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Resumo

Investigamos a distribuição da puridade, entropia de Von-Neumann e do ganho de infor-

mação a partir da medição contínua de um único qubit. A medição contínua no tempo é

realizada acoplando um único qubit a qubits auxiliares que são medidos projetivamente a

uma taxa constante. Partindo de uma equação mestra estocástica que descreve a evolução

efetiva do qubit, este último é mapeado numa equação de Langevin com ruído multipli-

cativo. Esta equação é resolvida em termos de uma integral de caminho de Onsager-

Machlup, a partir da qual calculamos a distribuição de probabilidade dos observáveis de

interesse após medição contínua por um tempo t. Em específico, a distribuição de proba-

bilidade do ganho de informação evolui de uma função fortemente concentrada em torno

da informação 0 em curtos períodos de tempo para uma função fortemente concentrada

em torno da informação 1 para longos períodos de tempo, passando por uma estrutura de

dois picos em períodos intermediários. Testamos nossas descobertas analíticas por meio

de simulações numéricas e encontramos excelente concordância.

Palavras-chave: Trajetórias quânticas, Equação de Langevin, integral de caminho de Onsager-

Machlup, ganho de informação.



Abstract

We investigate the distribution of the purity, Von-Neumann entropy, and information

gained from continuously measuring a single qubit. The continuous-in-time measurement

is realized by coupling the single qubit to ancillary qubits which are projectively mea-

sured at a constant rate. Starting from a stochastic master equation that accounts for an

effective evolution of the single qubit, the latter is mapped to a Langevin equation with

multiplicative noise. This equation is solved in terms of an Onsager-Machlup path inte-

gral, from which we calculate the probability distribution of observables of interest after

continuously measuring for a time t . In particular, the probability distribution of the

information gain evolves from a function sharply peaked at information 0 at short times

into a function sharply peaked at information 1 at long times, via a two-peak structure

at intermediate times. We test our analytic findings by numerical simulations and find

excellent agreement.

Keywords: Quantum trajectories, Langevin’s equation, Onsager-Machlup path integral,

information gain.
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Chapter 1

Introduction

In quantum mechanical systems, there are two types of dynamics: unitary evolution and

measurements. Unitary gates applied between different particles tend to grow entangle-

ment between them. As a result, initially localized information is scrambled because of the

correlations introduced throughout the sample. Conversely, when we measure a particle

through projective operators, its state is revealed at the expense of the loss of quantum

coherence. Therefore, the measured particle inevitably became uncorrelated from the rest

of the sample, and overall entanglement is reduced in the process [1].

In a hybrid quantum circuit, both of these processes take place. Therefore, the dy-

namics of a hybrid system are characterized by a competition between the growth and

the decline of entanglement. Hybrid circuits have been widely studied in condensed mat-

ter physics to probe universal features of far-from-equilibrium quantum systems. One

intriguing problem where entanglement plays a key role, for example, is to define when

a many-body quantum system thermalizes and when it does not. For a highly entangled

state, the subsystem density matrix has a Gibbs distribution, obeying the conditions of

the Eigenstate-Thermalization Hypothesis (ETH) [2, 3, 4]. In this case, the system acts

as a thermal bath for itself, and only global thermodynamical information is accessible;

local information is scrambled throughout the sample due to long-range entanglement

[5, 6, 7, 8, 9]. In contrast, for many-body localized systems, information scrambling is

inhibited by strong disorder or by measurements [10, 11]. In this case, entanglement is

localized within a subsystem, while subsystems very distant from one another (distance of

the order of the sample size) remain uncorrelated. Therefore, a system with many-body

localization will exhibit non-trivial properties at large times, i.e., it will not thermalize,
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keeping the memory of its initial state [12, 10].

1.1 Measurement-induced phase transition in hybrid

dynamics

In particular, it was recently discovered that monitored hybrid quantum circuits would

exhibit a measurement-induced phase transition from an ergodic to a many-body localized

phase [13, 14, 15]. For example, consider the following 1+1D, quantum circuit:

random unitary

local-Z measurement

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

x

Figure 1.1: A hybrid 1+1D quantum circuit with L = 10 qubits. At each time step, local
measurement is performed with probability p. Between time steps, local random unitary gates
act between neighboring qubits, alternating the neighbor between layers. Image from Ref. [16]

Starting in a pure state |Ψ⟩ =
∏

n |0⟩
⊗n, local random unitary gates will tend to

grow overall entanglement of the sample, while local measurements that project the qubit

into the z component, occurring with probability p, disentangle the measured qubit with

its neighbors (see Fig. 1.1). The taming of entanglement can be tuned by the single

parameter p, which modulates the measurement frequency. The amount of entanglement

in the sample can be quantified by the reduced Renyi entropy Sn
A:

Sn
A =

1

1− n
log2 tr ρ

n
A,

where ρA = trĀ |Ψ⟩⟨Ψ| and (A, Ā) is an adjacent bipartition of the L-qubit system. The

special case Sn=1
A reduces to the Von-Neumann entropy SA = − tr ρA log2 ρA. When p = 0,

entanglement will grow to its maximum value limited by the sample size |A|. Therefore,

the entanglement entropy averaged over many realizations of the random quantum circuit
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will have a volume law scaling SA ∼ |A| at the steady state t → ∞, with logarithmic

correction at short times. Thus

SA = α log |A|+ s|A|,

for p = 0, where α and s are constants. In [13], it is argued that any p ̸= 0 measurement

rate will drive the system into an area law entropy SA ∝ |A|0. However, numerical

evidence from [15, 14] shows that volume law scaling of the entanglement entropy survives

a measurement rate p < pc, where pc is a critical threshold above which one obtains area-

law behavior. At the critical measurement rate p = pc, the entanglement entropy has a

logarithmic dependence on the subsystem size [15, 16]:

SA = α(pc) log |A|.

The behavior of the averaged entanglement entropy probed by simulation is summarized

in Fig. 1.2 below:

|A|

SA
p < pc , SA = α(p) ln |A| + s(p) |A|

p > pc , SA = c(p) |A|0

p = pc , SA = α(pc) ln |A|

pc

Volume law phase Area law phase>
p > pcp < pc

<

Figure 1.2: Entanglement entropy, SA, averaged over many realizations of the hybrid model
illustrated in Fig. 1.1. A measurement rate threshold pc separates a volume law entanglement
phase (p < pc) from an area-law phase (p > pc). At the critical point, the entanglement entropy
has a pure logarithmic behavior, resulting from scale invariance. Figure taken from Ref. [16].

At the critical point, the mutual information InA,B = Sn
A + Sn

B − Sn
A∪B between two

spins distant by x ≫ 1 obey a power law scaling In(x) ∼ x−2∆c , where ∆c ≈ 2, with

exponential decay away from criticality [15, 16]. These results point to an underlying

conformal field theory (CFT) describing this phase transition. This connection motivated

an analytical description using tensor network holography [17].

An analytical solution for the Hartrley entropy Sn=0
A = log(rank(ρA)) is accessible for
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the 1+1D case by an exact mapping [18] between quantum hybrid circuits and classical

percolation[19, 20, 21]. This mapping between the two problems can be seen in Fig. 1.3

below:

✂

t

x

t

x

Figure 1.3: (Left) A hybrid quantum circuit with a minimal cut configuration (green line).
(Right) Mapping of the hybrid circuit with classical percolation theory. Each two qubits unitary
became a point in the percolation graph. A bond between these points occurs with probability
1 − p. Therefore, a measurement breaks a bond in the percolation network. Whenever the
minimal cut crosses a bond, it has a cost, summing one value to the Hartley entropy. Crossing a
broken bond does not cost anything, and the entropy keeps a constant value. The figure is taken
from [15]

The exact exact calculation for the Hartley entropy is performed by calculating the

minimal cut configuration for the lattice percolation [15]. Using this method, it was found

that pc = 1
2

and the correlation length near the critical point behaves as ξ ∼ |p − pc|−ν ,

with ν = 4
3

[15]. While more generic cases do not allow an exact description, the phase

transition still exists, but with other critical exponents and other values for pc [15, 14,

16].

Finally, the assumptions of random unitary interaction between neighbors and pro-

jective measurements are not necessary for the existence of the measured-induced phase

transition. They can be relaxed by considering Floquet dynamics with Clifford gates

[22], for example, or weak measurements instead of projective ones [23], without qualita-

tively altering the results: a phase transition would still occur for a finite threshold of the

measurement rate, dividing volume law to area law behavior of the entanglement entropy.
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1.2 Extreme regimes of purification dynamics

In a monitored many-body quantum system, we can distinguish two extreme cases for

the system purification behavior: a strong and a weak measurement regime, respectively.

Let J be the typical energy of interaction of an all-to-all interacting many-body system

and η be the measurement rate under which the system is probed. A weak measurement

regime occurs when η ≪ J , that is when the measurement rate is much smaller than the

relaxation time to ergodicity. In this case, between any two measurements, the system

will be ergodic. Therefore, the quantum circuit that characterizes this phase can be

described by layers of random distributed projective measurements, with all-to-all Haar

random unitaries acting between those layers. Starting in a mixed state, it was found the

following analytical expression for the mean purity ⟨τ⟩ = ⟨tr ρ2⟩ of N qubits, with the

average calculated over many copies of the initial state [24]:

⟨τt⟩ ≈
sinh(t/tp) +D−1 cosh(t/tp)

cosh(t/tp) +D−1 sinh(t/tp)
, (1.1)

where D = 2N is the Hilbert space dimension and tp = D/Nη is the typical purification

time, which grows exponentially with the number N of particles.

In contrast, the strong measurement regime occurs when η ≫ J . In this case, the

time interval between measurements is so small compared to the scrambling time, that

the system has no time to undergo relaxation under its dynamics. Therefore, interaction

can be disregarded altogether. In this limiting case, the analysis is simplified by random

measurement distributed by a Poisson process, with the probability for a single qubit of

the sample to be projectively measured being p = 1 − e−ηt. Therefore, the mean purity

evolution of a single qubit will be:

⟨τ1⟩ = e−ηt × 1

2
+ (1− e−ηt)× 1 = 1− 1

2
e−ηt. (1.2)

Whereas for N non-interacting qubit, we have:

⟨τ⟩ =
N∏

n=1

⟨τ1⟩ =
(
1− 1

2
e−ηt

)N

. (1.3)

The typical purification time in this case grows logarithmically with the number of par-

ticles by tp = η−1 lnN [24].

Comparison between the analytical expressions from Eq. (1.1) and Eq. (1.3) and the
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respective quantum circuit simulation for η = 1/N (uniform distribution throughout the

sample) can be seen in the Fig. 1.4 below:

(a) (b)

Figure 1.4: Mean purity ⟨τ⟩ =
〈
tr ρ2

〉
in the weak (left) and strong (right) measurement phase.

Comparison with Eqs. (1.1) and (1.3) for N = 6 and N = 100, respectively. Averages were
calculated with 100, 000 samples. Both cases start in a mixed state, therefore ⟨τ0⟩ = 1/D, where
D = 2N .

Although the analytic expression for the weak phase has the right asymptotic limit for

small and large times (see [24] for more detailed analysis), it overestimates purification

at intermediate times (see Fig. 1.4a). Conversely, in the thermodynamical limit where
1
N

→ 0, the strong measurement phase is exactly described by a Poisson process [24], as

is clear from Fig. 1.4b.

1.3 Problem statement and overview

In the present work, we take a step back from the many-body problem and the hybrid

dynamics and consider the case of a single qubit being continuously monitored in time.

The purification of one qubit projectively measured would instantaneously jump from

τ = 1
2

to τ = 1 after measurement. In our case, this transition is made more gradual,

since only a small amount of information is extracted in a small time interval, but now

many measurements are required to fully purify a qubit (continuous monitoring). Our

main goal is to find an analytical solution describing the purification of the continuously

monitored qubit, in a similar way to what was achieved with Eq. (1.2) for the strong

measurement regime. We will restrict our solution by considering only initial mixed

states. As a result, the dynamics are greatly simplified, since only the time evolution of

the diagonal elements has to be considered. Although at first, this seems a great constraint
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for a realistic model it is quite the opposite, as for most systems, decoherence time is much

smaller than the dynamical time of the system [25, 26]. So off-diagonal elements can be

disregarded without great loss of generality.

Contrary to the many-body problem, where non-trivial phases are tuned by the mea-

surement rate, the continuously monitored qubit always ends up being purified (a pure

state is reached at the end of the process). Despite the differences between the simpli-

fied model studied in this thesis and the many-body case, we think the task of studying

the continuously monitored qubit is justifiable. The first reason is the validation of the

Feynman-path integral method for the non-unitary diffusion of a qubit under monitoring.

Secondly, by using this method, we were able to find an exact expression for the probabil-

ity distribution of the entropy and the gain of information of the continuously monitored

qubit.

To reach our objectives, this thesis is divided in the following way: In Chapter 2 we

deduce the dynamical equation of the continuously monitored qubit for the wave function

(Stochastic Schrodinger equation) and the density matrix (Stochastic Master equation).

Next, we show that the purification of a mixed state can be described by one degree of

freedom obeying a Langevin equation with multiplicative noise. In Chapter 3, by mean of

the Langevin equation obtained, we numerically simulate the quantum trajectories, either

individually for the states, or averages for observables that quantify purification, like the

purity, the Von-Neumann entropy, and the information gained by measurements. From

the individual trajectories, we were also able to simulate the probability distributions

of the observables. All calculations were done using the Euler-Maruyama method [27]

to numerically integrate the Langevin equation. In Chapter 4, we formally build the

probability distribution for the trajectories of the Langevin equation. This probability

distribution is constructed using the Onsager-Machlup approach [28, 29] discretized at the

midpoint (Stratonovich) for an equivalent stochastic evolution with additive noise. We

then find a saddle-point solution for the probability distribution calculated and compare

it with our numerical findings for the purity, obtaining excellent agreement. In Chapter

5, we compare the prediction given by our analytical solution with the results obtained

numerically in Chapter 3, such as the probability distributions, expected values, and

variances for the quantum trajectories, purity, entropy, and information gain. Again,

excellent agreement is found in every case. Finally, in chapter 5 we give a brief outline
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of what was achieved. We present the main findings and give some ideas for future

development of the present work.
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Chapter 2

Non-unitary diffusion quantum

trajectory of a single qubit

Measurement in quantum mechanics is usually presented by employing projective oper-

ators that instantaneously extract full information about the probed system. Although

this theory is successful in many ways [30], it fails to describe situations where the quan-

tum nature of the measurement process has to be taken into account, such as in quantum

optics. For example, to probe a Rydberg atom (an atom possessing two accessible elec-

tronic states.), one does not measure it directly using a supposed ’energy level’ detector.

In practice, measurements are indirectly conducted by directing an electromagnetic field,

made up of photons, toward the atom. The incident photon will weakly interact with the

atom, carrying partial information about its electronic state with it. Then the probing

photon will be measured by a photodetector. Because the weak interaction introduced a

small correlation between the photon and the atom, knowledge of the photon state will

reveal partial information about the atom’s electronic state. By probing the atom with

radiation at a constant rate, the atom state is conditioned by the (indirect) measure-

ment outcomes from the photodetector. As a result, the atom state will be effectively

described by a non-linear stochastic differential equation describing a path conditioned

by the experiment outcomes, that is, a quantum trajectory ([31, 32, 33, 34, 35, 36]). The

non-linearity arises because the system state has to be renormalized after every step to

keep its norm equal to one; while the randomness effectively describes the measurement

outcomes of the subsystem.

More generally, a quantum trajectory is obtained by coupling the system to an envi-
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ronment that is subsequently monitored [35]. The effective description of the system will

result in a stochastic Schrödinger equation for the system state or a Stochastic Master

equation for its density matrix. The nature of this stochastic time evolution will depend

on the environment state and the interaction between the system and the environment.

When describing the spontaneous emission of an atom, these trajectories evolve deter-

ministically in a non-unitary manner, until a discontinuous event occurs at random for

the trajectory, which signalizes that the emission has occured [37, 35, 33]; this case is

commonly referred as the quantum jump method, because of its discontinuous nature. In

this chapter, we will consider the case of non-unitary diffusion. In this evolution, start-

ing, for example, in a (diagonal) mixed state, half of the time the system will be purified

into the state |0⟩⟨0| and half of the time into the state |1⟩⟨1|, with a diffusive behavior

of the system state at intermediate times. The diffusion decreases to zero as the system

approaches the pure states |0⟩ or |1⟩, and stops entirely once either of these pure states

is reached. Therefore, this case can be seen as an indirect measurement of the qubits |0⟩
or |1⟩, recovering the projective measurement prediction in the limit t→ ∞. For further

details on the reasoning shown in this chapter, we refer to [35].

2.1 Stochastic Schrodinger Equation (SSE)

To perform a weak measurement over a qubit in a general state |ψ⟩ = α |0⟩ + β |1⟩
(system), we first weakly couple it with another probing qubit in a state |ϕ⟩ (ancilla).

This coupling is performed by a unitary (weak) interaction U . A projective measurement

is then performed in the ancilla, with two possible outcomes. The process is then repeated

at every time interval dt. A schematic representation of the model is in Fig. 2.1:
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|ψ⟩

measured qubit
(system)

|ϕ⟩|ϕ⟩

probe qubit
(ancilla)

|ϕ⟩. . .

Detector
dt

U

Figure 2.1: Schematic representation of the collisional model used to deduce the Stochastic
Schrödinger Equation. The measured qubit (system) interacts with the probing qubit in the
ancilla via the unitary operator U . Subsequently, the ancilla qubit is measured, revealing partial
information about the system, and traced out. Effectively, at every interval dt, a weak measure-
ment will be performed on the system. Note that all ancillary qubits are prepared in the same
state |ϕ⟩, and the system interacts with one ancillary qubit at a time. These conditions are met
for a Markovian time evolution of the system [38].

Because of the small entanglement introduced by U between the two subsystems, the

measurement over the ancilla will provide a small amount of information about the state

|ψ⟩. As a consequence, the system will change by |ψ⟩ → |ψ⟩ + d |ψ⟩. The nature of this

change depends on the ancilla state |ϕ⟩ and the coupling U between subsystems, leading

to different qubit measurement schemes [35, 33]. For the non-unitary diffusion case, the

ancilla qubits are prepared in the state

|ϕ⟩ ≡ |y−⟩ = (|0⟩ − i |1⟩)/
√
2,

while the interaction between the system and the ancillary qubits is intermediated by the

unitary operator

U = ZS(θ)UCNOT(θ),

where

UCNOT(θ) = e−iθCNOT = cos θ − iCNOT sin θ,

and ZS(θ) = eiθσz/2 ⊗ 1̂ [35]. The CNOT operator, pronounced as Controlled-Not, is a

two-qubit operator conditioned on a control qubit. It works by applying the operator

σ1
∗ over the second qubit when the first qubit is equal to one. Otherwise, it acts as the
∗

σ1 =

(
0 1
1 0

)

12



identity operator. This conditional behavior is summarized by the following equation:

CNOT = |0⟩⟨0| ⊗ 1̂ + |1⟩⟨1| ⊗ σ1.

† The parameter θ modulates the coupling strength. To ensure continuous monitoring, we

fix θ =
√
dt, hence θ ≪ 1 for an infinitesimal time interval dt. The total system (system

+ ancilla) is initially described by the state |Ψ⟩ = |ψ⟩ ⊗ |ϕ⟩. After the interaction, the

two-qubit state will change from |Ψ⟩ to |Ψ′⟩ = U |Ψ⟩. Since θ is a small parameter,

UCNOT(θ) introduces a small entanglement between the two subsystems. Applying it to

|Ψ⟩, we obtain:

|Ψ′′⟩ = UCNOT(θ) |Ψ⟩ = (cos θ − iCNOT sin θ)(α |0y−⟩+ β |1y−⟩).

Since CNOT |0y−⟩ = |0y−⟩ and CNOT |1y−⟩ = −i |1y+⟩, where |y±⟩ = (|0⟩ ± i |1⟩)/
√
2,

we have that:

|Ψ′′⟩ = (αe−iθ |0⟩+ β cos θ |1⟩)⊗ |y−⟩ − β sin θ |1⟩ ⊗ |y+⟩ .

To eliminate the relative phase factor e−iθ between the system components coupled to

|y−⟩, we apply ZS(θ) = eiθσz/2 ⊗ 1̂ to |Ψ′′⟩. This operation does not affect the effective

behavior of the system qubit, since no correlation between subsystems is introduced. The

result is, apart from an overall phase factor e−iθ/2:

|Ψ′⟩ = (α |0⟩+ β cos θ |1⟩)⊗ |y−⟩ − β sin θ |1⟩ ⊗ |y+⟩ .

Expanding the states |y±⟩ into the computational basis, we obtain:

|Ψ′⟩ = |s0⟩ ⊗ |0⟩ − i |s1⟩ ⊗ |1⟩ ,

where

|s0,1⟩ =
α |0⟩+ β(cos θ ∓ sin θ) |1⟩√

2

≈ α |0⟩+ β(1∓ θ − θ2

2
) |1⟩√

2
. (2.1)

In the last step, we used that θ ≪ 1. We retained the second-order term for θ because

this is a first-order contribution in dt. Weak measurement is performed over the system
†For example, CNOT |0, ϕ⟩ = |0, ϕ⟩ and CNOT |1, ϕ⟩ = |1, σ1ϕ⟩
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when we do a projective measurement over the ancilla. The latter can be done by the

subsystem projectors:

Πn = 1̂⊗ |n⟩⟨n| ,

where n = {0, 1}. Therefore, after measuring the ancillary qubit, the total system will

change by

|Ψ′⟩ → Πn |Ψ′⟩ /√pn,

where pn = ⟨Ψ′|Πn|Ψ′⟩ is the probability that the ancilla is in the state |n⟩. Hence, the

total system change will be

|Ψ′⟩ → Πn |Ψ′⟩√
⟨Ψ′|Πn|Ψ′⟩

= |ψ′
n⟩ ⊗ |n⟩ ,

where |ψ′
n⟩ = |sn⟩ /

√
⟨sn|sn⟩ is the system state after the measurement over the ancilla

has been performed. Once we know the measurement result, no entanglement remains

between the subsystems. Therefore, the ancilla can be discarded by tracing it out. We

can from now on speak of an effective weak measurement over the system, with its state

changing according to

|ψ⟩ → |ψ′
n⟩ = |sn⟩ /

√
pn,

after a weak measurement, with probability pn = ⟨sn|sn⟩, where n = {0, 1} keep track of

the ancilla measurement result. The states |sn⟩ are given by equation (2.1). To be more

specific, the probability to (weakly) measure |ψ′
0⟩ is

p0 =
|α|2 + |β|2

(
1− θ − θ2

2

)2
2

≈ 1

2
− θ|β|2, (2.2)

where

|ψ′
0⟩ = (1− 2θ|β|2)−1/2

[
α |0⟩+ β

(
1− θ − θ2

2

)
|1⟩
]
,

≈
(
1 + θ|β|2 + 3

2
θ2|β|4

)[
α |0⟩+ β

(
1− θ − θ2

2

)
|1⟩
]
.

In the last step, we expanded the denominator up to O(θ2) (included). After multiplica-

tion of the factors and further simplifications, we finally obtain:

|ψ′
0⟩ = α

(
1 + θ|β|2 + 3

2
θ2
∣∣β2
∣∣) |0⟩+ β

(
1− |α|2θ − |β|2θ2 − θ2

2
+ 3|β|4 θ

2

2

)
|1⟩ . (2.3)
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For p1 and |ψ′
1⟩, it suffices to change the sign θ → −θ in Eqs. (2.2) and (2.3), so that

p1 ≈
1

2
+ θ|β|2, (2.4)

and

|ψ′
1⟩ = α

(
1− θ|β|2 + 3

2
θ2
∣∣β2
∣∣) |0⟩+ β

(
1 + |α|2θ − |β|2θ2 − θ2

2
+ 3|β|4 θ

2

2

)
|1⟩ . (2.5)

Defining the state differential as d |ψ⟩ ≡ |ψ′⟩−|ψ⟩, the two measurement possibilities |ψ′
0⟩

and |ψ′
1⟩ can be cast into a single equation:

d |ψ⟩ = α

(
±θ|β|2 + 3

2
θ2|β|4

)
|0⟩+ β

(
∓|α|2θ − |β|2θ2 − θ2

2
+ 3|β|4 θ

2

2

)
|1⟩ , (2.6)

with probability

p =
1

2
∓ θ|β|2, (2.7)

for each outcome, respectively. To deduce the Stochastic Schrödinger Equation (SSE) in

time, we have to express d |ψ⟩ in terms of the Lindblad operator L[35], which here is given

by:

L =
θ√
ηdt

|1⟩⟨1| , (2.8)

where η is the measurement rate and dt is the time interval between any two measure-

ments. This Lindblad operator characterizes how the system interacts with the ancilla.

Its form depends on the measurement protocol chosen. The somewhat odd scaling θ/
√
ηdt

reflects the fact that θ ∝ √
ηdt. The constant of proportionality can be set to 1 without

loss of generality. But for now, we will keep it explicitly in Eq. (2.8) to keep track of

terms that will appear. To introduce the Lindblad operator into Eq. (2.6), the following

relations are useful:

|β|2 =
√
ηdt

θ
⟨L⟩ =

√
ηdt

θ
⟨L†⟩ ,

|β|4 = ηdt

θ2
⟨L⟩ ,

β |1⟩ =
√
ηdt

θ
L |ψ⟩ = ηdt

θ2
L†L |ψ⟩ = ηdt

θ2
LL† |ψ⟩ .

Introducing them into Eq. (2.6), we get:

d |ψ⟩ = 1

2

(
3 ⟨L̂⟩2 − 2 ⟨L̂†⟩ L̂− L̂†L̂

)
|ψ⟩ ηdt+ (L̂− ⟨L̂⟩) |ψ⟩ dZ (2.9)
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The noise dZ = ±√
ηdt is a discrete random number. Each outcome has, respectively, a

probability p = 1/2± θ|β|2 = 1/2±√
ηdt ⟨L†⟩ to occur. Consequently, the mean value of

dZ is equal to

dZ =

(
1

2
+
√
ηdt
〈
L†〉) (+

√
ηdt) +

(
1

2
−
√
ηdt
〈
L†〉) (−

√
ηdt) = 2ηdt ⟨L̂†⟩ .

It is more convenient, however, to work with zero average noise. For this reason, we will

work with the white noise dW , where dW = dZ−2ηdt ⟨L†⟩, and dW 2 = ηdt+O
(
(ηdt)3/2

)
.

Substituting dZ = dW +2ηdt
〈
L†〉 into Eq. (2.9), the SSE can finally be expressed in the

nonunitary diffusive form [35]:

d |ψ⟩ = |ψt+dt⟩ − |ψt⟩ =
{
−1

2
(L− ⟨L⟩)2ηdt+ (L− ⟨L⟩)dW

}
|ψt⟩ . (2.10)

We can now get rid of the odd scaling ∼ θ/
√
ηdt of L by fixing θ =

√
ηdt. This constraint

is consistent with continuous monitoring, since θ → 0 as dt→ 0. Therefore,

L = |1⟩⟨1| .

Eq. (2.10) defines a quantum trajectory for |ψt⟩. This equation is non-linear, because of

the presence of the term ⟨L⟩ = ⟨ψ|L|ψ⟩. The contribution ∝ ηdt in the SSE will lead

to different trajectories only for different initial states |ψ0⟩ = α |0⟩+ β |1⟩. Consequently,

this term is deterministic. On the other hand, due to the probabilistic nature of the

measurement over the ancilla, we get a noisy factor in the SSE that is proportional to

dW = ±√
ηdt+O

(
(ηdt)3/2

)
, where each outcome has a probability p = 1/2±O

(
(ηdt)1/2

)
.

This is the stochastic contribution of the SSE. In the continuous limit dt → 0, we can

safely state that dW = ±√
ηdt with equal probability for the two outcomes. Setting the

initial condition, each stream of random numbers dW will define a different quantum

trajectory for |ψt⟩.
It is worth mentioning that we ignored contributions from kinetic energy and external

potential encoded in the Hamiltonian H. We will restrict to analyze only the changes

induced by measurement in the state |ψ⟩. To introduce such effects, it suffices to add

−i/ℏH |ψt⟩ dt on the right-hand side of the Eq. (2.10).

Although Eq. (2.10) is perfectly good for describing the nonunitary diffusion of initial

pure states, It cannot describe situations where the initial state is mixed. To deal with

the latter, we need to know how a density matrix evolves under continuous monitoring.
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This brings us to the Stochastic Master Equation (SME) for non-unitary diffusion.

2.2 Stochastic Master Equation (SME)

To start with a fully mixed state, we need to know the stochastic differential equation that

describes the density matrix ρ = ρt evolution at any time t. This equation is commonly

named the Stochastic Master equation (SME). For a pure state |ψt⟩, the density matrix

is simply ρt = |ψt⟩⟨ψt|. Hence

ρt+dt = ρt + dρ = (|ψt⟩+ d |ψ⟩)(⟨ψt|+ d ⟨ψ|),

where d |ψ⟩ = |ψt+dt⟩−|ψt⟩ and dρ = ρt+dt−ρt. Substituting Eq. (2.10) into the equation

above, the SME can be written in the following concise form:

dρ = ρt+dt − ρt = −1

2
[L, [L, ρt]]ηdt+ (ρtL+ Lρt − 2 ⟨L⟩ ρt)dW, (2.11)

where dW = ±√
ηdt with equal probability, L = |1⟩⟨1| and ⟨L⟩ = tr(ρtL). Although Eq.

(2.11) was derived for the case of a pure state, it remains valid even when the system is in

a mixed state. This can be shown by employing Positive Operator Valued Measurements

(POVM) operators instead of the approach we used in section 2.1, where we monitored

the ancilla qubits. The outline of how to use POVMs to arrive at equation (2.11) is given

in the appendix A.

To incorporate a unitary evolution governed by a Hamiltonian H, the Von-Neumann-

Liouville term [39, 36] must be included into Eq. (2.11). The result is:

dρ = ρt+dt − ρt = − i

ℏ
[H, ρt]ηdt−

1

2
[L, [L, ρt]]dt+ (ρtL+ Lρt − 2 ⟨L⟩ ρt)dW.

Eq. (2.11) describes the state ρt of the system conditioned on the measurement outcome

of the ancilla. If the ancilla is not measured, we should average the evolution over the

possible results. Defining σ ≡ ρ, where the overline denotes the average over-measurement

outcomes, the evolution of σt is given by the following Lindblad equation:

dσ = σt+dt − σt = −1

2
[L, [L, σt]]ηdt, (2.12)

which describes the evolution of an open quantum system [34, 40]. Starting with a

pure state σ0 = |ψ⟩⟨ψ|, Eq. (2.12) will drive the system to a mixed state σ = 1̂/2.
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The reason is the unitary interaction with the ancilla at each time interval dt, which

irreversibly scrambles the initial information. Therefore, the deterministic part of the

SME introduces decoherence into the system by canceling off-diagonal terms. This is the

opposite of equation (2.11), which, starting in a mixed state, time evolution drives the

system to a pure state by successive weak measurements over it.

The continuous monitoring purification can be simulated by iterating equation (2.11)

with a finite step ∆t and using a (pseudo) random number generator to simulate the noise.

As our focus lies in purifying a mixed (diagonal) state, the time evolution of the density

matrix can be encapsulated by one parameter, delineated by a stochastic differential

equation, also known as a Langevin equation.

2.3 Langevin equation of non-unitary diffusion quan-

tum trajectories

When continuously measuring a qubit, its state will evolve according to Eq. (2.11).

Therefore, starting in a mixed state ρ0 = 1̂/2, off-diagonal terms will not be introduced

by monitoring. As a result, the density matrix ρt can be expressed by a single dynamic

variable q = q(t) without loss of generality. We will represent the density matrix by

ρt = ρ(q) =
1 + q

2
|0⟩⟨0|+ 1− q

2
|1⟩⟨1| = 1 + qσ3

2
, (2.13)

where σ3 = diag(1,−1) and q(0) = 0. The pure states ρ = |0⟩⟨0| and ρ = |1⟩⟨1| are

mapped into q = 1 and q = −1, respectively. Time evolution for the parameter q is

defined by substituting Eq. (2.13) into Eq. (2.11), resulting in the following stochastic

differential equation for q:

dq = (1− q2)dW, (2.14)

where dq = q(t+ dt)− q(t) and dW = ±√
ηdt with equal probability. When q = ±1, the

increment dq is set to zero. So q is restricted in the interval −1 ≤ q ≤ 1 by Eq. (2.14).

The increment dt is interpreted as an infinitesimal time interval for the continuous time

t. In this limit, the discrete noise dW can be, at any time, substituted by a Gaussian

noise where ⟨dW (t)⟩ = 0 and ⟨dW (t)dW (t′)⟩ = ηdt2δ(t − t′), where the average ⟨...⟩ is

calculated over the noise distribution. Eq. (2.14) can also be expressed in the canonical
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Langevin’s equation form (see appendix B for more details on Langevin’s equation):

dq

dt
α=0
= g(q)W (t), (2.15)

where g(q) = 1 − q2 is the noise amplitude and W (t) is a gaussian white noise with

⟨W (t)W (t′)⟩ = ηδ(t− t′). Since this equation has a multiplicative noise g(q)W , a proper

time regularization has to be defined. This is specified by the index α = 0 above the

equality, signifying that Eq. (2.15) is discretized in time in the Itô sense (see appendix

B.1 for more details on time discretization issues). We define the discrete-time by dividing

the time interval of size t into N equal parts of size ∆t = t/N . Consequently, time is now

labeled by an integer index n, becoming tn = n∆t, where n = 0, 1, ..., N , and position is

defined by qn ≡ q(tn). With that being stated, the exact meaning of Eq. (2.15) is:

∆q

∆t
= g(qn)Wn, (2.16)

where ∆q = qn+1 − qn and ⟨WnWn′⟩ = η∆t−1δn,n′‡. Or, equivalently

∆q = g(qn)∆Wn, (2.17)

where ⟨∆Wn⟩ = 0, ⟨∆Wn∆Wn′⟩ = η∆tδn,n′ and g(qn) = 1 − q2n. Using a pseudo number

generator to compute the Gaussian noise ∆Wn, the continuous measurement quantum

trajectories can be numerically calculated by iterating equation (2.17).

‡We used
δ(tn − tn′) = lim

∆t→0
∆t−1δn,n′ .
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Chapter 3

Quantum trajectories numerical

simulation

Once in the hand of the Stochastic differential equation that describes the state evolution

in time (Eq. (2.17) ), we can numerically simulate it. One can achieve this by repeatedly

running it on a computer, generating a random number at each iteration, and substituting

it into Eq. (2.17) to determine the subsequent data point. By this procedure, we can

generate a set of points {q0, q1, ...} that, when connected, will represent the non-unitary

quantum trajectory formally deduced in the previous chapter. Likewise, once we have

the set of points from a particular quantum trajectory, we also have access to the time

evolution of any observable of the form Ô(ρ), as the latter can be expressed as a simple

function O(q) by mean of Eq. (2.13). Since we are interested in the purification of the

state, we will calculate the trajectories of the purity, the Von-Neumann entropy, and

the information gained when continuously monitoring the system, as their probability

distributions.

3.1 Method

A quantum trajectory is calculated by iterating the equation

∆q = qn+1 − qn = g(qn)∆Wn, (3.1)

for each time step of size ∆t, in the same spirit as Euler’s method [41] for numerically

integrating ordinary differential equations. However, unlike the latter, Eq. (3.1) has a

20



noisy term ∆Wn ≡ W (tn)∆t that has to be computed at each step by a random number

generator. The extension of the Euler method incorporating a random term is called

the Euler-Maruyama method [27], and it will be employed for computing the quantum

trajectories from now on. Since ∆Wn is Gaussian white noise such that ⟨∆Wn∆Wn′⟩ =
η∆tδn,n′ , its probability distribution at time tn = n∆t will be:

Pnoise(∆Wn) =
1√

2πη∆t
e−

(∆Wn)2

2η∆t . (3.2)

A Gaussian distributed random number ∆Wn is easily generated by a computer using

pseudorandom numbers (see [41] for technical details about how to do it). Symbolically, we

will denote ∆Wn ∼ N (0, η∆t) as a random number generated by the Normal distribution

with an average equal to zero and variance σ2 = η∆t∗. To generate a quantum trajectory,

we have to calculate a stream of N random numbers {∆W0,∆W1, ...,∆WN−1} ≡ {∆Wn},
which we will call the noise realization for ∆Wn. With it, we can generate a quantum

trajectory {q0, ..., qN} ≡ {qn} by iterating N times the recurrence relation:

qn+1 = qn + g(qn)∆Wn, (3.3)

where q0 = q(t = 0) is fixed for all trajectories. Once obtained {qn}, we can trivially

obtain the trajectories of an observable Ô(ρ) by computing {O(q0), . . . ,O(qN)} ≡ {On}.
Naturally, because each noise realization will be different from one another, every time we

run the algorithm for the same initial condition, a different trajectory is also obtained.

For all the simulations obtained in this chapter, we used q0 = 0, η = 1, and ∆t = 0.001.

The time interval has to be small because the Central limit theorem is only valid for all t

in the limit ∆t→ 0. For example, if one considers ∆t = 0.01, small discrepancies between

simulation and theoretical results (built in a subsequent chapter upon Gaussian noise) will

appear at small times for the probability distribution. At each step, noise is calculated

using ∆Wn ∼ N (0, η∆t) from a pseudo-random number generator of a computer program.
∗More generally, if X is a random variable such that X ∼ N (µ, σ2), then

P (X = x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
where P (X = x) is the density probability distribution of X.
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3.2 Non-unitary diffusion quantum trajectories

Using the method described in the previous section, numerical integration of the equation:

∆qn = g(qn)∆Wn,

for five different replicas of the qubit, yield the following trajectories:

Figure 3.1: Five noise realization of Eq. (3.3), calculated with q0 = 0, η∆t = 0.001 and
∆Wn ∼ N (0, σ2 = η∆t)

From Fig. 3.1, we see that all trajectories tend to q → ±1, and remain fixed there

once this value is attained. This physically translates as the system being purified into

states ρ = |0⟩⟨0| or ρ = |1⟩⟨1|, respectively.

Despite the stochastic nature of a single trajectory, many replicas of them yields a very

precise probability distribution Pq(q, t), defined in the interval −1 ≤ q ≤ 1 and t ≥ 0,

with Pq(q, 0) = δ(q) as the initial condition. At this stage, we do not know the precise

analytical expression for Pq(q, t). Nevertheless, the simulation can accurately calculate a

histogram for the position q(t) of the trajectories at a specific time t. Below are histograms

at times ηt = 0.1, 0.5, 2, calculated with N = 100, 000 trajectories.
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Figure 3.2: Probability distribution Pq(q, t) at times ηt = 0.1, 0.5 and 2.0. Calculations were
performed with 100, 000 samples of Eq. (3.3), with η∆t = 0.001.

We see from Fig. 3.2 that, as time evolves, the probability distribution tends to be

sharped peaked at the edges q = ±1. This is indeed the expected behavior, since all

trajectories will end up being purified at large times.

With the replicas of the trajectories, we can calculate any moment
〈
qk
〉

of q, where k

is a natural number. By defining the i-th trajectory calculated with Eq. (3.3) by qi(t),

the k-th moment evaluated at time t will be:

〈
qk
〉
=

∫ 1

−1

dq Pq(q, t)q
k ≈ 1

N

N∑
i=1

qi(t)
k, (3.4)

where N is the number of the system copies in this context (not to confuse with N = t/∆t

used in the previous section, which was equal to the number of time slices). Equality

between the integral and the sum occurs in the limit where N → ∞. In this limit,

statistical fluctuations of the averages, typically of order ∼ 1/
√
N , go to zero. Particularly,

with Eq. (3.4) we calculated the expected value E[q] = ⟨q⟩ and the variance Var[q] = ⟨q2⟩−
⟨q⟩2 for N = 100, 000 trajectories. These two quantities provide important information

about the average behavior of Pq(q, t) and its deviations, respectively. The result can be

seen below, in Fig. 3.3:
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(a) (b)

Figure 3.3: Expected value (left) and variance (right) of the distribution Pq(q, t). Calculations
were performed with N = 100, 000 samples of Eq. (3.4). We used η∆t = 0.001 for the time grid.

For N = 100, 000 samples, fluctuations will be of order ∼ 10−3, hence the curves in

Fig. 3.3 are precise up to the second digit. In figure 3.3a we have numerical evidence

that ⟨q⟩ = 0 for all t, a consequence of the even parity of Pq(q, t). This physically means

that half of the qubits will be purified into state |0⟩ and half into state |1⟩. The variance

calculated in Fig. 3.3b tends to one as ηt → ∞, which is consistent with q → ±1 in this

limit.

3.3 Observables of interest

From the statistical behavior of the trajectories, we can similarly study the behavior of

an observable Ô(ρ) which is a function of the qubit state at a given time. By observable,

we mean a quantity that can in principle be measured, directly or indirectly, and which

gives relevant information about the system [39, 42]. In our scenario, we are particularly

interested in quantifying how close is the qubit to a pure state, which is assessed by

the purity. Additionally, we aim to measure the amount of information extracted from

the system, which is quantified by the entropy and information gain. This section is

organized in a similar way to the previous: we show the stochastic trajectories {On}
for each observable mentioned, as its probability distributions PO(O, t), expected values

E[O] = ⟨O⟩ and variances Var[O] = ⟨O2⟩− ⟨O⟩2. As before, once we know how to obtain

replicas for the trajectories {On}, we can calculate any moment
〈
Ok
〉

of the observable

by: 〈
Ok
〉
=

∫
dO PO(O, t)Ok ≈ 1

N

N∑
i=1

O(qi(t))
k, (3.5)
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with equality between the sum and the integral occurring in the limit N → ∞. The

integral is performed over the observable domain.

3.3.1 Purity

To quantify how close a system is to a pure state, we will use the purity, defined for a

system in the state ρ by:

τ(ρ) = tr ρ2. (3.6)

For a qubit in a mixed state, it is easily shown that τ = 1
2
. While once in a pure state,

then τ = tr ρ2 = tr ρ = 1. Hence, by continuously measuring a mixed state, the purity

will change from 1
2
≤ τ ≤ 1, where τ = 1 indicates that a pure state has been reached.

Substituting Eq. (2.13) into Eq. (3.6), the purity is defined as a function of q by:

τ(q) =
1 + q2

2
, (3.7)

where q = q(t) evolves according to (2.17) in discrete time. As a result, the trajectories

{τn} are easily determined from {qn}. Below are the correspondent purity trajectories for

the five noise realizations depicted in Fig. 3.1:

Figure 3.4: Purity τ(q) for the trajectories depicted in Fig. 3.1

All purity stochastic trajectories start at τ = 1
2

and, in the long run, will end purified

with τ = 1, as is readily seen from Fig. 3.4.

The probability distribution of the values τ over time is defined by Pτ (τ, t), with

domain 1
2
≤ τ ≤ 1 and t ≥ 0. Initial condition Pτ (τ, 0) = 2δ(τ − 1

2
) is automatically
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satisfied by setting q0 = 0 for all quantum trajectories. For t > 0, we can calculate

Pτ (τ, t) by generating an ensemble of trajectories for {τn} and plot the various results at

a fixed time in the form of a histogram, as we did for Pq(q, t) in Fig. 3.2. Histograms

calculated from N = 100, 000 trajectories at three different times are depicted in Fig. 3.5

below:

Figure 3.5: Probability distribution Pτ (τ, t) at times ηt = 0.1, 0.5 and 2.0. Calculations were
performed with 100, 000 samples of Eq. (3.7), using η∆t = 0.001 in Eq. 3.3

From Fig. 3.5, we observe that the purity distribution changes from τ = 1
2

to τ = 1

as time evolves, with via a two-peak structure at intermediate times.

Substituting O = τ into Eq. (3.5), we obtain the expected value E[τ ] =
1+⟨q2⟩

2
and

the variance Var[τ ] =
⟨q4⟩−⟨q2⟩2

4
for the purity. The results are depicted below in Fig. 3.6:

(a) (b)

Figure 3.6: Expected value (left) and variance (right) of the distribution Pτ (τ, t). Calculations
were performed with 100,000 samples generated by Eq. (3.4). We used η∆t = 0.001 for the time
grid.

Within 0 ≤ ηt <∞, the expected value for τ evolves from 0 ≤ τ ≤ 1, with fluctuations

equal to zero in the extremes, attaining a maximum value at ηt ≈ 1.1.
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3.3.2 Von-Neumann entropy and information gain

The Von-Neumann entropy of a qubit in state ρ is defined as:

S(ρ) = − tr(ρ log ρ), (3.8)

where log 2 = 1 and 0 log 0 ≡ 0. This function is useful in quantifying the amount of

uncertainty we have about the qubit state. More precisely, maximum uncertainty is at-

tained by the mixed state ρmixed = 1̂/2. Physically this state can represent an unpolarized

photon from a malfunctioning laser, for example, where states |0⟩ and |1⟩ denote the hori-

zontal and vertical polarization of the photon, respectively. In this case, it is easy to show

that S(ρmixed) = 1, which implies in a total ignorance of the photon polarization before

measurement (unpolarized pulse of light). For pure states, generated by the ideal laser,

for example, we can always choose a basis where ρpure = diag(1, 0) by simply rotating the

polarizer† in the direction that maximizes the signal. In this representation, it is triv-

ial to show that S(ρpure) = 0, meaning we have complete information about the photon

polarization state from the laser [43].

From the observer’s point of view, however, it makes more sense to speak of the

information gained rather than the uncertainty of the system state. Assuming that no loss

of information occurs from the measurement process, we quantify the gain of information

as the reduction in uncertainty about the system due to measurement. Thus, if I(ρ) is

the information gained, then:

I(ρ) = −∆S = −(S(ρ)− S(ρ0)).

Where ρ0 is the state of the system before measurement starts. Since in our case ρ0 =

ρmixed, then

I(ρ) = 1− S(ρ). (3.9)

If no measurement has occurred, then I = 0, hence no information about the system has

been extracted. Conversely, if a pure state has been attained, then I = 1, that is, all

information has been extracted from the qubit. In between these extreme cases, we have

partial information about the state of the system.

When we continuously measure a single qubit in a mixed state, the values for the
†Polarizer is an experimental apparatus that measure the intensity of light at a certain direction. The

light signal in converted into an amplified electronic signal that is displayed into a digital screen.
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entropy will evolve in a stochastic manner from S = 1 to S = 0 for 0 ≤ t < ∞. A

specific noise realization for the entropy is defined by substituting Eq. (2.13) into Eq.

(3.8), resulting in:

S(q) = −1 + q

2
log

(
1 + q

2

)
− 1− q

2
log

(
1− q

2

)
, (3.10)

where a trajectory {qn} for q is generated iterating equation (3.3). Likewise,

I(q) = 1− S(q), (3.11)

where the information increases from I = 0 to I = 1 as q randomly drifts from q = 0 to

q = ±1. The trajectories for the entropy for the five replicas state evolution depicted in

Fig. 3.1 is depicted below:

Figure 3.7: Purity S(q) for the trajectories depicted in Fig. 3.1

All stochastic curves start in S = 1 and drift to S = 0 as purification grows continu-

ously. The stochastic curves for the information are not shown here, since they have the

same behavior for the trajectories in Fig. 3.7, but only reflected over the line S = 0.5.

Similarly to the purity, we can calculate probability distributions for PS(S, t) and PI(I, t)

by simulating ensembles of trajectories for {Sn} and {In}, respectively. Distributions

PI and PS are trivially related to each other by PS(S, t) = PI(1 − S, t). Below we plot

both probability distributions calculated from an ensemble of N = 100, 000 trajectories

generated with Eq. (3.3):
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(a)

(b)

Figure 3.8: Probability distributions PS(S, t) (3.8a) and PI(I, t) (3.8b) calculated with N =
100, 000 samples of equation (3.3). we used η∆t = 0.001 for the time grid.

In Figs. 3.8 we see that for short times, as in ηt = 0.01, the entropy (information gain)

is distributed next to S = 1 (I = 0). As we measure the system, intermediate values of

the entropy (information gain) contribute more and more. Finally, a second peak appears

at S = 0 (I = 1), as is manifest at ηt = 2.0, but without the occurrence of distinct peak at

intermediate values. Therefore, information is transported more abruptly than one would

intuitively expect from a definite peak continuously drifting from I = 0 to I = 1.

Finally, expected values E[S] and E[I] and variance Var[S](= Var[I]), calculated sub-

tituting O = S and O = I into Eq. (3.5), can be seen in the Fig. 3.9 below:

(a) (b)

Figure 3.9: Expected value and variance of distributions PS(S, t) and PI(I, t). Calculations
were performed with N = 100, 000 samples of Eq. (3.3). We used η∆t = 0.001 for the time grid.

In Figs. 3.9 we see that the entropy (information gain) evolves from S = 1 (I = 0) to
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S = 0 (I = 0) for 0 ≤ ηt < ∞. Fluctuation grows until ηt ≈ 1.3, attaining its maximum

value, to vanish as ηt→ ∞.

By simulating numerous trajectories from (3.3), we determined the probability distri-

butions and average values for the observables of interest for the continuously monitored

qubit. However, the question remains whether we can derive a closed form for the proba-

bility distributions. The answer is yes, and the theoretical apparatus for its construction

is the topic of the next chapter.
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Chapter 4

Exact solution for quantum trajectories

probability distribution

In the preceding chapter, we calculated all the relevant physics of the continuously mon-

itored qubit by numerical integration of the stochastic differential equation (3.1). To

perform our calculations, we used ∆t sufficiently small to validate the Central Limit The-

orem, which allowed us to express the discrete noise in terms of a white Gaussian noise

∆Wn distributed according to

Pnoise(∆Wn) ∝ e−
∆W2

n
2η∆t .

Although each trajectory is stochastic, the probability distribution Pq(q, t) that arises

by considering an infinite number of trajectories is a well-defined function. The same is

valid for the distribution of observables PO(O, t) and the moments
〈
Ok
〉
, for k ∈ N. In

this chapter, we will calculate an analytical solution for the continuously measured qubit

which will later allow us to obtain the probability distributions (and, consequently, their

moments) in a closed form. This is the main contribution of this thesis.

The method’s core involves calculating the probability distribution of stochastic trajec-

tory paths described by (2.17). However, we do not directly calculate the path probability

distribution for the trajectories {qn}, but for another variable {Qn}, where the two paths

are related by a non-linear transformation q = U(Q). The function U is chosen in such a

way that Q is described by a Langevin equation with additive (rather than multiplicative)

noise. This choice is made to simplify calculations, in particular, to deal with constant

mass term that appear into an effective action of the formalis rather than with a variable
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mass (which is a much harder problem to solve). Once knowing the stochastic process for

the new variable Q, we construct the path probability distribution P [Q]. The latter can

be expressed in terms of the infinitesimal propagator P (Qn+1, tn+1|Qn, tn) ≡ P (Qn+1|Qn),

describing the conditional probability for the trajectory being at position Qn+1 at time

tn+1, given its position was qn at time tn. Therefore, considering the paths as independent

from each other, we can write:

P [{Qn}] =
N−1∏
n=0

P (Qn+1|Qn),

where N = t/∆t is the number of partitions of size ∆t within the time interval t. In the

continuous limit where N → ∞, ∆t → 0, but t = N∆t remains finite, then P [{Qn}] →
P [Q]. On which the limit {Qn} → Q is from a discrete to a continuous in-time path. In

the end, P [Q] can be expressed as the product of two factors, that is:

P [Q]
S≡ N [Q]e−S[Q],

where N [Q] is the measure prefactor, and S[Q] the action. The index S above the equality

is to denote that points of the discrete {Qn} are to be evaluated at the midpoint before

taking the continuous limit.

Once we know P [Q], we can compute any average of observables of the form O(q)∗ by

the equation:

⟨O⟩ =
∫
DQP [Q]O(U(Q))∫

DQP [Q] (4.1)

where

DQ ≡ lim
N→∞

N−1∏
n=0

dQ̄n,

is the functional measure and Q̄n is the midpoint between Qn and Qn+1. The integral∫
DQ determines a sum over paths in the Feynman sense [44, 45]. The advantage of using

Feynman path integral to express the average ⟨O⟩, as in Eq. (4.1), is to have a myriad

of methods (e.g. saddle point, perturbation theory) from functional integration to test

and compare with the numerical data already calculated in chapter 3. For convenience,

we will use as a reference the mean purity ⟨τ⟩ = ⟨tr ρ2⟩, depicted in Fig. 3.6a, to test our

theoretical results. We will see that, by using this construction, the saddle point solution
∗For example,

O(q) = tr ρ2 = (1 + q2)/2
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for P [Q] already gives an excellent agreement with the calculated numerical data. The

reasoning we will use in the next section to construct P [Q] closely follows the ideas of [46].

However, we have not found any reference for the analytic solution of the continuously

monitored qubit that we will find at the end of this chapter.

4.1 Stratonovich Langevin equation without multiplica-

tive noise

Using the Euler-Maruyama method, we numerically integrated the Itô discretized equa-

tion:

∆q = qn+1 − qn = g(qn)∆Wn (4.2)

We could perfectly build a path probability distribution P [q] = N [q]e−S[q] for q generated

by the equation above. However, the resulting action S[q] would have a variable mass

term m(q) = g(q)−2 [46]. To avoid dealing with a variable mass, we need to perform a

change of coordinate q = U(Q), such that the Langevin equation describing Q has additive

noise instead of a multiplicative one. But before doing so, because a change of variable of

Langevin’s Eq. (4.2) involves the use of the stochastic calculus chain rule, it is preferable

to work in the Stratonovich (or midpoint) discretization. The reason is that the chain rule

is covariant (that is, does not change its form) using the Stratonovich discretization (see

appendix B.3 for more detail about the change of discretization of Langevin’s equation).

When using Stratonovich discretization, the right-hand side of Langevin’s equation is

evaluated at the midpoint:

q̄n ≡ qn + qn+1

2
.

However, because ∆q ∼ O
(
(η∆t)1/2

)
for small ∆t, a change of time discretization for Eq.

(4.2) yields additional contributions that cannot be ignored. As a result, the Langevin

equation evaluated at the midpoint equivalent to Eq. (4.2) is given by:

∆q = −g(q̄n)g(q̄n)
2

η∆t+ g(q̄n)∆Wn +O
(
(η∆t)3/2

)
, (4.3)

where ∆q = qn+1 − qn (see appendix B.2 for details of the derivation of Eq. (4.3)). Now

that our Langevin equation is time discretized in the Stratonovich sense, we can perform

the change of variable qn = U(Qn) without worrying about extra terms advent from the
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stochastic chain’s rule. Referring to Eq. (B.17) in the appendix B.4, after the change of

variable, Eq. (4.3) will be transformed into:

∆Q = −1

2
g′(U(Q̄n))

g(U(Q̄n))

U ′(Q̄n)
η∆t+

g(U(Q̄n))

U ′(Q̄n)
∆Wn +O

(
(η∆t)3/2

)
, (4.4)

where ∆Q = Qn+1 − Qn. To go from Eq. (4.3) to Eq. (4.4), we used the Itô pre-

scription ∆W 2
n 7→ η∆t, explained in more detail in the appendix B.1. To eliminate the

multiplicative noise from Eq. (4.4), we must choose U(Q) such that U ′(Q) = g(U(Q)).

Therefore:
dU

dQ
= g(U) = 1− U2,

thus:
dU

1− U2
= dQ.

After integrating both sides from Q′ = 0 to Q′ = Q, we obtain:

arctanh(U)− arctanh(U0) = Q.

Choosing U0 = U(Q = 0) = 0, then:

U(Q) = tanh(Q). (4.5)

Finally, substituting this equation into Eq. (4.3), we obtain the stochastic process for the

variable Q, described by the following Langevin equation with additive noise:

∆Q = U(Q̄n)η∆t+∆Wn +O
(
(η∆t)3/2

)
. (4.6)

Our original variable q is described by qn = tanh(Qn), at which Q0 = 0 and Qn is a

stochastical trajectory obeying by Eq. (4.6).

The error for ∆Q/∆t given by Eq. (4.6) is of the order O
(
(η∆t)1/2

)
, which is vanishing

in the continuous limit, yielding:

dQ

dt
S
= η tanh(Q) +W (t), (4.7)

where ⟨W (t)W (t′)⟩ = ηδ(t − t′). Now we are ready to construct the path probability

distribution for Q.
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4.2 Path probability distribution

As stated at the beginning of the chapter, the path probability distribution P [Q], where

Q is a stochastic trajectory described by Eq. (4.7), is defined by:

P [Q] = lim
N→∞

N−1∏
n=0

P (Qn+1|Qn)
S
= N [Q]e−S[Q], (4.8)

where N = t/∆t. For simplification, we start by calculating the first step probability

distribution P (Q1|Q0) by:

P (Q1|Q0) =

∫
d(∆W0)δ(Q1 − F (Q0,∆W0))Pnoise(∆W0), (4.9)

where

Pnoise(∆W0) =
1√

2πη∆t
e−

∆W2
0

2η∆t , (4.10)

and the finction F (Q0,∆W0) is defined by the equation:

∆Q− U(Q̄0)η∆t−∆W0

∣∣∣∣
Q1=F (Q0,∆W0)

= 0, (4.11)

with ∆Q = Q1−Q0 in this context. Since the integral in Eq. (4.9) is over ∆W0, it is more

convenient to write the delta function with the noise appearing explicit in its argument.

This can be done using the identity:

δ(f(x)) =
∑
a

f(a)=0

δ(x− a)

|f ′(x)| .

Therefore, the infinitesimal propagator is rewritten as:

P (Q1|Q0) =

∫
d(∆W0)

δ(∆W0 −G(Q0, Q1))

|∂∆W0F (Q0,∆W0)|
Pnoise(∆W0),

where the function G(Q0, Q1) is defined by equation:

Q1 − F (Q0,∆W0)

∣∣∣∣
∆W0=G(Q0,Q1)

= 0. (4.12)

Hence, finally:

P (Q1|Q0) =
Pnoise(∆W0)

|∂∆W0F (Q0,∆W0)|

∣∣∣∣∣
∆W0=G(Q0,Q1)

. (4.13)

Consequently, to find the expression for P (Q1|Q0), it suffices to calculate the functions

F (Q0,∆W0) and G(Q0, Q1), and plug the result into Eq. (4.13). From Eq. (4.11),
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F (Q0,∆W0) is calculated by solving it explicitly for Q1, therefore:

∆Q = Q1 −Q0 = U(Q̄0)η∆t+∆W0,

= U

(
Q0 +

∆Q

2

)
η∆t+∆W0,

= U(Q0)η∆t+ U ′(Q0)
∆Q

2
η∆t+∆W0 +O

(
(η∆t)2

)
.

Isolating ∆Q on the left side, we obtain:

∆Q =
U(Q0)η∆t+∆W0 +O((η∆t)2)

1− U ′(Q0)
η∆t
2

,

=
{
U(Q0)η∆t+∆W0 +O

(
(η∆t)2

)}{
1 + U ′(Q0)

η∆t

2
+O

(
(η∆t)2

)}
,

= U(Q0)η∆t+∆W0

[
1 + U ′(Q0)

η∆t

2
+O

(
(η∆t)2

)]
+O

(
(η∆t)2

)
.

Therefore:

F (Q0,∆W0) = Q0 + U(Q0)η∆t+∆W0

[
1 + U ′(Q0)

η∆t

2
+O

(
(η∆t)2

)]
+O

(
(η∆t)2

)
.

(4.14)

Derivating relative to ∆W0, we obtain:

∂F (Q0,∆W0)

∂∆W0

= 1 + U ′(Q0)
η∆t

2
+O

(
(η∆t)2

)
.

Thus, the prefactor will be:

1

|∂∆W0F (Q0,∆W0)|
= 1− U ′(Q0)

η∆t

2
+O

(
(η∆t)2

)
= exp

(
−U ′(Q0)

η∆t

2
+O

(
(η∆t)2

))
.

Switching back to the midpoint using:

Q0 = Q̄0 −
∆Q

2
,

we can finally express the prefactor term by:

1

|∂∆W0F |
= exp

(
−U ′(Q̄0)

η∆t

2
+O

(
(η∆t)3/2

))
. (4.15)

We kept explicitly only the linear term in η∆t, since higher order terms do not contribute

to the path probability distribution in the continuous limit ∆t → 0. Now, to obtain the

function G(Q0, Q1), we need to solve Eq. (4.12) for ∆W0. Therefore, we have to solve the
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following implicit equation for G(Q0, Q1):

∆Q− U(Q0)η∆t−G(Q0, Q1)

[
1 + U ′(Q0)

η∆t

2
+O

(
(η∆t)2

)]
+O

(
(η∆t)2

)
= 0.

Thus:

G(Q0, Q1) =
∆Q− U(Q0)η∆t+O((η∆t)2)

1 + U(Q0)
η∆t
2

+O((η∆t)2)
,

= ∆Q−
(
U(Q0)− U ′(Q0)

∆Q

2

)
η∆t+O

(
(η∆t)2

)
,

= ∆Q− U(Q̄0)η∆t+O
(
(η∆t)2

)
. (4.16)

Finally, the infinitesimal propagator is obtained substituting Eq. (4.15) and Eq. (4.16)

into Eq. (4.13), resulting in:

P (Q1|Q0) =
1√

2πη∆t
exp

{
−(∆Q− U(Q̄0)η∆t+O((η∆t)2))2

2η∆t
− U ′(Q̄0)

η∆t

2
+O

(
(η∆t)3/2

)}
,

=
1√

2πη∆t
exp

{
−η∆t

2

(
∆Q

η∆t
− U(Q̄0)

)2

− η∆t

2
U ′(Q̄0) +O

(
(η∆t)3/2

)}
.

The path probability distribution of a discrete path {Qn} = {Q0, ..., QN} is calculated by

the product of the infinitesimal propagators:

P [{Qn}] =
N−1∏
n=0

P (Qn+1|Qn).

Therefore:

P [{Qn}] = (2πη∆t)−N/2 exp

{
−η∆t

N−1∑
n=0

[
1

2

(
∆Q

η∆t
− U(Q̄n)

)2

+
U ′(Q̄n)

2
+O

(
(η∆t)1/2

)]}
.

Taking the continuous limit N → ∞ and ∆t→ 0, where N∆t = t, as stated in Eq. (4.8),

we finally obtain the continuous path probability distribution P [Q], given by:

P [Q]
S
= N [Q]e−S[Q],

where

N [Q] = lim
N→∞

(
N

2πηt

)N/2

, (4.17)

is the prefactor contribution, and:

S[Q]
S
=

∫ t

0

dt′

[
(Q̇− η tanhQ)2

2η
+ η

sech2Q

2

]
,
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is the action. We made explicit U(Q) = tanhQ in S[Q]. The equation above can be

further simplified by the identity sech2Q = 1 − tanh2Q and expanding the square term

(Q̇− η tanhQ)2, resulting in:

S[Q]
S
=

∫ t

0

dt′

(
Q̇2

2η
− Q̇ tanhQ

)
. (4.18)

The term independent of Q was absorbed into the prefactor N [Q]. Eq. (4.18) is an action

with constant mass term M = 1 [47, 45]. Now all the non-trivial dynamics are encoded

in the position and velocity-dependent potential:

V (Q, Q̇) = −Q̇ tanhQ.

†The main contribution to the path probability distribution P [Q], is given by the saddle

point solution. The saddle point solution is defined by the path (or family of paths) that

makes the action stationary, i.e, S[Q+ δQ] = S[Q] +O(δQ2) when Q is the saddle point

solution, where δQ is a small variation of the curve. This point is made more rigorous in

the next section, where we will find the curve Q that extremizes the action.

Before ending this section, we conclude with a last remark: The action S[Q] written

in terms of a general α discretization:

Qα
n = (1− α)Qn + αQn+1,

will be given by:

S[Q]
α
=

∫ t

0

dt′

[
(Q̇− ηU(Q))2

2η
+ αηU ′(Q)

]
, (4.19)

where U(Q) = tanhQ. Previously we have calculated the special case α = 1
2

(Stratonovich

discretization). We saw that for this case, we have a cancellation of the tanh2Q term,

which will be essential in the next section for the success of the saddle point solution.

For α = 0 (Itô discretization), or any other value of α, this cancellation does not occur,

and the saddle point solution yields a non-integrable equation, which, in addition, does

fully describe the numerical results. More advanced methods are required to obtain an

analytical solution for α ̸= 1
2
.

†The minus sign is there because S[Q] is actually the imaginary time action, defined as:

S[Q] =

∫
dt

(
MQ̇2

2
+ V (Q, Q̇)

)
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4.3 Saddle point solution

The action S[Q] can be written as:

S[Q]
S
=

∫ t

0

dt′L(Q, Q̇), (4.20)

where L(Q, Q̇) is a Langrangian given by:

L(Q, Q̇) =
Q̇2

2η
− Q̇ tanhQ. (4.21)

Introducing a small variation δQ over the path Q, the action S[Q+ δQ] is given by:

S[Q+ δQ] =

∫
dt L(Q+ δQ, Q̇+ δQ̇)

=

∫
dt

{
L(Q, Q̇) +

∂L

∂Q
δQ+

∂L

∂Q̇
δQ̇

}
+O

(
δQ2, δQ̇2

)
.

Imposing the constraint that the path variation is null at the initial and final time, i.e.,

all paths start and end up at the same point in configuration space, the expression above

is simplified into:

S[Q+ δQ] = S[Q] +

∫
dt

{
∂L

∂Q
− d

dt

(
∂L

∂Q̇

)}
δQ+O

(
δQ2

)
.

Therefore, if Q is the saddle point solution we are searching for, it has to satisfy the

Euler-Lagrange condition [47]:
∂L

∂Q
=

d

dt

(
∂L

∂Q̇

)
. (4.22)

Substituting (4.21) into (4.22) yields the following differential equation for Q = Q(t):

−Q̇sech2Q =
Q̈

η
− Q̇sech2Q.

Consequently Q̈ = 0. That is an effective free particle. Thus Q̇ = Ω and Q = Ωt, where

Ω ∈ R and has units of inverse time. Hence, the saddle point of the action S[Q] yields

the classical solutions:

QΩ = Ωt,

and

qΩ = tanhQΩ = tanhΩt.

For Ω > 0 (Ω < 0) the qubit is continuously purified into |0⟩⟨0| (|1⟩⟨1|). The higher the

absolute value of Ω, the faster a pure state is obtained. Since there are infinitely many
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saddle point solutions labeled by the real parameter Ω, all of them have to be summed,

weighted by a factor ∝ e−S[QΩ] coming from the path probability distribution P [QΩ].

Therefore, averages of observables O(q) are calculated by the following expression:

⟨O⟩ =
∫∞
−∞ dΩO(tanhQΩ)e

−S[QΩ]∫∞
−∞ dΩ e−S[QΩ]

=

∫ ∞

−∞
dΩPΩ(Ω, t)O(tanhΩt),

where PΩ(Ω, t) is the probability distribution of the classical parameter Ω, defined by:

PΩ(Ω, t) =
e−S[QΩ]∫∞

−∞ dΩ e−S[QΩ]
. (4.23)

While S[QΩ] is the classical action calculated as:

S[QΩ] =

∫ t

0

dt′
(
Ω2

2η
− Ω tanhΩt′

)
=

Ω2t

2η
− ln coshΩt.

Therefore, the probability distribution for the variable Ω is:

PΩ(Ω, t) =
e−

Ω2t
2η

+ln coshΩt∫
dΩ e−

Ω2t
2η

+ln coshΩt

=

(
ηt

2π

)1/2

exp

(
−Ω2t

2η
+ ln coshΩt− ηt

2

)
. (4.24)

Now the mean purity, for example, can be calculated by:

⟨τ⟩ =
∫ ∞

−∞
dΩPΩ(Ω, t)τ(qΩ),

where τ(q) is given by Eq. (3.7) and qΩ = tanhΩt. The result is:

⟨τ⟩ = 1

2
+

1

2

(
ηt

2π

)1/2 ∫ ∞

−∞
dΩ e−

Ω2t
2η

+ln coshΩt− ηt
2 tanh2Ωt. (4.25)

The comparison of ⟨τ⟩ between the theoretical prediction given by Eq. (4.25) and the

numerical result depicted in Fig. 3.6a can be seen in Fig. (4.1) below:
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Figure 4.1: Mean purity E[τ ] = ⟨τ⟩. Comparison between numerical result, calculated by aver-
aging τ(q) over 100,000 trajectories generated by Eq. (3.3) (solid blue line) and the theoretical
result calculated with Eq. (4.25) (red dashed line)

The agreement is excellent. Remarkably the probability distribution for Ω is such that

PΩ(Ω, t) →
δ(Ω− η) + δ(Ω + η)

2
,

as ηt → ∞. This tendency is depicted below, where we plotted PΩ(Ω, t) for increasing

values of t:

Figure 4.2: A plot of PΩ(Ω, t) given by Eq. (4.24) for increasing values of t.

Therefore, in the limit, ηt → ∞, PΩ(Ω, t) tends to a discrete uniform distribution

between the values Ω = ±η. Each peak is related to the system being purified in one of
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the two possible states, since q = tanhΩt. In figure 4.2, we see the appearance of the two

peaks for PΩ(Ω, t) for a threshold of time t = t∗. They occur with the appearance of a

minimum for the classical action

S(Ω, t) =
Ω2t

2η
− ln coshΩt, (4.26)

for Ω ̸= 0. More precisely, this minimum occurs when:(
∂S

∂Ω

)
t

=
Ωt

η
− t tanh(Ωt) = 0.

In other words, when the following non-linear equation is solved for Ω:

Ω

η
= tanh(Ωt). (4.27)

For t→ ∞, Ω = ±η is a solution of Eq. (4.27). For finite t, the values for Ω are depicted

in the Fig. 4.3 below:

Figure 4.3: Solutions of Eq. (4.27) versus (ηt)−1.

Therefore, the threshold occurs at t∗ = η−1. The action S(Ω, t) from Eq. (4.26) is

plotted against Ω for increasing values of t in the Fig. 4.4 below:
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Figure 4.4: A plot of the action S(Ω, t) from Eq. (4.26) against Ω for increasing values of t

From Fig. 4.4, we see that the classical action exhibits a behaviour that resembles

a symmetry-broken phenomena, with the average ⟨|Ω|⟩Ω building from 0 to η as time

evolves, where ⟨...⟩Ω ∝
∫
dΩ e−S(Ω,t)(Ω, t)(...)
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Chapter 5

Comparison with numerical results

The solution obtained in the previous chapter gave excellent agreement when compared

with the numerically calculated mean purity ⟨τ⟩, giving confidence in the saddle point

solution for the action S[Q]. We now push the analysis forward, by comparing the pre-

dictions of our result with the probability distributions numerically calculated in chapter

3. Additionaly, our solution allows us to calculate the moments
〈
Ok
〉
, where k ∈ N, of an

observable O, in the continuous limit ∆t→ 0 and for infinitely many trajectories, using:

〈
Ok
〉
=

∫
dOPO(O, t)Ok (5.1)

Specifically, we will use Eq. (5.1) to compare our exact solution with the expected values

and the variances of the observables considered in chapter (3), namely, the purity, the

entropy, and the information gain.

5.1 Probability distributions

Once obtained the saddle point solution qΩ = tanhΩt, indexed by a real parameter Ω

distributed by:

PΩ(Ω, t) =

(
ηt

2π

)1/2

exp

(
−Ω2t

2η
+ ln coshΩt− ηt

2

)
,

the probability distribution function (p.d.f) Pq(q, t) for the position q is easily obtained

by:

Pq(q, t) = PΩ(Ω(q, t), t)

∣∣∣∣dΩdq
∣∣∣∣ .
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Since Ω = atanh(q)/t, therefore:

Pq(q, t) =
PΩ(Ω = atanh(q)/t, t)

t(1− q2)

=
1√

2πηt(1− q2)2
exp

(
−atanh2(q)

2ηt
+ ln cosh(atanh(q))− ηt

2

)
, (5.2)

where −1 ≤ q ≤ 1. Comparison between Eq. (5.2) with the numerical data available in

Fig. 3.2 is depicted in Fig. 5.1 below:

Figure 5.1: Pq(q, t) for ηt = 0.1; 0.5; 2.0. Comparison between numerical calculation (orange
histograms) and analytical solution given by Eq. (5.2)(solid blue line)

Similarly, we can obtain the p.d.f of an observable O = O(q) by:

PO(O, t) = Pq(q = f(O), t) |f ′(O)| , (5.3)

where f is the inverse function of O(q), i.e., q = f(O). Therefore, the p.d.f of the purity

τ(q) =
1 + q2

2
,

is given by:

Pτ (τ, t) = 2
Pq(q =

√
2τ − 1, t)√

2τ − 1
,

=
1√

2πηt(τ − 1)2(2τ − 1)
exp

(
−atanh2(

√
2τ − 1)

2ηt
+ ln cosh

(
atanh(

√
2τ − 1)

)
− ηt

2

)
,

(5.4)

where 1
2
≤ τ ≤ 1. The factor 2 take into consideration that τ(q) = τ(−q). Comparison

with the histogram obtained numerically in Fig. 3.5 is depicted in Fig. 5.2 below for

increasing values of time:
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Figure 5.2: Pτ (τ, t) for ηt = 0.1; 0.5; 2.0 units of time. Comparison between numerical calcula-
tion (orange histograms) and analytical solution given by Eq. (5.4) (solid blue line)

The PDF for the entropy:

S(q) = −1− q

2
log

(
1− q

2

)
− 1 + q

2
log

(
1 + q

2

)
, (5.5)

is given by:

PS(S, t) = 2Pq(q = g(S), t)|g′(S)|, where 0 ≤ S ≤ 1, (5.6)

where q = g(S) in the inverse function of S(q). In this case, the function g(S) was

numerically calculated for each value of S by a root-finding method. Like in Eq. (5.4),

factor 2 has to be included because S(q) = S(−q). Finally, the information gain I(q) =

1− S(q) can be most easily obtained from PS(S, t) by:

PI(I, t) = PS(S = 1− I, t), where 0 ≤ I ≤ 1. (5.7)

Comparison between numerical data depicted in Fig. 3.8 and Eqs. (5.6) and (5.7) is in

Figs. 5.3 below:
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(a) PS(S, t) for ηt = 0.1; 0.5; 2.0. Comparison between numerical calculation (orange histograms) and
analytical solution given by Eq. (5.6) (solid blue line)

(b) PI(I, t) for ηt = 0.1; 0.5; 2.0. Comparison between numerical calculation (orange histograms) and
analytical solution given by Eq. (5.7) (solid blue line)

Figure 5.3

From Figs. 5.1, 5.2, and 5.3 we conclude there is an excellent agreement between the

theory and numerical calculations. This greatly increases confidence in the saddle point

solution obtained in section 4.3.

5.2 Averages and fluctuations

After obtaining the probability distribution for the observable O, we can compute any

moment of order k by: 〈
Ok
〉
=

∫
dO PO(O, t)Ok. (5.8)

In particular, Eq. (5.8) can be used to calculate the expected value E[O] = ⟨O⟩ and the

variance Var[O] = ⟨O2⟩ − ⟨O⟩2, which are our primary interest in this section.

Using Eq. (5.4), we calculated the expected value and variance for the purity τ(q).

Comparison between theory and numerical results from Fig. 3.6 are below:
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(a) (b)

Figure 5.4: Comparison between analytical solution (red dashed line) and numerical result
(blue solid line) for the expected value (left) and variance (right) for the purity τ

Here, calculations were performed only up to ηt = 9.5. Beyond this, numerical in-

tegration of (5.8) becomes unstable due to the singularity of the distribution Pτ (τ, t) at

τ = 1.

We also compared analytical solutions for the mean and variance with numerical find-

ings for the entropy and information gain. The result is depicted in Figs. 5.5 below:

(a) (b)

Figure 5.5: Comparison between analytical solution (dashed lines) and numerical result (solid
lines) for the expected value (left) and variance (right) of the entropy S and the information gain
I

As expected from the previous section, where we found a very good agreement for the

probability distributions, the same occurs for the expected value and the variance of the

observables considered, as is evident from Figs. 5.4 and 5.5.
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Chapter 6

Conclusions

We studied the hybrid dynamics of single qubit weakly coupled to ancillary qubits pre-

pared in the same state, with the latter being monitored at a constant rate. As a result,

the effective dynamics for the system is of a continuously monitored qubit. Starting the

system in a mixed state, we showed that the density matrix time evolution depends on a

single parameter q = q(t). This parameter evolves according to a stochastic differential

equation with multiplicative Gaussian white noise, i.e., a Langevin equation. The noise

accounts for the measurement over the ancilla outcomes, with its amplitude modulated by

the function g(q) = 1−q2 (multiplicative noise). By numerical integration of the Langevin

equation (Euler-Maruyama method), we could calculate precise curves for the average be-

havior and probability distributions of the purity, the Von-Neumann entropy, and the

information gain. An analytical solution was obtained by constructing a path probability

distribution for the Langevin equation in the configuration space (Onsager-Machlup path

integral). To simplify the calculation, we changed discretization from Ito to Stratonovich

discretization, and we also changed the variable by a non-linear mapping q = tanhQ to

deal with an action with a constant mass term for Q. An analytical solution was obtained

using the saddle point approximation for the path probability distribution P [Q] ∝ e−S[Q].

This statement is well-supported by the excellent agreement between numerical calcula-

tions and analytical prediction for the average behavior and probability distributions for

the state parameter q = q(t), the entropy, the purity, and the information gain.

A surprising finding is the two peak structures for the purification distributions, a

feature that appears in the purity and the entropy distributions. Intuitively one would

expect a single peak with its maximum value running continuously over time from S = 1
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to S = 0 as the qubit is monitored, where S is the Von-Neumann entropy with base

two for the logarithm. However, that is not the case obtained from numerics and the

analytical solution. The distribution has a discontinuous feature, where, starting with

a peak at S = 1, another peak at S = 0 rapidly appears, growing over time, until the

contributions of the pure state dominate. Therefore, by continuously monitoring the

system, the purification appears to occur more abruptly than one would expect.

Although the problem of a continuously monitored qubit allows a relatively simple

analytical solution for the average behavior of the qubit replicas, it is unfortunate a too

simple model to see a measured induced phase transition. Having established the Onsager-

Machlup functional integral for the simplest case, it is natural, therefore, to consider a

more complex variant of the problem. The next step would be coupling the continuously

monitored qubit considered in this thesis with a scrambling process, e.g., a quantum dot

described by a random matrix. By tuning the measurement rate, we would expect to see

a phase transition between an ergodic and a localized phase below and above a critical

rate, respectively.
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Appendix A

Non-unitary diffusion Master Equation

using POVM’s

Measurements in quantum mechanics are usually described by a set of projective operators

{Pn}, such that PnPm = Pnδn,m (orthogonality), and P†
n = Pn (Hermitian property). If

the system is in the state ρ, after a projective measurement, the system will be in the

state

ρ′ =
PnρPn

pn
,

where pn = tr(Pnρ) is the probability of the outcome labeled by n to occur [39, 36,

35]. For the particular case of projective measurement over the eigenstates of σz, the

projective operators are P0 = |0⟩⟨0| and P1 = |1⟩⟨1|, where σz |0⟩ = |0⟩ and σz |1⟩ = − |1⟩.
However, this is not the most general set of measurement operators. A measurement that

extracts partial information about a system cannot be described by the set {Pn}, since

the projective operator can only return full information of the outcome when directly

applied.

An extension is done using Positive Operators Valued Measurement (POVM). POVMs

are described by the set of operators {Ωn}, such that∑
n

Ω†
nΩn = 1̂. (A.1)

If the system is in the state ρ, after measurement by a POVM the system will be in the

state

ρ′ =
ΩnρΩ

†
n

pn
,
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where pn = tr
(
ΩnρΩ

†
n

)
is the probability of the outcome labeled by n. Notice that Eq.

(A.1) guarantees that
∑

n pn = 1. In particular, if Ω†
n = Ωn and Ω†

nΩm = Ωnδn,m, we

get back projective measurements. So POVMs are more general than projective measure-

ments. To arrive at equation (2.11) using POVM, one must use that

ρt+dt =
ΩnρtΩ

†
n

pn
,

where:

Ω0 =
1√
2
(|0⟩⟨0|+ (cos θ − sin θ) |1⟩⟨1|) ,

Ω1 =
1√
2
(|0⟩⟨0|+ (cos θ + sin θ) |1⟩⟨1|) ,

with θ =
√
dt ≪ 1[35]. As was done in section 2.1, the two possible evolutions for the

state ρt can be cast into a single equation by the introduction of a stochastic variable

dW = ±
√
dt with equal probability for each outcome.
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Appendix B

Basic notions of Stochastic calculus

In 1908, Paul Langevin proposed a dynamic equation that correctly described the erratic

motion of a macroscopic particle embedded in a solvent, such as the motion of a pollen

grain suspended in a liquid, also known as the Brownian Motion [48]. Although Einstein

already explained Brownian motion by deducing a diffusion equation for the suspended

particle (known today as the Fokker-Planck equation) [49, 50], Langevin’s description is

more intuitive and easily generalized. Its originality was to propose a stochastic differential

equation (SDE) to describe physical phenomena. In its general form, the one-dimensional

Langevin equation is
dx

dt
α
= f(x) + g(x)W (t), (B.1)

where W (t) is a gaussian white noise with ⟨W (t)W (t′)⟩ = 2Dδ(t − t′), D is the diffu-

sion coeficient, and f(x) is a drift force. If g′(x) ̸= 0, we say that Eq. (B.1) has a

multiplicative noise, otherwise, we define it as an SDE with additive noise. The bridge

between Langevin’s and Einstein’s solution [49] to the Brownian motion is given by the

Fokker-Planck equation:

∂

∂t
p(x, t) = − ∂

∂x
(f(x)p(x, t)) +D

∂2

∂x2
(g(x)2p(x, t)), (B.2)

which describes the probability distribution p(x, t) of many trajectories generated by Eq.

(B.1). An initial configuration is specified by p(x, 0) = F(x). However, to simulate the

trajectories and compare them with the probability distribution p(x, t), a discretization

scheme has to be specified. This is the role of the index α above the equality, a point that

is discussed in more detail in the next section.
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B.1 Discrete-time stochastic differential equation and

Itô’s rule

Stochastic differential equations with multiplicative noise, such as Eq. (B.1), are ambigu-

ous without specifying the discretization scheme used before taking the continuous limit

∆t → 0. To lift the ambivalence, a proper time discretization scheme has to be defined.

This can be realized by dividing the time interval of size t into N equal parts ∆t = t/N .

Time is now defined by tn = n∆t, where n = 0, 1, ..., N . Likewise, we define position by

xn ≡ x(tn). Therefore, Eq. (B.1) discrete form will be

∆x

∆t
= f(xαn) + g(xαn)Wn, (B.3)

where ∆x = xn+1 − xn,

⟨WnWn′⟩ = 2Dδn,n′/∆t, (B.4)

and

xαn = (1− α)xn + αxn+1.

The index α ∈ [0, 1] accounts for the chosen discretization. The most common choices are

xα=0
n = xn, also known as Itô discretization, and

xα=1/2
n ≡ x̄n =

xn + xn+1

2
,

known as the midpoint or Stratonovich discretization. The Itô scheme has the advantage

that noise and position are not locally correlated in time. This is convenient for the

construction of stochastic path integrals and numerical simulation. On the other hand,

Stratonovich discretization is more suited than Itô’s when a change of variable has to be

performed since the chain rule of ordinary calculus preserves its form when using this

scheme.

The reason why the continuous limit is ambiguous when a discretized scheme is not

specified, like in Eq. (B.1), lies from the fact that ∆x ∼ O
(
∆t1/2

)
as ∆t → 0 ∗. This

is the main difference between a stochastic trajectory and a deterministic one, where

∆x ∼ O(∆t). As a consequence, stochastic trajectories, such as the path taken by a

Brownian particle, are nowhere differentiable, since the limit ∆x/∆t → ∞ as ∆t → 0

∗This is easily deduced from Eq. (B.3), by noticing that Wn ∼ O
(
∆t−1/2

)
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at every point of the trajectory. It took more than 40 years after Langevin proposed his

equation for the invention of stochastic calculus by the Japanese mathematician Kiyosi

Itô [51].

From the physicist’s viewpoint, the rules of ordinary calculus at the Langevin equa-

tion can be maintained, provided one is careful to keep the relevant terms and use Itô’s

substitution rule:

∆x2 7→ 2Dg(xαn)∆t, (B.5)

for when x obeys Eq. (B.3). Or equivalently:

W 2
n∆t 7→ 2D, (B.6)

for a white noise where ⟨WnWn′⟩ = 2D∆t−1δn,n′ . These prescriptions are to be understood

in the L2-norm sense, not as a point-wise equality. For example, in the case of the rule

(B.5), the mapping underling meaning is that:〈[∫ t

0

dt′
(
∆x2

∆t
− 2Dg(xαn)

)]2〉
= 0 as ∆t→ 0 for all t ≥ 0, (B.7)

where average is calculated over many stochastic realizations of Eq. (B.3). This condition

is sufficient to use the prescription (B.5) without changing the probability distribution of

the stochastic process, but not enough to keep the trajectories unchanged for the same

noise realization. More details can be found in Ref. [46] appendix.

The use of Itô’s rule will be exemplified in the next two sections, where a change of

discretization and a change of variable is performed for Eq. (B.3), respectively.

B.2 Change of discretization

Let be the following Langevin equation:

dx

dt
α
= f(x) + g(x)W (t), (B.8)

which is equivalent to stating that:

∆x

∆t
= f(xαn) + g(xαn)Wn, (B.9)

55



for

xαn = (1− α)xn + αxn+1 = xn + α∆x,

and ⟨WnWn′⟩ = 2Dδn,n′/∆t. We want to perform a change of discretization from xαn →
xβn = xn + β∆t. The relation between the two discretizations is given by

xαn = xβn + (α− β)∆x.

Substituting this last relation into Eq. (B.9) and Taylor expanding up to first order in

∆x, we obtain:

∆x

∆t
= f(xβn + (α− β)∆x) + g(xβn + (α− β)∆x)Wn

= f(xβn) + g(xβn)Wn + (α− β)g′(xβn)∆xWn +O
(
∆t1/2

)
.

Where we used ∆x ∼ O
(
∆t1/2

)
in the last step. Substituting Eq. (B.9) on the right-hand

side of this expression, we get:

∆x

∆t
= f(xβn) + g(xβn)Wn + (α− β)g′(xβn)g(x

α
n)∆tW

2
n +O

(
∆t1/2

)
.

Using Itô’s rule ∆tW 2
n 7→ 2D and realizing that g(xαn) = g(xβn) + O

(
∆t1/2

)
, we finally

obtain:
∆x

∆t
= f(xβn) + 2D(α− β)g′(xβn)g(x

β
n) + g(xβn)Wn +O

(
∆t1/2

)
.

After taking the continuous limit, the result is:

dx

dt

β
= fα→β(x) + g(x)W (t), (B.10)

where:

fα→β = f(x) + 2D(α− β)g′(x)g(x). (B.11)

Consequently, we can draw the following rule of equivalence between discretization schemes:

dx

dt
α
= f(x) + g(x)W (t) ⇔ dx

dt

β
= fα→β(x) + g(x)W (t). (B.12)

With fα→β(x) given by Eq. (B.11). The equivalence (B.12) between different discretiza-

tion schemes is not in the sense of equality, where the trajectories will coincide point to

point in time, as was pointed out in the previous section. What Eq. (B.8) and (B.10)

share is the same probability distribution, described by a Fokker-Planck equation [46, 52].

From the equivalence (B.12), it is clear why a discretization scheme has to be specified
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in the presence of a multiplicative noise. Changing discretization in the Langevin equation

yields the additional drift term ∝ g′(x)g(x). For the additive noise case, i.e. when

g′(x) = 0, the change of discretization has no effect in the continuous limit. Consequently,

all discretizations will yield the same form of the Langevin equation. However, with

multiplicative noise, g′(x) ̸= 0, hence time discretization has to be specified.

As a particular application of the rule (B.12), starting with a Itô discretized Langevin

equation described by
dx

dt
I
= f(x) + g(x)W (t).

The equivalent Stratonovich discretized Langevin equation will be

dx

dt
S
= f(x)−Dg′(x)g(x) + g(x)W (t),

where "I" and "S" above the equal sign mean α = 0 and α = 1/2, respectively.

B.3 The stochastic chain rule

In deterministic calculus, when performing the change of variable y = h(x), where h is a

smooth function of x, the rate of change dy/dt is calculated by the chain rule:

dy

dt
=
dy

dx

dx

dt
= h′(x)

dx

dt
. (B.13)

This is a well-known result and can be found in any introductory calculus textbook.

However, if x is a stochastic variable obeying a Langevin equation such as Eq. (B.9), the

chain rule above is not necessarily true anymore. We will show that Eq. (B.13) holds

for the Stratonovich discretization, but an additional term has to be considered for other

discretization schemes.

Let x be a stochastic variable described by the equation:

dx

dt
α
= f(x) + g(x)W (t).

If we perform the change of variable y = h(x), the increment ∆y = yn+1−yn as a function

of x is given by:

∆y = h(xn+1)− h(xn) = h(xαn + (1− α)∆x)− h(xαn − α∆x).
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Taylor expanding the function h around xαn, we obtain:

∆y = h′(xαn)∆x+

(
1

2
− α

)
h′′(xαn)∆x

2 +O
(
∆x3

)
(B.14)

Since ∆x ∼ O
(
∆t1/2

)
, we had to expand up to ∆x2 ∼ O(∆t), because it is a relevant

term for ∆y/∆t. From Itô’s rule (see Eq. (B.6)), we have that

∆x2 = 2Dg2(xαn)∆t+O
(
∆t3/2

)
,

which when substituted in Eq. (B.14), gives:

∆y = h′(xαn)∆x+ 2D

(
1

2
− α

)
h′′(xαn)g

2(xαn)∆t+O
(
∆t3/2

)
.

Dividing it by ∆t and taking the continuous limit ∆t→ 0, we finally obtain the stochastic

chain rule for y = h(x), that is:

dy

dt
α
= h′(x)

dx

dt
+ 2D

(
1

2
− α

)
h′′(x)g2(x). (B.15)

Surprisingly, for α = 1
2

(Stratonovich discretization), the chain rule of deterministic cal-

culus is valid, even though x is a nowhere differentiable function! Therefore, the chain

rule is covariant when Stratonovich discretization is used.

B.4 Change of variable in Langevin equation

Having established the stochastic chain rule in the preceding section with Equation (B.15),

we can now apply this understanding to derive Langevin’s equation for y = h(x), where

x is described by:
dx

dt
α
= f(x) + g(x)W (t). (B.16)

Because of the covariance of the chain’s rule for the Stratonovich discretization, let’s

restrict ourselves to α = 1
2
. Supposing the existence of the inverse of h, then x = U(y),

where U = h−1. Consequently:
dx

dt
S
= U ′(y)

dy

dt
.

Substituting this expression into Eq. (B.16), we get:

U ′(y)
dy

dt
S
= f(U(y)) + g(U(y))W (t).
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So Langevin’s equation for y, will be

dy

dt
S
=
f(U(y))

U ′(y)
+
g(U(y))

U ′(y)
W (t). (B.17)

Using the equivalence relation (B.12) together with Eq. (B.17), we can obtain Langevin’s

equation of the variable y for any discretization scheme.

A particularly interesting choice for U(y) occurs when U ′(y) = g(U(y)). In this case,

the function U(y) can be found by solving the integral equation:∫ U(y)

U0

dU

g(U)
= y − y0, (B.18)

where U0 = U(y0). Consequently, we obtain an additive noise stochastic differential

equation for y, namely:
dy

dt
S
=
f(U(y))

g(U(y))
+W (t)
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