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Abstract

Essa tese trata de teoria de perturbações lineares em um buraco negro de Reissner-
Nordström. Investigamos um campo escalar carregado e sem massa nos limites quase-
extremo e extremo usando frequências puramente reais e complexas. Revisitamos soluções
analíticas bem conhecidas do campo no regime quase-extremo, construímos outras soluções
para os casos quase-extremo e extremo, e utilizamos soluções numéricas e exatas para
comparar nossos resultados e obter uma compreensão mais profunda.

Para frequências reais, construímos, usando essas soluções, o fator de amplificação super-
radiante nos limites quase-extremo e extremo. Conseguimos demonstrar a descontinuidade
que ocorre no limite extremo, para alguns modos, quando temos a frequência de limite
superradiante ωSR.

E para frequências complexas, obtivemos modos quase-normais calculando-os com o uso de
funções de Heun confluente aplicando o que chamamos de método de Fiziev. Conseguimos
obter um espectro para modos totalmente refletidos. Também investigamos a formação de
um branch cut em ω = ωSR quando o buraco negro se torna extremo, assim como o branch
cut na origem.

Usando esses modos especiais, pudemos estudar a função Green para um buraco negro
quase-extremo. Os modos quase-normais, que se tornarão polos, e o branch cut na origem,
que resultará em uma power-law tail para tempos tardios.

Palavras-chave: Relatividade Geral, Buracos negros carregados, Equação de Klein-
Gordon, Superradiância, Teoria perturbativa, Modos quase-normais.





Abstract

This thesis focuses on the linear perturbation theory of the Reissner-Nordström black
hole. We investigate a charged, massless scalar field using both purely real and complex
frequencies in the near-extremal and extremal limits.

We begin by revisiting well-known analytical field solutions in the near-extremal regime
and construct additional solutions for both near-extremal and extremal cases. We utilize
numerical and exact solutions to compare our results and gain further insights.

For real frequencies, we derive the superradiant amplification factor in the near-extremal
and extremal limits using these solutions. We demonstrate the discontinuity that arises in
the extremal limit for the superradiant-bound frequency ωSR and the emergence of infinite
wiggles.

In the realm of complex frequencies, we calculate quasinormal modes (QNMs) numerically
using the confluent Heun function with the methodology referred to as Fiziev’s method.
Additionally, we analytically determine a spectrum for quasinormal and totally reflected
modes around ω ∼ ωSR, confirming well-established results and discovering new ones.
Furthermore, we investigate the formation of a branch cut at ω = ωSR as the black hole
approaches extremality, as well as a branch cut at the origin for ω = 0.

Utilizing these special modes, we explore the Green function for a near-extremal black
hole. The quasinormal modes serve as poles, while the branch cut at the origin contributes
to a power-law tail in the late-time behavior.

Keywords: General Relativity, Charged black hole, Klein-Gordon equation, Superradiance,
Perturbation theory, Quasinormal modes.
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1 Introduction

The General Relativity (GR) is the most acceptable theory to describe gravitational
phenomena, but more than describing these phenomena, the change in the very conception
of space and time is fundamental to all modern physics. The emergence of black holes (BH)
could only be possible having in mind this new notion of space-time and understanding it
as being the geometry itself.

The study of BH perturbations starts with Regge & Wheeler [Regge e Wheeler
1957] in the 1950s. At the end of the 1960s, Penrose discovered that it is possible to extract
rotational energy from a rotating BH [Penrose 1969], and Christodoulou explored this
for the first time [Christodoulou 1970]. This well-known process, known as the Penrose
Process, occurs with unstable particles. These particles should get close enough to the BH
and "break", letting one part fall into the BH while the other part escapes, resulting in an
escaping particle with more energy than the original one. In the early 1970s, Zel’dovich
showed that the extraction of energy could also occur with electromagnetic waves in an
analogous scenario [Zel’Dovich 1971]. In his seminal work, he considered the scattering
of an electromagnetic wave by a conducting cylinder rotating with a certain angular
velocity. For waves with specific frequencies, they have reflected parts with an amplitude
exceeding the amplitude of the incident wave. This bound frequency is what we call the
superradiant-bound limit. In 1972, Press & Teukolsky finally reproduced these results
of Zel’dovich for scalar waves interacting with a Kerr BH [Press e Teukolsky 1972] and
then generalized it for spinorial, electromagnetic, and gravitational waves [Teukolsky
1973,Press e Teukolsky 1973,Teukolsky e Press 1974], where for scalar, electromagnetic,
and gravitational cases this effect (the amplification of the reflected wave) appears and is
well-known as Superradiance.

However, it is not an exclusive effect of rotating BH. While a field can extract
rotational energy from a BH, a charged field can also extract energy from a charged BH.
The effect is the same, but while the superradiance generated by a rotating BH is induced
always in the neighborhood of the event horizon, in the ergosphere, for charged interaction
the region where energy extraction occurs varies depending on the physical parameters of
the field. This will not be addressed here, but a good discussion is developed by Di Menza
& Nicolas [Menza e Nicolas 2015].

In 1983, Chandrasekhar’s incredible book [Chandrasekhar 1998] provided a complete
study of perturbation theory of scalar and spinorial fields in RN spacetime (also in
Kerr). More recently, Brito, Cardoso & Pani, in yet another amazing book, explored the
superradiance phenomenon in a much more modern language [Brito, Cardoso e Pani 2020].



But more than a very interesting effect by itself, the presence of the superradiance
impacts the perturbation fields, in our case the charged scalar ones, in a few ways. Being
a dissipative system, special types of modes with complex frequencies exist, assuming
a time dependence like e−iωt and with ℑω < 0: damped modes. Some of these damped
special modes will describe quasinormal modes (QNMs), and others totally reflected modes
(TRMs), and both of them are related to the superradiant-bound limit, as we will see in
the next chapters.

These QNMs [Vishveshwara 1970,Hod 2010] are very important. It is this kind of
vibration, when a BH emits gravitational waves, that is detected by the Laser Interferometer
Gravitational-Wave Observatory (LIGO) [Abbott et al. 2016]. And these modes will be
the poles of the Wronskian of the field solutions, which play a very important role when
we investigate the Green function. All of it will be explored.

In this work, we choose units such that G = c = 1.



2 Reissner-Nordström black holes: charged
spherically symmetric metric

The most realistic case for BHs is the rotating BH without an electric charge. However,
the Reissner-Nordström (RN) BH serves as a great toy model for reasons that will become
clear throughout the thesis. and in the next sections. The RN metric has mass M and
charge Q, and in the Boyer-Lindquist coordinates, it is described by

ds2 = −∆
r2 dt2 + r2

∆dr2 + r2
(
dθ2 + sin2 θ dφ2

)
, (2.1)

where ∆ = r2 − 2Mr + Q2, and the range of coordinates are: t ∈ (−∞, +∞), r ∈
(0, +∞), θ ∈ [0, π], φ ∈ [0, 2π]. The RN metric is obtained by solving the Einstein-
Maxwell equation considering an electromagnetic potential Aµ with a unique non vanish
element A0 = −Q/r.

We can see from equation (2.1) that this metric diverges for r = 0 and ∆ = 0,
however checking the Kretschmann scalar it diverges only when r = 0, which indicates a
physical singularity at the origin.

Although, the other two points diverge the metric describing nonphysical singulari-
ties at r = r± where r± = M ±

√
M2 − Q2. These two surfaces r+ is the exterior horizon

(the event horizon) and r− is the inner horizon.

The first one, the event horizon, is a surface where for r < r+ any information is
inaccessible to an outside observer. It happens because the light cone are deformed so that
they point only inwards to the BH.

Considering the weak cosmic censorship hypothesis we need to guarantee the
singularity is always surrounded by an event horizon, and looking at ∆ = 0, it only
happens if Q ≤ M . When Q has this maximum value we call it as extremal RN BH, and
rH = r+ = r−.





3 Linear Perturbations

In this section, we will first review the propagation of perturbations of scalar charged
waves around RN BH and then examine the physical properties of this field through a
type of spectroscopic study.

3.1 Klein-Gordon equation

3.1.1 Sub-extremal: Q < M

A massless charged scalar field Ψ propagating on a RN spacetime background will be
described by a Klein-Gordon (KG) equation,

(∇µ − iqAµ) (∇µ − iqAµ) Ψ = 0, (3.1)

and we can define the scalar field using an appropriate ansatz as

Ψ = 1
2π

∞∑
ℓ=0

ℓ∑
m=−ℓ

∫ +∞

−∞
Rℓω(r)Pℓ(θ)eimφe−iωt dω. (3.2)

where ω is the frequency of the field and Pℓ(θ) is the spherical harmonics.

The equation for the radial component of the field, Rℓω, can be described as

d

dr

(
∆dR

dr

)
+
(

K2

∆ − λℓ

)
R = 0, (3.3)

where K = ωr2 − qQr and λℓ = ℓ(ℓ + 1) is a separation constant. And, of course, R is just
a more compact form to write Rℓω.

We can identify two regular singular points at r = r± and an irregular one at
r → ∞. This structure identifies a confluent Heun equation and will be explored further.

Defining fℓω = r Rℓω and using tortoise coordinate r∗, defined by dr∗ = r2/∆ dr, or

r∗ ≡
∫ dr∗

dr
dr = r − r−

2

r+ − r−
log

(
r − r−

r−

)
+ r+

2

r+ − r−
log

(
r − r+

r+

)
, (3.4)

the master equation assumes a Schrödinger-like form

d2f

dr∗2 + W (r∗)f = 0, (3.5)



where

Wℓω = ∆
r4

{
K2

∆ − λℓ − 2M

r
+ 2Q2

r2

}
. (3.6)

We can solve it analytically in the asymptotic regimes and find two linearly
independent solutions, f in

ℓmω and fup
ℓmω. These regimes are near the event horizon, when

r → r+ (and r∗ → −∞) and at radial infinity when r → +∞ (and r∗ → +∞), and will
have the following form:

f
(in)
ℓω ∼

 A
(out)
ℓω r∗

−iqQeiωr∗ + A
(in)
ℓω r∗

+iqQe−iωr∗ , r∗ → +∞
e−iω̃r∗ , r∗ → −∞

(3.7)

f
(up)
ℓω ∼

 r∗
−iqQeiωr∗ , r∗ → +∞

B
(in)
ℓω e−iω̃r∗ + B

(out)
ℓω eiω̃r∗ , r∗ → −∞

(3.8)

where ω̃ = ω − qQ
r+

.

The physical meanings of these two solutions are different. The IN-modes, described
by (3.7), are waves initially propagated from infinity; the wave interacts with the potential
barrier Wℓω, that we can see in equation (3.6), being partially reflected back to infinity and
partially transmitted into the BH. And the UP-modes, described by (3.8), we have waves
propagated near the event horizon, where again, interacting with the potential barrier, are
partially reflected back to the BH and partially transmitted to infinity.

Now, using f
(in/up)
ℓω , we can construct an important quantity: the Wronskian, Wℓω,

Wℓω ≡
(

f (in) df (up)

dr∗
− f (up) df (in)

dr∗

)
= 2iω A

(in)
ℓω . (3.9)

3.1.2 Extremal: Q = M

In this case the equation (3.3) will keep the same shape, but ∆ now can be written as
∆ = (r − M)2,

d

dr

(
(r − M)2 dR

dr

)
+
(

K2

(r − M)2 − λℓ

)
R = 0, (3.10)

with K = ω2r − qMr in this case.

This will change, in a certain way, the structure of the differential equation because
from now on we will have only two singular points, at r = M and r → +∞, both of them
irregular ones. What identifies a doubly-confluent Heun function.

Changing the tortoise coordinate to drext
∗ = (r − M)−2r2 dr, or



rext
∗ ≡

∫ drext
∗

dr
dr = r − M − M2

r − M
+ 2M log

(
r − M

M

)
, (3.11)

we will have the same equation (3.5) with potential (3.6), of course, with Q = M .

And about the way to write rext
∗ using (3.11) we choose the right constant with

relation to the sub-extremal coordinate (3.4) to have a “smooth transition” when we are
increasing the charge and definitely become extremal.

3.2 Physical properties: spectroscopy of charged black holes

We will examine some physical properties of spin-field perturbations in two aspects: in the
real-frequency domain, investigating the phenomenon of superradiance and exploring the
amplification factor; and in the complex-frequency domain, analyzing quasinormal modes
(QNMs) and totally reflected modes (TRMs), and their accumulation leading to a branch
cut at the superradiant-bound frequency (ωSR).

None of the phenomena described above are exclusive to RN BH; on the contrary,
they apply to other systems, specifically rotating BHs (Kerr spacetime). A charged-scalar
field in RN spacetime ends up being “analogous” to a scalar field in Kerr spacetime; or, in
other words, it represents a simplified version of the same physical process. This serves as
a significant motivator.

3.2.1 Superradiance

Superradiance is a phenomenon in which a wave extracts energy from the BH, resulting in
an amplification of its reflected part. It is akin to the well-known "Penrose process," where
a small object passing through a region of a rotating BH splits into two parts, with one
part entering the BH and the other escaping with greater energy than the original object,
thereby decreasing the BH’s spin.

Superradiance can be defined by studying the variation of the energy of the incident
(Ein) and reflected (Eout) parts of the wave coming from infinity,

sZℓmω = dEout

dEin
− 1, (3.12)

where sZℓmω is the amplification factor.

This quantity quantifies the degree of superradiance. When dEout/dEin > 1 ∴

dEout/dt > dEin/dt the wave is extracting energy from BH (the definition of superradiance).
This occurs when ω < qQ/r+. Hence, ωSR ≡ qQ/r+ is the superradiant-bound frequency.



3.2.1.1 Bosonic field:

For a bosonic field (s = 0, our case) we can relate the energy fluxes with the amplitudes
in (3.9),

d2E

dtdΩ = lim
r→+∞

r2T r
t, (3.13)

which gives us

dEout

dt
= ω2

2 |R|2 ,
dEin

dt
= ω2

2 . (3.14)

These quantities R and T will be defined using the Wronskian between fℓω and
fℓω

∗, helping us understand ωSR. From this, we obtain the following equation

|R|2 = 1 −
(

1 − qQ

ωr+

)
|T |2 , (3.15)

where R = A(out)/A(in) and T = 1/Ain, representing the reflection and transmission
coefficients, respectively. Here, we denote A(in/out) = A

(in/out)
ℓω for simplicity.

Equation (3.15) indicates that superradiant scattering occurs (|R|2 > 1) whenever
ω < qQ/r+. The amplification factor is defined, in this case, as

Zℓmω = |R|2 − 1. (3.16)

3.2.2 Quasinormal modes

The previous section only discussed real frequencies. Now, we are interested in complex
ones, particularly quasinormal modes (QNMs), which are crucial in the context of BHs.

According to the uniqueness [Israel 1967, Israel 1968] and no-hair theorem [Ruffini
e Wheeler 1971], a BH in a stable configuration is characterized by three (potential)
parameters: mass M , charge Q and angular momentum J . QNMs, on the other hand,
are characterized (potentially) by a mass parameter µ, a charge parameter q, an orbital
number ℓ, an azimuthal number m, and a spin parameter s.

QNMs are field modes that decay exponentially with time. They are described by
a purely out-going wave at infinity and an in-going wave into the event horizon, leading to
a change in the boundary condition,

fℓωℓn
∼

 A
(out)
ℓωℓn

r∗
−iqQeiωℓnr∗ , r∗ → +∞

e−iω̃ℓnr , r∗ → −∞
(3.17)



where ωℓn is a quasinormal (QN) frequency.

As QNMs represent dissipating fields, they have negative imaginary parts in their
frequencies, indicating damping with time. These frequencies are countable but infinite
for each set of multipole numbers ℓ enumerated by n = 0, 1, 2, ..., with n representing the
fundamental mode with the smallest imaginary value, or in other words, the longest-lived
mode.

3.2.3 Totally reflected modes

In addition to QNMs, we have another set of modes important in the BH context, also
characterized by the same set of parameters as QNMs. These modes, known as totally
reflected modes (TRMs), correspond to waves with no transmission, T = 0. Like QNMs,
they form a countable but infinite spectrum for each set of multipole ℓ enumerated by
n = 0, 1, 2, ..., we will denote this spectrum as ω̄ℓn.

Therefore, T = 0 implies that A
(in)
ℓω̄n

→ ∞. Moreover, it will be useful to consider
the absolute value of the Wronskian to find these frequencies.

In summary, the behavior of the Wronskian can be defined as

|Wℓω| =

 0 , ω = ωℓn

∞ , ω = ω̄n

(3.18)

3.2.4 Branch cuts

In sub-extremal or extremal cases is well-known presence of a branch point at ω = 0 due to
the irregular character of the singularity of the radial ODE (3.3) at r → ∞, and forming
a branch cut (BC) at ω = 0 − iν, where ν ∈ [0, +∞). Physically, the contribution to the
field is the late times’ decay.

However, in the extremal case (as will become more evident later), another branch
point appears at ω = ωSR, forming a BC at ω = ωSR − iν, where ν ∈ [0, +∞). This BC is
formed due to a succession of QNMs and TRMs, as will be demonstrated later.





4 Green function

The Green function (GF) is a fundamental mathematical object in physics, both classical
and quantum. In the context of BHs, it plays a crucial role and can be employed to
determine significant quantities such as the self-field and self-force of a field [Casals et al.
2013].

In our study, we focus on a charged scalar particle following a circular trajectory
(non-geodesic due to the Lorentz force), and nearly all the quantities described in the
previous sections are essential for constructing the GF.

To begin, employing a multipole-ℓ decomposition in the angular distance γ, the
GF can be expressed as:

Gret(x, x′) =
∞∑

ℓ=0
Gret

ℓ , (4.1)

Gret
ℓ = 1

rr′ (2ℓ + 1)Pℓ(cos γ)Gret
ℓ (r, r′, ∆t), (4.2)

where r and t are the radial and time coordinates of spacetime point x, respectively, and
r′ and t′ are those of spacetime point x′. Here, ∆t ≡ t − t′, and cos γ = cos θ cos θ′ +
sin θ sin θ′ cos (φ − φ′).

The Fourier-mode decomposition in time yields:

Gret
ℓ (r, r′, ∆t) = 1

2π

∫ +∞+ic

−∞+ic
dω Gℓ(r, r′, ω)e−iω∆t, (4.3)

where c > 0.

The retarded GF satisfies the wave equation (3.5):

[
d2

dr∗2 + Wℓω(r)
]

Gℓ(r, r′, ω) = −δ(r∗ − r′
∗), (4.4)

where Wℓω is defined in (3.6), and K is defined in (3.3).

The solution of Fourier-modes of the GF is given by:

Gℓ(r, r′, ω) = −f (in)(r<, ω)f (up)(r>, ω)
W(ω) , (4.5)

where r> ≡ max(r, r′) and r< ≡ min(r, r′), and f (in/up)(r, ω) ≡ f
(in/up)
ℓω (r).



This allows us to perform an analytical extension and choose an appropriate contour,
as illustrated in Figure 1, for integration.

BC

C

HF

QNM

Figure 1 – Contour to integrate the GF

Various contributions can be identified when attempting to integrate it. We have
simple poles that will appear from zeros of the Wronskian (QNMs), as explained in
subsection 3.2.2. We have a branch cut (ℜω = 0) in the negative imaginary axis, as
explained in subsection 3.2.4, and a high-frequency (HF) arc (which reduces to the
flat-space GF when M, Q → 0).

In other words, we have

1
2π

∮
C

dω Gℓ(r, r′, ω)e−iω∆t = 1
2π

∫ +∞+ic

−∞+ic
dω Gℓ(r, r′, ω)e−iω∆t (4.6)

+ 1
2π

∫
HF

dω Gℓ(r, r′, ω)e−iω∆t

+ 1
2π

∫
BC

dω Gℓ(r, r′, ω)e−iω∆t

the left side of this expression is also equal to the sum of the residues of Gℓ,

1
2π

∮
C

dω Gℓ(r, r′, ω)e−iω∆t = i
∑

n

lim
ω→ωn

(ω − ωn)Gℓ(r, r′, ω)e−iω∆t ≡ GQN
ℓ . (4.7)

Therefore, we can write:

Gret
ℓ = GQN

ℓ + GBC
ℓ + GHF

ℓ , (4.8)

the last one, GHF
ℓ will not be explored in this work.



4.1 Quasinormal mode sum
As discussed earlier, QNMs are defined as complex frequencies where W(ωℓn) = 0, de-
scribing a simple pole in the Fourier mode of the GF. This contribution can be expressed
as:

GQN
ℓ = −

∞∑
n=0

lim
ω→ωℓn

(ω − ωℓn)f (in)(r, ω)f (up)(r′, ω)
2ωA

(in)
ℓω

e−iω∆t (4.9)

Thus, the integral (4.3) for GQN
ℓ becomes, upon solving the limit:

GQN
ℓ (r, r′, ∆t) = −

∞∑
n=0

GQN
ℓ,n (r, r′, ∆t) (4.10)

GQN
ℓ,n (r, r′, ∆t) = f in

ℓ (r, ωℓn)fup
ℓ (r′, ωℓn)

2ωℓnαℓn

e−iωℓn∆t, (4.11)

where A
(in/out)
ℓ,n ≡ A

(in/out)
ℓω=ωℓn

, and αℓn is defined using A
(in)
ℓω ∼ (ω − ωℓn)αℓn when ω → ωℓn.

4.2 Branch cut
The BC integral GBC

ℓ , is defined as

∫
BC

dω Gℓ(r, r′, ω)e−iω∆t =
∫

L↑
dω Gℓ(ω + ϵ)e−iω∆t +

∫
L↓

dω Gℓ(ω − ϵ)e−iω∆t, (4.12)

Let’s examine each term separately. In L↑ the integration range is (−iR, 0) where ω =
νe−iπ/2 ≡ −iν, Making this variable change and using the limit R → ∞ we get,

∫
L↑

dω Gℓ(ω + ϵ)e−iω∆t = i
∫ ∞

0
dν Gℓ(−iν + ϵ)e−ν∆t, (4.13)

similarly, in L↓ the integration range is (0, −iR) where ω = −iν e2iπ. Thus, we have:

∫
L↓

dω Gℓ(ω − ϵ)e−iω∆t = −i
∫ ∞

0
dν Gℓ(−iν − ϵ)e−ν∆t, (4.14)

consequently, we obtain:

∫
BC

dω Gℓ(r, r′, ω)e−iω∆t = i
∫ ∞

0
dν ∆Gℓ(r, r′, ν)e−ν∆t, (4.15)

where



∆Gℓ(r, r′, ν) = Gℓ(−iν + ϵ) − Gℓ(−iν − ϵ). (4.16)

And finally we have:

GBC
ℓ (r, r′, ∆t) = − i

2π

∫ ∞

0
∆Gℓ(r, r′, ν)e−ν∆tdν, (4.17)

As defined in equation (4.5), we have:

∆Gℓ(r, r′, ν) = −f (in)(r, ϵ − iν)f (up)(r′, ϵ − iν)
2νA

(in)
ℓ ϵ−iν

+ f (in)(r, −ϵ − iν)f (up)(r′, −ϵ − iν)
2νA

(in)
ℓ −ϵ−iν

,

(4.18)

looking further ahead in subsection 5.1.2, it’s easy to note that f (in) don’t “feel” the BC
because it’s not a multi-valuated function, as evident from its definition in equation (5.17).
The same doesn’t apply to f (up) or A(in), defined respectively in equations (5.18) and
(5.24). Terms like ω1/2 will yield different results considering ω = −iν or ω = −iνe2iπ.

Therefore, equation (4.18) can be written as:

∆Gℓ(r, r′, ν) = −f (in)(r, −iν)
2ν

f (up)(r′, ϵ − iν)
A

(in)
ℓ ϵ−iν

− f (up)(r′, −ϵ − iν)
A

(in)
ℓ −ϵ−iν

 (4.19)

and as we already explained, the term ϵ − iν is the same as −iνei0 while −ϵ − iν is −iνe2πi.

4.3 Motion of a charged massive particle
To calculate the orbits, we first define the Lagrangian of the system:

L = 1
2gµν ẋµẋν + q

µ
Aµẋµ, (4.20)

where the 4-velocity of a massive particle is normalized as:

−1 = gµν ẋµẋν . (4.21)

Utilizing the canonical momentum for the coordinates t and φ, we obtain two
conserved quantities:

E

µ
= ∆

r2 ṫ + qQ

µr
(4.22)

h

µ
= r2 sin2 θ φ̇, (4.23)



where E and h represent the energy and angular momentum of the particle, respectively,
as measured by an observer at infinity. The spherical symmetry in the RN spacetime
enables us to translate any movement to the equatorial plane without loss of generality,
so we fix θ = π/2. By combining equations (4.22) and (4.23) into (4.21), we derive the
balance of energy:

ṙ2 + ∆
r2

(
1 + h2

µ2r2

)
= 1

µ2

(
E − qQ

r

)2
. (4.24)

We can define the value of E/µ when the radial kinetic energy of the particle
vanishes,

V± ≡ E±

µ
= qQ

µr
±

√√√√∆
r2

(
1 + h2

µ2r2

)
(4.25)

where the effective potential with positive or negative signs correspond to a solution with

lim
r→+∞

E± = ±µ, (4.26)

it’s notable that:

E+(h, q, r) = −E−(h, −q, r) (4.27)

and this potential greatly depends on the sign of qQ. For instance, E+ < 0 when qQ < 0.

4.3.1 Circular orbits

To compare with well-known results in the literature [Pugliese, Quevedo e Ruffini 2011,
Pugliese, Quevedo e Ruffini 2011], we choose V+ for the potential.

Circular orbits will be founded investigating the critical point of the potential,
Thus, we have the condition defined in equation (4.25) and

dV+

dr
= 0, (4.28)

which, when solved, yields a condition for the angular momentum:

(h±)2

µ2 = r2

2Σ2

2(Mr − Q2)Σ + q2Q2

µ2 ∆ ± Q∆

√√√√ q2

µ2

(
4Σ + q2Q2

µ2

) , (4.29)

valid for a specific radius r where Σ = r2 − 3Mr + 2Q2, valid for a specific radius r.



4.3.2 Zero angular momentum observers

To clarify the scenario in which circular orbits are possible, it is instructive to examine
the behavior of zero angular momentum observers (ZAMOs). ZAMOs are observers
characterized by their 4-velocity u which is a normalized linear combination of the two
given Killing vectors in the spacetime geometry. These observers move in such a way that
their motion is orthogonal to the ∂φ direction, corresponding to the azimuthal coordinate,
and they are future-pointing. and future-pointing, and it is the unit normal to the time
coordinate hypersurfaces,

u = Γ(∂t + ζ∂φ), (4.30)

in other words it is tangent to a timelike spatially circular orbit.

A suitable orthonormal frame adapted to ZAMOs is given by

et̂ = 1
√

g00
∂t, er̂ = 1

√
g11

∂r, eθ̂ = 1
√

g22
∂θ, eφ̂ = 1

√
g33

∂φ, (4.31)

and the dual

ωt̂ = √
g00dt, ωr̂ = √

g11dr, ωθ̂ = √
g22dθ, ωφ̂ = √

g33dφ. (4.32)

The observer (4.30) can be parametrized equivalently either by the constant angular
velocity ζ with respect to infinity (dφ/dt) or by the constant relative velocity ν with
respect ZAMOs,

u = Γ(∂t + ζ∂φ) ≡ γ(et̂ + νeφ̂), (4.33)

where Γ = −(−g00 − ζ2g33)−1 and γ2 = (1 − ν2)−1. These quantities guarantee that
uαuα = −1.

As we talk about ζ being the constant angular velocity, we can define it with
respect to ν,

η =
√

−g00

g33
ν.

It will be easier to continue from here using the explicitly equation of motion for a
charged particle in RN spacetime,

uν∇νuα = q

µ
Fα

λuλ, (4.34)



the symmetry adapted frame has constant components, so the equation above becomes

eν̂Γν̂
β̂ ˆ̂αeβ̂ = q

µ
Fα̂

λ̂eλ̂ ⇒ γ
(
ν2 − νg

2
)

+ νg

ζg

qQ

µr2 = 0, (4.35)

where

ζg = ±
√

Mr − Q2

r2 , νg =
√

Mr − Q2

∆ . (4.36)

So, we can get the linear velocity ν ≡ ±ν
(q)
± of a charged particle for a given value

of qQ/µ,

ν ≡ ν
(q)
± = νg

√√√√√1 − q2Q2

2µ2ζg
2νg

± |q|Q
µζgνgr2

√√√√ 1
γg

2 + q2Q2νg
2

4µ2ζg
2 r4, (4.37)

where

γg =
√

∆
r2 − 3Mr + 2Q2 .

If we use q = 0, then ν = ±νg, what will be the linear velocity of a neutral particle.
From now on, we will introduce two dimensionless parameters,

q̄ = q

µ
, q̄0 = νgζgr2

Q
≡ Mr − Q2

Q
√

∆
, (4.38)

using it in equation (4.35), we have

q̄

q̄0
= γ

(
1 − ν2

νg
2

)
, (4.39)

and rewritten the equation (4.37) we have

ν
(q)
± = νg

√
Λ ±

√
Λ2 − 1 + (q̄/q̄0)2, (4.40)

where

Λ = 1 − νg
2

2

(
q̄

q̄0

)2

. (4.41)

Now we can investigate two situations: q < 0 and q > 0. The first one can be
understood by looking the equation (4.39), which implies q < 0 ⇒ ν2 > νg

2 (µ is a positive



parameter and we are considering r > r+ ⇒ q̄0 > 0). It will give us a minimum radius rγ

such that ν2 = νg
2 when r = rγ, defined due to equations (4.40) and (4.36),

Λ = 1 − 1
2

(
q̄

q̄0

)2 (
or νg

2 = 1
)

⇒ rγ
2 − 3Mrγ + 2Q2 = 0, (4.42)

so, ν can exist only for r ≥ r+
γ , where

r+
γ = 1

2

(
3M +

√
9M2 − 8Q2

)
. (4.43)

On the other hand, we also have q > 0. In this case, solutions can exist for
r+ < r < r+

γ . It will depends on the considered range of values of q. Looking at equation
(4.39), to have q > 0, than ν2

g > ν2 ≥ 0, the maximal limit gives r = r+
γ while the minimal

give us a new condition

Λ ±
√

Λ2 − 1 + (q̄/q̄0)2 ≥ 0, (4.44)

to ensure the existence of such velocities, we also have

Λ2 − 1 + (q̄/q̄0)2 ≥ 0. (4.45)

The condition described in (4.45) give us a minimum radius

Λ2 = 1 −
(

q̄

q̄0

)2

⇒ rl
2 − 3Mrl + 2Q2 + 1

4 q̄2Q2 = 0, (4.46)

so, ν can exist only for r ≥ rl, where

rl = 1
2

(
3M +

√
9M2 − 8Q2 − q̄2Q2

)
. (4.47)

To guarantee that rl is real, we will have a new bound in q̄, such that, 9M2 −
8Q2 − q̄2Q2 ≥ 0, i.e., we have a maximal charge q̄l,

q̄l =
√

9M2 − 8Q2

Q
, (4.48)

where q̄ ≤ q̄l.

Looking the equation (4.39), if we make q̄ = q̄0 it will imply in ν2 = 0 and
automatically in γ = 1.

This condition is the same described in (4.44) and (4.45) if (q̄/q̄0)2 − 1 = 0 then
we can satisfy both at the same time as long as Λ = 0. It will give us



Λ = 0 ⇒ 2rs
2 − 5Mrs + 3Q2 = 0, (4.49)

where

rs = Q2

q̄2Q2 − M2

[
M
(
q̄2 − 1

)
+
√

q̄2 (q̄2 − 1) (M2 − Q2)
]

, (4.50)

and as rs > r+ > 0 it implies in q̄2Q2 − M2 > 0 ⇒ q̄ > M/Q.

So, we have

q̄

q̄0
> 1, then r > rs, (4.51)

while

q̄

q̄0
< 1, then r+ < r < rs. (4.52)

However, the condition ν = 0 implies in other condition about Λ. Looking at
equation (4.40) and making it equal 0 when q̄/q̄0 = 1 and r = rs, we have

Λ(rs) ±
√

Λ2(rs) = 0, (4.53)

for ν
(q)
− it’s trivially 0, but we also have 2Λ(rs) = 0 and it’s interesting to note that it

is the same condition that we obtain when we wants to satisfy the condition descried in
(4.44) using r = rl.

In other words: Λ(rs) = Λ(rl) = 0, what give us a new condition

Λ(rs/l) = 0 ⇒ 3M2 − 2Q2 + q̄sQ
2 + M

√
9M2 − 8Q2 − q̄2

s = 0, (4.54)

where

q̄s = 1√
2Q

√
5M2 − 4Q2 + M

√
25M2 − 24Q2. (4.55)

The behavior of charged test particles depends strongly on their location with
respect these special radii described before, r+, rl, r+

γ and rs.

As we already known, the particle’s 4-momentum is given by P = mU − qQ. The
conserved quantities associated with the temporal and azimuthal Killing vectors ξ = ∂t

and η = ∂φ are, respectively,



P · ξ = − q̄Q

r
− γ

√
∆
r

= −E

µ
(4.56)

P · η = r

M
γν = h

Mµ
. (4.57)

Now we can separate it in 3 cases:

1. q̄ < 0:

The solution are geodesic velocities ν = ±ν
(q)
+ in the range r ≥ r+

γ . Orbits with
r = r+

γ are lightlike.

2. q̄ = 0:

The solution are geodesic velocities ν = ±νg in the range r ≥ r+
γ .

3. q̄ > 0:

It will give us completely different subcases.

(a) q̄ < M/Q:
The solution are two different branches for both signs of the linear velocity:
ν = ±ν

(q)
+ in the range rl ≤ r ≤ r+

γ and ν = ±ν
(q)
− in the range r ≥ rl. Both

branches join at r = rl, where ν
(q)
+ = ν

(q)
− = νg

√
Λ.

(b) M/Q < q̄ < q̄s:
Since q̄s < q̄0, so we are looking at the case where q̄/q̄0 < 1 what implies that
both solutions ν

(q)
± can exist. The solution are two different branches for both

signs of the linear velocity: ν = ±ν
(q)
+ in the range rl ≤ r ≤ r+

γ and ν = ±ν
(q)
−

in the range rl ≤ r ≤ rs. Both branches join at r = rl.

(c) q̄s < q̄ < q̄l:
Different for the previous case, here q̄/q̄0 > 1 what implies that solution ν

(q)
−

for linear velocity is not allowed. The linear velocity will be ν = ±ν
(q)
+ in the

range rs < r < r+
γ .

(d) q̄ > q̄l:
It will be like the previous case, but now rl doesn’t exist. The linear velocity
will be ν = ±ν

(q)
+ in the range rs < r < r+

γ . It’s important to note that when
ϵ → +∞ ∴ rs → r+.

We want the closest orbits possible what give us cases 3 (d).



5 Analytical Solutions

To construct a GF or just be able to calculate some of those interesting quantities
(amplification factor, QNMs, etc), we need to solve the equation (3.3) at least in some
convenient regime, and it is exactly what we are going to do: solve it in different regions
of r (and some limits of frequencies) and matching those solutions.

5.1 Sub-extremal solutions: Q < M

The first step will be to redefine the radial variable r, define new constants,

x = r − r+

r+
, τ = r+ − r−

r+
, ω̂ = ωr+, ϖ = ω̂ − qQ, (5.1)

and with that change, the equation (3.3) can be written as

x2(x + τ)2R′′ + (2x + τ)x(x + τ)R′ +
[
(x + 1)2 (ϖ + ω̂x)2 − x(x + τ)λℓ

]
R = 0 (5.2)

5.1.1 Solution valid for quasinormal modes

To construct that kind of solution will be useful to define one more constant k = 2ω̂ − qQ,
and using this constant in equation (5.2), we have

x2(x + τ)2R′′ + (2x + τ)x(x + τ)R′ +
[

K2

r+2 − x(x + τ)λℓ

]
R = 0, (5.3)

where K/r+ = ω̂x2 + kx + ϖ.

5.1.1.1 Near event horizon solution (x ≪ 1)

The radial equation can be approximated by

x2(x + τ)2R′′ + (2x + τ)x(x + τ)R′ +
[
(kx + ϖ)2 − x(x + τ)λℓ

]
R = 0. (5.4)

and we have just two linearly independent solutions that satisfy a purely ingoing and/or
outgoing boundary condition:



R = c1x
−i ϖ

τ (x + τ)−ik+i ϖ
τ 2F1

(1
2 − ik + iδ,

1
2 − ik − iδ, 1 − 2i

ϖ

τ
, −x

τ

)
(5.5)

+ c2x
+i ϖ

τ (x + τ)+ik−i ϖ
τ 2F1

(1
2 + ik + iδ,

1
2 + ik − iδ, 1 + 2i

ϖ

τ
, −x

τ

)

where δ2 = k2 − (ℓ + 1/2)2.

What gives to us:

R(in) = c
(in)
1 x−i ϖ

τ (x + τ)−ik+i ϖ
τ 2F1

(1
2 − ik + iδ,

1
2 − ik − iδ, 1 − 2i

ϖ

τ
, −x

τ

)
, (5.6)

and

R(up) = c
(up)
1 x−i ϖ

τ (x + τ)−ik+i ϖ
τ 2F1

(1
2 − ik + iδ,

1
2 − ik − iδ, 1 − 2i

ϖ

τ
, −x

τ

)
(5.7)

+ c
(up)
2 x+i ϖ

τ (x + τ)+ik−i ϖ
τ 2F1

(1
2 + ik + iδ,

1
2 + ik − iδ, 1 + 2i

ϖ

τ
, −x

τ

)

where

c
(in)
1 = 1

r+
τ ik−i ϖ

τ , c
(in)
2 = 0 (5.8)

5.1.1.2 Far region (x ≫ max(τ, ϖ)):

using a double limit τ → 0, ϖ → 0 the equation (5.2) can be approximated by

x2R′′ + 2xR′ +
[
(ω̂x + k)2 − λℓ

]
R = 0, (5.9)

and the most general solution that satisfies a purely ingoing and/or outgoing boundary
condition will be:

R = c3e
−iω̂xx− 1

2 +iδ
1F1

(1
2 + ik + iδ, 1 + 2iδ, 2iω̂x

)
+ c4(δ → −δ) (5.10)

What gives to us

R(in/up) = c
(in/up)
3 e−iω̂xx− 1

2 +iδ
1F1

(1
2 + ik + iδ, 1 + 2iδ, 2iω̂x

)
+ c

(in/up)
4 (δ → −δ) (5.11)



5.1.1.3 Matching (max(τ, ϖ) ≪ x ≪ 1):

using matched asymptotic expansions (MAE) we are able to define c3 and c4 (c1 and c2)
for in(up)-modes solutions, while c1 and c2 (c3 and c4).

We have

c
(in)
3 =

τ
1
2 −ik−iδΓ(2iδ)Γ

(
1 − 2iϖ

τ

)
Γ
(

1
2 − ik + iδ

)
Γ
(

1
2 + ik + iδ − 2iϖ

τ

) , c
(in)
4 = c

(in)
3 (δ → −δ). (5.12)

And finally,

A
(in)
ℓω = Γ(1 + 2iδ)

Γ
(

1
2 − ik + iδ

)(−2iω̂)− 1
2 −ik−iδc

(in)
3 + Γ(1 − 2iδ)

Γ
(

1
2 − ik − iδ

)(−2iω̂)− 1
2 −ik+iδc

(in)
4(5.13)

A
(out)
ℓω = Γ(1 + 2iδ)

Γ
(

1
2 + ik + iδ

)(2iω̂)− 1
2 +ik−iδc

(in)
3 + Γ(1 − 2iδ)

Γ
(

1
2 + ik − iδ

)(2iω̂)− 1
2 +ik+iδc

(in)
4 (5.14)

5.1.2 Solution valid for branch point

Now we will return to the equation (5.2).

5.1.2.1 Near event horizon (ω̂x ≪ ϖ):

the radial equation can be approximated by

x2(x + τ)2R′′ + (2x + τ)x(x + τ)R′ +
[
(ϖx + ϖ)2 − x(x + τ)λℓ

]
R = 0, (5.15)

which is an equation identical to the equation 5.4 doing k → ϖ. Giving us the same
solution with the previous transformation.

R = c̄1x
−i ϖ

τ (x + τ)−iϖ+i ϖ
τ 2F1

(1
2 − iϖ + iδ,

1
2 − iϖ − iδ, 1 − 2i

ϖ

τ
, −x

τ

)
(5.16)

+ c̄2x
+i ϖ

τ (x + τ)+iϖ−i ϖ
τ 2F1

(1
2 + iϖ + iδ,

1
2 + iϖ − iδ, 1 + 2i

ϖ

τ
, −x

τ

)
,

where

R(in) = c̄
(in)
1 x−i ϖ

τ (x + τ)−iϖ+i ϖ
τ 2F1

(1
2 − iϖ + iδ,

1
2 − iϖ − iδ, 1 − 2i

ϖ

τ
, −x

τ

)
,(5.17)

and



R(up) = c̄
(up)
1 x−i ϖ

τ (x + τ)−iϖ+i ϖ
τ 2F1

(1
2 − iϖ + iδ,

1
2 − iϖ − iδ, 1 − 2i

ϖ

τ
, −x

τ

)
(5.18)

+ c̄
(up)
2 x+i ϖ

τ (x + τ)+iϖ−i ϖ
τ 2F1

(1
2 + iϖ + iδ,

1
2 + iϖ − iδ, 1 + 2i

ϖ

τ
, −x

τ

)

where

c̄
(in)
1 = 1

r+
τ iϖ−i ϖ

τ , c̄
(in)
2 = 0 (5.19)

5.1.2.2 Far region (x ≫ max(τ, ϖ)):

the equation (5.2) using the limit τ → 0 but not ϖ → 0 we have

x2R′′ + 2xR′ +
[
(ω̂x + ϖ)2 − λℓ

]
R = 0, (5.20)

which, again, is an equation identical to the equation (5.9) doing k → ϖ. Giving us the
same solutions,

R = ¯̄c3e
−iω̂xx− 1

2 +iδ
1F1

(1
2 + iϖ + iδ̄, 1 + 2iδ̄, 2iω̂x

)
+ ¯̄c4(δ̄ → −δ̄), (5.21)

What gives to us

R(in/up) = c̄
(in/up)
3 e−iω̂xx− 1

2 +iδ
1F1

(1
2 + iϖ + iδ, 1 + 2iδ, 2iω̂x

)
+ c̄

(in/up)
4 (δ → −δ) (5.22)

where ¯̄cn with n = 1, ..., 4 are constants and δ̄2 = ϖ2 − (ℓ + 1/2)2.

5.1.2.3 Matching (ϖ ≪ x ≪ ϖ/ω̂):

using MAE we are able to define c̄3 and c̄4 (c̄1 and c̄2) for in(up)-modes solutions, while c̄1

and c̄2 (c̄3 and c̄4) will be founded according to the defined tortoise, coordinate r∗ showed
in equation (3.4).

We have

c̄
(in)
3 =

τ
1
2 −iϖ−iδΓ(2iδ)Γ

(
1 − 2iϖ

τ

)
Γ
(

1
2 − iϖ + iδ

)
Γ
(

1
2 + iϖ + iδ − 2iϖ

τ

) , c̄
(in)
4 = c̄

(in)
3 (δ → −δ). (5.23)

And finally,



Ā
(in)
ℓω = Γ(1 + 2iδ)

Γ
(

1
2 − iϖ + iδ

)(−2iω̂)− 1
2 −iϖ−iδ c̄

(in)
3 + Γ(1 − 2iδ)

Γ
(

1
2 − iϖ − iδ

)(−2iω̂)− 1
2 −iϖ+iδ c̄

(in)
4(5.24)

Ā
(out)
ℓω = Γ(1 + 2iδ)

Γ
(

1
2 + iϖ + iδ

)(2iω̂)− 1
2 +iϖ−iδ c̄

(in)
3 + Γ(1 − 2iδ)

Γ
(

1
2 + iϖ − iδ

)(2iω̂)− 1
2 +iϖ+iδ c̄

(in)
4 (5.25)

5.2 Extremal solutions: Q = M

The first step will be to redefine the radial variable r and define a new constant:

x = r − M

M
, α = 1 − ω

q
, β = qM, (5.26)

and with that change, the equation (3.3) can be written as

x4R′′ + 2x3R′ +
[
β2(1 + x)2 (x(−1 + α) + α)2 − λℓx

2
]

R = 0, (5.27)

5.2.1 Solution valid for superradiant bound frequencies

In this region we have ω ∼ ωSR, which for an extremal RN BH means, ω ∼ q. So, using
our new constant α, we are considering |α| ≤ 1.

5.2.1.1 Near event horizon solution (x ≪ 1/|β|):

the radial equation can be approximated by

z2R′′ +
(
α2β2z2 − 2αβ2z + (β2 − λℓ)

)
R = 0, (5.28)

where z = 1/x.

We have just two linearly independent solutions that satisfy a purely ingoing and/or
outgoing boundary condition:

R = d1 e−iαβzz
1
2 −iδ

1F1

(1
2 − iβ − iδ, 1 − 2iδ, 2iαβz

)
+ d2 e−iαβzz

1
2 +iδ

1F1

(1
2 − iβ + iδ, 1 + 2iδ, 2iαβz

)
. (5.29)

What give to us

d
(in)
1 =

(−2iαβ)−iβ−iδ+ 1
2 (−iαβ)2iδΓ

(
1
2 − iβ − iδ

)
Γ
(

1
2 + iβ ± iδ

)
Γ(1 − 2iδ)

[
(−iαβ)2iδΓ

(
1
2 ± iβ ± iδ

)
− (iαβ)2iδΓ

(
1
2 ± iβ ∓ iδ

)] , d
(in)
2 = d

(in)
1 (δ → −δ)

(5.30)



where: Γ (a ± b ∓ c) = Γ (a + b − c) Γ (a − b + c).

5.2.1.2 Far region (x ≫ |αβ|):

the radial equation can be approximated by

x2R′′ + 2xR′ +
(
β2x2 + 2β2x + (β2 − λℓ)

)
R = 0, (5.31)

and again we have

R(in/up) = d
(in/up)
3 e−iβxx− 1

2 +iδ
1F1

(1
2 + iβ + iδ, 1 + 2iδ, 2iβx

)
+ d

(in/up)
4 e−iβxx− 1

2 −iδ
1F1

(1
2 + iβ − iδ, 1 − 2iδ, 2iβx

)
, (5.32)

where δ = β2 − (ℓ + 1/2)2.

5.2.1.3 Matching (|αβ| ≪ x ≪ |β|−1):

as explained in the previously section, we will use MAE to define d3 and d4 (d1 and d2)
for in(up)-modes solutions.

In this case, it will be a trivial relation:

d3 = d1, d4 = d2. (5.33)

And finally,

A
(in)
ℓω = d

(in)
4 (−2iβ)− 1

2 −iβ+iδ Γ (1 − 2iδ)
Γ
(

1
2 − iβ − iδ

) + d
(in)
3 (−2iβ)− 1

2 −iβ−iδ Γ (1 + 2iδ)
Γ
(

1
2 − iβ + iδ

)(5.34)

A
(out)
ℓω = d

(in)
4 (2iβ)− 1

2 +iβ+iδ Γ (1 − 2iδ)
Γ
(

1
2 + iβ − iδ

) + d
(in)
3 (2iβ)− 1

2 +iβ−iδ Γ (1 + 2iδ)
Γ
(

1
2 + iβ + iδ

) (5.35)

5.3 Quasinormal frequencies spectrum
As explained before, the QNMs are the roots of the Wronskian. This quantity was defined
in equation (3.9). So, we need to make

A
(in)
ℓωℓn

= 0, (5.36)

where ωℓn are the QN-frequencies.



Using the equation (5.13), we have

Γ(1 + 2iδ)
Γ
(

1
2 − ik + iδ

)(−2iω̂)− 1
2 −ik−iδc

(in)
3 + Γ(1 − 2iδ)

Γ
(

1
2 − ik − iδ

)(−2iω̂)− 1
2 −ik+iδc

(in)
4 = 0 (5.37)

and using also c
(in)
3,4 defined in (5.12),

Γ(1 + 2iδ)Γ(2iδ)(−2iω̂τ)−iδ

Γ
(

1
2 − ik + iδ

)2
Γ
(

1
2 + ik + iδ − 2iϖ

τ

) + Γ(1 − 2iδ)Γ(−2iδ)(−2iω̂τ)iδ

Γ
(

1
2 − ik − iδ

)2
Γ
(

1
2 + ik − iδ − 2iϖ

τ

) = 0.

(5.38)

This equation is valid in the limit τ ≪ 0, ω ≃ qQ/r+(ϖ ≪ 0), where this equation
can be solved analytically. We need to write it in the following form:

Γ
(1

2 + ik − iδ − 2iϖ

τ

)−1
= D × (−2iω̂τ)−2iδ, (5.39)

where

D =
Γ(2iδ)2Γ

(
1
2 − ik − iδ

)2

Γ(−2iδ)2Γ
(

1
2 − ik + iδ

)2
Γ
(

1
2 + ik + iδ − 2iϖ

τ

) . (5.40)

In the limit ω → qQ/r+, being ω almost purely real, we can see that δ2 is also
almost purely real. If δ ≳ 1. Then one has (−i)−2iδ = e−πδ ≪ 1. Therefore we finds
ϵ ≡ (−2iω̂τ)−2iδ ≪ 1.

A consistent solution of the condition (5.39) can be obtained if 1/Γ
(

1
2 + ik − iδ − 2iϖ

τ

)
=

O(ϵ). Suppose

1
2 + ik − iδ − 2iϖ

τ
= −n + ηϵ + O(ϵ2) (5.41)

where n ≥ 0 is a non-negative integer and η is a constant to be defined. Using the previous
equation into the gamma function, we get

Γ
(1

2 + ik − iδ − 2iϖ

τ

)
≃ Γ(−n + ηϵ), (5.42)

using the following property of the gamma function:

Γ(−n + ηϵ) = (ηϵ − n)−1Γ(−n + 1 + ηϵ),

expanding in ϵ we have



(ηϵ − n)−1 = (−n)−1 + n−2ηϵ + O(ϵ2)

finally we get

Γ
(1

2 + ik − iδ − 2iϖ

τ

)
≃ (−n)−1Γ(−n + 1 + ηϵ). (5.43)

This new gamma function can be written as

Γ(−n + 1 + ηϵ) = (−1)n−1 Γ(−1 − ηϵ)
Γ(n − ηϵ) ηϵ(ηϵ + 1)Γ(ηϵ)

and expanding this coefficient,

Γ(−1 − ηϵ)
Γ(n − ηϵ) ηϵ(ηϵ + 1) = Γ(n)−1 + O(ϵ2),

using this relation in equation (5.43),

Γ
(1

2 + ik − iδ − 2iϖ

τ

)
≃ (−1)n

n! Γ(ηϵ) + O(ϵ),

and finally we have

Γ
(1

2 + ik − iδ − 2iϖ

τ

)−1
≃ (−1)nn!ηϵ + O(ϵ2) (5.44)

using 1/Γ(z) = z + O(z2). And now using the equation (5.44) into (5.39) we have

η = D
(−1)nn! . (5.45)

Using the definitions ω̂ = ωr+, ϖ = ω̂ − qQ and k = 2ω̂ − qQ into the equation
(5.41), will give us the QNM spectrum

ωℓn = qQ

r+
− 2πiTBH

[(1
2 + n − ηϵ

)
− i(δ − qQ)

]
, (5.46)

where TBH = (r+ − r−)/4πr+
2.

5.4 Totally reflected frequencies spectrum
To have a TRM we need to make A

(in)
ℓω̄ℓn

→ ∞. Looking to the expression (5.13) with c
(in)
3,4

defined in (5.12), we can get



F (ω)Γ
(

1 − 2iϖ

τ

)
τ

1
2 −ik (5.47)

where F (ω) is the left side of equation (5.38) but, as ω ≠ ωℓn it will not be zero. To make
this equation diverge our best option is to make

1 − 2iϖ

τ
= −n, (5.48)

where n ∈ Z.

Using the definitions ω̂ = ωr+, ϖ = ω̂ − qQ, we will have the TRM spectrum

ω̄n = qQ

r+
− 2πiTBH(1 + n). (5.49)

where TBH = (r+ − r−)/4πr+
2.





6 Numerical Solutions

To guarantee that our results are reliable, we needed to use numerical methods to solve
the radial KG equation (3.3) for in and up-modes.

6.1 Sub-extremal solutions: Q < M

As explained before, the equation(3.3) has three singular points, where two of them regular
ones. It gives us the possibility to construct an exact solution around these regular singular
points using a Fröbenius series. Using it we can guarantee purely ingoing and/or outgoing
solutions in the event horizon. Satisfying the condition of ingoing or outgoing waves at
infinity will be difficult and we will resort to numerical methods using Mathematica, it
will be clear later.

6.1.1 IN-modes solutions

We need to use a Möbius transformation and change the radial coordinate to z = (r −
r−)/(r+ − r−), and it will map the singularities at

(r−, r+, +∞) → (0, 1, +∞),

and now use R(r) as

R(z) ∝ zη(z − 1)ξeζ(r+−r−)zy(z), (6.1)

to guarantee the shape of the confluent Heun equation and purely ingoing solution at the
event horizon, these constants η, ξ and ζ will be

η = ir−
ωr− − qQ

r+ − r−
, ξ = −ir+

ωr+ − qQ

r+ − r−
, ζ = iω. (6.2)

and then the radial KG equation (3.3) becomes

y′′(z) +
(

α + β

z − 1 + γ

z

)
y′(z) + σz + ν

z(z − 1)y(z) = 0, (6.3)

where



α = 2ζ(r+ − r−), (6.4)

β = 1 + 2ξ, (6.5)

γ = 1 + 2η, (6.6)

σ = 2(r+ − r−)
[
ζ(1 + η + ξ) − (qQ − 2ω)ω − (r+ + r− − 2)ζ2

]
(6.7)

ν = q2Q2 + ξ + η + (ξ + η)2 − 2qQ(2 + r−)ω + 4ω2 − 2Q2ω2 (6.8)

+4r−ω2 − λ − [r− + 2r−ξ − 4(1 + η + ξ) + r+(3 + 4η + 2ξ)] ζ

+
[
2r+r− + (r+ − 2)2 − 2Q2 − r−

2
]

ζ2.

As we saw before, we have three singular points: z = 0, 1, ∞. Being the two first
ones regular ones and, being so, we can construct Fröbenius solutions around that points.
Since the exponents at z = 0 are 0 and 1 − γ, let HeunC (−ν, σ, γ, β, α, z) be the regular
solution at z = 0, we choose the following normalization

HeunC (−ν, σ, γ, β, α, 0) = 1, (6.9)

and around z = 0 we have two local solutions

y01(z) = HeunC (−ν, σ, γ, β, α, z) (6.10)

y02(z) = z1−γHeunC [(α − β)(1 − γ) − ν, α(1 − γ) + σ, 2 − γ, β, α, z] . (6.11)

Analogously, around z = 1, we have

y11(z) = HeunC (−σ − ν, −σ, β, γ, −α, 1 − z) (6.12)

y12(z) = (1 − z)1−β (6.13)

×HeunC [(β − 1)(α + γ) − σ − ν, α(β − 1) − σ, 2 − β, γ, −α, 1 − z] .

The solution y11 is the one that satisfies the boundary condition to have in-modes,
(3.7), and will be what we choose. So, our exact solution, near the event horizon is defined
by

R(in)
num(z) = cH zη(z − 1)ξeζ(r+−r−)zHeunC (−σ − ν, −σ, β, γ, −α, 1 − z) (6.14)

where all constants are defined previously and cH is a constant defined using the tortoise
coordinate. And reinforcing: this solution is valid for any charge Q and q, any frequency
ω, and any integer value of ℓ, but only near the event horizon.



To use this solution will also be fundamental as a tool to obtain numerically QNMs.
We can use a method presented by Fiziev in [Fiziev 2007].

We have this local solution (6.14) around z = 1 ∴ r = r+. To have a QNM we
should guarantee purely out-going waves at z → ∞ ∴ r → ∞ and it is a problem for
two reasons in this case: the first one is because z → ∞ is a irregular singular point, as
we already knew, what makes it impossible for us construct a regular solution using a
Fröbenius series just like we did previously using HeunC; the second reason is the presence
of a BC for z ∈ (1, ∞) in a HeunC function, Motygin showed it very well in [Motygin
2018], it can be seen in Figure 1.

However, any solution of an ODE can be represented by a linear combination
of local solutions. And more than that, we can write a local solution around a singular
point X as linear combination of solutions around Y , where in this case X, Y = 0, 1, ∞.
Something like Rx1,2 = ΓY 1

X1,2RY 1 + ΓY 2
X1,2RY 2, the problem is: this “connection coefficient”

is unknown for confluent Heun functions. But for our case we only need to guarantee that
the coefficient multiplying the solution at z → 0 for purely out-going waves be 0, and
Fiziev realize this technique in section 4.2 for a static BH. We need to impose:

lim
|z|→∞

∣∣∣∣R(in)
num

[
|z|e−i(π

2 +arg (−ω))
]∣∣∣∣ = 0, (6.15)

then we will use:

∣∣∣∣R(in)
num

[
z∞e−i(π

2 +arg (−ω))
]∣∣∣∣ = 0, (6.16)

where z∞ ≫ 1. Fiziev also showed that for z∞ ≥ 20 the QNMs have essencially the same
value, with a slightly difference appearing in the 8th decimal place comparing z∞ = 20
and 100, it was showed in Table 3 of Fiziev’s work.

6.1.1.1 Comparing solutions:

Having defined analytical solutions considering frequencies near the superradiant-bound
limit (subsection 5.1.1) and also the case with small-frequencies (subsection 5.1.2) and a
general numerical solution defined in equation (6.14) valid near the event horizon, we can
compare both of them. We will show it for different charges of the BH, different ℓ-modes
and these two frequency-regimes.
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Figure 2 – LogLog-plots of real and imaginary parts of R(in being black and red ones
numerical, blue and orange analytical solutions. We are using qM = 1, ℓ = 0
and ωM = ωSRM + 0.001.

6.1.2 UP-modes solutions

To obtain our UP-solutions we’ll use the purely out-going at infinity boundary condition
(3.8), using a suitable large radius denoted by rinf, denoting

f
(up)
ℓω ∼ r∗

−iqQeiωr∗ , (6.17)

and then the initial conditions for f
(up)
ℓω and f

′(up)
ℓω evaluated at rinf:

f
(up)
ℓω (rinf) = r∗(rinf)−iqQeiωr∗(rinf), (6.18)

f
′(up)
ℓω (rinf) = d

dr

(
r∗

−iqQeiωr∗
)

r=rinf
, (6.19)

these initial conditions become more accurate as rinf increase.

We compute the initial conditions (6.18) and (6.19) in Mathematica for rinf = 103 M .
Having computed the boundary conditions, we then used Mathematica’s NDSolve function
to generate our UP-modes for our given Q, q, ω and ℓ. We set WorkingPrecision to around
30, AccuracyGoal to around 24 and PrecisionGoal to around 12.



So, our solution will be:

R(up)(r) = 1
r

f
(up)
ℓω (r). (6.20)

Is important to remember: this solution is valid for any value of charge Q and q,
any frequency ω and any ℓ, since we are obeying the range r ∈ [r0, rinf]. We have defined
rinf but will be more interesting to define r0 further and the reason will be explained.

6.1.2.1 Comparing solutions:

Having defined analytical solutions considering frequencies near the superradiant-bound
limit (subsection 5.1.1) and also the case with small-frequencies (subsection 5.1.2) and a
general numerical solution defined in equation (6.14) valid near the event horizon, we can
compare both of them. We will show it for different charges of the BH, different ℓ-modes
and these two frequency-regimes.
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Figure 3 – LogLog-plots of real and imaginary parts of R(up being black and red ones
numerical, blue and orange analytical solutions. We are using qM = 1, ℓ = 0
and ωM = ωSRM + 0.001.



6.2 Extremal solutions: Q = M

As explained before in subsection 3.1.2, the equation (3.10) has two singular points both
of them irregular. So, we cannot construct an exact solution around these points using
a series like Fröbenius as we did for a sub-extremal BH around the event horizon. And
the boundary conditions are defined in r = M and r → +∞, which are precisely the the
singular points.

So, the way that we found was the same to treat UP-modes solutions in the
sub-extremal case. Solving numerically using Mathematica.

6.2.1 IN-modes solutions

To obtain our IN-solutions we will use the purely in-going at the event horizon boundary
condition (3.7), using a suitable close to M radius denoted by r0. We have

f
(in)
ℓω ∼ e

iM2
r−M

(ω−q)(r − M)−iM(2ω−q), (6.21)

and then the initial conditions for f
(in)
ℓω and f

′(in)
ℓω evaluated at r0:

f
(in)
ℓω (r0) = e

iM2
r0−M

(ω−q)(r0 − M)−iM(2ω−q), (6.22)

f
′(in)
ℓω (r0) = d

dr

(
e

iM2
r−M

(ω−q)(r − M)−iM(2ω−q)
)

r=r0

(6.23)

these initial conditions become more accurate as r0 is close to M .

We compute the initial conditions (6.22) and (6.23) in Mathematica for r0 = (1 +
10−3)M . Having computed the boundary conditions, we then used Mathematica’s NDSolve
function to generate our IN-modes for our given q, ω and ℓ. We set WorkingPrecision to
around 30, AccuracyGoal to around 24 and PrecisionGoal to around 12.

So, our solution will be:

R(in)(r) = 1
r

f
(in)
ℓω (r). (6.24)

Is important to remember: this solution is valid for any value of charge q, any
frequency ω and any ℓ, since we are obeying the range r ∈ [r0, rinf].

6.2.2 UP-modes solutions

Will be exactly the same process shown in subsection 6.1.2, using the same rinf and the
same numerical precision. We will just need to use the boundary condition defined in
(3.8).



7 Results

7.1 Spectroscopy analysis

7.1.1 Superradiance

The amplification factor Zℓω was described in the expression (3.16), and we can reproduce
this quantity analytically for two different regimes of frequencies: when ω ∼ ωSR and also
when ωM ≪ 1 using A

(in)
ℓω defined, respectively, in (5.13) and (5.24).

Numerically we can study a larger range of frequency and will be more convenient
to redefine Zℓω using the wronskian,

Zℓω = −
(

1 − qQ

ωr+

)
4ω2

|Wℓω|2
, (7.1)

where this definition, just like the previous one, works to sub-extremal and extremal RN
BH just being necessary to change the wronskian in these two cases. As we said before
ω ∈ R.
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Figure 4 – Amplification factor Z0ω (in percentage form) as a function of the frequency
with qQ = 0.999. The red dashed curve is the approximation in subsection 5.1.1.

The wronskian in this region near the superradiant-bound limit, defined for near-
extremal BH (5.13) and also for extremal BH (5.34), lead to two distinct behaviors of Zℓω

depending if δ2 is positive or negative. Looking at the extremal case is more interesting,
and will be the context where we will explore firstly. When δ2 < 0, we have that Z → 0 as
α → 0 ∴ ω → ωSR and Z is continuous at α = 0, it can be seen in figure 5b; in this case Z

has a trivial behavior varying monotonically in α. Otherwise, when δ2 ≥ 0 this implies
that Z has a discontinuity at α = 0, but more than that, Z presents an infinity number of
oscillations as far as α → 0 for negative and positive values of α, it is completely analogous
to what happens in Kerr spacetime and was described for the first time by Starobinsky
in [Starobinsky 1974].



It is exemplified in figure 5a and also the emergence of this oscillations as far as
Q → M in 6.
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Figure 5 – Plots of Zℓω for Q = M , qQ = 1. The black lines are numerical solutions while
dashed red ones using A

(in)
ℓω defined in (5.34). In the left we zoomed very close

the superradiant-bound limit from left and from right to show the infinity
oscillations, analytically it can also be seen in equation (7.2).
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In the case where δ2 > 0, Zℓω in the extremal case can be rewrite as

Zℓω = eπβ(sign(α)−1)sh2(2πδ)sign(α) ×{
ch2π(δ − β)eπδ(sign(α)−1) + ch2π(β + δ)e−πδ(sign(α)−1)+

−2chπ(β − δ)chπ(β + δ) cos
[
ϕ0 − 2δ log

(
4β2|α|

)]}−1
, (7.2)

where ϕ0 = arg
[
Γ(1 + 2iδ)4Γ

(
1
2 + iβ − iδ

)2
Γ
(

1
2 − iβ − iδ

)2
]
.

From now on we will consider ω ∈ C.

7.1.2 Modes in near-extremal Reissner-Nordström

We will study the QNMs described previously in section 5.3 by equation (5.46), and also
the TRMs described in section 5.4 by equation (5.49).



7.1.2.1 Quasinormal modes properties:

we already knew from some references that for charged perturbations (scalar or spinorial
ones) appears two families of QNMs as Q → M : zero-damping modes (ZDMs) and damped-
modes (DMs). The ZDMs are a kind of frequencies where the imaginary part vanish as
far as Q → M at the same time that ω → ωSR and it was studied in [Richartz e Giugno
2014]. The DMs have the opposite behavior: the imaginary parts tends to a finite value
and it was studied in [Cavalcante e Cunha 2021].

The ZDMs exist for every value of ℓ and is exactly what we construct in the
expression (5.46) calculated for the first time by Hod in [Hod 2010]. When Q → M ,
consequently TBH → 0 and the imaginary part vanishes for both cases. This causes and
accumulation of ZDMs near the superradiant-bound frequency and can be seen in Figure
8.

The DMs on the other hand don’t have an defined spectrum. For Kerr BH, is
knew that this modes have |ℜω| > |ωSR| and a well defined condition of the existence.
Is required that: δK

2 + 1/4 < 0 where δK is an analogous quantity of our δ, defined by
δK

2 = λ − m2 + 1/4; but λ, in Kerr spacetime is extremely more complicated, in which
it depends of a (angular-velocity of the BH), ℓ and ω. In the eikonal limit (ℓ ≫ 1) the
existence condition becomes easier: µ < µc where µ = m/(ℓ + 1/2) and µc ∼ 0.74.

As we have seen, QNMs in RN spacetime do not depends on the azimuthal number
m what could indicate that DMs would not exist in this spacetime. However, the quantity
qQ appears for charged perturbations and works similarly with a significant difference, qQ

is continuous while m is a discrete parameter.

Richartz in [Richartz 2016] have shown QNMs for extremal RN with ℑω ≠ 0 and
|ℜω| > |ωSR| that survive when the BH becomes extremal, and more than that Richartz
showed that for Q = 0.999M and Q = M the DMs will essentialy have the same value
with a difference starting in the 6th decimal place. Cavalcante & Carneiro in [Cavalcante
e Cunha 2021] showed that exist a critical value of qQ and Q from which the fundamental
QNM is a DM for ℓ = 0. A very interesting plot in Figures 3 and 4 shows it. These
critical values are: (qQ)c ∼ 0.216228 and Qc ∼ 0.996917M . Figure 2 of Cavalcante &
Carneiro shows the fundamental DM frequency that was showed by Richartz in Table VII
for qQ = 0.1 for instance, in this table Richartz shows 3 DMs.

Taking into account what Richartz showed about DMs for near-extremal RN BH
we also have investigate DMs for higher values of qQ to compare with some interesting
plots of Casals & Longo in [Casals e Micchi 2019], showing how similar RN and Kerr
are when we are studying charged scalar perturbations (in RN spacetime) and scalar
perturbations (in Kerr spacetime). We can see that DMs for Kerr have only 2 modes,
Richartz showed it in Table I and Casals & Longo in a lot of Figures like Figure 7 and 9.



In Figure 7 we can see the accumulation of ZDMs (that will become a BC like in Casals &
Longo’s when Q = M) and 3 DMs.
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Figure 7 – Plots of (6.16) for Q = 0.999M , q = 2/M , ℓ = 3 and z∞ = 20. We use a
contour plot where the red dots are the QNMs on the left and a 3D plot on
the right. For these values of charges, MωSR ≃ 1.91249 the QNMs with real
part close to this value are ZDMs while the other 3 are DMs.

7.1.2.2 Totally reflected modes properties:

Just like the QNMs, we already knew about this ones. We discuss about the TRMs in
subsection 3.2.3 and in section 5.4 we constructed the spectrum described by expression
(5.49). We will rewrite it here to be simpler to analyze:

ω̄n = qQ

r+
− 2πiTBH(1 + n). (7.3)

In subsection 3.2.4 we talk about the emergence of a BC in the superradiant-bound
frequency when the BH become extremal. And looking the spectrum of QNMs and TRMs
it become more evident. The ZDM frequencies, discussed in the previous section, and the
TRM frequencies have their imaginary parts being vanisheds as far as Q → M , however,
the effect in W of this kind of frequencies is totally opposite as we can see in the expression
(3.18), QNMs makes W → 0 while TRMs makes W → ∞. In Figure 10 we can see these
modes approaching each other until form the BC.
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Figure 8 – Plots of log10 |W| for qM = 10. We are using A(in)ℓω defined in (5.13). The
mode is ℓ = 2, and MωSR ∼ 9.56246 and 9.68866. The red dots are the QNMs.

7.1.3 Branch cuts

We investigate the presence of a BC in the complex-frequency plane, around the branch
point at ω = 0 and at ω = ωSR in extremal BH.

We calculated the wronskian for ω = ω0e
iϕ given some frequency ω0 ∈ C, being in

some cases ω0 ∼ 0 and ω0 ∼ ωSR, varying the phase ϕ ∈ [0, 2π]. The discontinuity is an
indicator of a BC, and confirm it in Figures 9 for the superradiant BC and 11 for the BC
at origin.
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Figure 10 – Plots of log10 |W| for qM = 10. We are using A
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for Q < M and Q = M , respectively. The mode is ℓ = 4, and MωSR ≃
9.56246, 9.68866 and MωSR = 10 for the respective values of Q.
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7.2 Green Function analysis
Having defined all the important quantities now we are able to start to develop the GF
for specific value of charges and radius.

We are interest in study orbits closest as possible to the event horizon (see the
section 4.3) for a BH near-extremal.

As shown in subsection 4.3.2, we will use a charge-mass ratio q/µ such that q/µ > q̄l

(case 3 (d)) what will give us a possible orbit for r0 ∼ r+. We will take a look at the linear
velocity, the energy and the angular momentum for a few different charges. The value of
the charge-mass ratio will be q/µ ≡ q̄ = 10, while µ = 0.1M .

To define the BH charge we will use the smallest near-extremal value where R(up)

has reasonable compatibility with numerical values while fix q/M = 1. We are guaranteeing
that we have analytical field solution (described in subsection 5.1.1) compatible enough
with the numerical solutions (described for IN solutions in subsection 6.1.1 and for UP
solutions in subsection 6.1.2). We can see at figure Figure 3 that Q = 0.99995M is a good
value to guarantee sufficient compatible solutions.

Along with these parameters, we were also able to define an orbit studying the
linear velocity, energy and angular momentum of the particle, using r0 = r+ + 10−3M

what will give us a linear velocity ν = 0.970326. The energy and angular momentum for
the previous parameters will be: E = 9.90945M and h = 4.05705M .

So, reinforcing, we have:

µ = 0.1M, qM = 1, ν = 0.970326, E = 9.90945M and h = 4.05705M (7.4)

while Q = 0.99995M (therefore qQ = 0.99995) and r0 = r+ + 10−3M .

Now we are able to construct the Fourier-modes of the GF defined in (4.5). First
we will compare the Wroskian, using (??) for different values of ℓ, this will be important
to understand in which range of ω the solutions are compatible. As shown in Figure 12,
they agree until ωM = ωSRM ± ϵM .

Investigating the numerator of the GF, that means, f
(in)
ℓω f

(up)
ℓω , Figure 13, we will

see the same behavior as the wronskian Wℓω. And finally comparing the GF defined in
(4.5) using numerics and analytical solutions, Figure 14, surprisingly we can see that both
solutions keep being compatible even for values of ω where Wℓω and f

(in)
ℓω f

(up)
ℓω are not.

Our goal is to integrate Gℓ, as shown in (4.3). We will integrate numerically the
solution in a large range of ω for ℓ = 0, it together with our previous plots and argument
will give us credibility to trust the results for different values of ℓ. This will be discussed
in more detail in the next section.



But the same for small-frequencies also need to be done, first looking the wronskian
at Figure 15, then f

(in)
ℓω f

(up)
ℓω and GF can be shown in Figures 16 and 17, respectively.
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Figure 12 – Log-plots of the real and imaginary parts of Wℓω for different values of ℓ
defined using analytical and numerical solutions. Black and red are numerical
solutions, while blue and orange the analytical ones, being black/blue real
and red/orange imaginary parts around the SR-frequency.
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Figure 14 – Plots of the real and imaginary parts of Gℓ for different values of ℓ defined
using analytical and numerical solutions. Black and red are numerical solutions,
while blue and orange the analytical ones, being black/blue real and red/orange
imaginary parts.
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Figure 15 – Log-plots of the real and imaginary parts of Wℓω for different values of ℓ
defined using analytical and numerical solutions. Black and red are numerical
solutions, while blue and orange the analytical ones, being black/blue real
and red/orange imaginary parts for low-frequencies.



-0.10 -0.05 0.05 0.10
(ω - ωSR)M

0.001

0.010

0.100

1

f inf (up)

(a) ℓ = 0
-0.10 -0.05 0.05 0.10

ω M

0.01

0.10

1

10

100

f inf (up)

(b) ℓ = 1

-0.10 -0.05 0.05 0.10
ω M

0.1

10

1000

105

f inf (up)

(c) ℓ = 2
-0.10 -0.05 0.05 0.10

ω M

1000

105

107

109

f inf (up)

(d) ℓ = 3

Figure 16 – Log-plots of the real and imaginary parts of f
(in)
ℓω f
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ℓω for different values of

ℓ defined using analytical and numerical solutions, in the approximation of
low-frequencies. Black and red are numerical solutions, while blue and orange
the analytical ones, being black/blue real and red/orange imaginary parts.
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Figure 17 – Plots of the real and imaginary parts of Gℓ for different values of ℓ defined using
analytical and numerical solutions in the approximation of low-frequencies.
Black and red are numerical solutions, while blue and orange the analytical
ones, being black/blue real and red/orange imaginary parts.



7.2.1 Numerical

In order to compare with the analytical solutions in the next sections, we will construct
the numerical retarded Green function solution for a specific mode (ℓ = 0) using the
expression (4.2). So first we had to calculate G0 defined in (4.5).

As we said previously, the parameters used are: Q = 0.99995M, qM = 1, r0 =
r+ + 10−3M, ℓ = 0. We had construct the IN-solutions using (6.14) and UP-solutions
according to subsection 6.1.2.

First we solve the ODE numerically to get f (up) varying ωM with 0.01 from
ωM ∈ [−20, 20].

Using it, we get the following plots
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Figure 18 – Log-plots of the real (black) and imaginary (red) parts of G0.

what we need to integrate by the following way

Gret
0 = 1

2πr02

∫ +∞

−∞
dω G0(r0, ω)e−iω∆t. (7.5)

We can see that G0 when ωM < 0 and ωM > ωSRM are in a considerably lower
order of magnitude when compared to 0 < ωM < ωSRM .

So, we increase the precision of this function decreasing the stepsize of ωM to
0.0001 and now with a total range from ωM ∈ [−2, 2].

Doing a linear-plot, in Figure (19), it is even more visible the small contribution
for higher and lower frequencies.
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Figure 19 – Plot for the real (black) and imaginary (red) parts of G0.

So, taking the real part of Gret
0 , using ∆t = t − t′ where t′ = 2r∗ (this choice is

made clear in subsection 7.2.2), and integrating in this new range we can write

ℜ
{
Gret

0

}
≃ 1

2πr02

∫ +2

−2
dω ℜ {G0} cos ω(t − 2r∗) + ℑ {G0} sin ω(t − 2r∗). (7.6)

To be able to do this integral, we use Mathematica. We interpolated G0, then
numerically integrated its product with the exponential using a PrecisionGoal of 6.

We did it for several times t, more precisely from t/M ∈ (0, 2000] using two different
stepsizes. From t/M ∈ (0, 1] we use 0.01, while from t/M ∈ (1, 2000] we use 0.05.
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Figure 20 – Log-plot and loglog-plot of real part of Gret
0 .

Let’s better associate the phases of the graph as we explore analytical solutions.

7.2.2 Quasinormal modes

As we discussed in section 4.1, the QN contribution for the retarded GF is described by
equation (4.10).

These simple poles are described as QNMs, and have a spectrum defined in (5.46).



But we also need to guarantee that this sum over n is convergent. As we are using
r ∼ r+, we can use the asymptotic expression f

(in)
ℓωℓn

∼ e−iω̃ℓnr∗ and f
(up)
ℓωℓn

∼ B
(in)
ℓ,n e−iω̃ℓnr∗ ,

and get,

GQN
ℓ ∼

∑
n

e−2iω̃ℓnr∗e−iωℓn∆t

2ωℓnαℓn

, (7.7)

where ω̃ℓn = ωℓn − qQ/r+. And knowing that ωℓn = ℜ(ωℓn) + iℑ(ωℓn), we can obtain
e−2iω̃ℓnr∗e−iωℓn∆t = eℑ(ωℓn)T e−2iℜ(ω̃ℓn)r∗−iℜ(ωℓn)∆t which T = ∆t + 2r∗, and finally rearrange
GQN

ℓ as

GQN
ℓ ∼ ℜ

∑
n

Cℓ,ne−2iℜ(ω̃ℓn)r∗−iℜ(ωℓn)∆t, (7.8)

where

Cℓ,n = eℑ(ωℓn)T

2ωℓnαℓn

. (7.9)

We need to check if this sum is convergent: is essential to take into account the
sign of the exponential. We already known that ℑ(ωℓn) < 0 for every n and ℓ. But T could
be, at least in principle, positive, negative or even zero.

We will use the d’Alembert’s criterion to investigate the convergence. Just remem-
bering, it consist of doing the following: limn→+∞ |Cℓ,n+1/Cℓ,n+1| = L, if L < 1 we have an
absolute convergent series, if L > 1 or L → 1+ it is divergent and if L = 1 or L → 1− it is
inconclusive.
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Figure 21 – Plots of |Cℓ,n+1/Cℓ,n| using T = ±10 for different values of ℓ.

In Figure 21, we can see that only when T > 0 the series is convergent, we can
fix this without any problem. As ∆t = t − t′ we only needs to define t′ = 2r∗, where
r∗ = r∗(r0).



Having it in mind, we can now take a look for individual modes, and truncate the
sum in n justifying it with the difference of orders of magnitude for the first modes. We
are looking for the real part of GQN, and this comparison between the modes can be seen
in Figure 22.
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Figure 22 – Log-plots of the real part of GQN
ℓ,n

we choose ncut = 20.

We can plot GQN
0 in the same range as Figure 20.
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Figure 23 – Log-plot and loglog-plot of GQN
0 .

and now we are able to compare with Gret
0 .

It is done in Figure 24. For initial times the retarded GF is dominated by the
HF-modes, we can see that they contribute very little and quickly, around t/M = 15, the
function is dominated by QNMs. The GQN

0 describes correctly Gret
0 until around t/M ∼ 900,

when an oscillatory tail begins to emerge due to the combination of QNMs and BC (what
can be call as “middle-late” time), and will be dampened as time progresses (late-time).
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Figure 24 – Log-plot and loglog-plot of numerical Gret
0 and GQN

0 for several times.

7.2.3 Branch-cut

As discussed in section 4.2, the contribution of the BC is described by equation (4.17),
where ∆Gℓ is given by equation (4.19).

Unfortunately, different from Hod and Andersson [Hod e Piran 1998,Andersson
1997] we were unable to integrate ∆Gℓ analytically and find the time power-law dependency
due to the complexity of its terms, so we did it numerically as a first approach. In their
cases, they are studying far-away field solutions and this leads to crucial differences:



instead a hypergeometric function as solution, they have a confluent hypergeometric
function as solution, the same solution that we found in equation (5.22) but they don’t
make a matching with a near-horizon solution. The wronskian between this confluent
hypergeometric function isn’t a multi-valuated function, what turns much more easier the
equation (4.19).

Looking at Figure 25, we can see that only really low-frequencies will contribute to
the integral when the time increase (for small times the GF is dominated by QNMs and
HF as we already known), which allows us to use the smaller range from now on.
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Figure 25 – Log-plot G

We also do not see the oscillations that appear in Figure 20 in the same range
because the tail for BC appears with a completely different order of magnitude. These
difference may therefore indicate a numerical limitation of our numerical GF, as the steps
are on the order of 10−4, the time from ∼ 103 on may be starting to be problematic or a
request of more precision for GF at low frequencies.

So, now we will combine GQN
0 and GBC

0 and extend to higher times in Figure 26
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Figure 26 – Log-plot G



7.2.4 Retarded Green function

After seeing the agreement between the solutions for t/M until around 900 so let’s continue
with our analytical solutions because this miss-match for “middle-late” and late-time was
probably due to an issue in the numerical solution.

We can plot Gret
ℓ defined by equation (4.2), and sum over ℓ. To do this, is important

remember that φ − φ′ = Ω∆t where Ω = ν/r0. So, we have, as was shown in chapter 4:

Gret(x, x′) =
∞∑

ℓ=0
Gret

ℓ , (7.10)

Gret
ℓ = 1

rr′ (2ℓ + 1)Pℓ(cos Ω∆t)Gret
ℓ (r, r′, ∆t), (7.11)

Starting with the QNM-solution, we can see the comparison between individual
ℓ-modes in Figure 27. Just like to n we can choose an ℓcut and analyzing these plots
ℓcut = 10 is enough.
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Figure 27 – Log-plot and loglog-plot of individual modes of GQN
ℓ .

Exactly the same can be done to the BC solution, in Figure 28 we compare
individual ℓ-modes.
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Figure 28 – Loglog-plot of individual modes of GBC
ℓ .



Even for ℓ = 0 the tail have an slow oscillation. The interference between ℓ = 0
and ℓ = 1 parts generate an more obvious oscillation that will remains even after the
“middle-late” times. In [Koyama e Tomimatsu 2001], Koyama & Tomimatsu showed that
for a neutral massive scalar field, if this mass is small, as oscillatory tail emerge with a
inverse power-law multiplying a sine of this mass multiplied by time.

And we can sum BC and QN contributions to form a semi-analytical retarded
Green function, Figure LAST ONE.
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Figure 29 – Loglog-plot of |GBC + GQN.



8 Conclusion

We can divide this thesis into two parts, both fundamentally relying on the solutions
we obtained valid for near-extremal BH close to the superradiant-bound regime and
low-frequencies. Utilizing an exact solution that we also obtained to aid.

The first part consisted of a fully spectroscopic study where we investigated the
phenomenon of superradiance through the amplification factor, reobtaining a known result
in extremal-Kerr BH [Starobinsky 1974] (here in extremal-RN) and obtained an expression,
in this regime, for the near-extremal case. For the QNMs, we recalculated the frequency
spectrum ZDM obtained for the first time by Hod [Hod 2010], numerically calculated the
DMs [Richartz e Giugno 2014,Cavalcante e Cunha 2021], showed the emergence of the
BC for Q → M , and also obtained a numerical formula to calculate these all these QNMs
and the TRMs numerically using the confluent Heun function extending the method of
Fiziev [Fiziev 2007] to also apply to charged BHs. We also obtained an analytical spectrum
of the TRMs which is identical to the case of a scalar field in Kerr spacetime [Casals e
Micchi 2019].

The second half consists of developing the Green function, calculated semi-analytically.
The part of QNMs is completely analytical, but the integration of Fourier modes for the
low-frequency regime needed to be done numerically. We also had a problem comparing
our solution for late-times, but we have a strong indication that this was a numerical
problem.

Improving this latter part, perhaps by adding some approximation, obtaining the
analytical Green function for BC contribution will allow us to write a reasonable analytical
solution for the retarded Green function (which is already an interesting result) but also
enables us to calculate, for example, the self-force for this particle in this circular orbit
that we described.
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