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Resumo

Esta Dissertação pode ser lida em duas partes. Na primeira, iniciando com as equações
(Abelianas) de Maxwell, apresentamos um procedimento, denominado método de Noether,
que nos permite construir em alguns passos a versão não-Abeliana a partir de um modelo
originalmente Abeliano. Dessa forma, obtivemos naturalmente uma formulação de Yang-Mills
para partículas de spin-1 e massa nula a partir da Eletrodinâmica de Maxwell. Em seguida,
dedicamos um capítulo inteiro à introdução de diferentes conceitos da Relatividade Geral, com
o objetivo de preparar o leitor, de modo que, ao entrar na discussão sobre a Gravidade Quântica
em Laços, já tenha familiaridade com determinados conceitos. Isso ocorre logo no capítulo
seguinte, onde apresentamos uma teoria que busca unificar a Mecânica Quântica e a Relatividade
Geral. Ao longo do texto, elencamos diferentes pontos que visam proporcionar uma melhor
compreensão da teoria, culminando com o cerne da Dissertação: os principais observáveis de uma
teoria eletromagnética não-linear incorporando efeitos da LQG e a posterior versão de Yang-Mills
acrescida das correções da LQG. Essa abordagem é descrita em um cenário que permite conectar
uma teoria de gravidade quântica a teorias não-Abelianas, como a Cromodinâmica Quântica e
a Teoria Eletrofraca.

Palavras-chave: Teorias de Yang-Mills, Eletromagnetismo não-linear, Gravitação Quântica,
Gravitação Quântica de Laços.



Abstract

This Dissertation can be read in two parts. In the first part, starting off from the (Abelian)
Maxwell equations, we have adopted a procedure referred to as the Noether method, which
allows us to build up the non-Abelian version of an Abelian model we start from. In this way,
we have worked out a non-Abelian formulation for self-interacting massless spin-1 particles.
This is the Yang-Mills theory. Next, we have dedicated an entire chapter to introducing different
concepts of General Relativity, with the aim of preparing the readers so that, when entering the
discussion on Loop Quantum Gravity, they may feel already familiar with the main concepts.
This is the topic of the following chapter, where we present a theory that seeks to unify Quantum
Mechanics and General Relativity. Throughout the text, we present various points to further
provide a better understanding of the theory, getting to the core of the Dissertation: the main
quantities of a nonlinear electromagnetic theory and extending it to finally arrive at a set of
Loop-Quantum-Gravity-corrected Yang-Mills field equations . This approach is presented in a
framework that allows to connect a quantum gravity model to non-Abelian theories, such as
Quantum Chromodynamics and the Electroweak Theory.

Keywords: Yang-Mills theory, Non-linear Electromagnetism, Quantum Gravity, Loop Quantum
Gravity.
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Chapter 1

Introduction

Physics is, after all, an experimental natural science. Since the establishment of the
scientific method, it has been understood that for any discovery regarding a subject to be valid,
it must pass through all the stages of this method. However, the greatest discoveries and/or
advancements in Physics have arisen from two entirely different sources from experimentation:
contradiction and empiricism [1].

Contradiction, in turn, could almost be defined as the antithesis of Physics, as it
represents the lack of logic concerning something. The reader may think this statement is
contradictory, but there is a deeper connection. Einstein may have been the physicist who
best utilized contradictions, as two of them led to significant discoveries. The first arose from
the contradiction between classical mechanics and the photoelectric effect. The second came
from the formulation of Special Relativity, which resolved the inconsistency between classical
mechanics and electrodynamics. Of course, there are other examples of contradictions leading
to great leaps in understanding. It is noteworthy that these logical inconsistencies between two
previously successful theories paved the way for monumental theoretical developments.

Empiricism, on the other hand, plays a more subtle role. The major discoveries stemming
from contradictions were achieved without new empirical data. These models were developed
almost blindly. Undoubtedly, the most notable physicist to use this concept was Isaac Newton,
one of the greatest scientists in history. Another major example of empiricism is found at the
dawn of astronomy, with thinkers like Galileo, Kepler, and Copernicus working under such
frameworks.

Physics, which describes fundamental interactions, benefited from the concepts of contra-
diction and empiricism throughout its development [2]. It began with the creation of Quantum
Mechanics by W. Heisenberg, P. Dirac, and E. Schrödinger [3, 4]. However, the electron, the
main protagonist, lacked a relativistic description. P. Dirac [5] resolved this issue, introducing
gauge symmetry U(1) [6] and unifying Quantum Mechanics and Special Relativity. Dirac, based
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on purely empirical reasoning, also predicted the existence of antiparticles, discovered in 1932.
Around this time, the atom was undergoing theoretical development. I. Tamm and H. Yukawa
began studying the interaction between protons and neutrons in the atomic nucleus [8], using
Maxwell’s electromagnetism as an analogy to develop their nuclear theory. Since vector bosons
mediating interactions should be massless in electromagnetism, Yukawa formulated a theory of
massive scalar bosons to account for the short range of strong nuclear interactions.

After Quantum Mechanics, Heisenberg investigated the origin of isospin (or isotopic
spin). He addressed this by introducing the SU(2) symmetry group as the basis for isospin,
associating protons and neutrons, which have nearly identical masses, as members of a doublet
[12]. Later, E. Wigner [13] demonstrated that this new quantum number should be conserved,
invalidating Yukawa’s scalar boson theory.

Efforts shifted towards the formulation of a gauge theory with spin-1 bosons, in which,
self-interaction among the gauge fields was allowed. Initially, these bosons would be massless,
but would acquire mass through spontaneous symmetry breaking. Massless mediators would
imply that strong interactions have infinite range, contradicting the short-range nature of nuclear
forces. Two groups independently formulated this theory for nuclear interactions: the first,
more renowned, by C. N. Yang and R. Mills in 1954 (known as the Yang-Mills theory) [16],
and the second, by R. Shaw [15], whose work remained unpublished but was recorded in his
doctoral thesis at Cambridge under A. Salam’s supervision. Both formulations addressed prior
issues, providing a local SU(2) gauge theory that conserved total isospin and it was anticipated
(though not demonstrated at the time) to be renormalizable [16,18,36].

It is worth noting that by 1954, the Higgs mechanism had not been formulated. Conse-
quently, the Yang-Mills theory faced significant challenges concerning mediator masses. Empiri-
cism had also been set aside, as fundamental interaction theories failed to align with existing
experimental data. In 1956, C. N. Yang and T. D. Lee published a study showing that weak
interactions violate parity symmetry to comply with special relativity [20]. This work inspired
Salam to develop a Yang-Mills theory for weak interactions, emphasizing the importance of such
formulations and introducing the concept of chiral symmetry [24]. Other physicists, including
S. Glashow [21] and S. Weinberg [22], also contributed to this effort. Salam had previously
integrated weak interactions into the SU(2) Yang-Mills framework [23].

The problem of the masses of mediators persisted until the spontaneous symmetry-
breaking mechanism (the Higgs mechanism), which earned the 2013 Nobel Prize, was developed.
These advancements solidified the Yang-Mills theory as the most comprehensive framework for
describing fundamental interactions [25, 26].

Once again, the pillars of contradiction and empiricism have influenced physics, particu-
larly in Quantum Gravity research since the 1930s. Developing a theory of Quantum Gravity
faces challenges due to a lack of guiding empirical data and the contradiction between General
Relativity and Quantum Mechanics. Achieving this theory is crucial for addressing significant
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open problems in contemporary physics, such as unifying General Relativity and Quantum
Mechanics, resolving singularities in black holes and the Big Bang, understanding spacetime at
Planck scales.

For years, efforts to quantize gravity have faced difficulties due to the foundational
differences between the theories being unified. Einstein’s General Relativity introduced a
groundbreaking view of spacetime, merging space and time into a gravitational field. Conse-
quently, quantizing the gravitational field equates to quantizing spacetime itself.

As with any minimally functional theory, a ground state for the quantized gravitational
field is required. This state involves quantum metric fluctuations relevant at scales where a
quantum particle’s localization avoids being concealed by its horizon (the Planck length). Above
these scales, such corrections can be disregarded. Quantizing the gravitational field inherently
involves quantizing geometry, fundamentally challenging traditional perspectives. A Quantum
Gravity framework must describe quantum states before spacetime itself emerges.

The Planck scale introduces the discrete, finite nature of quantum spacetime, establishing
a fundamental constant l0 akin to the speed of light (c) in special relativity and ℏ in Quantum
Mechanics. These concepts necessitate revisiting basic physical notions, suggesting that all
phenomena in nature might be described by general-covariant quantum fields. This l0 is a
fundamental and discreteness constant of the world.

Figure 1 – Evolution of the Concept of Spacetime in the Development of Physical Theories [1].

The ultraviolet energy implies finiteness on a Planck scale. Two theories that successfully
incorporate this consideration are String theory and Loop Quantum Gravity (LQG). String
theory incorporates and addresses Quantum Gravity, aiming at the grand unification of physics.
It originates from a different perspective than LQG, inheriting concepts from Supergravity
theories, which, in turn, stem from Supersymmetry and Kaluza-Klein theories. These theories
themselves are based on earlier ideas.
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LQG, on the other hand, is solely a theory of Quantum Gravity, not directly concerned
with grand unification, though it does not exclude it. Moreover, LQG presents two distinct
versions, analogous to twin siblings raised differently. Both versions originate from a quantized
metric. However, the canonical version, utilized in this work, stems from the loop solutions of the
Wheeler-DeWitt equation and later redefined using Ashtekar variables. The other formulation,
known as Spinfoams, resembles a "sum over geometries," inspired by the Euclidean functional
integral developed by Hawking and his group in the 1970s. The Spinfoam theory has merged
with the canonical formulation’s kinematics, leading to the Covariant Loop theory, which can
satisfactorily describes LQG. The figure below outlines the historical evolution described earlier.

Figure 2 – The Development Stages of the Two Main Quantum Gravity Theories. On the left, we
have String Theory. On the right, we have LQG [1].

After this brief introduction, this work is outlined as follows. In Chapter 2, we develop
Yang-Mills theory as a self-interacting gauge boson theory. More precisely, starting from
Maxwell’s electromagnetism and its U(1) group, we extend it to obtain a non-Abelian version
of Maxwell’s equations with SU(N) symmetry. We achieve this using Noether’s method to
introduce self-interactions in a free theory. After deriving these equations, we apply them
to fundamental quantities in electromagnetic theory, such as the Poynting vector and the
energy-momentum tensor. Expanding beyond spin-1 vector bosons, we apply the method to
fermionic matter, observing that minimal coupling of fermions to gauge bosons (Yang-Mills
bosons) arises spontaneously [2].

In Chapter 3, we introduce the reader to the fundamentals of General Relativity (GR),
which are essential for understanding the basics of LQG. We begin by presenting arguments
framing GR as a gauge theory. Subsequently, we develop the tetrad formalism and its impact on
the traditional description of GR. Here, we introduce the main quantities in this formalism and
how the gravitational field action is described. Finally, we present the Hamiltonian formulation
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of GR, known in the literature as the ADM formalism, providing a pedagogical introduction to
its key concepts, including the Hamiltonian and diffeomorphism constraints.

In Chapter 4, we delve into Loop Quantum Gravity, connecting the ADM formalism from
the previous chapter to the Wheeler-DeWitt equation. We then explore LQG comprehensively,
introducing its foundational concepts, such as area and volume operators. Additionally, we
dedicate attention to Ashtekar variables, which are fundamental to LQG, and their connection
to the tetrad formalism. To foster familiarity, we include an introduction to Wilson loops in
the context of LQG. Finally, we discuss some applications of LQG in cosmology and black hole
physics.

In Chapter 5, we extend LQG applications to the electromagnetic sector, presenting
the main results of this work. We calculate key quantities in electromagnetic theory under
LQG effects, such as the Poynting vector, stress tensor, wave equations, dispersion relations,
group velocity, and refractive index. These expressions provide an overarching understanding of
LQG’s influence on classical electromagnetism. Building on these concepts, we further develop
Yang-Mills theories incorporating LQG effects in the electromagnetic sector, following a similar
approach to the non-Abelianization of the theory in Chapter 2 but with additional complexities.
This led to intriguing results that may aid future understanding of Quantum Gravity.

Finally, we conclude the work with a chapter summarizing the findings of all chapters,
emphasizing the novel results from Chapter 5. We also outline future perspectives emerging
from this text.

At last, this work includes three Appendices that elucidate key equations and technical
concepts regarding LQG that, while important, are too detailed for the main text. Following
these Appendices, we present the references that support this Dissertation.
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Chapter 2

From Maxwell’s equations to Yang-Mills Theory

We begin this chapter with the aim of developing Yang-Mills (Y-M) theory as a theory
of self-interaction for gauge bosons [2, 16]. More precisely, starting from the construction of
Maxwell’s electromagnetism using its U(1) group, we will extend it to obtain a non-Abelian
version of Maxwell’s equations with the symmetry group SU(N). We will achieve this by
using a method to create fields self-interactions through a free theory, known as Noether’s
method∗. With these equations in hand, we proceed to apply them to other key quantities
in electromagnetic theory, such as the Poynting vector and the energy-momentum tensor. To
extend beyond spin-1 vector bosons, we also apply the self-interaction framework to fermionic
matter, where we find that minimal coupling between fermionic matter to mediating bosons
(Y-M bosons) arises naturally.

The light particle was identified as the photon, which is massless, allowing electric
and magnetic phenomena to be described by equations known as Maxwells equations in the
vacuum [27] of the form:

∇ · E = 0, (2.1)

∇ · B = 0, (2.2)

∇ × E = −∂B
∂t
, (2.3)

∇ × B = ∂E
∂t
, (2.4)

the bold parameters are vectors. The electric field can be write as

E = −∇ϕ− ∂A
∂t

, (2.5)

and the magnetic field
B = ∇ × A. (2.6)

∗Named after Emmy Noether, whose profound contributions, especially Noether’s theorem, reveal the link
between symmetries and conserved quantities in physics [28,29].
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The field ϕ is called the scalar potential and A the vector potential. Maxwell’s equations enjoy
gauge freedom, meaning that when expressing the electric and magnetic fields as in equations
(2.5) and (2.6), the gauge symmetry associated with the potentials in Maxwell’s equations must
be preserved. Consequently, the potentials should remain invariant under the transformation
form

{ϕ,A} → {ϕ′,A′}, (2.7)

ϕ′ = ϕ+ ∂α(t, x⃗)
∂t

A′ = A − ∇ · α(t, x⃗). (2.8)

The following step involves applying Noether’s method, a widely recognized approach in
supersymmetry and supergravity due to its extensive range of applications [30–33], to construct
a non-Abelian Maxwell theory. For simplicity, in this dissertation we have opted to use Euclidean
signature.

2.1 Construction of Self-Interacting Theory for Spin-1 Fields

The quest for a non-Abelian framework fir spin-1, massless particles with self-interaction
begins by the introduction of a multiplet of fields that are massless and own have spin-1, as
described below:

Ai, i = 1, 2, ..., N ϕi, i = 1, 2, ..., N (2.9)

as a consequence we have the fields grouped into an N-plet. Yang-Mills theory is built upon Lie
groups, so we assume a Lie-type symmetry for the potentials in an arbitrary N -dimensional
representation, which transform as follows:

ϕ′
i = Rijϕj, (2.10)

A′
i = RijAj, (2.11)

where Rij is a element of the Lie group, which, due to the exponential structure of the group
algebra [34], can be written as

Rij = (eiwaGa)ij ∼ δij + iwa(Ga)ij +O(w2), (2.12)

whew wa is the parameter of the group and the fields transform in infinitesimal form as

δAi = iwa(Ga)ijAj, (2.13)

δϕi = iwa(Ga)ijϕj. (2.14)

Where (Ga)ij are the generators of the Lie group in a given representation, forming the core of
a Lie group’s structure; they satisfy the following commutation relation:

[Ga, Gb] = ifabcGc. (2.15)
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The fabc is the structure constant of the group SU(N). So, we use this representation, represented
by complex, n×n unitary matrices with determinant equals to 1. Additionally, wa are arbitrary
functions of x. Let us begin with the free Lagrangian of electromagnetic theory in vacuum

L = 1
2(E2 −B2). (2.16)

We want to generate interactions between the fields; to achieve this, we will use the variational
principle with respect to the potentials

δS = 0 =
∫
d4x δ ·

[
E2

2 − B2

2

]

= 1
2

∫
d4x (2Ei · δEi − 2Bi · δBi)

=
∫
d4x

[
Ei ·

(
∇δϕi + ∂δAi

∂t

)
− Bi · (∇ × δAi)

]
, (2.17)

from this, we obtain

∇ · (Bi × δAi) − (∇ × Bi) · δAi︸ ︷︷ ︸
Eq. (2.4)

−∇ · (Ei · δϕi) + (∇Ei) · ϕi︸ ︷︷ ︸
Eq. (2.1)

− ∂

∂t
(Ei · δAi) + ∂Ei

∂t
· δAi︸ ︷︷ ︸

Eq. (2.4)

= 0.

(2.18)

The terms selected as Eq. (2.1) are zero, as is the term Eq. (2.4), due to Maxwell’s equations.
The remaining terms are total spatial and temporal derivatives. If these terms involve the
variation δAi, we substitute them using Eq. (2.13); if they involve δϕi, we substitute them using
Eq. (2.14). These can be separated into spatial and temporal currents as follows

ja = −iwa(Ga)ij[(Ei · ϕj) − (Bi × Aj)], (2.19)

j0
a = −iwa(Ga)ij(Ei · Aj). (2.20)

With the construction of these currents, we move from a theory of free particles to one where
massless spin-1 vector bosons exhibit self-interactions. Observe that the currents carry the
index (a) associated with the symmetry group’s generators, while the fields are indexed by the
representation label (i). Consequently, self-interaction is possible only if these indices coincide,
meaning i = a. To enable self-interaction between the fields and currents, the fields initially
assigned to an arbitrary representation must transform in the adjoint representation, aligning
with the current’s representation. Once this realignment is achieved, the subsequent step is to
incorporate these currents into the standard Lagrangian, yielding a self-interaction Lagrangian
for the photons as follows

L1 = 1
2(E2 −B2) − lϕaj

0
a − lAaja, (2.21)

we introduce l as the coupling constant for the self-interaction. An essential aspect of the
adjoint representation is that the number of fields matches the number of generators. In this
representation, the generators are expressed as

(Ga)bc = −ifabc, (2.22)
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where a, b, · · · = 1, . . . , N2 − 1. In the adjoint representation, as in the case of SU(2), the
generators of the representation are given by the Pauli matrices

σ1 =
0 1

1 0

 , σ2 =
0 −i
i 0

 , σ3 =
1 0

0 −1

 , (2.23)

and, in the case of SU(3), the representation is the octet of Gell-Mann matrices, which are

λ1 =


0 1 0
1 0 0
0 0 0

 , λ2 =


0 −i 0
i 0 0
0 0 0

 , λ3 =


1 0 0
0 −1 0
0 0 0



λ4 =


0 0 1
0 0 0
1 0 0

 , λ5 =


0 0 −i
0 0 0
i 0 0

 , λ6 =


0 0 0
0 0 1
0 1 0

 ,

λ7 =


0 0 0
1 0 −i
0 i 0

 , λ8 = 1√
3


1 0 0
0 1 0
0 0 −2

 . (2.24)

Thus, it is possible for the previously obtained currents to be expressed in terms of these
structure constants of the adjoint representation in SU(N)

ja = −iwa(Ga)ij[(Ei · ϕj) − (Bi × Aj)]
= −fabc[(Eb · ϕc) − (Bb × Ac)], (2.25)

j0
a = −iwa(Ga)ij(Ei · Aj)

= −fabc(Eb · Ac). (2.26)

The parameter w is no longer necessary. Using relation (2.25) and (2.26) in Eq. (2.21), we
obtain the self-interaction Lagrangian for massless, spin-1 vector bosons in the form

L1 = 1
2(E2 −B2) + lϕafabcEb · Ac + lAafabc[(Eb · ϕc) − (Bb × Ac)], (2.27)

the interaction Lagrangian modifies the original one and, consequently, the original field equations
given by (2.1) and (2.4). We will obtain new modified Maxwell equations derived from (2.27).
Thus, we obtain expressions for Gauss’s law and Ampère-Maxwell as

∇ · Ea + 2lfabc∇ · Abϕc + 2lfabcAb∇ · ϕc + 2lAbfabcEc = 0, (2.28)

(∇×Ba)−2l ∂Ab

∂t
fabcϕc −2lfabc[(Eb ·ϕc)− (Bb ×Ac)]+ lfabc∇× [(Ab ×Ac)]−

∂Ea

∂t
= 0. (2.29)

Notice how self-interaction modifies the standard equations. To eliminate any dependence on
potential terms within the adjoint representation in the derivatives, we must repeat the same
procedures. This involves redefining the fields in the form of

δAa = iwd(Gd)aeAe = wdfdaeAe, (2.30)
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δϕa = iwd(Gd)aeϕe = wdfdaeϕe. (2.31)

To obtain the new currents, it is necessary to use the principle of least action in the Lagrangian
(2.27)

δS = 0 =
∫
d4x δ

[1
2(E2 −B2) + lϕafabcEb · Ac + lAafabc[(Eb · ϕc) − (Bb × Ac)]

]
= 0,

=
∫
d4x

1
2 (2Ei · δEi − 2Bi · δBi) + lδϕafabcEb · Ac + lϕafabcδEb · Ac + lϕafabcEb · δAc+

lδAafabc[(Eb · ϕc) − (Bb × Ac)] + lAafabc[(δEb · ϕc) + (Eb · δϕc) − (δBb × Ac)−
(Bb × δAc)]

=
∫
d4x

Ei ·
(

∇δϕi + ∂δAi

∂t

)
− Bi · (∇ × δAi) + lδϕafabcEb · Ac + lϕafabcEb · δAc+

lϕafabc

(
∇δϕb + ∂δAb

∂t

)
· Ac + lδAafabc[(Eb · ϕc) − (Bb × Ac)] + lAafabc[(Eb · δϕc)+((

∇δϕb + ∂δAb

∂t

)
· ϕc

)
− ((∇ × δAb) × Ac) − (Bb × δAc)]

 (2.32)

As previously done, it will be necessary to solve each term separately. Some terms will vanish
as they correspond exactly to Eqs. (2.28) and (2.29). Other terms will remain, all of which
are total spatial or temporal derivatives. These can be assigned to the spatial and temporal
currents, as shown below

j(1)
d = −fdae[(EA · ϕe) − (Ba × Ae) − 2lfabcAbϕeϕc], (2.33)

j
0(1)
d = −fdae(EA · Ae − 2lfabcAbAeϕc). (2.34)

Finally, the self-interaction Lagrangian is

L2 = L − l′ϕdj
0(1)
d − l′Adj(1)

d

= 1
2(E2 −B2) − l′Aafabc(Bb × Ac) − 4ll′fabcfadeAbAdϕcϕe + 2l′fabcϕaAbEc, (2.35)

observe that once expression (2.35) is obtained, deriving a new current is no longer necessary.
This occur because the expression is now independent of the potential terms in the adjoint
representation associated with the field. Therefore, if the same procedures are repeated n

additional times, we will obtain n currents identical to the previous ones, as in (2.33) and (2.34).
Consequently, there is no further need to derive self-interaction currents, and we can use the
values l = 1

4g and l′ = 1
2g for the coupling constants. We set these values by invoking the

principle of universality, we can choose them in such a way that there is only a gauge coupling
constant, exactly as it is the case for Yang-Mills theories [35], to write the Lagrangian as

L2 = 1
2(E2 −B2) − 1

2gAafabc(Bb × Ac) + gfabcϕaAbEc − 1
2g

2fabcfadeAbAdϕcϕe, (2.36)

from equation (2.36), we find the following equations for the electric and magnetic fields of
Yang-Mills:

Ea = −∇ · ϕa − ∂Aa

∂t
+ gfabcAbϕc, (2.37)
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Ba = (∇ × Aa) + 1
2gfabc(Ab × Ac). (2.38)

Where, from the Lagrangian (2.36), it is possible to obtain the following field equations

∇ · Ea + gfabcAbEc = 0, (2.39)

∇ × Ba + gfabc(Ab × Bc) + gfabcϕbEc = ∂Ea

∂t
. (2.40)

Note that equations (2.39) and (2.40) have the same structure as equations (2.28) and (2.29)
when their electric and magnetic fields are defined as in (2.37) and (2.38). Furthermore, two
more field equations are still needed to complete the quartet of Maxwell’s equations. Thus, from
the new formulations (2.37) and (2.38), it is possible to obtain the last two Maxwell equations
(Gauss’s law for magnetism and Faraday-Lenz law) in the non-Abelian formulation:

∇ × Ea = −∂Ba

∂t
+ gfabcϕbBc − gfabc(Ab × Ec), (2.41)

∇ · Ba + gfabcAbBc = 0. (2.42)

In a compact form, we can write the new non-Abelian Maxwell equations, that is, expressed in
the Yang-Mills formalism for the group SU(N), as:

∇ · Ea + gfabcAbEc = 0, (2.43)

∇ · Ba + gfabcAbBc = 0, (2.44)

∇ × Ea + gfabc(Ab × Ec) = −∂Ba

∂t
+ gfabcϕbBc, (2.45)

∇ × Ba + gfabc(Ab × Bc) = ∂Ea

∂t
− gfabcϕaEb. (2.46)

From this newly derived set of non-Abelian equations, we can observe, when compared to
equations (2.1), (2.2), (2.3), and (2.4), that Gauss’s law for magnetism (2.44) undergoes
significant structural changes. These changes suggest that the self-interacting spin-1, massless
vector fields can generate magnetic monopoles even in the absence of fermionic matter, as
demonstrated in equation (2.44). This distinction is a key difference between the Abelian and
non-Abelian cases, as derived from Maxwell’s equations. It is also essential to note that the
electric and magnetic fields here lack physical meaning, as they are not gauge-invariant.

2.1.1 The natural emergence of the covariant derivative

As an initial approach to developing a self-interaction theory for massless spin-1 vector
bosons from first principles, we can naturally define the covariant gauge derivative with its
spatial component as:

D = δc
a∇ + gfabcAb, (2.47)

and the covariant gauge temporal derivative is:

Dt = δc
a

∂

∂t
− gfabcϕb. (2.48)
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From such definitions, it is possible to rewrite equations (2.43), (2.44), (2.45), and (2.46) with
the same structure as the usual Maxwell equations in (2.1), (2.2), (2.3), and (2.4). They will be
replaced by the derivative operators with a non-Abelian structure of the group SU(N); thus,
we obtain the following expressions:

D · Ec = 0, (2.49)

D · Bc = 0, (2.50)

D × Ec = −Dt · Bc, (2.51)

D × Bc = Dt · Ec. (2.52)

With these results, the analysis of the theory can be extended to the point of application
to matter. This allows it to be used in the construction of the electroweak and quantum
chromodynamic theories, since both are formulated within a non-Abelian framework. Moreover,
these theories constitute fundamental components of the Standard Model of particle physics.

2.1.2 The energy and momentum of Yang-Mills waves

With the derivation of equations (2.49), (2.50), (2.51), and (2.52), which are analogous
to the Maxwell equations, we can demonstrate that certain applications of these equations
yield results similar to those in conventional electromagnetism. Moreover, the covariant gauge
derivative behaves like a standard derivative when dealing with scalar terms in the Yang-Mills
indices. A Yang-Mills scalar is defined as a singlet of the symmetry group, indicating that
the generators, Ga, are trivial, with Ga = 0, when acting on Yang-Mills scalar quantities.
Consequently, we have Dt = ∂

∂t
and D = ∇. Thus, we can express:

(Dt · Bc) · Bc =
(
∂Bc

∂t
− gfcabϕaBb

)
· Bc =

(
∂Bc

∂t

)
· Bc − gfcabϕaBbBc = ∂

∂t

(
B2

2

)
. (2.53)

Such a relationship occurs in the same way as the spatial covariant gauge derivative given
in (2.47). Therefore, we will use this relation to find the directional energy flux, that is, the
Poynting vector. The method of obtaining this quantity is similar to that used in undergraduate
electromagnetism courses. Due to the property of the covariant gauge derivative shown previously,
we have:

∇ · S + ∂Uem

∂t
= 0, (2.54)

this equation is associated with the conservation of energy since S = (Ec × Bc) is the Poynting
vector, a fundamental quantity in electromagnetic theory, as it represents the momentum flux,
and Uem = 1

2(E2 +B2) provides the electromagnetic energy density. Taking the time derivative
of the Poynting vector, we can naturally deduce the continuity equation relating the momentum
of the non-Abelian wave to the corresponding stress tensor, as follows:

∂S
∂t

+ ∇ · T = 0, (2.55)
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where again S is the Poynting vector and T is the electromagnetic stress-energy tensor, which
determines the fundamental properties of the electric and magnetic fields such as energy,
momentum, pressure, and so on, and has components

Tmn = [δmn(B2
c + E2

c ) −Bm
c B

n
c − Em

c E
n
c ]. (2.56)

After having explored some applications through the equations describing spin-1 fields in vacuum,
we can now consider the case where external sources are present. It is of highest importance to
emphasize that the addition of sources is crucial for the equations, just as in the usual Maxwell
equations. However, for the derivation of the non-Abelian spin-1 equations, they do not present
a fundamental character. Therefore, now that the entire construction has been made, we can
add them. This would lead to the equations (2.49) and (2.52) being rewritten as:

D · Ec = ρc, (2.57)

D × Bc = Dt · Ec + Jc. (2.58)

An important observation when adding the sources is that the Yang-Mills indices of these
sources must be the same as the indices of the fields.

2.1.3 Coupling with matter

In this work, we have developed a theory of self-interaction for massless, spin-1 vector
bosons. Naturally, this leads to a question of how the theory behaves in the presence of matter,
particularly in coupling with fermionic matter. Yang and Mills, in their foundational 1954 paper,
initially explored the matter sector in a similar way. Such an analysis allows us to understand
how gauge transformations act on the matter fields. We start from the Dirac Lagrangian

LD = iψ†γ0 ∂

∂t
ψ + iψ†γµ∇ψ, (2.59)

where ψ represents the fermionic matter field, and its transpose conjugate ψ† = (ψ∗)T is used
here. The spinorial indices are hidden and the γ-matrices, known as Dirac matrices, satisfy the
Clifford algebra:

{γµ, γν} = γµγν + γνγµ = 2ηµν , (2.60)

where ηµν denotes the Minkowski metric. Based on equation (2.59) a Lie transformation for the
fermionic matter fields can be introduced similarly to equations (2.10) and (2.11) like

ψ′
A = RABψB. (2.61)

Here, we take these indices in the adjoint representation. For the group SU(N), these indices
range as A,B = 1, . . . , N2 − 1 . Assuming a linear transformation for fermionic matter, we
seek to identify the function RAB. This group is characterized by unitary matrices, satisfying
R†R = 1 in U(N), and | detR|2 = 1 → detR = 1. Analysis shows that this group has N real
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constraints and N2 − 1 degrees of freedom. To ensure the invariance of Lagrangian (2.59), we
apply the covariant derivatives (2.47) and (2.48) on the N -plet of matter, with the following
transformations:

(Dtψ)′
A = RAB(Dtψ)B, (2.62)

(Dψ)′
A = RAB(Dψ)B. (2.63)

Applying the gauge covariant derivative to both spatial and temporal components yields
consistent results. For SU(N), the covariant derivative transforms under similarity as:

D′
t = RDtR

−1 → ∂

∂t
+ ig = R

(
∂

∂t
+ ig

)
R−1, (2.64)

D′ = RDR−1 → ∇ + ig = R (∇ + ig)R−1. (2.65)

These unitary matrices provide a unitary group representation. Thus, such transformations
apply similarly to other fields. Using the field transformation in Eq. (2.8), we derive the
transformation for the A field, covering both spatial and temporal components:

A′ = RAR−1 + i(∇R)R−1, (2.66)

Φ′ = A′
0 = RΦR−1 + i

(
∂

∂t
R

)
R−1. (2.67)

Choosing to work with spatial components, we set A0 = Φ and substitute this into the following
equation:

∇ψ′ + iAψ′ = RAB∇ψ + iRABAψ, (2.68)

which, upon resolution, gives
RAB = (eiwaGa)AB. (2.69)

Using Noether’s theorem, we obtain the fermionic self-interaction current for this system

jm = ψ†
Aγ

µm(Ga)ABψB, (2.70)

with the temporal component, also known as charge density, given by

ρ0
m = ψ†

Aγ
0(Ga)ABψB. (2.71)

The Lagrangian for fermionic matter self-interaction is then written as

L1
D = LD − gρ0

mΦ + gjmA, (2.72)

where g is the universal coupling constant of Yang-Mills theory. This universality implies that
both the self-coupling of the mediating bosons and their coupling to matter are governed by
the same parameter g, which typically matches the Yang-Mills coupling in the Dirac equation.
Expanding all terms yields

L1
D = iψ†

Aγ
0 ∂

∂t
ψB + iψ†

Aγ
µ∇ψB − gψ†

Aγ
0(Ga)ABψBΦ + gψ†

Aγ
µ(Ga)ABψBA (2.73)
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= ψ†
Aiγ

0
(
δAB

∂

∂t
+ ig(Ga)ABΦ

)
ψB + ψ†

Aiγ
µ(δAB∇ + ig(Ga)ABA)ψB.

This expression can be reorganized using covariant derivatives defined in the adjoint representa-
tion as follows:

(D)AB = δAB∇ + ig(Ga)ABA, (2.74)

(Dt)AB = δAB
∂

∂t
+ ig(Ga)ABΦ. (2.75)

This formalism demonstrates that the gauge covariant derivative structure adapts to the
representation proposed by the theory. Ultimately, this approach leads to the following expression
for the Lagrangian:

L1
D = iψ†

Aγ
0(Dt)ABψB + iψ†

Aγ
µ(D)ABψB. (2.76)

The central idea it becomes clear that, through Noether’s procedure, we obtained the main
goal — starting from a free Abelian theory of massless spin-1 vector bosons and arriving at a
Yang–Mills theory, which retains these same bosonic properties, but now in a non-Abelian and
self-interacting version.

We also showed that several developments originating from Maxwell’s electromagnetism
can be extended to the non-Abelian formalism. The illustrations we chose were: the energy
conservation equation involving the Poynting vector and the computation of the electromagnetic
energy-momentum tensor.

Finally, we chose to carry out the same analysis for the fermionic matter sector. This
entire chapter serves as a way to prepare the reader for what is to come. We will once again
employ Noether’s procedure in this work, but now considering the effects of Loop Quantum
Gravity (LQG) in the electromagnetic sector, which makes the procedure considerably more
challenging.
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Chapter 3

Fundamentals of General Relativity

General Relativity (GR), developed by Albert Einstein from 1907 to 1915, provides a
comprehensive theory of gravitation. Before formulating GR, Einstein had established the theory
of Special Relativity, which he later expanded upon to create GR. Unlike Newton’s concept of
gravitation as a force between masses, GR reinterprets it as an effect of spacetime geometry
distortion around mass and energy. This theory has been supported by numerous physical
phenomena, with black holes and gravitational waves being among the latest confirmations. We
will start this chapter by examining the mathematical structure and physical consequences of
General Relativity, focusing on advanced methods such as demonstrating that GR is a gauge
theory [36,37] and showing how the tetrad formalism [38–41] naturally arises. An alternative
formulation of General Relativity can be achieved within the Hamiltonian framework, more
specifically through the Arnowitt-Deser-Misner (ADM) foliation [1, 46–48]. These methods
provide alternative perspectives on the theory’s dynamics and serve as valuable tools for
investigating gravitational phenomena, offering deeper insights into the structure of spacetime
and its interactions with matter.

3.1 General Relativity is a Gauge Theory

The fundamental object of study in this work is Loop Quantum Gravity (LQG), with one
of its applications being in the electromagnetic sector. Since one of its foundations is General
Relativity (GR), we use this chapter to introduce the reader to the fundamentals of this theory,
which will be employed later in the context of LQG. In turn, we make use of the ideas of [36,37],
can General Relativity, with all its characteristics, be considered a gauge theory? The formulate
to this question in physical terms will be given briefly in this section, though we can begin
to discuss it now. Let us try to outline some main points of both theories and see how they
converge:
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• Both Einstein’s gravitation and Yang-Mills theories are highly nonlinear;

• In both theories, we have connections: the Christoffel symbol Γλ
µν in GR and the gauge

potential Aµ in Yang-Mills. It is possible to derive a curvature term Rµν in gravitation
and Fµν in gauge theories;

• Both theories possess local symmetry;

• Einstein’s gravitation includes diffeomorphisms, which are general transformations of local
coordinates based on the covariant character of the metric. These transformations are
analogous to those in Yang-Mills theory, and we will explore this more explicitly later.

Thus, there are significant similarities between these theories, forming essential founda-
tions. However, the introduction of fermionic matter brings a crucial distinction between them.
Fermionic matter comprises fields ψα carrying the index α, which is a spinorial index—not
space-time based but in a complex space. This α index, for example, does not interact with the
Jacobians present in diffeomorphisms, unlike bosonic matter, which, regardless of its vectorial
nature, carries space-time indices and thus responds to diffeomorphism transformations.

The key lies in coupling fermionic fields in a way that enables them to interact with the
curved geometry proposed by GR, whether it is a Riemannian or pseudo-Riemannian space.
This coupling is achieved using tetrads.

3.2 Tetrads Formalism

The section we using the sign of the metric gµν will be taken as (−,+,+,+). The vielbein
is a formalism in General Relativity [38–41], offering an alternative to the traditional description
of spacetime geometry via the metric tensor. In this approach, the metric is expressed through
a set of local basis vectors, known as vielbeins (or tetrads in four dimensions), which establish a
locally flat reference frame at each spacetime point. As already said, this formalism is particularly
advantageous when coupling General Relativity to spinor fields, such as in fermionic theories,
as it provides a natural way to incorporate spin in curved spacetime. Vielbeins also simplify
certain calculations by providing a flexible framework for analyzing geometric properties and are
frequently applied in Quantum Gravity. Through this formalism, the local Lorentz symmetry of
spacetime becomes explicit, allowing for a clearer understanding of the relationship between
local and global symmetries in gravitational systems. Let us consider the transformation from a
curvilinear coordinate system to a flat one

xµ → ξa, (3.1)

where the Greek letters µ, ν, · · · = 1, . . . , N denote indices in curved space-time, also referred to
as world indices, while lowercase Latin letters a, b, · · · = 1, . . . , N denote local or frame indices.
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Figure 3 – This figure illustrates the action of the vielbeins [43]. At the bottom, we have an illustration
of a curved manifold denoted by U . If we expand the view, this manifold U is embedded
in the manifold M, we can take a tangent plane over this manifold in the form TpM.
There, the vielbeins provide the connection between the curvilinear coordinates in the
form dx and dy and the coordinates of the tangent plane, which are flat.

Consequently,
dxµ = ∂ξa

∂xµ
dξa = ea

µdξ
a, (3.2)

where the ∂ξa

∂xµ
is the Jacobian associated with the transformation, establishing the transition

from curvilinear to flat coordinates. This Jacobian is the vielbein ea
µ. Thus, the line element

given by the flat metric ηab can be rewritten as

ds2 = ηabdξ
adξb

= ηab
∂ξa

∂xµ
dxµ ∂ξ

b

∂xν
dxν

= ∂ξa

∂xµ
ηab

∂ξb

∂xν
dxµdxν

= gµν(x)dxµdxν . (3.3)

Note that we could have started from the curvilinear metric and arrived at the equation for the
flat metric. From Eq. (3.3), we obtain a relation between the curved metric and the flat metric
in terms of the vielbein

gµν = ea
µηabe

b
ν , (3.4)

the tangent space, as well as its quantities, possesses a local symmetry, endowed with the
Lorentz group SO(1, 3). This is already an indication that the coupling of fermions is possible,
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as the present group allows coupling with spinorial indices. The connection between the rotation
group and spinors in the Lie algebra will be given by a vector transformation of the form

A
′a =

(
e

i
2 αcdΣcd

)a

b
Ab, (3.5)

the αcd is the parameter of the transformation, i.e., the angles, and Σcd are the rotation
generators in the spinorial space of SO(1, 3), given by

Σab = i

4[γa, γb], (3.6)

where γa are the Dirac gamma matrices, which are related to the flat metric through the Clifford
algebra

{γa, γb} = 2ηab. (3.7)

Note that if we were dealing with scalars, Eq. (3.5) would have the generators Σcd = 0.
Remember, a typical Yang-Mills transformation for any given field is given from Eqs. (2.10)
and (2.11) as follows

Φ′(x) = RΦ(x). (3.8)

If we apply a derivative ∂µ = ∂

∂xµ
, we obtain

∂µΦ′(x) = ∂µ(RΦ(x))
= R∂µΦ + (∂µR)Φ(x). (3.9)

As we know, the last term in this expression breaks gauge covariance. The solution to this
problem is the introduction of the covariant derivative Dµ, such that it does not act on the Lie
group parameter R which can be describe by the Eq. (2.12) and has the following form

Dµ = ∂µ + igwµ, (3.10)

where g is the coupling constant and wµ is the gauge field. Here, for a gravitational theory, is
called the spin connection. This gauge field is written in contraction with the group generator,
a notation commonly used in Yang-Mills theory, as follows

wµ = 1
2w

abΣab, (3.11)

the term 1/2 is a convention due to the antisymmetry of the indices ab in both quantities. The
spin connection field typically transforms as a Yang-Mills field in the following form:

D
′

µ = RDµR
−1

∂µ + igw
′

µ = R(∂µ + igwµ)R−1

w
′

µ = RwµR
−1 − i

g
R(∂µR

−1). (3.12)
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The same analysis can be applied to the vielbein, showing that it is a gauge field

ea
µ(x+ δx) = ∂xν

∂xµ′ e
a
ν

ea
µ + δxν∂νe

µ
a = ea

µ − (∂µδx
ν)ea

ν

δea
µ = δxν∂νe

µ
a − (∂µδx

ν)ea
ν . (3.13)

As we have just shown in Eqs. (3.12) and (3.13), our theory will have two fundamental gauge
fields instead of just one. It should be noted that these fields transform in the same manner as
the fields in Eqs. (2.66) and (2.67). Let us consider a field with the following transformation

V µ = eµ
aV

a, (3.14)

which is invariant under local Lorentz transformations. As we already know the action of the
flat covariant derivative on this field, we can define the covariant derivative in curved space as

∇µV
ν = eµ

aDµ(ea
ρV

ρ)
= eν

a(Dµe
a
ρ)V ρ + eν

ae
a
ρDµV

ρ

= ∂µV
ν + Γν

µρV
ρ, (3.15)

where Γν
µρ is the affine connection, also known as the Christoffel symbol (when torsion is equal

to 0). This new derivative does not account for the indices of the vielbeins, thus

∇µe
A
ν = Dµe

A
ν − Γρ

µνe
A
ρ = 0. (3.16)

We previously mentioned that when describing a theory of gravitation through gauge components,
the gauge field is called the spin connection. But how does it relate to gravity? In Yang-Mills
theories, we take [Dµ, Dν ] = igFµν , where Fµν is the field strength. As in the previous chapter
we performed the non-Abelianization using the Euclidean formalism, the field strength tensor
Fµν did not play a significant role. However, this quantity is fundamental both for the Abelian
Maxwell theory and for Yang-Mills theories. From the relation commutator of covariant
derivatives, we can define this quantity as

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ], (3.17)

the equation above is for the non-Abelian field strength. Let us do the same here, considering
the different types of derivatives and analyzing their contributions

[∂a, ∂b] = [eµ
a∂µ, e

ν
b∂ν ]

= (eµ
a∂µe

ν
b − eµ

b ∂µe
ν
a)∂ν

= (∂ae
ν
b − ∂be

ν
a)∂ν = T ν

ab∂ν , (3.18)

where T ν
ab is the torsion. This is the field strength in the tangent plane. In the Einstein-Hilbert

theory, this quantity is zero due to the field equations. At this point, let us consider it as a
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non-zero parameter. Torsion is a quantity that arises naturally when fermions are introduced
into our theory. The torsion and the affine connection are related as

Γρ
µν − Γρ

νµ = Γρ
[µ,ν] = eρ

aT
a
µν . (3.19)

Let us examine other quantities obtained when computing the commutator of gauge covariant
derivatives, which are

[DA, DB] = [eµ
aDµ, e

ν
bDν ] = (eµ

aDµe
ν
b − eν

bDνe
ν
a)Dµ + eµ

ae
ν
b [Dµ, Dν ]

= (eµ
aDµe

ν
b − eµ

bDµe
ν
A)ec

νDc + 1
2e

µ
ae

ν
BR

cd
µνΣcd

= −T c
abDc + 1

2R
cd
abΣcd, (3.20)

here Rcd
ab is the Ricci curvature tensor. From Eq. (3.20), it is possible to obtain the two

Maurer-Cartan equations. The first one is

T a
µν = Dµe

a
ν −Dνe

a
µ

= ∂µe
a
ν − ∂νe

a
µ + wa

µbe
b
ν − wa

νbe
b
µ. (3.21)

The second Maurer-Cartan equation is obtained through the Ricci curvature tensor

Rab
µν = ∂µw

ab
ν − ∂νw

ab
µ + wa

µcw
cb
ν − wa

νcw
cb
µ (3.22)

Here we define that the Ricci scalar is

R = Ra
µe

µ
a . (3.23)

With all the ingredients present in the new formalism, naturally, the next step is to use this
mathematical formalism of tetrads to write the action of fields.

3.2.1 Light, Mechanics and Action

The action is a fundamental quantity to describe classical or Quantum Mechanics. Using
the previous notation introduced in the last section, we can exemplify some important actions
in physics. First, we can write the Einstein-Hilbert action in metric formalism, this action is
very important, as it is the fundamental action of General Relativity, and therefore the starting
point for obtaining Einstein’s equations by varying it in relation to the metric. This formulation
highlights the geometrization of gravity: all the dynamic properties of the gravitational field are
contained in the curvature of space-time and are of the form

SEH = 1
2κ

∫
d4x

√
−gR, (3.24)

where
√

−g is the invariant volume element, with the minus sign for the signature of metric.
The parameter R = gµνRµν is the Ricci scalar as already know, G is the Newton’s gravitational
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constant and there could also be a term Λ related to the cosmological constant, where in our
case we take Λ = 0. How can we write this action in the tetrad formalism? First, we can
see that gµν = ea

µηabe
b
ν → g = −e2, and we can relate the determinant as e = detea

µ. Using
Eq. (3.23), we can rewrite R = eµ

ae
ν
bR

ab
µν . Thus, the action in Eq. (3.24) can be rewritten as

S[e] = 1
2κ

∫
d4x

(
eeµ

ae
ν
bR

ab
µν

)
, (3.25)

where κ = 1/
√
G is the coupling constant with the dimension of energy, since G is the

Newtonian gravitational constant. We can apply the variational method to this action to obtain
the equations of motion. If we do this for the vielbein field δea

µ, we obtain

0 = (δe)eµ
ae

ν
bR

ab
µν + e(δeµ

a)eν
bR

ab
µν + eeµ

a(δeν
b )Rab

µν

= −eec
ρ(δeρ

c)R + e(δeµ
a)eν

bR
ab
µν + eeµ

a(δeν
b )Rab

µν

= (δeµ
a)e[2eν

bR
ab
µν − ea

µR]

= Rµν − 1
2e

a
µR. (3.26)

This is the famous Einstein equation in vacuum. Just as we applied the principle of least action
to one of the gauge fields, we can apply it to the other, that is, to the spin connection, in the
following way

eeµ
ae

ν
b (δRab

µν) = 0, (3.27)

after some algebraic, we manipulations

−e
[
eµ

de
ν
[be

λ
a] + 1

2e
µ
[ae

λ
b]e

ν
d

]
T d

µλ = 0. (3.28)

The Eq. (3.28) allows, in the Einstein-Hilbert formalism, the torsion to be set to zero, since all
the terms in the equation are non-zero. One question that the reader may have asked some
looking at Eq. (3.26) is where the energy-momentum tensor is on the right-hand side of the
equality. This quantity arises when coupling matter to gravity, such as a scalar field

Sfull = SEH +
∫
d4xe

(1
2∂µφ∂

µφ− 1
2m

2φ2
)
. (3.29)

Let us now write the action for electromagnetism. The reader may think that the first thing to
do, as in a non-Abelian formulation, is to promote the usual derivatives to covariant derivatives
of the field strength Fµν . However, this strategy is invalid here, and the reason for this is the
following

Fµν = ∂µAν − ∂νAµ

= ∇µAν − ∇νAµ + Γλ
µνAλ − Γλ

νµAλ

= (∂µAν − ∂νAµ) + T λ
µνAλ, (3.30)
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this last term breaks gauge invariance, which shows that covariantizing the derivative is not
a good approach. In fact, we will leave Fµν in its usual form and couple the electromagnetic
sector to gravity through

Sfull = SEH +
∫
d4xegµκgνλFµνFκλ = SEH +

∫
d4xe(eµ

ae
aκeν

be
bλFµνFκλ), (3.31)

and we can obtain the equation of motion for the vielbein δea
µ, which gives

Rµν − 1
2e

a
µR = κ2

(
FµλF

λ
ν − 1

4ηµνF
2
)
. (3.32)

Finally, we already have shown that the vielbein formalism can help describing the fermionic
matter. What happens, when we want to describe the Dirac action? Let us start from the usual
Lagrangian, where the spinorial indices of the fermionic fields will not be written explicitly

SD =
∫
d4x ψ̄(iγµ∂µ −m)ψ. (3.33)

For simplicity, let us consider m = 0 and add the determinant term e, as well as covariantize
the derivative, in the following way

SD =
∫
d4x ψ̄iγµ∂µψ

=
∫
d4x eeµ

aψ̄iγ
aDµψ

=
∫
d4x eeµ

aψ̄iγ
a
(
∂µψ − 1

8wµcd[γc, γd]ψ
)
, (3.34)

from here, it is possible to couple with the Einstein-Hilbert action, obtaining

Sfull = SEH +
∫
d4x eeµ

aψ̄iγ
a
(
∂µψ − 1

8wµcd[γc, γd]ψ
)
, (3.35)

and obtain the equations of motion for both gauge fields. Note that, as mentioned earlier,
torsion is a quantity that arises naturally in the presence of fermions, and this becomes evident
when we extremize this action with respect to the spin connection, yielding

−e
[
eµ

de
ν
[be

λ
a] + 1

2e
µ
[ae

λ
b]e

ν
d

]
T d

µλ + eeµ
aψ̄iγ

a[γc, γd]ψ = 0. (3.36)

The first term is the standard one obtained earlier in Eq. (3.28), so the torsion in this case is no
longer zero as seen before. This occurs due to this new term that appears, which is a fermionic
bilinear. The fermionic matter induces torsion in the system. We could go on to describe the
action and consequently the dynamics of other fields, as can be seen in [1] and [44].

3.3 Hamiltonian and ADM Variables

Throughout this dissertation, we have mentioned one of Dirac’s contributions to physics
with the publication of his 1928 paper. As we know, he ventured into other areas of study,
one of which was the problem of incompatibility between General Relativity and Quantum
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Mechanics. Up until that time, no one had formally worked on this topic, making Dirac the
pioneer in attempting to find a Hamiltonian for General Relativity and thereby quantize the
theory [45]. This was a very challenging task due to two main factors. First, because the theory
has constraints, it was necessary to develop Hamiltonians for constrained systems. Second, as
Carlo Rovelli and Francesca Vidotto notes in [1], “the horrendous complexity of the algebra in
the canonical analysis of the theory, when using the metric variable."

Dirac managed to overcome both problems, although the second was particularly difficult.
However, in an effort to improve and simplify Dirac’s contributions, Richard Arnowitt, Stanley
Deser, and Charles W. Misner published the ADM formulation in 1959. They proposed variables
that greatly simplified the canonical algebra and provided a clearer interpretation of the geometry,
because the foliation of space-time. This section will be based on the references [1, 46–54] and
the metric gµν is (+,−,−,−).

3.3.1 Differential Geometry and the foliation of Space-time

The ADM formalism has the clear goal of describing General Relativity using Hamil-
tonians. The approach taken was to propose something rather bold in a covariant theory∗,
namely, to separate the spacetime manifold (M)† described by the metric gµν into space and
time through hypersurfaces (Σt)‡, where the temporal coordinate becomes a label in the form
M = σ × R where σ is a fixed 3-dimensional manifold with arbitrary topology. The label t will
represent the constant spatial slices σ. This was conceived because, in a canonical approach, it
is not possible to define velocities and conjugate momenta without breaking diffeomorphism
invariance. The foliation into hypersurfaces generates new terms, as can be seen in figure 4.
These are vectors that we denote as nµ, the normal vector to the hypersurface Σt, where the
coefficient N , known as the Lapse function, is related to the motion between spatial slices, or in
a sense, determines the rate at which physical time progresses in the chosen coordinates. Finally,
we also have the Shift vector Na, which measures the displacement of the spatial coordinates
from one constant surface to the next. With the proposal of foliating spacetime and the addition
of these new vectors, the metric of curved spaces gµν is directly related to them, in the following
way

qab = gab, (3.37)

Na = ga0, (3.38)

N = 1√
−g00 , (3.39)

g00 = −N2 +NaN
a → N2det q = det g. (3.40)

∗This is a theory independent of the coordinate system. More fundamentally, it is centered on Einstein’s
Equivalence Principle.

†This is a topological space that can be locally mapped to Rn. Locally, near each point, it resembles
Euclidean space. However, globally, it may have a different topology. It can consist of several dimensions and
have various shapes and sizes.

‡These are (n − 1)-dimensional manifolds embedded in an n-dimensional space.
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Figure 4 – The foliation of spacetime into hypersurfaces and into Lapse and Shift functions [48].

Here a, b = 1, 2, 3. Notice that in the last equation N is defined by the time-time component of
gµν with upper indices. As already said, the N and Na are called Lapse and Shift functions and
qab is called the three-metric, where it will now be used to raise and lower the indices.

What is the consequence of writing the system in terms of these new functions? Simplicity
is the key point. Later, the reader will see this in practice, but using the notation as in Eqs. (3.37),
(3.38), (3.39), and (3.40) allows the Einstein-Hilbert Lagrangian to be written in terms of these
quantities, and since the time parameter t has become a label for our system, the terms Ṅ and
Ṅa vanish. Consequently, the Lagrangian no longer has temporal dependence, which leads to
tremendous simplifications.

Note that if −N2 + gµνN
µN ν < 0, the Lapse function would vanish. The line element in

this new formalism, using the previous equations, is

ds2 = gµνdx
µdxν

= g00dx
0dx0 + g0adx

0dxa + ga0dx
adx0 + gabdx

adxb

= [−N2 +NaNa]dt2 + 2Nadtdx
a + qabdx

adxb. (3.41)

This quantity can be interpreted as the Lorentzian version of the Pythagorean theorem. Let us
find the components of the metric tensor in terms of the new Lapse and Shift functions

gµν =

 A Bb

Ba qab

 , gµν = 1
N2

 −1 N b

Na Cab

 .
We need to determine what A, Bi, and Cab. The determination of these components is done
through the identity gµσg

σν = δν
µ

gaσg
σ0 = 1

N2 (−Ba + qabN
b) = 0 → Ba = qacN

c, (3.42)
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g0σg
σ0 = 1

N2 (−A+ qacN
cNa) = 1 → A = qacN

cNa −N2, (3.43)

gaσg
σb = 1

N2 qac(N cN b + Ccb) = δb
a → Cab = N2qab −NaN b. (3.44)

Using the notation Na = qabN
b, the metric tensor in terms of its covariant and contravariant

components are

gµν =
−N2 +NaN

a Nb

Na qab

 , gµν =

− 1
N2

N b

N2
Na

N2 qab − NaN b

N2 .

 (3.45)

As shown in Eq. (3.40), the determinants of both metrics are related, and this allows us to
obtain the relation for the 4-dimensional volume element as

√
−g d4x = N

√
q d3xdt, (3.46)

and the inverse of the metric is

g00 = det q
det g = q

g
= − 1

N2 . (3.47)

We can also relate the normal vector n to the ADM formalism. Commonly in the literature, the
normal vector is defined as

nµ = −
δ0

µ√
−g00 ,

nµ = − g0µ

√
−g00 . (3.48)

Then, using Eq. (3.39), we have

nµ = (−N, 0, 0, 0),

nµ =
( 1
N
,−Na

N

)
. (3.49)

Consequently, we have that nµnµ = −1, that is, a constant. From these equations, we can relate
the 3 + 1 metric to the metric of curved spaces and the normal vector as

qµν = gµν + nµnν ⇐⇒ qµν = gµν + nµnν , (3.50)

or in matrix form

qµ
ν = δµ

ν + nµnν =

 0 −g0b

g00

0 δa
b

 . (3.51)

We use Greek indices due to the fact that qab is an object that is embedded in spacetime and can
be easily converted to Latin indices when considering a 3-dimensional structure. The foundation
of the ADM formalism is composed of two pillars: the metric separated into 3 + 1 components
with time becoming a label, and the other pillar is a fundamental quantity called the extrinsic
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curvature. Before we properly examining this quantity, let’s briefly discuss some well-known
and fundamental quantities in 3 + 1 General Relativity. The 3-Christoffel symbol is

(3)Γµ
αν = 1

2q
µσ(∂αqνσ + ∂νqσα − ∂σqαν). (3.52)

As already mentioned earlier in this dissertation (3.20), the commutator of the covariant
derivatives gives the 3-curvature (Ricci tensor), which is intrinsic and refers to each hypersurface
Σt, as

[Dµ, Dν ]V α = (3)RµνV
β. (3.53)

Here, we use the test vector V α present on the hypersurface to show the relationship. The
curvature has the same properties as in the usual Einstein gravitational theory, with the Ricci
scalar given by

(3)R = (3)Rαβq
αβ. (3.54)

Unlike in General Relativity, the intrinsic curvature is not sufficient to provide all the geometric
information of the space in question, as only one hypersurface will be selected. Therefore, we
will define the extrinsic curvature, which will contain the information of all Σt, and is given by

Kµν = −qα
µq

β
ν ∇αnβ. (3.55)

This term is symmetric in µ and ν, and due to its expression, it measures how the normal
vector changes point by point. Moreover, Kµν is a purely spatial quantity because nµKµν = 0.
This allows us to measure the rate at which the hypersurface deforms as it is carried along
the normal. The change of this normal vector leads to the appearance of a type of foliation
acceleration (or proper acceleration), a quantity that measures how quickly the curvature of
one hypersurface changes to the next. This quantity is defined as aµ with the expression

aµ = nν∇νnµ, (3.56)

alternatively, let f be a scalar, we can write nµ = −N∇µf , assuming we are considering a
system without torsion. Thus, when [∇µ,∇ν ]f = 0, to recover Eq. (3.49), we have ∇µf = −nµ

N
,

so

aµ = nν∇νnµ

= −nσ∇σ(N∇µt)
= −nσ(∇σN)(∇µt) − nσN∇σ∇µt

= 1
N
nσnµ(∇σN) + nσN∇µ

(
nµ

N

)
= nµn

σ∇σln N − nσ∇µn
σ + nσNnσ

(−1
N2

)
∇µN

= nµn
σ∇σln N − nσn

σ∇µln N

= (nσnµ + δσ
µ)∇σln N = qσ

µ∇σln N = Dµln N. (3.57)
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Substituting into Eq. (3.55), we obtain

Kµν = −qα
µq

β
ν ∇αnβ

= −(δα
µ + nµn

α)(δβ
ν + nνn

β)∇αnβ

= −(δα
µ + nµn

α)(δβ
ν )∇αnβ

= −∇µnν − nµaν . (3.58)

Where we used that nµ∇νnµ = 1/2∇ν(nµnµ) = 0. It is still possible to express the extrinsic
curvature in another form convenient for future discussions. Let Ln be the Lie derivative along
the flow of the normal vector n of the spatial metric qµν , we have

Lnqµν = Ln(gµν + nµnν)
= nσ∇σqµν + qµσ∇νn

σ + qσν∇µn
σ

= −2Kµν → Kµν = −1
2Lnqµν . (3.59)

As with the intrinsic curvature, the extrinsic curvature can be contracted and it gives rise to a
scalar denoted as

K ≡ qµνKµν . (3.60)

The time vector is a constant of the form tµ = (1, 0, 0, 0) and can be written in terms of the
Lapse and Shift functions as

tµ = Nnµ +Nµ, (3.61)

an important contribution comes to light when we consider an adapted coordinate system, that
is, what happens to the Lie derivative when we use the time vector t instead of the normal
vector

Ltqµν = tσ∂σqµν + qµσ∂νt
σ + qσν∂µt

σ

= ∂0qµν = q̇µν . (3.62)

We can do the same exercise for the Shift vector, as follows:

LNqµν = Nσ∂σqµν + qµσ∂νN
σ + qσν∂µN

σ

= DµNν +DνNµ. (3.63)

Note that if we multiply by the metric qµν and take the Lie derivative of the entire Eq. (3.61),
and use Eqs. (3.59), (3.63), and (3.62), we obtain

Lqµν [tµ = Nnµ +Nµ]
Ltqµν = NLnqµν + LNqµν

q̇µν = −2NKµν +DµNν +DνNµ

Kµν = 1
2N (DµNν +DνNµ − q̇µν) , (3.64)
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and these four equations above lead to the evolution of the system. There are six relations
regarding the Shift and Lapse vectors, and they directly depend on the choice of gauge. Before
we reach the final expressions, we will present the reader with the Gauss relation and Codazzi
Mainardi identity. These are fundamental for the deduction of the Ricci tensor in the ADM
formalism and for the Hamiltonian constraints, which will be shown in the future. More details
can be found in Appendix A. The Gauss relation is

qµ
αq

ν
βq

q
ρq

σ
δ

(4)Rρ
σµν = (3)Rq

δαβ +Kq
αKδβ −Kq

βKαδ , (3.65)

and the Codazzi-Mainardi identity is

qq
ρn

σqµ
αq

ν
β

(4)Rρ
σµν = DβK

q
α −DαK

q
β . (3.66)

Finally, we can express the intrinsic curvature in terms of the extrinsic curvature and the Lapse
and Shift vectors. Similarly to Eq. (3.53), in 4-dimensions, we have

[∇µ,∇ν ]V α = (4)RµνV
β (3.67)

Thus, it is possible to derive three fundamental equations

qραq
µ
β

(4)Rρ
σµνn

σnν = −KαλK
λ
β + qµ

αq
ν
β∇nKµν + 1

N
DαDβN , (3.68)

qα
µq

β
ν

(4)Rαβ = (3)Rµν +KKµν − qα
µq

β
ν∇nKαβ − 1

N
DµDνN (3.69)

and
(4)R = (3)R +K2 +KabKab − 2∇nK − 2

N
DaDaN . (3.70)

These Eqs. (3.68), (3.69), and (3.70) relate the Ricci tensor or its scalar with the new quantities
from the ADM formalism, extrinsic curvature, Lapse and Shift vectors in 3 + 1 components of
spacetime. Details of these expressions can be found in the Appendix B. From here, we have all
the ingredients necessary to write the action of a field or Hamiltonians in terms of this new
formalism. Recall that in the Einstein-Hilbert action (3.24), the term R appears, which can
now be written as (3.70).

3.3.2 ADM Action

After deducing all the important quantities in the ADM formalism, it is possible to write
the Einstein-Hilbert action in this same formalism. The action can be written as in Eq. (3.24),
where R is in the form (4)R, which is given by Eq. (3.70), and the term

√
−g comes from

Eq. (3.46). Thus, we have

SH = 1
2κ

∫ t2

t1
dt
∫

Σt

d3xN
√
q
[

(3)R +K2 +KabKab − 2∇nK − 2
N
DaDaN

]
. (3.71)
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Note that the last two terms are divergences in terms of covariant derivatives. Let us work with
these terms separately:

√
qDaD

aN = Da (√q∂aN) .
= ∂a (√q∂aN)
= N

√
q∇nK

= N
√
qnα∇αK

= ∂α(√qNKnα) + √
qNK2, (3.72)

substituting Eq. (3.72) into Eq. (3.71), we obtain

SH = 1
2κ

∫ t2

t1
dt
∫

Σt

d3xN
√
q
(

(3)R −K2 +KabKab

)
. (3.73)

3.3.3 Hamiltonian Formalism in ADM

From Eq. (3.73), we know that the Lagrangian density is given by

LH = N
√
q
(

(3)R −K2 +KabKab

)
, (3.74)

in turn, LH will depend on all these new quantities we have defined in the ADM formalism
together with their derivatives, i.e., {q, q̇ij, N, N⃗ , ∂iN, ∂iN⃗}. An important and fundamental
observation about these quantities is that both the Lapse function and the Shift function have
their time derivatives equal to zero. Later on, we will see that this condition greatly simplifies
the equations of motion in the Hamiltonian formalism. Thus, N and N⃗ become Lagrange
multipliers in the theory.
The equation for the conjugate momentum corresponding to the metric qab is

πab = ∂LH

∂qab

, (3.75)

where πab is symmetric in the indices. As mentioned earlier, the conjugate momentum of the
Lapse and Shift vectors is:

πN = ∂LH

∂Ṅ
= 0 ,

πN i = ∂LH

∂Ṅ i
= 0 .

(3.76)

Just as in classical mechanics, q and q̇ are independent variables. Let us now look at how each
term in (3.74) behaves when derived with respect to these terms:

• Since (3)R depends only on qij, we have

∂(3)R

∂q̇ij

= 0. (3.77)
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• For the extrinsic curvature, we use Eq. (3.64), so
∂Kab

∂q̇ij

= ∂

∂q̇ij

( 1
2N (DaNb +DbNa − q̇ab)

)
= − 1

2N δi
aδ

j
b . (3.78)

• The scalar of the extrinsic curvature is
∂K2

∂q̇ij

= −2K ∂K

∂q̇ij

= −2K
∂
(
qabKab

)
∂q̇ij

= −2Kqab∂ (Kab)
∂q̇ij

= −2Kqab
(

− 1
2N δi

aδ
j
b

)
. (3.79)

Now, we can combine the equations obtained to find the total expression for the conjugate
momentum. Using Eqs. (3.77), (3.78), and (3.79) in (3.75), we obtain

πij = ∂LH

∂qij

= ∂

∂q̇ij

[
N

√
q
(

(3)R −K2 +KabKab

)]
= N

√
q
[
−2Kqab

(
− 1

2N δi
aδ

j
b

)
+ 2Kab

(
− 1

2N δi
aδ

j
b

)]
= √

q
(
Kqij −Kij

)
.

(3.80)

This is still not the final expression for the conjugate momentum. This is because we want to
express this quantity in terms of {(3)R, q,N, N⃗}.To do so, we will use Eq. (3.80) and take the
trace of πij:

π = qijπ
ij = 2√

qK, (3.81)

where we used qijKij = K, as well as qijqij = 3 and qijπij = π. Therefore, it is possible to write
the extrinsic curvature in terms of the conjugate momentum:

Kij = 1
2√

q

(
πqij − 2πij

)
. (3.82)

We can now find the equation of motion for the metric in terms of the conjugate momentum.
Again, we will use Eq. (3.64), where we can now substitute Kij with Eq. (3.82) and thus obtain

q̇ij = DiNj +DjNi − N
√
q

(πqij − 2πij) . (3.83)

Finally, we can express Eq. (3.74) in terms of the Ricci scalar, the conjugate momentum, and
the Lapse and Shift functions. For this, we simply substitute Eqs. (3.82) and (3.81):

LH = N
√
q
(

(3)R −K2 +KijKij

)
= N

√
q(3)R −N

√
q
π2

4q +N
√
q

(
1

2√
q

)2 (
πqij − 2πij

)
(πqij − 2πij)

= N
√
q(3)R + N

√
q

(
πijπij − 1

2π
2
)
.

(3.84)
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With the Lagrangian density calculated in Eq. (3.84), it is possible to obtain the Hamiltonian
density via the Legendre transform. Recall that, as mentioned earlier, N and N⃗ are Lagrange
multipliers of the theory, so we have the expression

HH = πNṄ + πN iṄ i + πijqij − LH

= πij

[
DiNj +DjNi − N

√
q

(πqij − 2πij)
]

−
[
N

√
q(3)R + N

√
q

(
πijπij − 1

2π
2
)]

= 2πijDiNj −N
√
q(3)R + N

√
q

(
πijπ

ij − π2

2

)
.

(3.85)

Thus, the Hamiltonian in the ADM formalism, HADM =
∫

Σt

d3xHH , can be rewritten in a
compact form as

HADM = H[N ] + D[N j] = NH +N jDj , (3.86)

where H[N ] is the Hamiltonian constraint:

H[N ] ≡
∫

Σt

d3xN

[
−√

q(3)R − 1
√
q

(
π2

2 − πijπij

)]
, (3.87)

and D[N i] are the 3 diffeomorphism constraints:

D[N i] ≡
∫

Σt

d3xN i
[
−2Djπij

]
. (3.88)

These constraints only need to be satisfied on the hypersurfaces, not between them. We will not
go into the motivations for these constraints here. Finally, it is possible to obtain the equations
of motion in the Hamiltonian formalism. The conjugate momenta are of the form

q̇ij = δH
δπij

, π̇ij = − δH
δqij

. (3.89)

In the ADM formalism, the action is

SADM =
∫ t2

t1
dt
∫

Σt

d3x
(
πij q̇ij − H

)
=
∫ t2

t1
dt
∫

Σt

d3x

[
πij q̇ij −

(
2πijDiNj −N

√
q(3)R + N

√
q

(
πijπ

ij − π2

2

))]
.

(3.90)

The necessary boundary conditions for the variables {N, N⃗, qij} on the hypersurface Σt are zero:

δN |∂Σt = δN i|∂Σt = δqij|∂Σt = 0 . (3.91)

We will not calculate the equations of motion explicitly in this dissertation, as they are not the
main focus of this work. The calculations can be found in the references cited at the beginning
of the ADM formalism section. For the variable q̇ij, we have

q̇ij = δH
δπij

= DiNj +DjNi − 2NKij , (3.92)
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and for conjugate momentum π̇ij the motion equation is

π̇ij = − δH
δqij

= −N
√
q
(
Rij − 1

2q
ijR

)
+ N

2√
q

(
πcdπ

cd − π2

2

)
qij − 2N

√
q

(
πicπj

c − 1
2ππ

ij
)

+
√
q
(
DiDjN − qijDcD

cN
)

+Dc

(
πijN c

)
− πicDcN

j − πjcDcN
i . (3.93)

In this chapter, we have developed the necessary mathematical and physical foundations
of General Relativity to support the framework used throughout the rest of this dissertation.
These tools prepare for the next step of this work. In the upcoming chapter, we will apply
the formal machinery developed here to investigate the LQG and the effects of Loop Quantum
Gravity in the electromagnetic sector. The techniques introduced in this chapter will serve as
the foundational elements for such developments.
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Chapter 4

Loop Quantum Gravity

When we try formulate the General Relativity alongside Quantum Mechanics, we see
these two frameworks are incompatible in extreme conditions, so it is necessary develop the
theory of Quantum Gravity. In the literature, there are several theories that can be classified
as approaches to Quantum Gravity, such as String Theory, Loop Quantum Gravity, D-Branes,
Asymptotic Safety, and others. In this chapter, we will motivate why a theory of Quantum
Gravity is necessary and explore the formalism of one of Loop Quantum Gravity approach.

4.1 Why Quantum Gravity?

As previously mentioned, Quantum Gravity theory is a pathway to explaining intriguing
physical phenomena that remain unresolved because the Standard Model of particle physics is
unable to account for them, such as:

1. Black Holes. These objects are regions in spacetime where the gravitational field is
extremely strong, and light cannot escape. They have been the subject of intense study
and there was good evidence of their discovery in 2017. Quantum Gravity is a theory that
can describe the microscopic constitution of black holes and, consequently, their entropy.
The formulation of a Quantum Gravity theory can also help in understanding other black
hole-related problems, such as supermassive black holes in the Universe [56,57].

2. Singularity Resolution. General Relativity (GR) is a theory where singularities naturally
arise. These singularities appear in different contexts, such as in black holes and at the
Big Bang. A common approach to solving singularities in other fields of physics is through
renormalization; however, gravity is not a renormalizable interaction. Therefore, another
possible way to address this problem is through Quantum Gravity. In particular, the
strong gravitational fields near singularities suggest that quantum effects may become
significant, potentially modifying the classical trajectories.
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3. Finite Hilbert Space. In Quantum Field Theory, it is possible to give infinite energy to
the fields in the form of quanta. Consequently, the dimension of the Hilbert space is
dim(H) = ∞. However, in regions with gravity, if we add a large number of quanta, or an
infinite amount of quanta, a collapse occurs, resulting in the formation of a black hole. Thus,
the Hilbert space dimension is not infinite and is proportional to dim(H) = eABH/Ap ̸= ∞,
where ABH is the black hole’s event horizon area, and Ap = 10−70m2 is the Planck area.

4. Matter Quantization. The Einstein field equations, Rµν − 1
2Rgµν + Λgµν = 8πG

c4 Tµν , can
be interpreted as the geometry of spacetime being determined by the energy-momentum
tensor. However, one of the pillars of Quantum Field Theory is the quantization of matter,
which allows the energy-momentum tensor to be quantized and promoted to the operator
T̂µν in the Hilbert space. So, can we now combine the fields gµν and T̂µν in the Einstein
equations? There are several ways to approach this problem. In this dissertation, we
present two of the most well-known approaches. The first is to quantize all terms in the
Einstein equation and use a path integral approach, which is adopted in string theory and
therefore we’re not interested. The second approach is through the formalism of Quantum
Field Theory in curved spacetime, using the expectation value ⟨T̂µν⟩, which can lead to
fruitful applications.

4.2 Formalism of Quantum Gravity

We will revisit the idea presented in section 3.3.1, but now, with Hamiltonians. Using the
same procedure as in Quantum Mechanics, it is possible to propose the canonical quantization
of the system and transform the GR quantities into operators.

4.2.1 Wheeler-DeWitt Equation

The ADM formalism presented in 3.3.1 is based on classical canonical formulation. The
transition to a quantum description occurs by promoting the main quantities of the theory
to operators. This idea was proposed by Wheeler [58] and DeWitt [59], who, inspired by
the Hamilton-Jacobi approach [60] and consequently ADM formalism, obtained the following
equation

Ĥψ = 0. (4.1)

It is possible to obtain the wave function of the Universe, which enables discussions about the
properties of spacetime. Note that this is a Schrödinger equation without the time derivative
term; this arises because the ADM formalism’s foliation of spacetime lacks a temporal term.
The absence of this term also leads to the so-called “problem of time”, as discussed in [48].

The Wheeler-DeWitt operator, Ĥ, is a constrained, quantized Hamiltonian in General
Relativity like we show in 3.3.3. The solutions to this equation are expressed by an orthogonal
basis of spin network states on the 3D hypersurface, which can be represented by Figure 6. We
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will explore the concept of spin networks in more detail later. The Hamiltonian will act only on
the nodes of this spin network, so that the loop states in Loop Quantum Gravity (LQG) will
be the solution to equation (4.1). Note also that, in transitioning from the ADM formalism to
Wheeler-DeWitt, constraints are applied, which introduce restrictions. Hamiltonians of this
type are linear combinations of spatial diffeomorphism constraints.

Figure 5 – A representation of a simple spin network. The nodes of this graph are the grains of
space-time [61].

4.3 Loop Quantum Gravity

Loop Quantum Gravity or commonly know as LQG, offers a consistent theoretical frame-
work which extends its exploration to include phenomena that contribute to the understanding
of what gravity is at a fundamental quantum scale. Possible events that could detect traces of
LQG are [62–64], the most notable ones are: noise present in gravitational wave detectors [65,66],
neutral kaon systems [67,68], and the time-dependent energy of arrival of photons and neutrinos
from distant sources [69,70].

Loop Quantum Gravity is a theory of Quantum Gravity that aims at unifying General
Relativity and Quantum Mechanics. The idea of proposing modifications to known physical
theories in light of new insights dates back to the early 20th century. In the conclusion of
his 1916 paper predicting the existence of gravitational waves, Einstein says: “it appears that
quantum theory would have to modify not only Maxwellian electrodynamics, but also the new
theory of gravitation"∗. LQG does not propose a grand unification of physics, unlike other
Quantum Gravity theories, like String Theory. Instead, it simply quantizes gravity, assuming
that the gravitational interaction exhibits quantum effects at the Planck scale. This leads to

∗This is a translation of the article originally published in German, which can be found in [71].
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the notion that spacetime is discrete, displaying a granular structure. In addition to quantizing
gravity, LQG is a non-perturbative theory and is background-independent. This stems from
General Relativity, which is founded on two major principles: diffeomorphism invariance and
background independence, both of which are fundamental to LQG [1,83,85,86].

In contrast to its major competitor String Theory, Loop Quantum Gravity operates in
4 dimensions and does not require supersymmetry (although it does not discard it, as seen
in [72], [73] and [74]). To introduce the topic in a didactic manner, we will briefly contextualize
the main points that form the foundation of LQG. The concept of background independence
is a direct consequence of the theory being non-perturbative. Since gravity, or spacetime
itself, is quantized, there are no background fields, and thus perturbation is not possible. For
example, in quantum field theory, we have an electromagnetic field embedded in the geometry
of spacetime, interacting with charges. Due to the complexity of describing this phenomenon, a
Taylor series expansion is performed, i.e., a perturbation. This expansion generates Feynman
diagrams in the form of loops. LQG, however, is a theory that does not depend on an external
spacetime geometry. The background independence proposed by LQG means it cannot use
the conventional methods of quantum field theory, which rely on background-dependent fields.
Background independence manifests as diffeomorphism invariance of the action, meaning the
action is invariant under coordinate transformations and there is no dynamical background field.
Therefore, a different approach is used by employing the Hilbert space of states, operators, and
amplitude transformations.

The use of the Hilbert space in this alternative approach leads to a modification of
the algebra of fields into an algebra of parallel transport matrices along closed curves, what
we call holonomies or Wilson loops. The concept of these loops is essentially that of phase
factors in both Abelian and non-Abelian gauge theories. These loops can be observed in the
Aharonov-Bohm effect [75] and are central to the formulation of gauge theories such as quantum
chromodynamics. They are also extremely useful in solving matrix models. More detailed
information will be provided later in the text, but an excellent reference on the subject is [76].

Loops are essential to the theory (as emphasized by its name), because when quantized,
they become operators that create loop states. More precisely, loops serve as the quantized
coordinates of the theory, and when these states undergo infinitesimal transformations, they
become an equivalent representation of the same state. However, finite transformations alter
the state, and this is due to one of LQG’s most important considerations: the position of a loop
relative to other loops matters. Since it is a theory based on Quantum Mechanics, Hamiltonians
play a crucial role in constructing the type of problem addressed by LQG.

Let us define the quantum operator in the spin network basis, where the volume V of a
physical region is given by

V =
∫
d3x|det e(x)|, (4.2)

where e(x) is the gravitational field in the tetrad formalism 3.2. The spectrum of V is discrete.
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Figure 6 – Illustration of a quanta volume, which represents an abstract spinfoam. Note that the
pieces are adjacent and connected by nodes [44].

The quanta of spacetime are granular, and it is necessary to understand which grains are adjacent
to one another. Adjacency forms the basis of spatial relations: if two regions of spacetime
are adjacent, then they touch each other and are separated by the surface S. Let A be the
area of this surface. In this way, the grains of spacetime are separated by quanta of area. The
eigenvalues of the area operator are given by

A = 8πγℏG
∑

i

√
ji(ji + 1), (4.3)

where ji are labels on the spin network, determined by the local gauge group SU(2), and γ is
the Barbero-Immirzi parameter, that can arise from calculating the entropy of the black hole.

There are other equivalent ways to describe Quantum Mechanics. Naturally, one might
think of describing LQG using these new equivalent ideas, for example, employing path integrals
instead of Hamiltonians. This idea is relevant and does exist, being described by spin foams. A
spin foam is the characterization of the surface of some quantity, such as the Universe, described
by spin networks, which in turn evolve over time, forming a discrete geometry. Within LQG,
there are strong research groups focused on this topic, with the main result being the recovery of
the graviton propagator, i.e., Newton’s law in the classical limit is rediscovered. More detailed
information can be found in [77,78].

The canonical formulation is described by considering spacetime as a manifold M whose
topology is Σ × R, where Σ is a three-dimensional Riemannian manifold. The so-called Ashtekar
variables are the formalism used for a non-compact gauge group, SL(2,C). Due to its importance
and the connection that can be made with the tetrad formalism in 3.2 and ADM in 3.3.1, we
will describe this idea in more detail below.

4.3.1 Ashtekar Variables

In 1986, Abhay Ashtekar proposed a new formulation of General Relativity in his
paper [79]. He expressed the theory in a set of variables that describes General Relativity
using canonical quantization, inspired by gauge theories as already said of non-compact gauge
group, SL(2,C). In this formulation, the indices a, b, c stand for the space coordinates and i, j, k
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are their indices assigned to the generators of su(2). Due to the definition of the tetrads and
subsequently the ADM formalism, it is possible to define triads where time is a constant surface
of the form

qab(x) = ei
a(x)ej

b(x)δij, (4.4)

these new variables, the spatial metric ei
a can be written in terms of the so-called D-Bein, the

dimension is linked to the dimension of the hypersurface. The introduction of these variables
adds a local SO(D) invariance where a fixed, constant time exists on the surface. We can define
the triadic version of the extrinsic curvature by

Ka
i e

i
b = Kab. (4.5)

Let us consider that the canonically conjugate pair of the form {Ka
i , e

j
b} ≃ δj

i δ
a
b leads to an

important constraint
Gc = ϵcabK

a
i e

b
i = 0, (4.6)

the Eq. (4.6) allows us to interpret that the Poisson brackets lead precisely to the SO(3) rotation.
The connection Ai

a is related both to the spin connection Γi
a = Γajkϵ

jki and to the extrinsic
curvature, given by:

Ai
a = Γi

a[e] + βKi
a, (4.7)

where Γi
a[e] represents the torsion-free spin connection of the triad (it is the only possible

solution for the Cartan equation in 3 dimensions) and β is an arbitrary parameter, which can
be either complex (i) or real. In the case of a real value, there is no restriction for it to be γ,
the Barbero-Immirzi parameter. We can define the covariant derivative Da with respect to the
connection Ai

k and also define the curvature F i
ab, respectively, as:

Davi = ∂avi + ϵijkA
j
av

k, (4.8)

F i
ab = ∂aA

i
b − ∂bA

i
a + ϵi

jkA
j
aA

k
b . (4.9)

And note that the constraint present in Eq. (4.6) is the same as in Yang-Mills theory

Gi = DaE
a
i . (4.10)

The other variable that is part of the pair of Ashtekar variables is its electric field, given by

Ea
i (x) = 1

2ϵijkϵ
abcej

be
k
c (4.11)

and it is known as the densitized triad, Ẽa
i = √

qEa
i . This pair of variables satisfy the following

Poisson bracket algebra:

{Ai
a(x), Aj

b(y)} = 0, {Ea
i (x), Eb

j (y)} = 0, {Ai
a(x), Eb

j (y)} = 8πGβδb
aδ

i
jδ

3(x− y). (4.12)

In the last Poisson bracket, if β = i, we obtain what is called the complex Ashtekar connection
or more commonly known in the literature simply as the Ashtekar connection. This leads to
quite simple constraints for vectors and scalars of the form

C = ϵijkF
i
abE

ajEbk, (4.13)
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Ca = F i
abE

bi. (4.14)

We can define the volume interns of the Ashtekar’s Variables as

V =
∫
d3x

√
|det E(x)|, (4.15)

a commutation between the volume and the connection for β = i is

{V,Ai
a(x)} = (8πiG)

Eb
j (x)Ec

k(x)ϵijk
abc

4
√

|det E(x)|
, (4.16)

so, the equation related to the Hamiltonian constraints is

H(N) =
∫
d3xN

EaiEbjF k
abϵijk√
q

. (4.17)

The fundamental idea we want to convey here is that, in Loop Quantum Gravity (LQG), the
integral form of the Hamiltonian is given by H(N) =

∫
σ
d3xNH. Note that the constraints

mentioned here are implicitly constant over time. This leads to an important property, well-
known in theories that employ Poisson brackets, which is that the Poisson bracket of the total
Hamiltonian of the system with any quantity is zero. The equation related to the Hamiltonian
constraint, described in (4.17), can still be rewritten in another form. This new form is clearer,
easier to use, and well-defined with respect to the Wheeler-DeWitt equation (4.1). Let us set
the constants in equation (4.16) to be equal to 1; substituting into equation (4.17), we obtain a
new, quantum-restricted Hamiltonian equation in the form

H(N) =
∫
d3xN{V,Ak

c (x)}F k
abϵ

abc. (4.18)

4.3.2 Holonomies and Wilson Loops

Holonomies are important because we will consider one in the form W̃ (τ), which represents
parallel transport along the closed curve τ . Furthermore, the holonomy for any closed curve
implies that the connection at any point is a gauge transformation.

Consider two closed curves. They are said to be equivalent if one can be continuously
deformed into the other in such a way that the loops of one correspond to those of the other.
This notion of equivalence defines a class of curves, and the set of all such equivalence classes
forms a group, known as the loop group.

Holonomies can then be understood as a map from this loop group to a Lie group
G, encoding how the gauge connection transforms along the loops. Functions defined on the
elements of the loop group are called wave functions, and they constitute what is known as the
loop representation.

Consider closed curves l,m, . . . such that they start and end at the same point, denoted
by o. Let Lo denote the complete set of all such closed curves; this parameter Lo forms a
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semigroup under the composition law (l,m) → l ◦ m. The identity element, that is, the null
curve, is defined as I(s) = o for any s and any parametrization. The reason for this being a
semigroup structure is that the inverse curve l−1 is not a group inverse, since l ◦ l−1 ̸= I. Parallel
transport along a closed curve l ∈ Lo is given by:

W̃A(l) = P exp
(∫

l
Aa(y)dya

)
, (4.19)

where Aa is the connection and P (M,G) is the principal bundle† of the group G over M , which
defines the holonomy map. Now, it is important to examine some properties of curves and
holonomies. Let us choose a point ô over o. If we use the connection A along the curve l that
belongs to M , we obtain the curve l̂ in P , such that the initial point is:

l̂(0) = ô, (4.20)

and the final point
l̂(1) = l̂(0)W̃A(l). (4.21)

The holonomy W̃A is an element of the group G, such that its main property is:

W̃A(l ◦m) = W̃A(l)W̃A(m), (4.22)

and if we choose to change the point o to ô in the bundle, we will have ô′ = ôg, leading to the
transformation:

W̃ ′
A(l) = g−1W̃A(l)g. (4.23)

Now, we want to transform Lo into a group. To make this possible, we introduce an equivalence
relation that identifies all closed curves yielding the same holonomy for a smooth connection.
This is essential because curves with the same holonomy carry the same physical information,
which is important for building a theory. These equivalence classes are properly the loops.
Further definitions regarding these quantities can be found in [115].

Since we have constructed a group, the loops (which we will represent with Greek letters)
satisfy certain relations that have been previously shown. The inverse is defined as a loop in the
opposite direction, τ−1, such that τ ◦ τ−1 = I, where I is the set of null curves. Furthermore,
we still have that:

W̃ (τ1 ◦ τ2) = W̃ (τ1)W̃ (τ2), (4.24)

W̃ (τ−1) = (W̃ (τ))−1. (4.25)
†A bundle is a topological term where a space is locally similar to a certain product space but may have a

different topological structure globally.
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4.3.2.1 Wilson Loops

Gauge theories form the basis of a vast number of physical theories. In LQG, it is
no different, as mentioned earlier; this is also a gauge theory. This implies that observable
quantities must be gauge-invariant. Quantum mechanically, these quantities are wave functions,
which must also be gauge-invariant. Now, let us introduce objects that involve the connection
Aa and can be written as gauge invariants. What are these objects? They are the so-called
Wilson Loops, which are constructed from the traces of holonomy

WA(τ) = Tr
[
P exp

(
i
∮

τ
dyaAa

)]
. (4.26)

These objects are observables in the canonical sense, and their Poisson brackets vanish when the
constraints of the theory are imposed. As stated in [115], Wilson loops have two fundamental
properties that should be noted, which are:

1. Mandelstam Identity;
The first to introduce this identity was Mandelstam for the group O(3) [116]. Subsequently,
Giles extended it to the groups GL(N) [117], and later, Gambini and Trias extended it to
special and unitary groups SU(D) [118].

The idea starts from considering gauge groups that have fundamental representations in
terms of N ×N matrices, for groups such as GL(N), SL(N), U(N), SU(N). Mandelstam
identified two identities for the traces of N ×N matrices. The first is due to the cyclic
property of traces, yielding an identity that holds for any gauge group in any dimension
of the form:

W (τ1 ◦ τ2) = W (τ2 ◦ τ1). (4.27)

Here, Wilson loops extend to the connection A in a general form, as these results do not
depend on a particular choice of connections. The second type of identity that Mandelstam
observed is that Wilson loops are the traces of N ×N matrices.

An important development in this area is the recognition by Rovelli and Smolin that spin
networks can be used to characterize a complete set of independent products of Wilson
loops [120].

2. Reconstruction Properties.
As previously mentioned, the reconstruction property is one of the fundamental properties
of Wilson loops. But what is it exactly? Furthermore, is it possible to reconstruct
the holonomy from a given function (since, as we know, the information present in the
holonomy can be reconstructed as a Wilson loop)?

The proof that this can indeed be achieved, that is, that given a loop function satisfying
the Mandelstam constraints, one can reconstruct the gauge-invariant information encoded
within it, is the subject of the so-called "reconstruction theorems."
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Starting from a function W (τ) that satisfies equation (4.27), it is possible to write a set
of N ×N matrices whose trace is precisely W (τ). Thus, this function can reconstruct the
holonomy.

Another important step is how the wave functions are defined. They can be defined in
terms of the loop bases as

ψ(τ) =
∫
dA W ∗

A(τ)ψ[A]. (4.28)

The holonomy constructed from Wilson loops is a representation of the loop group, and
the traces of this representation satisfy the Mandelstam identities. Any gauge-invariant
function can be expressed as a combination of products of Wilson loops.

4.4 Applications of LQG

As said before, Loop Quantum Gravity is a theory that aims to quantizing gravity from
General Relativity and not proposed a grand unification. This theory has many applications;
here we mention three of them:

1. Cosmology;

2. Black holes;

3. Electrodynamics.

We revisit these applications with a didactic purpose. Furthermore, the effects of Loop Quantum
Gravity (LQG) in electrodynamics constitute a central topic of our study. For this reason, we
devote more attention to the introduction of this theme.

4.4.1 Cosmology - Loop Quantum Cosmology

One of the applications of Loop Quantum Gravity is Loop Quantum Cosmology (LQC).
The theory is obtained from symmetry-reduction of LQG, which enables one to obtain an
approach which describes cosmologicals models [83,97–99]. In this model the energy scales is
high; consequently the Einstein equations do not describe space-time well, because the Universe
has the quantum effects and the geometry of this space to undergo a kind of bounce. The
bounce has some interesting properties like: solve the singularity problem of the Big Bang,
when we analyze inflation and using an inflationary scalar field ϕ, called inflaton, the kinetic
energies dominate the bounce.

The LQC split the evolution of the Universe in different phases, in each phase we have
an independent comportment of the scalar field in function of the choice for the inflationary
potential. We have many of these potentials and we can cite: Power-law monomial potentials

V = V0

2n

(
ϕ

mP l

)2n

, (4.29)
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where n is some power, mP l = 1/
√
G = 1, 22 × 1019 GeV is the Planck mass, with G is the

Newton’s gravitational constant. The Higgs-like symmetry breaking potential

V = V0

4m4
P l

(ϕ2 − v2)2, (4.30)

where v denotes the vacuum expectation value (VEV) of the field. The modifications that LQC

Figure 7 – This picture shows how the evolution of the Universe can be splited in differents phases. In
the figure we have the pre bounce phase, bounce phase with quantum effects, pre-inflation
and inflation phase for the scalar field.

introduces to the spacetime conjecture lead to changes in the cosmological equations through
General Relativity. It is convenient to define the spatial geometry by the variable ν, which is
proportional to the volume of a fixed cubic cell [87], instead of the scale factor a(t). In this way,
we have:

ν = −V0 a
3 m2

P l

2πγ , (4.31)

the parameter V0 is the comoving volume of fiducial cell. Moreover, γ is known the Barbero-
Immirzi parameter, with constant value γ ≈ 0.2375 [95] motivated of the black hole entropy.
However, nowadays the validity of this constant value is commonly discussed in the literature.
This happens because the calculation was based on Bekenstein-Hawking entropy, and part of
the literature disagrees with how it was done. As a result, many papers treat the γ parameter
as a free parameter of the theory. We dedicate the Appendix C to showing how this parameter
is obtained within LQG and some implications regarding such a deduction. The Friedmann
equation with LQC corrections is

1
9

(
ν̇

ν

)2
≡ H2 = 8π

3m2
P l

ρ

(
1 − ρ

ρcr

)
, (4.32)
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where ρ is energy density and the critical energy density is

ρcr =
√

3m4
P l

32π2γ3 . (4.33)

We can see the explicit modifications to the main equations of “traditional” cosmology, showing
the quantum geometric effects that come from LQC. The main phenomenon that emerges is the
replacement of the Big Bang singularity with a bounce. The bounce occurs when the densities
are equal, i.e, ρ = ρcr. If ρ ≪ ρcr, the quantum geometric effects vanish, and we recover the GR
limit as expected. It is possible to work with multiple scalar fields, but in this work, we only
consider a single scalar field with potential V (ϕ). In the Friedmann-Lemaître-Robertson-Walker
(FLRW) metric, the equation of motion for the scalar field is

ϕ̈+ 3Hϕ̇+ V,ϕ = 0, (4.34)

where V,ϕ = dV (ϕ)/dϕ. These equations showed before are the main equations of LQC, and it is
possible analyses the dynamics of inflationary field. The reviews can be see in the Ref. [78,88,89].

4.4.2 Black Hole

Continuing with the applications of LQG, we dedicate this section to the exposition of
black holes in the context of LQG. We will not present the subject in a detailed or complete
manner, nor aim to provide an overview; the purpose is to briefly show how the study of black
holes is modified by the introduction of effects generated by LQG.

The physics of black holes is currently a broad testing ground for Quantum Gravity
theories, as scientists have made advances in observing gravitational waves from binary black
holes and the shadow of supermassive black holes [90, 91].

An important contribution that LQG offers to the study of black hole physics is that it
allows the resolution of the singularity problem for spherically symmetric black holes. It was
found that, by considering black holes in LQG, there is no singularity at the center of the black
hole. Furthermore, the black hole’s event horizon is preserved. This solution is valid both for
the full case of Loop Quantum Gravity theory, with the analytical form of the black hole metric
under spherical symmetry conditions being obtained [92], and for the semi-classical case [93,94],
the metric has the general form

ds2 = −f(r)dt2 + 1
g(r)dr

2 + h(r)(dθ2 + sin2θdϕ2), (4.35)

where the metric functions f(r), g(r) and h(r) are

f(r) = (r − r+)(r − r−)(r + r∗)4

r4 + a2
0

, (4.36)

g(r) = (r − r+)(r − r−)r4

(r + r∗)2(r4 + a2
0)
, (4.37)
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h(r) = r2 + a2
0
r2 , (4.38)

(dθ2 + sin2θdϕ2) = dΩ, (4.39)

Here, the two horizon parameters are; r+ = 2M/(1 + P )2 and r− = 2MP 2/(1 + P )2. Another
variable is r∗ = √

r+r− = 2MP/(1 + P )2, where M = (6.5 ± 0.7) × 109M⊙ is the ADM mass
and we can define the polymeric function‡

P =
√

1 + ϵ2 − 1√
1 + ϵ2 + 1

(4.40)

where ϵ = γδ ≪ 1, i.e the product of Barbero-Immirzi parameter and polymeric parameter.
Finally, the a0 = Amin/8π is the minimum area gap of LQG and we reduces to Schwarzschild
black hole solution when a0 = P = 0. Now, from the LQG-corrected Schwarzschild metric
we can work with many possibilities about Loop Quantum Black Hole. We won’t go into this
analysis here, but we can point to the following works:

• Overview about this Subject [132,133]

• Charged Loop Quantum Black Hole [134]

• Rotation Loop Quantum Black Hole [135,136]

In the next section, we turn our attention to a central topic in this work: the implications of LQG
in the electromagnetic sector. We will present the motivations for this application and develop
the complete mathematical framework necessary to describe the resulting quantum-corrected
electrodynamics.

In the next section, our focus will be on the effects of Loop Quantum Gravity in the
electromagnetic sector—an application that is more thoroughly developed in this work. We will
derive the electrodynamics equations within the framework of the theory, as well as carry out
the process of non-Abelianization.

‡The polymeric function in effective loop-quantum black-hole models is a bounded “replacement” for classical
phase-space variables, and parameterizing holonomy corrections to regularize singularities [129–131].
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Chapter 5

Loop Quantum Gravity Effects in the
Electromagnetic Sector

Loop quantum gravity provides electromagnetic effects, valuable insights into the nature
of gravity at the fundamental quantum scale, particularly through the study of time-dependent
energy variations in the arrival of photons and neutrinos from distant sources [69,70]. At the
Planck scale, it is expected that (local) Lorentz invariance—a foundational principle of General
Relativity could be violated. However, achieving the required energy scales to test both Lorentz
invariance violation (LIV) and Planck-scale effects in terrestrial experiments is currently a big
challenge [62,70,100–102]. An alternative approach is to examine the energy of Gamma-Ray
Bursts (GRBs) and their immense energy emissions, which may allow investigation of the
energy-dependent time of arrival of photons or neutrinos from distant sources. In this work,
we focus on the photon sector. The speed of light in vacuum, as characterized by a granular
spacetime, may take the form

v(E) ≃ c

(
1 − E

Eγ
LIV

)
, (5.1)

where Eγ
LIV ≈ 3.6 × 1017 GeV represents the characteristic energy scale related to possible

LIV effects in the photon sector and is independent of the photon’s helicity. The high-energy
scale of the Eγ

LIV -parameter supports the notion that GRBs are the most suitable candidates
for investigating this parameter, more information can be seen at [103–110, 112–114]. The
Hamiltonian formulation of Loop Quantum Gravity (LQG) effects on electromagnetic theory
was explored in the work of Ref. [69].
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HLQG = 1
Q2

∫
d3x


1 + θ7

(
lP
L

)2+2Υ
 1

2(B⃗2 + E⃗
2) + θ3l

2
P (Ba∇2Ba + Ea∇2Ea) (5.2)

+θ2l
2
PE

a∂a∂bE
b + θ8lP [B · (∇ × B) + E⃗ · (∇ × E⃗)] + θ4L2l2P

(
L
lp

)2Υ

(B⃗2)2 + ...

,
where Q2 is the coupling constant of electromagnetism, lp ≈ 1.6 × 10−35m is the Planck length.
The characteristic length, L, satisfies the condition lP ≪ L ≤ λ. The parameter λ is the de
Broglie wavelength, and the characteristic length, L, has a maximum value at momentum k

whenever L = k−1. This condition allows us to interpret such a Hamiltonian and theory as
effective, due to its wide energy range. Another parameter appearing in the equation is Υ,
which represents the order of the contribution of the gravitational connection to the expected
value and may be determined through the phenomenological analysis of a specific event. This
parameter may depend on the helicity of the particle under consideration [111,121,122]. The
θi’s are non-dimensional parameters of order one or are extremely close to zero [69, 123]; finally,
a, b are spatial tensor indices. Hereafter, we replace the spatial indices using vector notation and
omit the underline referring to canonical pairs in the electromagnetic sector for all quantities.
From Eq. (5.2), we derive the field equations as follows:

∇ · E = 0, (5.3)

Aγ(∇ × B) − ∂E
∂t

+ 2l2P θ3∇2(∇ × B) − 2θ8lP ∇2B + 4θ4L2
(L
lP

)2Υγ

l2P ∇ × (B2 · B) = 0, (5.4)

∇ · B = 0, (5.5)

Aγ(∇ × E) + ∂B
∂t

+ 2l2P θ3∇2(∇ × E) − 2θ8lP ∇2E = 0, (5.6)

with

Aγ = 1 + θ7

(
ℓp

L

)2+2Υ

. (5.7)

The equation (5.2) is an infinite expression. In the literature, it is common to truncate it
at the l2p order. When the field equations are computed, this non-linear term contributes to
equation (5.4). The key quantities of electromagnetic theory have already been calculated and
analyzed previously, as seen in [69, 112]. In this work, such quantities are not the primary
focus; instead, the modified Maxwell equations in the context of Loop Quantum Gravity (LQG),
along with the corresponding Hamiltonian, are the central equations for the development of this
contribution.

5.1 Main quantities of LQG effects in the Electromagnetic Sector

In this dissertation, we keep the non linear term from the Eq.(5.4) to understand
how a non linear term for magnetic field change the main quantities for a classical theory
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like electromagnetism. We assume the rotation angles contribute with a single mode in the
equations, i.e

θ̄i · θ̄j =
 0, if i ̸= j

θ̄2
i , if i = j.

(5.8)

For simplicity, we consider

θ̄3 = 2l2pθ3, θ̄8 = 2lpθ8, θ̄4 = 4θ4L2
(L
lP

)2Υγ

l2P . (5.9)

The first quantity calculated is the Poynting vector. Let’s multiply Eq. (5.4) by E and Eq. (5.6)
by B, and then subtract one from the other until

Aγ[E · (∇ × B) − B · (∇ × E)] − E · ∂E
∂t

− B · ∂B
∂t

+ θ̄3E · [∇2(∇ × B)] − θ̄3B · [∇2(∇ × E)]−

θ̄8[E · (∇2B)] + θ̄8[B · (∇2E)] + θ̄4E · [∇ × (B2 · B)] = 0

⇒ Aγ∇ · (E × B) + ∂

∂t

(
E2

2 + B2

2

)
= θ̄3[E · ∇2(∇ × B) − B · ∇2(∇ × E)] − θ̄8[E · (∇2B)−

B · (∇2E)] + θ̄4E · [∇ × (B2 · B)] (5.10)

From Eq. (5.10), we can already identify the classical terms of the Poynting vector expression
and the electromagnetic energy density, respectively. They are

∇ · SMaxwell = Aγ∇ · (E × B), (5.11)

and
∂

∂t
uMaxwell = ∂

∂t

(
E2

2 + B2

2

)
. (5.12)

However, there are new terms on the right-hand side of Eq. (5.10). Just like in the two equations
above, we need to generate either divergences if we are talking about spatial contributions, or
total time derivatives for temporal contributions. Let’s look at each term separately

θ̄3E · [∇2(∇ × B)] − θ̄3B · [∇2(∇ × E)] = θ̄3[Ei∂j∂j(∇ × B)i −Bi∂j∂j(∇ × E)i]
= θ̄3{∂j[Ei∂j(∇ × B)i] − [∂jEi] · [∂j(∇ × B)i]

− ∂j[Bi∂j(∇ × E)i] + [∂jBi] · [∂j(∇ × E)i]}
= θ̄3∂j{[Ei∂j(∇ × B)i] + [(∂k∂jEi) · ϵiklBl]

− [Bi∂j(∇ × E)i] − [(∂k∂jBi) · ϵiklEl]}, (5.13)

or we can rewrite it as

∇ · S1 =∇ · {θ̄3[Ei∂j(∇ × B)i] + [(∂k∂jEi) · ϵiklBl] − [Bi∂j(∇ × E)i] − [(∂k∂jBi) · ϵiklEl]}.
(5.14)

As for the other term

−θ̄8[E · (∇2B) − B · (∇2E)] = −θ̄8[Ei(∂j∂jBi) −Bi(∂j∂jEi)]
= −θ̄8[∂j(Ei∂jBi) − (∂jEi)(∂jBi) − ∂j(Bi∂jEi) + (∂jBi)(∂jEi)]

− θ̄8∂j[(Ei∂jBi) − (Bi∂jEi)], (5.15)
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and we can rewrite it as
∇ · S2 = ∇ · [θ̄8(Ei∂jBi −Bi∂jEi)]. (5.16)

Finally, we have

θ̄4E · [∇ × (B2 · B)] = θ̄4Ei∂jϵijkB
2Bk

= θ̄4{∂j[EiϵijkB
2Bk] − (∂jEi)ϵijkB

2Bk}

= θ̄4

{
∂j[EiϵijkB

2Bk] −
(
∂Bk

∂t

)
B2Bk

}

= θ̄4

{
∂j[EiϵijkB

2Bk] − ∂

∂t

(
B4

4

)}
, (5.17)

where in the second equality, we applied Eq. (5.6). It is possible to rewrite this last term as

∇ · S3 + ∂

∂t
u1 = θ̄4

{
∂j(EiϵijkB

2Bk) + ∂

∂t

(
B4

4

)}
. (5.18)

Condensing all these expressions into just one, we obtain the famous continuity equation of
electromagnetism

∇ · (S − S1 − S2 + S3) + ∂

∂t
(u− u1) = 0. (5.19)

This equation have news terms that come from the LQG, more precisely, each rotation angle
contributes with one term in the spatial form, as we can verify in terms S1,S2 and S3. An
important term is obtained by the non linear magnetic field, who is the only term who modified
the electromagnetic energy density. From the Poynting vector, is possible calculate the Stress
tensor, we have

∂t(S − S1 − S2 + S3) = − ∂k

{
A2

γ

[
δik

(
B2

2 + E2

2

)
− (BiBk + EiEk)

]
+ θ̄3[δik[(∂o∂oBm)Bm−

(∂o∂oEm)Em − (Ej∂m(∂mEj)) + (Em∂n(∂mEn)) − (Bj∂m(∂mBj))+
(Bm∂n(∂mBn)) + θ̄3[∂o∂o(Em∂n(∂mEn)) − ∂o∂o(Ej∂m(∂mEj))+
2(∂o∂o(∂m∂mBl)Bl) − ∂o∂o(Bj∂m(∂mBj)) + ∂o∂o(Bm∂n(∂mBn))+
2(∂o∂o(∂m∂mEl)El)]] + (∂o∂oBi) ·Bk + (∂o∂oEi) · Ek] + θ̄8δik·

[(θ̄8∂o∂oBj − ϵjmn∂mBn) ·Bj − (θ̄8∂o∂oEj − ϵjmn∂mEn) · Ej]+

θ̄4[δik[B4 + θ̄4

2 (B2Bm)2] − 2(B2BiBk) + θ̄4[(B2Bi)(B2Bk)]−

3(EkEi)B2]
}
, (5.20)

or we can rewrite in compact form, like this:

∂t(S − S1 − S2 + S3) + ∂kTik = 0. (5.21)

The next step is to understand how the non-linear term in the magnetic field influences the
theory, for this, we expand the magnetic field as

B = ζ + bp, (5.22)
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where ζ is a constant vector of magnetic field and bp is the propagating magnetic field vector.
So, we can rewrite the product

B⃗2 · B = (ζ + bp)2 · (ζ + bp) ≈ ζ2 · bp + 2(ζ · bp) · ζ. (5.23)

This method is called linearization of the magnetic field. With the result of this expansion, it is
possible to rewrite Eq. (5.4) as follows

Aγ(∇×(ζ+bp))− ∂E
∂t

+θ̄3∇2(∇×(ζ+bp))−θ̄8∇2(ζ+bp)+θ̄4∇ × (ζ2 · bp+2(ζ · bp) · ζ) = 0

⇒ Aγ(∇ × bp) − ∂E
∂t

+ θ̄3∇2(∇ × bp) − θ̄8∇2bp + θ̄4∇ × [ζ2 · bp + 2(ζ · bp) · ζ] = 0. (5.24)

where the derivatives terms of ζ are ∇ × ζ = ∇ · ζ = 0, one of the important equations that can
be obtained is the wave equation for both the electric field and the propagating magnetic field.
The procedure is identical for both equations, starting with the electric field equation. Let’s
take the time derivative of Eq. (5.24)

∂

∂t

[
Aγ(∇ × bp) − ∂E

∂t
+ θ̄3∇2(∇ × bp) − θ̄8∇2bp + θ̄4∇ × [ζ2 · bp + 2(ζ · bp) · ζ] = 0

]

⇒ Aγ
∂

∂t
(∇ × bp) − ∂2E

∂t2
+ θ̄3∇2 ∂

∂t
(∇ × bp) − θ̄8

∂

∂t
∇2bp + θ̄4

∂

∂t
∇ × [ζ2 · bp + 2(ζ · bp) · ζ] = 0.

(5.25)

We take the curl of Eq. (5.6)

∇ ×
[
Aγ(∇ × E) + ∂bp

∂t
+ θ̄3∇2(∇ × E) − θ̄8∇2E = 0

]

⇒ − Aγ∇ × (∇ × E) + θ̄3∇2(∇2E) + θ̄8∇2(∇ × E) = ∂

∂t
(∇ × bp), (5.26)

where we used Eq. (5.3). Substituting the term ∂

∂t
(∇ × bp) from Eq. (5.26) into each of the

common terms from Eq. (5.25), we get

Aγ(−Aγ∇ × (∇ × E) + θ̄3∇2(∇2E) + θ̄8∇2(∇ × E)) − ∂2E
∂t2

+ θ̄3∇2(−Aγ∇ × (∇ × E)+

θ̄3∇2(∇2E) + θ̄8∇2(∇ × E)) + θ̄8∇ × (−Aγ∇ × (∇ × E) + θ̄3∇2(∇2E) + θ̄8∇2(∇ × E))+
θ̄4[ζ2(−Aγ∇ × (∇ × E) + θ̄3∇2(∇2E) + θ̄8∇2(∇ × E)) − 2ζ · (−Aγ∇ × (∇ × E)+
θ̄3∇2(∇2E) + θ̄8∇2(∇ × E)) · (∇ × ζ)] = 0,

(5.27)

Simplifying using the system from Eq. (5.8), it is possible to obtain

A2
γ(∇2E) − ∂2E

∂t2
= −2θ̄3∇2(∇2E) − 2θ̄8∇ × (∇2E) − θ̄2

3∇2(∇2(∇2E)) + θ̄2
8∇2(∇2E)+

θ̄4{ζ2(∇2E) − 2[ζ · (∇ × E)] · (∇ × ζ)}. (5.28)
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And for the magnetic field, the procedures are similar; however, the equations to be used change.
It is necessary to take the time derivative of Eq. (5.6) and the curl of Eq. (5.24). After that, we
will substitute the term ∂

∂t
(∇ × E) and find

A2
γ(∇2bp) − ∂2bp

∂t2
= −2θ̄3∇2(∇2bp) − 2θ̄8∇ × (∇2bp) − θ̄2

3∇2(∇2(∇2bp)) + θ̄2
8∇2(∇2bp)+

θ̄4{ζ2(∇2bp) − 2[ζ · (∇ × bp)] · (∇ × ζ)}. (5.29)

From the waves equations we can choose one of this equations and calculate the dispersion
relation from the theory. Firstly the solution for both equations are plane wave, more precisely
an exponential form of functions like

E = e0e
i(k·x−ωt), bp = b0e

i(k·x−ωt), k = |k|. (5.30)

We get

e0 · k = 0, b0 · k = 0, (5.31)

from Eq. (5.6)

(k × e0)(Aγ − θ̄3k2) − iθ̄8k2 · e0 − wb0 = 0

⇒ b0 = 1
w

[
(k × e0)(Aγ − θ̄3k2) − iθ̄8k2 · e0

]
, (5.32)

and last, from Eq. (5.4)

(k × b0)(Aγ − θ̄3k2) − iθ̄8k2 · b0 + w · e0 + θ̄4[ζ2(k × b0) + 2θ̄4(k × ζ) · (ζ · b0)] = 0. (5.33)

So we can replace the Eq. (5.32) in Eq. (5.33) and obtain{
[k2(Aγ −θ̄3k2)2−(iθ̄8k2)2+w2−θ̄4(ζ ·k)2(Aγ − θ̄3k2)]δij +[iθ̄4θ̄8(ζ ·k)2−2iθ̄8k2(Aγ −θ̄3k2)]·

ϵijkkk − 2θ̄4(k × ζ)i · (k × ζ)j(Aγ − θ̄3k2) − 2iθ̄4θ̄8(k × ζ)i · b0jk2
}

e0j = 0, (5.34)

making use of the previous equations, we obtain

Mije0j = 0, (5.35)

where Mij is a matrix which from the Eq. (5.34) has the same form of the matrix equation:

Mij = αδij + βui · uj + cϵijkvk + γui · sj, (5.36)

whose determinant is given by

detM = α3 + c2(u · v) · (γs · v + β(u · v)) + α2βu2 + αc(cv2 + γs · (k × (k × s))). (5.37)
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Now, we can impose the condition detM = 0 what allows us to find the modified dispersion
relation for the form

w2
± = k2[Aγ − θ̄3(k)2]

{
[Aγ − θ̄3(k)2] + θ̄4ζ

2
}

−(θ̄8 · k2)2 − ψ ±

4k4
{
k2
(

[Aγ − θ̄3(k)2]−

θ̄4
ζ2

2

)2

+
(

[Aγ − θ̄3(k)2]− ζ2

2

)
θ̄4[ζ · (k × (k × ζ))]

}
θ̄2

8 +ψ2

1/2

. (5.38)

The term ψ = −θ̄4[Aγ − θ̄3(k)2] · |k|2 · |ζ|2 sin2 φ is a scalar that corresponds to the anisotropy
of the theory. So, photons have propagation speeds that are no longer constant on the Planck
scale, and this is precisely due to the dependence that the ψ parameter has on sinφ, where this
is the angle between the vectors k · ζ. The ± sign in the dispersion relation is an indication
of the possible phenomenon of birefringence in vacuum. The group velocity is necessarily the
photon velocity, which in turn can be obtained as

v± = dw

dk
= 1
w±

·

k · [Aγ − θ̄3(k)2]
{

[Aγ − θ̄3(k)2] + θ̄4ζ
2
}

−2θ̄3k3[Aγ − θ̄3(k)2] + 2iθ̄8k3−

θ̄4k · |ζ|2 sin2 φ± 1
4

4k4

k2
(

[Aγ − θ̄3(k)2] − θ̄4
ζ2

2

)2

+
(

[Aγ − θ̄3(k)2] − ζ2

2

)
·θ̄4 · [ζ · (k×

(k × ζ))]
θ̄2

8 + ψ2

−112k5
(

[Aγ − θ̄3(k)2] − θ̄4
ζ2

2

)2

θ̄2
8 + 2k3

(
θ̄4[Aγ − θ̄3(k)2]|ζ|2 sin2 φ

)2

−

8θ̄3k7
(

[Aγ − θ̄3(k)2] − θ̄4
ζ2

2

)2

θ̄2
8

. (5.39)

The speed of the photon is no longer constant, this quantity can be greater than the usual speed
of light or less. The index refraction can be obtained as

n± = |k| ·

k2[Aγ − θ̄3(k)2]
{

[Aγ − θ̄3(k)2] + θ̄4ζ
2
}

−(θ̄8 · k2)2 − ψ ±

4k4
{
k2
(

[Aγ−

θ̄3(k)2]−θ̄4
ζ2

2

)2

+
(

[Aγ − θ̄3(k)2]− ζ2

2

)
θ̄4[ζ · (k × (k × ζ))]

}
θ̄2

8 +ψ2

−1/2

, (5.40)

from this equation, we can interpret that the system is in a dispersive medium, since the
refractive index depends on |k|. Furthermore, the refractive index includes square root terms,
making it possible for the final value of this function to become negative. As a result, the
refractive index may acquire both real and imaginary components. This suggests the possibility
of dichroism in the theory, where both the birefringence discussed in the dispersion relation and
the dichroism arising from the refractive index are optical phenomena of the vacuum. However,
we cannot claim that these phenomena necessarily occur in this context, as a more detailed
analysis using circularly polarized waves is required to confirm the existence of such optical
effects.
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5.2 Yang-Mills theories in LQG

Yang-Mills theories are widely used due to their effectiveness in describing fundamental
interactions. In Loop Quantum Gravity, this approach is also explored, as evidenced by
various works that present this formulation as an extension of the complete theory, for example,
in [48, 85, 115]. In this section, our goal is not to develop a complete non-Abelian theory within
the framework of Loop Quantum Gravity (LQG), but rather to investigate how the effects
introduced by LQG in the electromagnetic sector influence a non-Abelian theory.

We will non-Abelianize the effects of LQG in the electromagnetic sector presented at
the beginning of Chapter 5. The strategy used to perform such a procedure is the same as
that presented in the classical electromagnetic sector shown in Chapter 2. Having done using
the Maxwell limit has led to significant contributions to the development of LQG. This occurs
because it is necessary to obtain the non-Abelian Maxwell equations in the limit where quantum
effects become significant in LQG. Another important contribution of having first done it in
Chapter 2 was the experience gained in developing the same procedure, now using much more
involved expressions.

In this way, we will start from Eqs. (5.3), (5.4), (5.5), and (5.6), which form the set
of modified Maxwell equations in our theory, and apply the Noether procedure as we have
done before. This will lead to self-interactions among spin-1 fields, with our goal being to
arrive at the non-Abelian extension of the Maxwell equations modified by LQG, resulting in
the Yang-Mills field equations corrected by LQG. Once this is achieved, we aim to explore
how quantum gravitational effects, as predicted by LQG, can be integrated into Yang-Mills
theory. This allows us to study the physics of self-interacting massless vector bosons in the
presence of small Quantum Gravity effects with an LQG signature. Quantum Gravity effects
on photons and neutrinos have already been studied, as seen in [70]. Inspired by that work,
our approach, by combining LQG and Yang-Mills, provides a framework for investigating how
the electroweak and QCD sectors receive quantum gravitational corrections, contributing to
interesting phenomenological analyses and raising the possibility of new hidden physics.

To carry out this approach, we will define the same quantities as we defined earlier in
Chapter 2. We begin with an N -plet of vector fields (which will become our Yang-Mills gauge
bosons at the end of the procedure) in an arbitrary representation of the symmetry group, as
described below:

Am,m = 1, 2, ..., N ϕn, n = 1, 2, ..., N (5.41)

this fields are represented in N-dimensions of the symmetry group, remember, LQG works in
4-dimension. We can define the electric- and magnetic-like fields in terms of these terms

E⃗m = −∇ · ϕm − ∂A⃗m

∂t
, (5.42)
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and
B⃗m = ∇ × A⃗m. (5.43)

From the Lie group, that fields transforms like the rule

ϕ′
m = Rmnϕn, (5.44)

and
A′

m = RmnAn. (5.45)

And in the same form showed at Eq. (2.12), the function of the Lie group in infinitesimal form is

Rmn = (eiwhGh)mn ∼ δmn + iwh(Gh)mn +O(w2), (5.46)

So, similarly, the fields can also be expressed in a form

δAm = iwh(Gh)mnAn, (5.47)

and
δϕm = iwh(Gh)mnϕn. (5.48)

The same structure repeats, the (Gh)mn are the generators in the adjoint representation and
they can be write in terms of the structure constants like Eq. (2.15). The parameters wh stands
for the parameters of the SU(N) transformations, whereas the 3-index symbol fhij represents
the structure constants of SU(N). The Noether procedure is initiate with the free Lagrangian
of the theory. To get this Lagrangian, we perform a Legendre transformation by taking Eq. (5.2)
and writing

LLQG = 1
Q2

∫
d3x

Aγ

E2

2 − B⃗2

2

+ θ3l
2
P (B∇2B + E∇2E) + θ2l

2
P E · [∇ · (∇E)]+

θ8lP [B · (∇ × B) + E · (∇ × E)] + θ4L2l2P

(
L
lp

)2Υ

(B2)2

. (5.49)

It is necessary to highlight an important point regarding the Hamiltonian and the types of terms
that constitute it. Note that Eq. (5.2) only presents linear orders in the parameters θi, and to
preserve the linearity of the quantum effects, we will also consider this. This idea implies that
when we perform the Legendre transforms to obtain Eq. (5.49), only the classical term, that is,
Maxwell’s term 1

2(E2 +B2), undergoes a change. Fundamentally, what happens is that when
we perform the Legendre transforms, we obtain new quadratic terms in θi, which go beyond
the scope of the theory and can thus be neglected, retaining only the common terms that are
unaffected by the transformation. Continuing the process, we will use the variational principle,
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we have

δS = 0 =
∫
d3x δLLQG

= 1
Q2

∫
d3x

Aγ

2 (2Em · δEm − 2Bm · δBm) + θ3l
2
P [δBm · (∇2Bm) + Bm · (∇2(δBm))+

δEm(∇2Em) + Em · (∇2(δEm))] + θ2l
2
P [δEm · (∇ · (∇Em)) + Em · (∇ · (∇δEm))]+

θ8lP [δBm · (∇ × Bm) + Bm · (∇ × δBm) + δEm · (∇ × Em) + Em · (∇ × δEm)]+

4θ4L2l2P

(
L
lp

)2Υ

(B3
m · δBm)


= 1
Q2

∫
d3x

Aγ

(
Em ·

(
∇δϕm + ∂δAm

∂t

)
− Bm · (∇ × δAm)

)
+ θ3l

2
P

[
(∇ × δAm)·

(∇2Bm) + Bm · (∇2(∇ × δAm)) +
(

∇δϕm + ∂δAm

∂t

)
(∇2Em) + Em ·

(
∇2
(

∇δϕm+

∂δAm

∂t

))]
+ θ2l

2
P

[(
∇δϕm + ∂δAm

∂t

)
· (∇ · (∇Em)) + Em ·

(
∇ ·

(
∇
(

∇δϕm+

∂δAm

∂t

)))]
+ θ8lP [(∇ × δAm) · (∇ × Bm) + Bm · (∇ × (∇ × δAm)) +

(
∇δϕm+

∂δAm

∂t

)
(∇ × Em) + Em

(
∇ ×

(
∇δϕm + ∂δAm

∂t

))]
+ 4θ4L2l2P

(
L
lp

)2Υ

(B3
m(∇ × δAm))

,
(5.50)

from Eq. (5.50) we can obtain

0 =Aγ

∇·(Bi×δAi) − (∇×Bi)·δAi︸ ︷︷ ︸
Eq. (5.4)

−∇ · (Ei ·δϕi)+(∇Ei)·ϕi︸ ︷︷ ︸
Eq. (5.3)

− ∂

∂t
(Ei ·δAi)+∂Ei

∂t
·δAi︸ ︷︷ ︸

Eq. (5.4)

+

θ3l
2
P

{
∇·[δAm×(∇2Bm)] − ∇·[(∇2δAm)×Bm] − ∇·(δϕm ·(∇2Em)) − ∂

∂t
[δAm ·(∇2Em)]−

∇·[Em ·(∇2δϕm)] − ∂

∂t
[Em ·(∇2Am)]+2[δAm ·∇2(∇×Bm)]︸ ︷︷ ︸

Eq. (5.4)

}
+θ2l

2
P

{
2∇·[δAm×(∇×Bm)]−

∇·[δϕm ·(∇×Em)]+∇·[Em×
(
∂

∂t
δAm

)
] − 2 ∂

∂t
[(∇×Em)·δAm] − 2[δAm ·(∇2Bm)]︸ ︷︷ ︸

Eq. (2.4)

}
−

4θ4L2l2P

(
L
lp

)2Υ

[∇·(B3
m×δAm)]+4θ4L2l2P

(
L
lp

)2Υ

[∇×(B2 ·Bm)]·δAm︸ ︷︷ ︸
Eq. (5.4)

. (5.51)

Where we set Q2 = 1 to simplify the notation. All the terms with underbrace are equal to zero
by the Eqs. (5.3) and (5.4) which are the modified Maxwell equations. The remaining terms are
total spatial and temporal derivatives, which only need to be replaced by Eqs. (5.47) when they
are of the type δAm and by Eq. (5.48) when they are of the type δϕm. These total derivatives
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will enable to extract the (on-shell) conserved currents. As expected, just as in the construction
of the classical formalism, the currents obtained from the variational principle will carry an
index (h) of the adjoint representation of the symmetry group, which is, in turn, different from
the index that the fields carry in an arbitrary representation (m). This allows us to proceed
in the same way as was done previously. The invariant self-interaction can only occur if these
indices coincide, i.e., m = h. To allow for self-interaction between fields and currents, it is
necessary that the fields, which were previously in an arbitrary representation, be placed in the
adjoint representation describe for Eq. (2.22), as the currents are. So, we have for the spatial
current

jh = −fhij{Aγ[(Ei · ϕj) − (Bi × Aj)] − θ3l
2
P [(Bi × ∇2Aj) − (∇2Bi × Aj) − (∇2Ei · ϕj)−

(Ei ·∇2ϕj)]−θ8lP [2(∇2Ai×Aj)−(Ei × Ȧj)−(∇×Ei)ϕj]+4θ4L2l2P

(
L
lp

)2Υ

(B2 ·Bi×Aj)},

(5.52)

and the temporal current as

j0
h = −fhij{Aγ(Ei · Aj) + θ3l

2
P [(∇2Ei · Aj) + (Ei · ∇2Aj)] − 2θ8lP (∇ × Ei) · Aj}. (5.53)

Notice that the first terms of each current, which are coupled by the constant Aγ , are the same
current terms found in Eqs. (2.19) and (2.20). This happens because these terms carry classical
electromagnetism, and, for example, if the quantum effects of LQG are negligible, these are the
only terms that contribute to the currents. By coupling the Noether currents to the fields, we go
over from the free regime to one that exhibits self-interaction among the massless vector fields.
We then introduce the coupling between the currents and the fields to get a new Lagrangian, no
more free. This yields:

L1
LQG = LLQG − lϕhj

0
h − lAhjh, (5.54)

The parameter l is a coupling constant similar to the previous case, and we will adopt l = 1
4g.

At this point, the reader should notice that the procedures are identical to those in Chapter 2,
and therefore, we will once again consider an infinitesimal transformation of the fields. This is
because we aim to remove any dependence of the partial Lagrangian on space-time derivatives
of the vector fields

δAh = iwk(Gk)hlAl = wkfkhlAl, (5.55)

and
δϕh = iwk(Gk)hlϕl = wkfkhlϕl. (5.56)

And once again, we will apply the variational principle. The difference is that this time we will
apply it to the expression in Eq. (5.54)

δS =
∫
d4x δL1

LQG = 0. (5.57)
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For simplicity, we will not present Eq. (5.57), as it represents the coupling of the Lagrangian
(5.49) with the conserved currents Eqs. (5.52) and (5.53), making it a rather extensive equation.
The next step, before finding the new conserved currents from Eq. (5.54), is to derive the
equations of motion for this Lagrangian. This is an essential point. From the Lagrangian, we
can derive new Gauss’ law of electricity and Ampère-Maxwell equations. This allows us to
determine the currents to be coupled to the fields and then reinsert them into the Lagrangian.
Each current is coupled to a field and depends on a coupling parameter l′, where it is already
known that l′ satisfies l′ = 1

2g, which represents the coupling constant for this new term

L2
LQG = LLQG − l′ϕkj

0(1)
k − l′Akj(1)

k , (5.58)

The Eq. (5.58) is the last Lagrangian expression obtained, and it is no longer necessary to
re-calculate other currents. The reason being that the expression of the new Lagrangian no
longer depends on derivatives of the fields. Should the same steps be repeated, we would
obtain the same expressions for the currents as before. From Eq. (5.58), we can obtain the
field equations, namely, Gauss’ electricity and Ampère-Maxwell. From these two equations of
motion, it is possible to define the equations for the electric and magnetic field equations in
terms of the potentials in the Yang-Mills formalism with LQG contributions:

Eh = Aγ[−∇ · ϕh − Ȧh + gfhijϕiAj] − 3g
2 θ3l

2
Pfhij[Ai(∇2ϕj) + (∇2Ai)ϕj] + gθ3l

2
Pfhij[(∇Ai)·

(∇ϕj)] + g

2θ8lPfhij(Ai × Ȧj), (5.59)

and

Bh = Aγ[(∇×Ah) + g

2fhij(Ai×Aj)] + 2l2P θ3∇2Bh − g

2θ3l
2
Pfhij[∇2(Ai × Aj) − [Ai×(∇2Aj)]]

+ g

2θ8lPfhij[(Ȧi) · ϕj] + 2θ4L2
(L
lP

)2Υγ

l2P [2(B⃗2Bh) + 3gfhij(Ai × Aj) ·B2]. (5.60)

Again, note that the terms coupled with the constant Aγ are the same as those appearing in
Eqs. (2.37) and (2.38). However, observe the number of new terms arising from the contribution
of LQG effects in the electromagnetic sector. These new contributions are independently
generated by each θi term, being linear and not presenting cross terms, i.e., θi · θj. As can be
seen, in Chapter 2, the Noether procedure would be complete, and it would be possible to derive
the four new non-Abelian Maxwell equations. It would only require taking the curl of Eq. (5.59)
and the divergence of Eq. (5.60) would be sufficient. In electrodynamics with LQG effects, this
is not possible, because the Faraday-Lenz equation is modified and, by doing this and taking
the Abelian limit, we do not obtain again the Eqs. (5.5), (5.6) that should be obtained. As it
can be consulted in the literature [124,125], the non-Maxwellian extensions of electrodynamics
does not modify the Faraday-Lenz equation, since together with Gauss’law for magnetism,
these equations are obtained from the Bianchi Identity. The electrodynamics presented in this
paper modifies Eq. (5.6), which allows us to conclude that the Bianchi Identities are modified.
It is therefore necessary to follow another path to attain these two equations; one possible
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way consists in getting them from the Hamilton-Jacobi equations. By performing a Legendre
transformation on the Lagrangian Eq. (5.58) to find its corresponding Hamiltonian, we can
derive the equations for the electric field, E, and the vector potential, A:

∂H2
LQG

∂Eh

= −∂Ah

∂t
, (5.61)

and
∂H2

LQG

∂Ah

+
∂H2

LQG

∂(∇ × Ah) = ∂Eh

∂t
. (5.62)

This yields four Maxwell-type equations in the non-Abelian version with LQG contributions :

Aγ

[
∇ · Eh + gfhijEi · Aj

]
+g2θ3l

2
Pfhij

[
2(∇2Ei) · Aj + Ei · (∇2Aj) − 2∇[(∇Ai) · (∇ϕj)]+

∇2(Ai · Ej)
]
+g2θ8lPfhij

[
∇ · (Ai × Ȧj) + Ai · (∇ × Ej)

]
= 0, (5.63)

Aγ

[
∇×Bh+gfhijϕiEj +gfhij(Ai×Bj)

]
+θ3l

2
P

{
2∇2(∇×Bh)−gfhij[(∇2Ei)ϕj + 1

2∇2(ϕiEj)+

[(∇2Bi)×Aj]−
1
2ϕi∇2(Ȧj)+ 1

2Ei(∇2ϕj)− 1
2(Ȧi)·(∇2ϕj)− 1

2∇2(Bi×Aj)− 1
2[Bi×(∇2Aj)]

−∇2[ϕi(Ȧj)]]
}
−θ8lP

{
2∇2Bh− g

2fhij[∂t(Ai×Aj)−[(Ėi)×Aj]−2∇2(Ai×Aj)−∇[∇·(Ai×Aj)]

+(∇×Ei)ϕj]
}
+2θ4L2

(L
lP

)2Υγ

l2P ∇×
[
2(B⃗2Bh)+3gfhij(Ai×Aj)·B2

]
= ∂Eh

∂t
, (5.64)

Aγ

[
(∇ · Bh) + gfhijAi · Bj

]
−g

2θ3l
2
Pfhij∇ ·

[
(Ai × (∇2Aj) − 3∇2(Bi × Aj)

]
+g2θ8lPfhij∇·[

(Ȧi) · ϕj

]
+9gθ4L2

(L
lP

)2Υγ

l2Pfhij∇ ·
[
(Ai × Aj) ·B2

]
= 0, (5.65)

Aγ

[
(∇ × Eh) − gfhijϕiBj + gfhij(Ai × Ej)

]
+θ3l

2
P ∇2(∇ × Eh) − g

2θ3l
2
Pfhij

[
Bi · (∇2ϕj)−

(∇2Ei × Aj)
]
−θ8lP

[
∇2Eh + gfhij∇ · (Ei · Aj) − g

2fhij∇ × (Ai × (Ȧj))
]
= −∂Bh

∂t
. (5.66)

Having the four non-Abelian Maxwell-type equations for massless spin-1 vector bosons
in the context of LQG effects, an important point is that when we take the Abelian limit, that
is, the generators of the theory become trivial (Gh = 0). Which consequently leads the structure
constants to become trivial fhij = 0, we re-obtain the LQG-corrected Maxwell equations, (5.3),
(5.4), (5.5), and (5.6). Note also that each term in θi contributes independently to the structure
constants, and the term θ4, coupled with the nonlinear magnetic field, modifies the new magnetic
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field equations. Previously, Eq. (5.65), known as Gauss’s law for magnetism, did not include
magnetic monopoles. However, this is no longer true in the non-Abelian formulation, as the
terms θ3, θ8, and θ4 independently contribute to this equation. It is conceivable, based on this
interpretation, that magnetic monopoles might exist at the Planck scale, possibly associated
with these parameters.

When the LQG terms become irrelevant, θi = 0, we once again obtain Eqs. (2.43),
(2.44), (2.45), and (2.46). Another important observation is that, unlike what occurs in classical
electromagnetism, here there is no natural emergence of the covariant derivative in the theory.
Recall that in classical electromagnetism this quantity appeared naturally in the theory, but
here this does not occur due to the complexity of the theory.

Finally, as done in Chapter 2, we did not calculate the momentum and energy for the
Y-M equations. The reason is purely practical, due to the complexity of the equations. However,
we performed this calculation for the Abelian case, as shown in Section 5.1. Currently, our
ambition to work with this model has not ended, as we aim to investigate how LQG effects in
the electromagnetic sector influence the electroweak sector. Within this framework, we will
seek to understand the influence of LQG on the anomalous vertices coupling the neutral gauge
bosons, namely the photon and the Z0-boson.
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Chapter 6

Concluding comments

This Dissertation has been developed with the objective of exploiting the connection
between nonlinear electromagnetism, Yang-Mills theories, and the effects of Loop Quantum
Gravity (LQG), consolidating a bridge between classical and quantum concepts in modern
physics. The work is organized in stages that progressively introduce the necessary theoretical
foundations and develop new results. Below, we present a detailed summary of the contributions
of each chapter.

Chapter 2 delved into classical electromagnetism, revisiting Maxwell’s equations from a
new perspective. By following the Noether’s method, known for associating symmetries with
conservation laws, a non-Abelian formulation for massless spin-1 particles was developed. This
chapter detailed the construction of self-interacting currents, as well as modifications to the
classical laws of electromagnetism, introducing new terms associated with SU(N) symmetries.
This work revealed the possibility of magnetic monopoles arising in self-interacting fields, even
in the absence of fermionic matter, a result that significantly distinguishes the Abelian and
non-Abelian cases.

In Chapter 3, the foundations of General Relativity were presented, treating it as a gauge
theory and emphasizing the use of the tetrad formalism. This chapter emphasized how Einstein’s
geometric description can be reformulated using local structures that facilitate connections with
quantum field theories. Fundamental concepts, such as the ADM decomposition, which fragments
spacetime into spatial and temporal hypersurfaces, enabling the Hamiltonian formulation of
gravity, were also introduced. This approach lays the groundwork for introducing quantum
formalisms like LQG.

Chapter 4 focused on Loop Quantum Gravity, exploring its motivations and formalism.
Based on Ashtekar variables and the concept of Wilson loops, an introduction to the LQG
framework was provided, highlighting its capability to quantize spacetime in a non-perturbative
manner. Cosmological and black hole scenarios, as well as probabilistic effects associated with
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this approach, were discussed, illustrating how the granularity of spacetime naturally emerges.

Chapter 5 explored the effects of Loop Quantum Gravity on the electromagnetic sector.
This chapter constituted the core of the work, connecting LQG effects to modified Maxwell
equations and Yang-Mills theories. The main quantities obtained with the introduction of
nonlinearities and non-Abelian interactions were highlighted, establishing analogies with funda-
mental models, such as the electroweak theory and quantum chromodynamics. This chapter also
analyzed the application of Noether’s procedure to achieve a complete non-Abelian scenario.

The results developed herein reinforce the importance of investigating the nonlinear
and non-Abelian structure of fundamental interactions in the context of Quantum Gravity
theories. In addition to offering a conceptual and mathematical bridge between different fields
of theoretical physics, the work proposed new analytical tools to address complex problems at
the interface of electromagnetic fields and spacetime geometry.

As a possible follow-up of this work, we aim to investigate the effects of LQG in connection
with the electroweak sector of the Standard Model of Particle Physics. The goal is to study how
these LQG effects modify the anomalous vertices coupled to the neutral gauge bosons, namely
the photon and the Z0. In this way, anomalous 3-point and 4-point vertices will arise from
the coupling of the photon and the Z0, respectively. This is particularly interesting since both
types of vertices are being investigated in the ATLAS and CMS collaborations, which could
consequently establish a new bridge connecting LQG to accelerator physics.
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Appendix A

Gauss Equation and Codazzi-Mainardi
Identities

Let us suppose we are in a 3D space, and therefore Eq. (3.53) holds. However, we must

DαDβV
q = Dα (DβV

q) = qµ
αq

ν
βq

q
ρ∇µ (DνV

ρ)
= qµ

αq
v

βq
q

ρ∇µ

(
qσ

νq
ρ

λ∇σV
λ
)
.

= qµ
αq

ν
βq

q
ρ(nσ∇µnνq

ρ
λ∇σV

λ + qσ
ν ∇µn

ρ nλ∇σV
λ︸ ︷︷ ︸

−V λ∇σnλ

+qσ
ν q

ρ
λ∇µ∇σV

λ)

= qµ
αq

ν
βq

q
λ∇µnνn

σ∇σV
λ − qµ

αq
σ
βq

q
ρV

λ∇µn
ρ∇σnλ + qµ

αq
σ
βq

q
λ∇µ∇σV

λ

= −Kαβq
q
λn

σ∇σV
λ −Kq

αKβλV
λ + qµ

αq
σβqq

λ∇σV
λ .

(A.1)
Note, if we change the α por β index, we obtain

[Dα, Dβ]V q =
(
KαµK

q
β −KβµK

q
α

)
V µ + qρ

αq
σβqq

λ

(
∇ρ∇σV

λ − ∇σ∇ρV
λ
)

︸ ︷︷ ︸
(4)Rλ

µρσV µ

, (A.2)

so, we can rewrite the equation above

qµ
αq

ν
βq

q
ρq

σ
λ

(4)Rρ
σµνV

λ = (3)Rq
λαβV

λ +
(
Kq

αKλβ −Kq
βKαλ

)
V λ , (A.3)

we find the Gauss relation

qµ
αq

ν
βq

q
ρq

σ
δ

(4)Rρ
σµν = (3)Rq

δαβ +Kq
αKδβ −Kq

βKαδ . (A.4)

Contracted Gauss Relation

First, let’s contracted the 3−metric, qα
β q

β
τ = qα

τ = δα
τ + nαnτ . So, the contracted Gauss

relation
qµ

αq
ν
β

(4)Rµν + qαµn
νqρ

βn
σ(4)Rµ

νρσ = (3)Rαβ +KKαβ −KαµK
µ
β . (A.5)
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To obtain the Ricci scalar from Eq. (A.5), we multiply the entire equation by qαβ. Therefore,
we have:

qαβ
(
qµ

αq
ν
β

(4)Rµν + qαµn
νqρ

βn
σ(4)Rµ

νρσ

)
= qαβ

(
(3)Rαβ +KKαβ −KαµK

µ
β

)
(A.6)

⇒ (4)R + qρ
µn

νnσ(4)Rµ
νρσ = (3)R +K2 −KijK

ij . (A.7)

Using the metric decomposition qρ
µ = δρ

µ + nρnµ and the fact that (4)Rµ
νρσn

ρnµn
νnσ = 0, it is

possible to derive:
(4)R + 2(4)Rµνn

µnν = (3)R +K2 −KijK
ij . (A.8)

This expression is known as the Theorema Egregium, which was originally proposed for 2-D
surfaces embedded in Euclidean space R3, where the curvature is 0.

Codazzi-Mainardi Identities

Still using Eq. (3.67), we multiply the entire equation by the metric terms qρ
αq

τ
βq

µ
r ,

obtaining
qρ

αq
τ
βq

µ
r [∇ρ,∇τ ]nr = qρ

αq
τ
βq

µ
σ

(4)Rσ
rρτn

r . (A.9)

Let us expand the equation above:

qρ
αq

τ
βq

µ
r ∇ρ∇τn

r − qρ
αq

τ
βq

µ
r ∇τ ∇ρn

r = qρ
αq

τ
βq

µ
σ

(4)Rσ
rρτn

r . (A.10)

Next, we substitute the indices µ, ν by ρ, τ and ρ by r:

qµ
αq

ν
βq

r
ρ∇µ∇νn

ρ − qµ
αq

ν
βq

r
ρ∇ν∇µn

ρ = qρ
αq

τ
βq

µ
σ

(4)Rσ
rρτn

r . (A.11)

Now, we replace ∇νn
q using Eq. (3.58) in the first commutator term, and recall that aµ ≡ nν∇νnµ.

Thus, Kµν = −∇µnν − nµn
ρ∇ρnν . Therefore, we have:

qµ
αq

ν
βq

r
ρ∇µ∇νn

ρ − qµ
αq

ν
βq

r
ρ∇ν∇µn

ρ = qµ
αq

ν
βq

q
ρ∇µ (−Kρ

ν − aρnν) − qµ
αq

ν
βq

r
ρ∇µ

(
−Kρ

µ − aρnµ

)
= −qµ

αq
ν
βq

r
ρ

[
(∇µK

ρ
ν + ∇µa

ρnν + aρ∇µnν) − (∇νK
ρ
µ+

∇νa
ρnµ + aρ∇νnµ)

]
, (A.12)

To simplify this expression, we use the covariant derivative relation DµT
ν
β = qα

µq
ν
λq

ρ
β∇αT

λ
ρ , as well

as qν
βnν = 0 (since nµ is a timelike vector, so there is no projection on a spacelike hypersurface

Σt), qν
βa

β = aν (since aν is a spacelike vector, so the projection onto Σt gives the same vector)
and the definition of the extrinsic curvature tensor in Eq. (3.55), to obtain:

qµ
αq

ν
βq

r
ρ∇µ∇νn

ρ − qµ
αq

ν
βq

r
ρ∇ν∇µn

ρ = −DαK
r
β + arKαβ +DβK

r
α − arKβα, (A.13)

However, as mentioned earlier, the extrinsic curvature tensor is symmetric, i.e., Kµν = Kνµ.
This allows us to simplify the equation above. Finally, since this term equals the right-hand
side of Eq. (A.9), we have:

qr
ρn

σqµ
αq

ν
β

(4)Rρ
σµν = DβK

r
α −DαK

r
β . (A.14)

This is the Codazzi-Mainardi relation.
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Contracted Codazzi Relation

In the Codazzi-Mainardi relation (eq. A.14), we contract the indices α and q to get:

qµ
ρn

σqν
β

(4)Rρ
σµν = DβK −DµK

µ
β . (A.15)

Let’s use the relation qµ
ρ = δµ

ρ + nµnρ, we have

(δµ
ρ + nµnρ)nσqν

β
(4)Rρ

σµν → nσqν
β

(4)Rσν + qν
β

(4)Rρ
σµνnρn

σnµ︸ ︷︷ ︸
=0

= DβK −DµK
µ
β (A.16)

this term is zero because symmetric-antisymmetric indices {ρ, σ} are contracted.

Thus we obtain contracted Codazzi relation

qµ
αn

ν (4)Rµν = DαK −DµK
µ
α . (A.17)
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Intrinsic Curvature Tensor

We start with the definition of the 4-Riemann tensor when applied to the normal vector
nµ, namely:

(4)Rρ
σµνn

σ = [∇µ,∇ν ]nρ . (B.1)

We multiply both sides by (qραq
µ
βn

ν):

qραq
µ
βn

ν
(

(4)Rρ
σµνn

σ
)

= qραq
µ
βn

ν [∇µ,∇ν ]nρ . (B.2)

Note that the right-hand side of Eq. (B.2) is given by:

qραq
µ
βn

ν [∇µ,∇ν ]nρ = qραq
µ
βn

ν (∇µ∇νn
ρ − ∇ν∇µn

ρ) . (B.3)

We now have the terms ∇νn
ρ and ∇µn

ρ, which can be replaced using Eqs. (3.57) and (3.58).
Additionally, we use the normalization condition for the normal vector nµnµ = −1, and, as
shown earlier, nµ∇νnµ = 1

2∇ν (nµnµ) = 0. Thus, we obtain:

qραq
µ
βn

ν (∇µ∇νn
ρ − ∇ν∇µn

ρ) = qν
αq

µ
β∇nKµν −qραq

µ
βn

ν∇µK
ρ
ν︸ ︷︷ ︸

Term A

+qραq
µ
βn

ν (∇νnµ)Dρ ln(N)︸ ︷︷ ︸
Term B

+qραq
µ
β (∇µD

ρ ln(N))︸ ︷︷ ︸
Term C

.

(B.4)

We simplify each term separately. Using Eq. (3.55), Term A can be rewritten as:

−qραq
µ
βn

ν∇µK
ρ
ν = −qραq

µ
β∇µ (nνKρ

ν )︸ ︷︷ ︸
=0

+qραq
µ
βK

ρ
ν ∇µn

ν

= qραq
µ
βK

ρ
σq

σ
ν ∇µn

ν

= −qραK
ρ
σK

σ
β

= −KασK
σ
β .

(B.5)
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Similarly, Term B simplifies to:

qραq
µ
βn

ν (∇νnµ)Dρ ln(N) = −qραq
µ
βn

νnν (Dµ ln(N)) (Dρ ln(N))

= 1
N2 (DαN) (DβN) .

(B.6)

Finally, Term C can be rewritten using qµ
β∇µ (Dρ ln(N)) = Dβ (Dρ ln(N)) and qραD

ρ = Dα:

qραq
µ
β (∇µD

ρ ln(N)) = DβDα ln(N) = DαDβ ln(N)

= Dα

( 1
N
DβN

)
= 1
N
DαDβN − 1

N2 (DαN) (DβN) .

(B.7)

Combining Eqs. (B.4), (B.5), (B.6), and (B.7) into Eq. (B.2), we have:

qραq
µ
βn

ν
(

(4)Rρ
σµνn

σ
)

= qν
αq

µ
β∇nKµν −KασK

σ
β + 1

N2 (DαN) (DβN)

+ 1
N
DαDβN − 1

N2 (DαN) (DβN) . (B.8)

Rearranging indices and applying simplifications:

qραq
µ
β

(4)Rρ
σµνn

σnν = −KαλK
λ
β + qµ

αq
ν
β∇nKµν + 1

N
DαDβN . (B.9)
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Appendix C

Connection to Thermodynamics and Entropy

In this appendix, we dedicated to calculation the Barbero-Immirzi Parameter and the
Bekenstein-Hawking entropy.

Calculation of the Barbero-Immirzi Parameter

The Bekenstein-Hawking entropy is

SBH = a
kB

ℏG
A. (C.1)

Note the subindex BH is not associate to black hole but for Bekenstein-Hawking. We consider
c = 1, a parameter is a constant of the order of unity kB, where kB is a Boltzmann constant, G
is the Newton gravitational constant and A is the area of surface Schwarzschild black hole. The
ℏ constant is in Eq. (C.1) for two reasons, first for get dimensions right and the second is the
connection to quantum world. The area of this black hole can be related with our energy like

E =
√

A

16πG2 , (C.2)

from the Eq. (C.1), the black hole temperature can be obtained thought the thermodynamics
relation

1
T

= dS

dE
→ T = ℏ

32πakBGE
. (C.3)

Until this moment every steps was made from Bekenstein. But this Hawking moment was come,
first he postulate the black hole would emit thermal radiation at the temperature equation (C.3).
And using quantum field theory in curved spacetime (which we no show here) he obtains a
black hole thermal radiation, compute by the temperature

T = ℏ
8πkBGE

, (C.4)
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when we compare the Eqs. (C.3) and (C.4) they are differents from

a = 1
4 . (C.5)

In 1973 Bekenstein find the constant of proportionality 0.2375, this value can be coupled to the
a parameter, what we obtain

a ≈ 0.2375
4γ , (C.6)

to restore the original expression Eq. (C.5), we can fix the γ value

γ = 0.2375. (C.7)

The formulation of these equations have a several physics conceptituals problems. First, when
Bekenstein propose the entropy he formulates the thermodynamics law can be extended in
the presence of black holes and the ordinary entropy sum with black hole entropy is equal to
total entropy. The ℏ term leads to the questions that, when we work with entropy is necessary
know the microscopical degrees of freedom responsible to that entropy, so here, which are the
degrees of freedom for SBH?, it is possible obtain the Eq. (C.1) for first principles? When
Hawking obtain the Eq. (C.4) is a safety place to Bekenstein, the equations are almost identical,
but Hawking, when deriving his equation, did not take into account Quantum Gravity effects,
leaving a very important point out of his deduction.

In the next section, we show how to obtain the value of γ using the LQG approach.

Bekenstein-Hawking entropy

To construction the Bekenstein-Hawking entropy, let’s start from the Boltzmann’s entropy

S = kB ln(W ) (C.8)

where kB is the Boltzmann constant and W is the number of microstates compatible with the
macrostate of the system. The first question the reader may ask is, "How can we connect this
to Loop Quantum Gravity (LQG)?" In fact, the connection can be made using a parameter
N(A), known as the number of states that the geometry of a surface with area A can assume.
The area is described by Eq. (4.3). In that equation, as previously mentioned, the variable ji

corresponds to the spin network. As suggested by John Wheeler [126,127], black holes should
carry one bit of information per unit of area. The minimum possible value is ji = 1/2, which
corresponds to the area of a single link, of the form

A0 = 4πγℏG
√

3 (C.9)

Some geometric insights are neglected here, but can be seen in [44]. After the discovery of the
Eq. (C.9), Domagala and Lewandowski find the entropy can not be dominated by the spin 1/2
and more details in [128].

n = A

A0
= A

4πγℏG
√

3
(C.10)
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the Hilbert space dimension of the spin 1/2 is H1/2 = 2, so the number of microstates are

N = 2n = 2A/4πγℏG
√

3 (C.11)

replacing in the Eq. (C.8), we obtain the entropy

SBH = kBln(N) = kB A ln2
4π

√
3γℏG

. (C.12)

This equation needs to be equal to Eq. (C.1), which leads our free parameter, γ, to become

γ = ln(2)
π

√
3

̸= 0.2375 (C.13)
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