with the network’s design objectives of enabling secure
communication in lossy, repeaterless environments. This preliminary analysis thus validates
the protocol’s feasibility while highlighting the need for further experimental validation to
address practical implementation constraints.
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6 Conclusions

We have shown how quantum key distribution (QKD) represents a paradigm shift
in secure communication, offering information-theoretic security rooted in the laws of
quantum mechanics. This work has given an overview of the more prominent protocols
in QKD, emphasizing on the foundational BB84, explicitly calculating its secret key rate
while discussing its security assumptions, especially the need for trusted physical devices.
The decoy-state strategy, introduced to mitigate vulnerabilities in laser-based sources,
exemplifies how theoretical innovations can bridge the gap between idealized protocols
and real-world constraints.

To address limitations imposed by device trust, we examined device-independent
QKD (DI-QKD), which uses Bell inequality violations to ensure secure communication
between two parties. While theoretically elegant, DI-QKD remains impractical for near-
term deployment due to its extreme technical demands and high sensitivity to channel losses.
Measurement-device-independent QKD (MDI-QKD) emerged as a pragmatic alternative,
confining trust assumptions to photon sources while guaranteeing security in spite of
untrusted devices. This framework gives way to one of the most promising protocols for
high-loss security communication, twin-field QKD. In TF-QKD, the users are able to
overcome the repeaterless secret key capacity bound (PLOB) through phase-encoding
and remote single-photon interference. We have shown its security analysis and how it
still faces challenges in real-world deployment, such as phase instability and asymmetric
channel conditions, which are exacerbated in multi-user networks like the Rio Quantum
Network (RQN).

Finally, we discussed the RQN project, which by itself poses as a major development
landmark for Brazil in quantum technologies and quantum communication. Expected to
operate in high-loss, asymmetric environments, the network demands a protocol that com-
bines TF-QKD’s resilience with practical scalability. We have shown how a Sagnac-Based
TF-QKD can provide a similar security analysis while severely reducing implementa-
tion costs and easily allowing new users to join the network loop. This variation uses a
shared laser source and common-path signal propagation to inherently synchronize phases
across users, eliminating the need for individual light sources, and tolerating channel
asymmetries—critical advantages for a heterogeneous network spanning multiple institu-
tions in a metropolitan area. We used both TF-QKD and BB84 analysis to provide the
reader with a secret key rate expression in a ideal single-photon scenario as well as in the
practical scenario using the decoy state strategy. We have established a "near-ideal" model



for the secret key rate, achieving approximately 7200 bits per second at 0.5 transmit-
tance under idealized conditions, sustaining communication up to 61.5dB loss. While this
performance does not surpass the PLOB bound, it can outperform conventional imperfect-
light-source BB84 (GLLP) and positions the RQN as a practical solution for high-loss,
repeaterless environments. The deployment of TF-QKD marks a promising first step in
implementing the Rio Quantum Network and thus contributing to Brazil’s research field in
quantum cryptography. Furthermore, studies such as [Donne et al. 2025] demonstrate the
critical role of integrated quantum networks in enabling quantum computing and quantum
communication, advancing us closer to realizing a quantum internet.

Future steps for this project include attempts to establish a Conference-Key-
Agreement QKD protocol, given the network’s multi-user structure. Also, more precise
simulations and models can be made while the network is not fully operating, as well
as using it as a "sandbox" for elaborating novel QKD protocols while accounting for its
practical limitations.

In closing, this work reaffirms that quantum networks are not merely theoretical
constructs but tangible infrastructures with transformative potential. The Rio Quantum
Network protocol, by balancing theoretical rigor with practical feasibility, illustrates how
tailored solutions can overcome global QKD challenges while addressing local priorities
and financial limitations. As quantum technologies transition from labs to real-world
applications, initiatives like the RQN will play a pivotal role in shaping Brazil’s future in
secure communication.
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Appendix

A: Eve’s uncertainty does not increase under symmetrization

This proof follows the steps detailed in [Grasseli 2021]. In the BB84 security proof, it is
said that, without loss of generality, Eve’s uncertainty on Alice’s raw key bit H(RA|E)ρ
does not increase under symmetrization, i.e.:

H(RA|E)ρ ≥ H(RA|E)ρ̃ (1)

where ρ is referring to the state ρAB distributed to Alice and Bob by Eve and ρ̃AB is the
state after the symmetrization maps (EX ◦ EZ):

ρ̃AB = 1
4

[
ρAB + (Z ⊗ Z)ρAB(Z ⊗ Z)

+ (X ⊗X)ρAB(X ⊗X) + (Y ⊗ Y )ρAB(Y ⊗ Y )
]
.

(2)

First, we argue that this is equivalent to Eve preparing one of four states depending
on the outcome of a random variable t ∈ {0, 1, 2, 3}: ρAB, (Z ⊗ Z)ρAB(Z ⊗ Z), (X ⊗
X)ρAB(X ⊗X) and (Y ⊗ Y )ρAB(Y ⊗ Y ), respectively. The state prepared by Eve can be
described as:

ρ̃ABET = 1
4

∑
t

∣∣∣ϕtABE〉 〈
ϕtABE

∣∣∣ ⊗ |t⟩ ⟨t|T , (3)

where {ϕtABE}4
t=1 are the pure, global states shared between Alice, Bob and Eve. The sub-

system T is the classical register which stores the classical random variable t. Furthermore,
we assume that Eve holds the purifying system T ′ of the state (3), with the purified global
state being:

|ϕABETT ′⟩ = 1
2

∑
t

∣∣∣ϕtABE〉
⊗ |t⟩T ⊗ |t⟩T ′ . (4)

In summary, we need to verify that H(RA|E)ρ ≥ H(RA|Etotal)ρ̃, where Etotal = ETT ′

consists of Eve’s quantum side information E, the outcome of the random variable T and
the purifying system T ′. We start by using the strong subadditivity property (Theorem
2.6):

H(RA|Etotal)ρ̃ ≤ H(RA|ET )ρ̃. (5)

Alice’s raw key RA is formed by the outcome of her measurement on state (3). We
calculate the state ρ̃RAET in which the entropies (5) are computed on by applying the map



ERA
(σ) = ∑1

a=0 |a⟩ ⟨a| ⟨a|σ |a⟩ and tracing out Bob’s system on the state ρ̃ABET :

ρ̃RAET = (ERA
⊗ IET ) TrB[ρ̃ABET ]

= 1
4(ERA

⊗ IET ) TrB
[ ∑

t

∣∣∣ϕtABE〉 〈
ϕtABE

∣∣∣ ⊗ |t⟩ ⟨t|T
]

:= 1
4

∑
t

ρtRAE
⊗ |t⟩ ⟨t|T .

(6)

Since the state ρtRAE
is a c.q. state, it follows that H(ρ̃RAET ) = ∑

t p(t)H(ρ̃RAE). Thus,

H(RA|ET )ρ̃ = 1
4

∑
t

H(RA|E)ρt ≥ H(RA|Etotal)ρ̃. (7)

Now, we explicitly compute ρtRAE
to show that H(RA|E)ρt = H(RA|E)ρ (i.e. the

entropy does not depend on the variable t). We have that:

ρtRAE
= (ERA

⊗ IET ) TrB
[ ∣∣∣ϕtABE〉 〈

ϕtABE
∣∣∣ ]

(8)

where |ϕtABE⟩ is the purification of one of the states prepared by Eve according to T . Let
us fix t = 2 and let the state be (X ⊗ X)ρAB(X ⊗ X), noting that this process can be
done analogously in the other cases. We can write ρAB in terms of its eigenvalues λ:

ρAB =
∑
λ

λ |λ⟩ ⟨λ| . (9)

Thus, the state |ϕtABE⟩ reads:∣∣∣ϕtABE〉
=

∑
λ

√
λ

∣∣∣λt〉
AB

⊗ |ξλ⟩E . (10)

where |λt⟩AB = (X ⊗X) |λ⟩ are the eigenstates of the operator (X ⊗X)ρAB(X ⊗X). We
then compute:

ρtRAE
= (ERA

⊗ IET ) TrB
[ ∑
λσ

√
λσ

∣∣∣λt〉 〈
σt

∣∣∣
AB

⊗ |eλ⟩ ⟨eσ|E
]

=
1∑
a

|a⟩ ⟨a| ⊗ TrB
[ ∑
λσ

√
λσ(⟨a|A ⊗ IB)

∣∣∣λt〉 〈
σt

∣∣∣
AB

(|a⟩A ⊗ IB)
]

⊗ |eλ⟩ ⟨eσ|E

=
1∑
a

|a⟩ ⟨a| ⊗ TrB
[ ∑
λσ

√
λσ(⟨a|A ⊗ IB)(X ⊗X) |λ⟩ ⟨σ|AB (X ⊗X)(|a⟩A ⊗ IB)

]
⊗ |eλ⟩ ⟨eσ|E

=
1∑
a

|a⟩ ⟨a| ⊗ TrB
[ ∑
λσ

√
λσ(⟨ā|A ⊗ IB) |λ⟩ ⟨σ|AB (|ā⟩A ⊗ IB)

]
⊗ |eλ⟩ ⟨eσ|E

=
1∑
a

|a⟩ ⟨a| ⊗ ρāE.

(11)

Here, we used the fact that since Alice’s raw key bit is the result of a Z-basis measurement,
the action of X flips its eigenstates: X |a⟩ = |ā⟩. By relabeling the classical outcomes
a ↔ ā, we obtain that

ρtRAE
=

1∑
a

|ā⟩ ⟨ā| ⊗ ρaE (12)

90



We can calculate the state ρRAE analogously:

ρRAE = (ERA
⊗ IE) TrB

[
|ϕABE⟩ ⟨ϕABE|

]
=

1∑
a

|a⟩ ⟨a| ⊗ TrB
[ ∑
λσ

√
λσ(⟨a|A ⊗ IB) |λ⟩ ⟨σ|AB (|a⟩A ⊗ IB)

]
⊗ |eλ⟩ ⟨eσ|E

=
1∑
a

|a⟩ ⟨a| ⊗ ρaE

(13)

and conclude that the states ρtRAE
and ρRAE are the same state up to a classical permutation,

thus we can write:

H(RA|E)ρt = H(RA|E)ρ ∀t, (14)

and finally:

H(RA|E)ρ ≥ H(RA|Etotal)ρ̃. (15)

B: Twin-Field protocol phase error-rate

The definition of the phase-error rate given in 4.42:

ekc,kd
Z =

∑
j=0,1

||AB
〈
jj

∣∣∣χkc,kd

〉
Aa′Bb′

||2, (16)

with ∣∣∣χkc,kd

〉
Aa′Bb′

:=
Mkc,kd

a,b |ψ⟩Aa |ψ⟩Bb√
pXX(kc, kd)

, (17)

where Mkc,kd
a,b is the Kraus operator that describes the action of the relay on the signals

and a′ and b′ are the modes of the signals after the relay’s action. If we only look into
Alice’s part in the phase error rate, we can see that:

A⟨j|ψX⟩Aa = A ⟨j|+⟩A |αA⟩a +A ⟨j|−⟩A |−αA⟩a
2 = e

−|αA|2
2

∞∑
n=0

1√
n!

(αnA + (−1)j(−αA)n)
2 |n⟩a ,

(18)
which results in

A⟨0|ψX⟩Aa = e
−|αA|2

2

∞∑
n=0

α2n
A√
2n!

|2n⟩a =
∞∑
n=0

Ca
2n |2n⟩a (19)

and

A⟨1|ψX⟩Aa = e
−|αA|2

2

∞∑
n=0

α2n+1
A√

(2n+ 1)!
|2n+ 1⟩a =

∞∑
n=0

Ca
2n+1 |2n+ 1⟩a , (20)
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with Cn = e
−|αA|2

2
αn

A√
n! . The same goes for Bob’s part. Therefore, the phase error rate can

be written as:

ekc,kd
Z = ||AB

〈
00

∣∣∣χkc,kd

〉
Aa′Bb′

||2 + ||AB
〈
11

∣∣∣χkc,kd

〉
Aa′Bb′

||2

= 1
pXX(kc, kd)

[
||Mkc,kd

a,b

∞∑
n,m=0

Ca
2nC

b
2m |2n⟩a |2m⟩b ||2+

||Mkc,kd
a,b

∞∑
n,m=0

Ca
2n+1C

b
2m+1 |2n+ 1⟩a |2m+ 1⟩b ||2

]

≤
∞∑

n,m=0

1
pXX(kc, kd)

[
(Ca

2nC
b
2m)2

ab ⟨2n, 2m|Mkc,kd†
a,b Mkc,kd

a,b |2n, 2m⟩ab +

+ (Ca
2n+1C

b
2m+1)2

ab ⟨2n+ 1, 2m+ 1|Mkc,kd†
a,b Mkc,kd

a,b |2n+ 1, 2m+ 1⟩ab
]

(21)

We then have:

ekc,kd
Z =

∞∑
n,m=0

1
pXX(kc, kd)

[
(Ca

2nC
b
2m)2||Mkc,kd

a,b |2n, 2m⟩ab ||2

+ (Ca
2n+1C

b
2m+1)2||Mkc,kd

a,b |2n+ 1, 2m+ 1⟩ab ||2
]
.

(22)

We can then define the yields as being

||Mkc,kd
a,b |2n, 2m⟩ab ||2 := pzz(kc, kd|2n, 2m) = Y kc,kd

2n,2m (23)

and
||Mkc,kd

a,b |2n+ 1, 2m+ 1⟩ab ||2 := pzz(kc, kd|2n+ 1, 2m+ 1) = Y kc,kd
2n+1,2m+1. (24)

Then, finally, the phase error rate is

ekc,kd
Z = 1

pxx(kc, kd)

[( ∞∑
n,m=0

Ca
2nC

b
2m

√
Y kc,kd

2n,2m

)2
+

( ∞∑
n,m=0

Ca
2n+1C

b
2m+1

√
Y kc,kd

2n+1,2m+1

)2]
. (25)
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