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CENTRO BRASILEIRO DE PESQUISAS FÍSICAS

Resumo

por Alexandre Sampaio da Cruz

Um dos principais desafios experimentais associados à detecção de ondas gravita-

cionais está na necessidade de se possuir um profundo conhecimento prévio sobre a forma

dessas ondas para sua detecção. Tal comenhecimento depende, é claro, do entendimento

da dinânica dos sistemas f́ısicos que as emitem. Dentre tais sistemas, uma classe de

particular interesse atual é composta dos sistemas chamados de Inspirais de Razão de

Massa Extrema (Extreme Mass Ratio Inspirals, EMRIs), isto é, sistemas binários nos

quais um dos corpos é muito mais massivo que o outro.

A princpial abordagem utilizada para o estudo da f́ısica de EMRIs é a teoria de

auto-força gravitacional. Nessa abordagem a geometria do espaço-tempo é tida, em

primeira aproximação, como determinada apenas pela influência gravitacional do corpo

de maior massa. Isto é, o corpo menos massivo se comporta como uma particula teste

que se move em uma geodésica neste espaço-tempo dito “de fundo”. Para entender

o inspiralamento, é necessário ir além dessa aproximação. É preciso considerar a per-

turbação que o corpo de menor massa causa nesse fundo. Sob a perspetiva da teoria de

auto-força, o desvio do movimento desse corpo de uma geodésica do espaço-tempo de

fundo é visto como uma força, cuja origem é própria perturbação gravitacional gerada

pelo mesmo. Esse tipo de problema pertence a uma classe mais ampla de problemas

de auto-forca, que requerem o mesmo tipo de tratamento matemático associado ao seu

caráter singular.

Nesse trabalho, várias técnicas associadas ao cáculo da auto-força escalar são es-

tudadas. Em particular, o método de regularização por decomposição em multipolos [1]

é adotado. Para a obtenção dos modos do campo gerado pela carga, o método MST [2]

é revisitado e utilizado. Tais modos são regularizados de duas maneiras: (i) utilizando a

técnica de regularização anaĺıtica por expansão pós-Newtoniana [3]; (ii) pela subtração

de parâmetros de regularização já conhecidos na literatura, porém derivados nesse tra-

balho de uma maneira alternativa, através da utilização do método WKB para resolver

as equações de campo no espaço de frequências.
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Abstract

by Alexandre Sampaio da Cruz

One of the main experimental challenges regarding the detection of gravitational

waves lies on the fact that one is required to have a profound knowledge of these waves

prior to their detection. Such knowledge depends, of course, on the understating of the

dynamics of the physical system that emit these waves. One class of such systems that

draws particular interest at the moment are the so-called Extreme Mass Ratio Inspirals

(EMRIs), binary systems in which one of the bodies is much more massive than the

other.

The main approach for studying the physics of EMRIs is gravitational self-force

theory. In this approach, one considers the geometry of the spacetime to be, in first

approximation, determined only by the influence of the more massive body. Meaning

that the less massive body behaves like a test particle that moves on a geodesic of this

background spacetime. To understand the inspiralling, one needs to go beyond this first

approximation and consider the perturbation that the less massive body causes in the

background spacetime. Under the perspective of self-force theory, the deviation of the

motion of this body from a geodesic of the background spacetime is seen as a force,

whose origin is the gravitational perturbation sourced by the body itself. This type of

problem belongs to a broader class of problems called self-force problems, which require

similar mathematical treatment due to their singular character.

In this work, various techniques associated with the calculation of the scalar self-

force are studied. In particular, the mode-sum regularization method [1] is adopted. For

the obtention of the field modes, the MST method [2] is revisited and applied. Such

modes are regularized in two ways: (i) with the use of the post-Newtonian regularization

technique [3] (ii) by the subtraction of regularization parameters that are known in the

literature, but are obtained in an alternative way, from WKB solutions to the field

equations in the frequency domain.
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Chapter 1

INTRODUCTION

1.1 THE TWO-BODY PROBLEM IN GENERAL REL-

ATIVITY

The two-body problem is undoubtedly one of the most recurring and important

problems in physics. Its description is rather simple: two isolated point-like bodies

interact with each other by a given force and one is interested in the prediction of

the motion of such bodies. Despite the name, two-body problems are actually a class of

problems with varying complexity depending on the nature of the prescribed interaction.

The equations describing the dynamics of this type of system are in principle coupled

differential equations for the positions of the two particles. In the context of Newtonian

physics, the decoupling of these equations can be achieved by reformulating the problem

in terms of the motion of the center of mass of the system and the relative motion of the

particles [7]. With this reformulation, the two-body problem can be solved analytically

in closed-form for a large variety of interaction potentials between the particles.

The most remarkable two-body problem in classical physics is the Kepler prob-

lem, in which the interaction force is given by Newton’s Law of Universal Gravitation.

Solutions to the Kepler problem, called Keplerian orbits, offer a good description of

the movement of the majority of the bodies in the solar system around the Sun1. One

famous exception to that is the precession of the orbit of Mercury, which can only be de-

scribed by considering corrections from the theory of General Relativity (GR). In fact,

the accurate description of this motion was one of the first experimental results that

paved the way for the establishment of GR.

1Though a more accurate description of the movement of any given body should take into consider-
ation corrections coming from the gravitational interaction between that body and the remaining bodies
of the solar system other than the Sun.

1
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In comparison to its Newtonian counterpart, the description of a system of two

massive bodies in General Relativity poses a much greater challenge in both its physical

and mathematical aspects. First of all, the non-linearity of Einstein’s Field Equations

makes it unfeasible to find closed-form solutions for the majority of systems in GR, with

two-body systems being no different except for some very specific scenarios. Second is

the fact that a two-body system produces a time-dependent gravitational field, which

implies the irradiation of gravitational waves (GW). As consequence of the loss of energy

and angular momentum due to the emission of GW, periodic orbits do not exist in GR

and the bound orbits of binary systems eventually inspiral into each other2.

A variety of tools have been developed for the the study of binary systems in

General Relativity. Their efficiency is determined by the characteristic parameters of

the system, such as the ratio between the masses of the two bodies and their spatial

separation. Because the bodies in such systems eventually inspiral into each other, the

most suitable method for describing the dynamics of one particular system varies along

its evolution. The four most prominent existing tools for the study of binary systems

in GR are: post-Newtonian (pN) expansions, numerical relativity, self-force/black per-

turbation theory and effective one-body theory. The regimes in which each one of these

methods excel are depicted in Figure 1.1. A brief overview of each one this methods

shall now be given.

Figure 1.1: Schematic representation of the regimes of applicability of the different
approaches to the two-body problem in terms of the spatial separation between the two
the bodies and their mass ratio. As commented in the main text, the effective-one body
approach draws information from the other three approach and hence is in principle
useful for the entire parameter space. Source: Wikipedia [4]

2Special configurations of the two body-problem can generate stationary gravitational fields and,
consequently, no inspiralling. However, that is not the general picture.
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The post-Newtonian method relies on perturbatively solving Einstein’s field equa-

tions by expanding relevant quantities (e.g. the metric and energy-momentum tensor)

about Newtonian physics, that is for small velocities of the bodies and weak gravita-

tional fields. This method excels at describing the dynamics of binary systems when

the separation between the bodies is large, so that the spacetime geometry at their

positions is efficiently described in terms of perturbations to the Minkowski geometry

and the typical velocities of the bodies are small. It was via the application of this

method that the aforementioned relativistic corrections to the motion of Mercury were

first calculated. As the two bodies in a binary system inspiral into each other, the con-

vergence of pN series becomes slower as the separation between the bodies shrinks and

the spacetime geometry around them starts to deviate greatly from Minkowski. At this

stage, one could resort to the tools of numerical relativity to solve Einstein’s equations.

Despite being computationally expensive, the numerical approach has proven to be the

most reliable method for studying the small separation and comparable mass region of

the parameter space. However, when the two bodies possess very disparate masses, the

weak-field approximation becomes inaccurate very early in the inspiral, meaning that

the numerical calculation would need to be carried out for a very large amount of or-

bital cycles. Fortunately, it is exactly in this regime that another perturbative method

becomes valuable tool.

For two particles having disparate values of mass, the ratio µ ≡ m/M between the

masses of the less massive body m and of the more massive body M , can be used as a

small parameter for the perturbatively solving Einstein’s field equations. At order-zero

in this perturbation theory, solutions to Einstein’s field equations are given by a metric

tensor that is associated with presence of only the larger mass M . At this order, the

less massive body of mass m travels along a geodesic on this background spacetime.

First-order deviations from this geodesic motion are seen as a force, which causes the

inspiralling and whose origin is the presence of the mass m itself. This force is called a

self-force and this approach shall be the one studied throughout this work.

Another tool that exists for the study of binary systems in General Relativity is

the Effective One-Body approach [8]. This approach draws information from all the

other methods discussed in order to map the two-body problem onto an effective one-

body problem. Its applicability is in principle the entirety of the parameter space, as it

uses information from all the other methods.
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1.2 EXTREME MASS RATIO INSPIRALS AND THE

SELF-FORCE PROBLEM

The direct detection of Gravitational Waves (GW) by the Laser Interferometer

Gravitational-Wave Observatory (LIGO-Virgo) [9] in 2015 was one of the most cele-

brated results in XXI century physics. In addition to confirming one of the major

predictions of General Relativity that had remained (directly) undetected for almost a

century, the LIGO-Virgo detection is seen as a mark of the dawn of a new upcoming

era in multi-messenger astronomy which promises to put to test our understanding of

gravity and cosmology.

While the LIGO experiment is an Earth-based interferometer capable of detecting

high frequency gravitational waves (10Hz to 10kHz). The upcoming Laser Interferometer

Space Antenna (LISA) mission [10] is a space-based experiment which will be capable of

detecting frequencies in the range of the milihertz. One of the sources of GW in LISA’s

frequency range are the so called Extreme Mass Ratio Inspirals. These consist of binary

systems in which one of the bodies is much more massive than the other (µ ∼ 10−5 or

less). From an astrophysical perspective, this type of system is typically composed of a

small neutron star or black hole orbiting a supermassive black-hole, like the ones that

are present in the center of galaxies.

One challenging aspect of GW detection is the necessity to produce great models of

the signals to be detected in order to separate them from a noisy background. The data

analysis done in the LIGO experiment relies heavily on wave-form templates obtained

from numerical relativity [11]. In the case of the upcoming LISA experiment, the picture

remains the same, one must be equipped with precise templates of the GW signals in

order to tell them apart from the background, except for the fact that the more effective

method of studying the dynamics of EMRIs is black hole perturbation theory.

Huge progress in the study of EMRIs using the tools of black hole peturbation and

self-force theory has been made in the last few years, much of this progress is greatly

overviewed in L. Barack & A. Pound (2019) [12] and A. Pound & B. Wardell (2021)

[13]. In black hole perturbation theory, as it was first developed, one attempts to solve

Einstein’s equations by expanding the exact metric tensor gµν of the spacetime in a

binary system as

gµν = gµν + εh(1)µν +O(ε2), (1.1)

where gµν is the background metric associated with the more massive black hole, h
(1)
µν is

the first-order correction due to the presence of the small mass m and ε is the typical



CHAPTER 1. Introduction 5

size of the components of h
(1)
µν in some coordinate system. Even though point-particle

approximations in General relativity are problematic, they hold in the context of lin-

earized gravity [12], so that in the context of first-order black hole perturbation theory,

one can make the point-particle approximation to the smaller mass m that sources the

perturbation h
(1)
µν . A discussion about the generalization of this approach to a finite

sized mass is found in [5].

One of the most challenging aspects of the self-force approach is its fundamentally

singular nature. In the self-force picture, the trajectory of a particle of mass m deviates

from a geodesic of the background spacetime due to the effect of h
(1)
µν . However, since

this perturbation is sourced by the point-mass m itself, it is formally divergent at the

position of the particle. Thus, this approach requires the development of regularization

methods capable of extracting a finite result for the effect of the perturbation field h
(1)
µν

on the motion of the point particle.

The above described problem of extracting a physical result for the gravitational

self-force experienced by the point mass m due to the linearized gravity field h
(1)
µν belongs

to a broader class of general self-force problems in curved spacetime that also includes

scalar and electromagnetic counterparts. In this class of problems, one is interested in

extracting the physical self-force experienced by the interaction of a charge travelling

through curved spacetime with its own field, be it a scalar, electromagnetic or linearized

gravity field. In all of those cases, the self-force is a formally divergent quantity that

requires the adoption of regularization procedures. The main aspects of such procedures

do not depend on the particular type of field considered. Therefore, it is common that

they are first proposed and studied in the context of the more simple scalar self-force and

later generalized to be applied to the other fields. For this reason, this work will focus on

the study of the regularization of the scalar self-force. At some point, the specialization

of the background spacetime geometry to the Schwarzschild geometry will also be made.

Throughout this work the system of geometrized units G = c = 1 — where c is the

speed of light in vacuum and G is the universal gravitational constant — is adopted.



Chapter 2

DYNAMICS OF SCALAR

CHARGES IN BLACK HOLE

SPACETIMES

The notion of a self-force first arises in the context of classical electrodynamics. It

is a consequence of Maxwell’s equations that accelerated charges emit electromagnetic

(EM) radiation. These waves carry energy away from the particle and therefore deceler-

ate it, in a phenomenon called radiation reaction. In the absence of any other external

field, it is clear that this deceleration can only be explained as an interaction of the

particle with its own field. The force involved in this interaction is called the electro-

magnetic self-force. The non-relativistic expression for the EM self-force was first derived

by Lorentz. This result was later generalized to the context of special relativity by the

efforts of Abraham and Dirac [14], becoming what is now called the Abraham-Lorentz-

Dirac force. Further generalization to the curved spacetimes of General Relativity (GR)

was achieved by DeWitt & Brehme [15] e Hobbs [16].

Motivated by the necessity to model the evolution of EMRIs, Mino, Sasaki and

Tanaka [17] and Quinn & Wald [18] extended the results concerning the EM self-force

in curved spacetime to the description of a gravitational self-force experienced by a

point-mass. Equivalent results for the case a scalar charge in curved spacetime were also

obtained by Quinn [19]. In all cases, one of the main challenges for the computation

of the respective self-force lies on the fact that the field (be it scalar, EM or a metric

perturbation field) diverges at the position of the particle. Thus, the obtention of phys-

ically meaningful results rely on the development of regularization methods capable of

curing the self-force from its intrinsically singular nature.

6
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In the following sections, the foundations of the so-called Green’s function method

for the calculation of the scalar self-force are introduced based on the review by E.

Poisson et al [5], where a deep discussion of the electromagnetic and gravitational coun-

terparts can also be found. Even though this method shall not be directly employed for

the self-force calculations in this work, valuable notions that will subsidize the discus-

sions in the upcoming chapters will be gained by introducing this framework. At the

end of the chapter, the mode-sum method that will be applied for the actual self-force

calculations performed in this work is introduced.

2.1 THE EQUATIONS OF MOTION FOR A SCALAR

POINT-CHARGE IN SCHWARZSCHILD SPACETIME

Let a particle of scalar charge q travel along a worldline γ in a curved spacetime in

which the metric tensor is gµν . The particle creates a massless scalar field, Φ(x), which

satisfies the Klein-Gordon (KG) equation:

□Φ(x) = −4πµ(x), (2.1)

where □ = gαβ∇α∇β is the d’Alambertian operator. The source for the field equation

(2.1) is given by the charge density µ(x) of the point particle travelling along γ,

µ(x) = q

∫
γ
δ4(x, z(τ))dτ. (2.2)

Here z(τ) are the spacetime points along γ parameterized by the proper time τ and

δ4(x, x′) stands for the invariant Dirac’s distribution in four-dimensional spacetime,

δ4(x, x′) =
δ4(x− x′)√

−g
, (2.3)

where δ4(x − x′) = δ(x0 − x′0)δ(x1 − x′1)δ(x2 − x′2)δ(x3 − x′3) is the “coordinate”

four-dimensional Dirac distribution and g is the metric determinant at point x.

A solution to the Klein-Gordon equation can be expressed in terms of a Green’s

function G(x, x′) as

Φ(x) =

∫
d4x′G(x, x′)µ(x′)

√
−g′ = q

∫
γ
dτG(x, z(τ)), (2.4)
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where the first integral in the above equation is taken over the entire spacetime and

G(x, x′) is a solution to Green’s equation,

□G(x, x′) = −4πδ4(x, x′). (2.5)

Being a second order linear differential equation, this equation admits a set of two

linearly independent solutions, which can be given in the form of retarded and advanced

solutions. The retarded Green’s function, Gret(x, x′), is defined as a solution to Green’s

equation (2.5) that vanishes outside the causal past of the field point x. Similarly, the

advanced solution, Gadv(x, x′), is defined as a solution that vanishes outside the causal

future of x. The physical field is, of course, one calculated from equation (2.4) with

choice of the retarded Green’s function.

In flat spacetime, the retarded and advanced solutions to Green’s equation are non-

vanishing only on the past and future light cones of x, respectively. In curved spacetime,

however, the support of Gret(x, x′) and Gadv(x, x′) may also include the interior of these

light cones. This is due to the fact that waves travelling through curved spacetime may

develop tails [20], that propagate with velocities less than c. For spacetimes in which

wave propagation exhibits this characteristic, the retarded field at a point x generated

by a source particle depends on knowledge about the entire past history of the source,

as illustrated in Figure (2.1).
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Figure 2.1: Schematic representation of the support of the retarded and advanced
Green’s functions in flat and curved spacetime. The support of the curved spacetime
Green’s functions includes the interior the light cones of the field point x.

Let the points z(τ) along the worldline be represented by coordinates zµ(τ) and

let uµ(τ) ≡ dzµ(τ)/dτ be the four-velocity of the point source, the equations governing

its motion can be written as

m(τ)
Duµ

dτ
= q(gµν + uµuν)∇νΦ(z), (2.6)

where D/dτ stands for the derivative with respect to τ along γ, m(τ) is the mass of the

particle and ∇νΦ(z) is the gradient of the field generated by the particle evaluated at

its own current position z. Since the particle irradiates monopole waves, it experiences

a loss of mass over time, which is governed by dm/dτ = −quµ∇µΦ(z). Preceding any

form of regularization, the scalar self-force on the particle at a point z on the worldline

is formally defined from the right-hand side of equation (2.6) as

Fα(z) ≡ lim
x→z

q(δβα + uαu
β)∇βΦ(x). (2.7)
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It is clear though, that this definition needs to be supplemented with some form of

regularization procedure, since Φ(z) is a divergent quantity. Throughout this work, the

self-force prior to any regularization in equation (2.7) shall be referred to as the full

self-force1. In terms of the retarded Green’s function, this full self-force (2.7) can be

expressed as

Fα = q2(δβα + uαu
β) lim

x→z(0)
ε→0+

∇β

∫ ε

−∞
dτG(x, z(τ)), (2.8)

where the evaluation point was taken to be x = z(τ = 0) and the upper limit of this

integral is chosen so that the current position of the particle lies inside the region in

which the Green’s function is being integrated.

2.2 THE DETWEILER-WHITING DECOMPOSITION

From now on, the point-particle fields generated at a point x with the choice of

the Green’s functions Gret(x, x′) and Gadv(x, x′) shall be denoted Φret(x) and Φadv(x),

respectively. The term “self-field” and the notations Φret(z) and Φadv(z) shall refer to

the evaluation of these retarded and advanced fields at the position of the source. From

the properties of the Green’s functions introduced, one can see that the radiation zone

behaviour of Φret(x) and Φadv(x) is, respectively, that of outgoing and incoming waves

at infinity. Other solutions to Green’s equation can be proposed as linear combinations

of Gret(x, x′) and Gadv(x, x′). In particular, a solution

Gs(x, x′) ≡ 1

2

(
Gret(x, x′) +Gadv(x, x′)

)
, (2.9)

is defined to contain equal amounts of incoming and outgoing radiation at infinity.

This Green’s function does not distinguish between past and future and the field Φs(x)

calculated from it does not affect the motion of the particle [14]. Thus, no self-force.

While not producing any effect on the particle, the self-field Φs(z) is just as singular

as Φret(z) and Φadv(z), as it is a solution to the same field equation with the point

charge source (2.1). Therefore, subtracting it from the retarded field has the effect of

removing the singular behaviour with no effect on the actual motion of the particle.

Mathematically, a regularized self-field, Φr(z), could be defined as

Φr(z) ≡ Φret(z)− Φs(z). (2.10)

1This name is taken from Hikida et al [3].
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Or, at the level of the Green’s function, one could define

Gr(x, x′) ≡ Gret(x, x′)−Gs(x, x′). (2.11)

and calculate the field associated with Gr(x, x′). It follows from this definition that the

two-point function Gr(x, x′) is a solution to homogeneous version of Green’s equation

(2.5) which ensures that the self-field Φr(z) is regular.

While the above definitions allow for the introduction of a regular self-field, cured

from the singular character of Φret(z), they may introduce another problem. The sym-

metric Green’s function Gs(x, x′), as defined in equation (2.9), is non-vanishing on both

the causal past and future of point x. This non-causal support is inherited by Gr(x, x′),

as defined in (2.11). This is not a problem for the evaluation of Φr(z) if the supports

of Gret(x, x′) and Gadv(x, x′) are restricted to the surface of the light cones, since both

retarded and advanced points (i.e. the intersections of the null cones with the worldline)

are mapped to the position z of the particle in the x → z limit (See Figure 2.2). Thus, in

this case, the self-fields Φs(z) and Φr(z) are indeed causal. If, however, Gret(x, x′) and

Gadv(x, x′) are non-vanishing inside the light cones, the fields Φs(x) and, consequently,

Φr(x) possess a dependence on the chronological future of the particle that persists at

the self-field limit (i.e. when evaluating Φs(z) and Φr(z)). Hence, the self-field Φr(z), if

defined as in the equations above, is not generally causal in curved spacetime.

A solution to this problem was proposed by Detweiler & Whiting [21] by intro-

ducing a new field ΦS(x) which shares the same desirable properties of Φs(x) but is

devoid of its non-causal nature when evaluated at the position of the particle. Their

construction for the Green’s function GS(x, x′), associated with a field ΦS(x), relies on

adding to Gs(x, x′) in equation (2.9), a function H(x, x′) that has property of canceling

out its support inside the future light cone of point x. Namely, the Detweiler-Whiting

Singular Green’s function, GS(x, x′), is defined as

GS(x, x′) ≡ 1

2

(
Gret(x, x′) +Gadv(x, x′)−H(x, x′)

)
. (2.12)

The requirement that GS(x, x′) is still a solution to Green’s equation (2.5) implies that

the function H(x, x′) must be a solution to the homogeneous version of that equation.

Furthermore, to keep “no self-force” property of Φs(x), one must require that H(x, x′)

is symmetric, meaning that it should also cancel the support of Gs(x, x′) inside the past

light cone. Assuming that such a function exists, a regular two-point function can be

defined as:

GR(x, x′) ≡ Gret(x, x′)−GS(x, x′) =
1

2

(
Gret(x, x′)−Gadv(x, x′) +H(x, x′)

)
. (2.13)



Dynamics of scalar charges in black hole spacetimes 12

Figure 2.2: Scheme of the support of the Singular and Regular Green’s functions

From this point on, the labels singular (S) and regular (R) shall refer to the

Detweiler-Whiting quantities GS(x, x′) and GR(x, x′) and their associated fields. The

supports of these Green’s functions are illustrated in Figure 2.2. It follows from this

construction that, in the limit x → z, ΦR(z) is both finite and causal. Unfortunately,

direct calculation of GR(x, x′) is not generally possible and the regularization procedure

usually involves the obtention of the retarded and singular fields through different means.

2.3 THE LOCAL PICTURE AND THE SINGULAR FIELD

In this section, the foundations for the construction of “local expansions” for small

spacetime separation between the arguments of the Green’s functions defined in the last

section is presented. The obtention of such expansions consists in a effective method for

computing the singular self-field ΦS(z), since this self-field is, by construction, devoid

of any dependence on the chronological past and future of the particle. A complete

derivation of such expansions requires the introduction of many aspects of the theory

of bitensors. This topic is greatly reviewed in work by E. Poisson et al [5], where one

can also find a detailed derivation of the expansions for the Green’s functions and field

quantities. These calculations shall not be repeated in this work. Instead, the important
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notions that will be necessary to subsidize the discussion in the upcoming chapters shall

be outlined.

2.3.1 Foundations of a local expansion and the Hadamard Form

The construction of expansions for “small separation” in the context of General

Relativity must be consistent with the curved nature of the spacetime. One could

consider the length along a geodesic segment that connects two points x and x′ as a

natural measure of the separation between these points. This, however, may involve

some ambiguity, since two points in curved spacetime are not generally linked by only

one geodesic segment (in fact, such geodesic segment may not even exist). A normal

convex neighborhood of a point x, denoted N(x), is defined as a region around this

point in which every point x′ ∈ N(x) is linked to x by a unique geodesic that lies inside

this region. Then, for points satisfying x ∈ N(x′) an expansion based on these unique

geodesics can be constructed.

Let the unique geodesic β that passes through two points x and x′ be described by

coordinates yµ(λ), where λ is a parameter along the curve. The Synge world function

is defined as

σ(x, x′) ≡ 1

2
(λ1 − λ0)

∫ λ1

λ0

gµνt
µtνdλ, (2.14)

where tµ ≡ dyµ/dλ is the vector tangent to β and x′ = yµ(λ0) and x = yµ(λ1). If the

parameter λ is taken to be the proper time τ for timelike tµ or the proper distance s

for spacelike tµ, this function evaluates to half the squared geodesic length from x′ to

x along β. If tµ is a null vector, then σ(x, x′) = 0. Furthermore, the first derivatives

of σ(x, x′) can be used to construct a curved spacetime analogue to the flat spacetime

separation vector, (xα−xα
′
). These derivatives are bivectors, meaning that they behave

as a vector with respect to operations in the tangent space of the point where the

derivative was taken and as a scalar with respect to operations relative to the other

point. Through variation of equation (2.14), one can obtain the following expressions

for the first derivatives of σ(x, x′):

σα ≡ ∂ασ = (λ1 − λ0)gαβt
β; σα′ ≡ ∂α′σ = −(λ1 − λ0)gα′β′tβ

′
. (2.15)

where the primed and unprimed indices of σα and σα′ indicate that they are elements

of the tangent space of x and x′, respectively. Closer inspection of equation (2.15)

reveals that the object σα is a vector tangent to β at point x with norm gαβσ
ασβ = 2σ.

Similarly, σα′ is proportional to the reflected tangent to β at x′ with norm 2σ. Hence,

both of these bivectors carry information about the direction and magnitude of the
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separation between points x and x′. Expressions for tensors near the worldline can then

be constructed by expanding these quantities in powers of σα′
.

Figure 2.3: Schematic representation of the Synge’s world function. Source: Poisson
et al (2011) [5]

The support of the retarded Green’s function introduced in the previous section

together with the properties of σ(x, x′) motivates the introduction of the following ansatz

for Gret(x, x′) for points x ∈ N(x′):

Gret(x, x′)
N
= U(x, x′)δ−(σ) + V (x, x′)Θ−(−σ). (2.16)

The functions U(x, x′) and V (x, x′) are smooth biscalars and the symbol
N
= indicates

that the equality is only valid for x ∈ N(x′). The quantities δ−(σ) and Θ−(−σ) are the

past light-cone distributions in curved spacetime [5]. These are defined as following:

δ−(σ) ≡ δ(σ)θ−(x, x
′), (2.17)

Θ−(−σ) ≡ Θ(−σ)θ−(x, x
′), (2.18)

where θ−(x, x
′) is a step-like function defined to equal 1 if x′ is in the causal past of x

and vanish otherwise and δ(x) and Θ(x) are the standard Dirac’s Delta and Heaviside’s

Theta. The ansatz in equation (2.16) is called the Hadamard form [20] of the retarded

Green’s function. Similarly, the the advanced Green’s function can be expressed in

Hadamard form as

Gadv(x, x′)
N
= U(x, x′)δ+(σ) + V (x, x′)Θ+(−σ). (2.19)
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The future light cone distributions, δ+(σ) and Θ+(−σ), are given by

δ+(σ) ≡ δ(σ)θ+(x, x
′), (2.20)

Θ+(−σ) ≡ Θ(−σ)θ+(x, x
′), (2.21)

with θ+(x, x
′) = 1 if x′ is in the causal future of x and zero otherwise. Retarded

and advanced solutions to Green’s equation are shown to satisfy a reciprocity relation

Gret(x, x′) = Gadv(x′, x) [5], which implies that V (x, x′) should be symmetric in its

arguments.

Together with the definition of the singular Green’s function (2.12), the ansatzes

(2.16) and (2.19) imply the following Hadamard form for the Singular Green’s Function:

GS(x, x′)
N
=

1

2

(
U(x, x′)δ(σ) + V (x, x′)Θ(−σ)−H(x, x′)

)
(2.22)

Here the identities δ(σ) = δ+(σ) + δ−(σ) and Θ(−σ) = Θ+(−σ) + Θ−(−σ) have been

used. Recalling the discussion prior to the definition of the Detweiler-Whiting singular

Green’s function, the quantity H(x, x′) was included to cancel the support of GS(x, x
′)

on points inside the future and past light cones of x. One can see that, for points inside

these light cones, the Hadamard form in the above equation reduces to GS(x, x
′)

N
=

(V (x, x′)−H(x, x′))/2 (for σ ̸= 0). This, along with the condition that H(x, x′) should

be a symmetric homogeneous solution to the field equation implies that

H(x, x′)
N
= V (x, x′), (2.23)

provided that V (x, x′) is itself a homogeneous solution of the field equation. The

Hadamard form of the singular Green’s function then takes the form:

GS(x, x′)
N
=

1

2

(
U(x, x′)δ(σ)− V (x, x′)Θ(σ)

)
. (2.24)

The support of the singular Green’s function on the outside of the past and future light

cones, i.e. for spacelike intervals, is made explicit by the presence of the Θ(σ) term.

What then remains to this construction of the Green’s functions is the determina-

tion of the biscalars U(x, x′) and V (x, x′). Differential equations that determine these

quantities can be obtained by substitution of either one of the ansatzes for the Green’s

functions into Green’s equation (2.5). Using the distributional identities for the light

cone distributions (see section 13.2 in [5]), the field equation for G(ret/adv)(x, x′) in the
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region of validity of the Hadamard expressions becomes:

□G(ret/adv)(x, x′)
N
= −4πδ4

(
x, x′

)
U + δ′±(σ) {2U,ασ

α + (σα
α − 4)U}+ (2.25)

+ δ±(σ) {−2V,ασ
α + (2− σα

α)V +□U}+Θ±(−σ)□V = −4πδ4(x, x
′)

Where the arguments of U(x, x′) and V (x, x′) were omitted for clarity and σα
α = ∇ασα.

By comparing the left and right-hand sides of this equation, one can see that it is satisfied

if the terms containing δ±, δ
′
± and θ± vanish and if, at the limit x → x′, the pre-factors

to the δ4(x, x′) terms match. This last restriction implies that

lim
x→x′

U(x, x′) = 1. (2.26)

The requirement that the pre-factor to the δ′± term vanishes implies the following dif-

ferential equation:

2U,ασ
α + (σα

α − 4)U = 0, for x and x′ such that σ(x, x′) = 0. (2.27)

This two restrictions are proven [5; 15] to be enough for determining that U(x, x′) =√
∆(x, x′), where ∆(x, x′) is the Van Vleck biscalar [22], which is related to the focusing

or divergence of the geodesics in the background spacetime (See [5; 15]). Next, by

requiring that the remaining terms vanish, one can obtain the restrictions for the other

biscalar, V (x, x′). Namely, the condition that the term containing Θ±(−σ) vanishes

implies that it satisfies the following differential equation:

□V (x, x′) = 0, (2.28)

while the remaining term, containing δ±(σ), gives a restriction for V (x, x′) for σ = 0

(since the δ±(σ) guarantees that this term always vanishes for timelike and spacelike

curves) in the form of

−2V,ασ
α + (2− σα

α)V +□U = 0 for x and x′ such that σ(x, x′) = 0. (2.29)

These equations, together with the requirement that V (x, x′) is smooth at x → x′,

determine this biscalar. Expansions for these biscalar functions can be obtained by

expanding quantities in powers of derivatives of Synge’s world function (2.15) [5].

2.3.2 Expressions for the Retarded and Singular Fields

Based on the Hadamard construction, formal expressions for the fields Φret(x)

and ΦS(x) at a point x near the worldine shall now be written. To do so, let z(τ−) and
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Figure 2.4: Depiction of the different intervals of integration under the assumption
that x is “close enough” to the worldline.

z(τ+) be defined as the intersection points between worldline and the boundaries of the

maximum N(x) for a nearby field point x. A generic field Φ(X) (X = ret, adv, S or R)

is obtained by the integration of equation (2.4) with the choice of the respective Green’s

function G(X)(x, x′). Considering the region of validity of the Hadamard expressions, the

integration along the worldline can be broken into three separate intervals (see Figure

2.4),

Φ(X)(x) = q

∫ τ−

−∞
dτG(X)(x, z(τ)) + q

∫ τ+

τ−

dτG(X)(x, z(τ)) + q

∫ ∞

τ+

dτG(X)(x, z(τ)).

(2.30)

The middle integral is restricted to x ∈ N(x′) and it can be performed by expressing

the Green’s function in Hadamard form. Next, the above expression shall be specialized

for the retarded and singular fields. It will be convenient to define the retarded and

advanced points, z(τret) and z(τadv), as the intersection points of the worldline with the

past and future light cones of x, respectively. It shall be assumed that the point x is

close enough to γ, so that both z(τret) and z(τadv) lie inside N(x), as depicted in Figure

2.4.
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For the purpose of calculating retarded field, one can immediately see that the

last integral in equation (2.30) vanishes, since both limits of integration lie on the causal

future of x. Furthermore, the integrand of the middle integral is non-vanishing only in

the causal past, meaning that its upper limit can be set to τret. Hence, the specialization

of (2.30) to the retarded field can be written as

Φret(x) = q

∫ τ−

−∞
dτGret(x, z(τ)) + q

∫ τret

τ−

dτGret(x, z(τ)) (2.31)

or, by expressing the second integral in terms of the Hadamard form, as

Φret(x) = q

∫ τret

τ−

dτU(x, z(τ))δ−(σ) + q

∫ τret

τ−

dτV (x, z(τ))Θ−(−σ)+ (2.32)

+

∫ τ−

−∞
dτGret(x, z(τ)).

Evaluation of the last term in this equation requires knowledge of the Green’s function

for points outside the N(x), which cannot be obtained from the Hadamard construction

discussed. The first term in (2.32) can be integrated by changing variables to σ. As one

passes through the point z(τret) traveling along γ, the geodesic β that links x to z(τ)

goes from being null to being spacelike and σ increases, one can then write dτ = uµσµdσ.

The integration of this term over σ yields:

Φret(x) = q
U(x, z(τret))

rret
+ q

∫ τret

τ−

dτV (x, z(τ)) +

∫ τ−

−∞
dτGret(x, z(τ)), (2.33)

where rret ≡ uα
′
σα′ |τ=τret has the interpretation of being the retarded spatial distance

between x and the retarded point z(τret) in a frame that is co-moving with the particle

[23]. Though the expansions for the biscalars U(x, x′) and V (x, x′) were not shown

here, from the fact that limx→x′ U(x, x′) = 1, one can already see that the first term in

equation is singular in the self-field limit — that is, as rret → 0 (x → z).

Next, a similar expression for the singular field shall be written. Following from

the fact that GS(x, x′) has no support on the chronological future or past of x, the first

and last integrals in (2.30) can be dropped and the limits of the middle integral can be

set to τret and τadv,

ΦS(x) =
1

2

(∫ τadv

τret

dτU(x, z(τ))δ−(σ) +

∫ τadv

τret

dτU(x, z(τ))δ+(σ)−
∫ τadv

τret

dτV (x, z(τ))Θ(σ)

)
,

(2.34)

where δ(σ) was re-expressed as δ−(σ) + δ+(σ). The first term in the expression above

contains exactly the same integral as in equation (2.32) and integration of the second

term can be carried out in a similar manner. Except that the δ+(σ) now yields quantities
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evaluated at the advanced point. The singular field can then be expressed as:

ΦS(x) = q
U(x, z(τret))

2rret
+ q

U(x, z(τadv))

2radv
− 1

2
q

∫ τadv

τret

dτV (x, z(τ)), (2.35)

where radv ≡ −uα′σα′ |τ=τadv is the advanced distance between x and the advanced point

z(τadv) in the particle’s frame [23]. As expected from its construction, the singular field

is completely determined by the quantities U(x, x′) and V (x, x′). Thus, by supplying

the equations with expansions for these biscalars, for a nearby point field point, ΦS(x)

can be completely determined as a series expansion for small spacetime separation.

Lastly, the expressions for the gradients of the retarded and singular fields shall

be written. To calculate the gradient of biscalar functions evaluated at the retarded and

advanced points, one must take into account the fact that a variation of the field point

x induces a variation of z(τret) and z(τadv) so that they are still connected to x by a null

geodesic. Therefore, the gradient of a generic biscalar evaluated at the retarded point,

A(x, z(τret)), is written as:

∂αA(x, z(τret)) = ∂αA(x, z(τret)) + uα
′
∂α′A(x, z(τret))∂ατret, (2.36)

where the xα-derivative of z(τret) was re-expressed in terms of the four-velocity and of

the derivative of the proper time parameter at the retarded point and the notation ∂α′

refers to the derivative with respect to the coordinates zα
′

ret of the retarded point. With

this is mind, the gradient of the retarded field is found to be

∇αΦ
ret(x) = − q

r2ret
U(x, z(τret))∂αrret +

q

rret
∂αU(x, z(τret)) +

q

rret
∂α′U(x, x′)uα

′
∂ατret

+ qV (x, x′)∂ατret +∇αΦ
tail(x), (2.37)

Φtail(x) = q

∫ τret

τ−

dτV (x, z(τ)) +

∫ τ−

−∞
dτGret(x, z(τ)). (2.38)

One can see that the tail term given above, Φtail(x), contains contributions from both

the particle recent and distant past. The full self-force (i.e. prior to any regularization)

is formally given by substitution of this expression into equation (2.7). Similarly, the

gradient of the singular field (2.35) is found to be:

∇αΦ
S(x) = − q

2r2ret
U(x, zret)∂αrret −

q

2r2adv
U(x, zadv)∂αradv +

q

2r
∂αU(x, zret)+

+
q

2rret
∂α′U(x, zret)u

α′
∂ατret +

q

2radv
∂αU(x, zadv) +

q

2radv
∂α′′U(x, zadv)u

α′′
∂ατadv

+
1

2
qV (x, zret)∂ατret −

1

2
qV (x, zadv)∂ατadv −

1

2

∫ τadv

τret

∇αV (x, z(τ)). (2.39)

Here ∂α′′ stands for the derivative with respect to the coordinates of the advanced point
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and uα
′′
is the four-velocity evaluated at this point. To obtain this expression, quantities

referring to advanced point were treated in analogous fashion to (2.36). The singular

part of the self-force FS
α (i.e. the self-force due to ΦS), which is formally given by

the substitution of this gradient into equation (2.7), of course has no tail term. The

regularized self-force at some point z along the particle’s trajectory is given by:

FR
α ≡ Fα − FS

α = q(δβα + uαu
β) lim

x→z

(
∇αΦ

ret(x)−∇αΦ
S(x)

)
, (2.40)

Note that the definitions of Fα and FS
α only hold in the formal sense, since both field

gradients diverge at the position of the particle. To obtain a finite result for FR
α , one

must first perform the subtraction between the two field gradients at some point a x

and then take the x → z limit. This can be achieved by introduce expansions for the

advanced and retarded quantities in equation (2.37) and (2.39), subtracting them and

taking the x → z limit at the end. All the singular terms, of course, vanish. However,

a complete determination of FR
α still relies on being able to evaluate the tail term in

equation (2.38).

2.4 THE MODE-SUM METHOD

When supplemented with small distance expansions, the Detweiler-Whitting [21]

decomposition presented consists in a powerful scheme for tackling the regularization of

the self-force. However, the obtention of the regularized self-force using this framework

still relies on the integration of the tail term in equation (2.38), for which one needs

information about the distant past support of the retarded Green’s function. Since an

exact analytical calculation of the retarded Green’s function is not generally possible,

additional methods must be introduced to evaluate the tail contribution to the self-force.

One method for computing this contribution is the method of matched expansions. In

this method, one computes the “quasilocal” contribution to self-force, coming from the

first term in equation (2.38), by integrating the expansions of V (x, x′). The difficult part

then becomes the evaluation of the “distant past” integral in the second term of that

same equation. Obtention of expressions for the Green’s function in the “distant past”

regime was proven possible by Casals et al [24] for the case of the Nairai spacetime by

adopting of a decomposition into quasi-normal modes. Both “quasilocal” and “distant

past” expansions for the Green’s function are shown to match in a common region of

validity. Another method, which shall be the one adopted in this work, is the mode-sum

method, introduced by Barack and Ori [1]. This method relies on the decomposition of

both retarded and singular self-fields into a basis of spherical harmonics to perform the

regularization in a mode-by-mode fashion. Each ℓ-mode of these self-fields is proven to
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be finite and their singular nature is only expressed as the divergence of the sum over all

the ℓ-modes. Therefore, by regularizing the-ℓ modes before performing their summation,

a finite result is obtained.

2.4.1 Mode-sum Regularization

From this point on, it will be convenient to restrict the discussion to the Schwarzschild

spacetime on the exterior of a black hole of mass M , described by the line element

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dθ2 + r2 sin2 θdϕ2. (2.41)

Where f(r) = 1 − 2M/r and {t, r, θ, ϕ} are the standard Schwarzschild coordinates.

The spherically symmetric nature of this spacetime induces the decomposition of the

retarded and singular fields into a basis of spherical harmonics,

Φ(ret/S)(x) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

Φ
(ret/S)
ℓm (r, t)Yℓm(θ, ϕ). (2.42)

Following the discussion in Barack and Ori [1], the ℓ-modes of these fields, denoted

Φ
(ret/S)
ℓ (x) =

∑ℓ
m=−ℓΦ

(ret/S)
ℓm (r, t)Yℓm(θ, ϕ), are finite at the x → z limit and the singular

nature of the self-fields only shows up when one sums over ℓ. Thus, if one obtains the ℓ

modes of both retarded and singular fields, the regularization can be performed at the

level of the ℓ-modes. More specifically, the regular self-field is calculated in the mode

sum regularization scheme as

ΦR(z) =
∞∑
ℓ=0

[
Φret
ℓ (z)− ΦS

ℓ (z)
]
. (2.43)

Or, alternatively, one can perform the regularization at the level of the modes of the

self-force,

FR
α =

∞∑
ℓ=0

(
Fα,ℓ − FS

α,ℓ

)
, (2.44)

where Fα,ℓ and FS
α,ℓ are the ℓ-modes of the Fα and FS

α,ℓ, respectively. It is important to

note that all of these modes can be directly evaluated at position of the particle, but

the subtraction must be performed before the ℓ-sum to achieve its convergence.

Since the singular self-force (and self-field) can be completely determined from

the “local picture” calculations outlined in Section 2.3 (supplied with expansions for

the biscalars U(x, x′) and V (x, x′)), computation of its ℓ modes can be achieved by

considering multipole expansions of the results obtained in that manner. The ℓ-modes
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of the singular part of the self-force in Schwarzschild were shown [1; 25; 26] to have the

following general structure:

FS
α,ℓ = ±AαL+Bα +Dα,ℓ. (2.45)

Where L ≡ ℓ + 1/2 and the quantities Aα, Bα and Dα,ℓ are called the regularization

parameters. The parameters Aα and Bα depend only on the particle’s trajectory and the

± carried by the Aα term comes from a discontinuity when evaluating the field gradient

at the position of the particle [25]. Besides depending on the trajectory, Dα,ℓ is at most

O(ℓ−2) and satisfies
∑∞

ℓ=0Dα,ℓ = 0. Therefore, it does not contribute to FS
α . However,

the inclusion of higher order contributions coming from Dα,ℓ was shown to speed the

numerical convergence of the ℓ sum dramatically [21]. The general form of equation

(2.45) also holds for the EM and gravitational self-force [26], though the parameters

may depend on the spin of the field in question.

2.4.2 Decoupled Field Equations

The task that remains unaddressed is the determination of the ℓ-modes of the

retarded field. To obtain these, one can substitute (2.42) into the Klein-Gordon equation

and obtain a partial differential equation for the modes Φret
ℓm(r, t). Alternatively, a further

decomposition into Fourier harmonics,

Φret(x) =

∫ ∞

−∞

dω

2π

∞∑
ℓ=0

ℓ∑
m=−ℓ

e−iωtΦret
ℓmω(r)Yℓm(θ, ϕ), (2.46)

can be taken in order to obtain an ordinary differential equation for the Φret
ℓmω(r) modes.

A general formalism for studying scalar, vector and tensor perturbations in Kerr space-

time exists in the form of the Teukolsky formalism [27]. Here, it is worth briefly pre-

senting this formalism, as methods developed in the context of general perturbations in

Kerr will be used to obtain the Φret
ℓmω(r) modes.

In its most general form, the Teukolsky equation [27] is a master equation for

Newman-Penrose [28] scalars in Kerr spacetime. The specialization of this equation to

Schwarzschild spacetime reads

r4

∆

∂2Ψs

∂t2
−
[

1

sin2 θ

]
∂2Ψs

∂φ2
−∆−s ∂

∂r

(
∆s+1∂Ψs

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂Ψs

∂θ

)
+

− 2is
cos θ

sin2 θ

∂Ψs

∂φ
− 2s

[
r2M

∆
− r

]
∂Ψs

∂t
+
[
s2 cot2 θ − s

]
Ψs = 4πr2Ts, (2.47)
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where ∆ ≡ r2f(r). The quantities Ψs and Ts are the Teukolsky master variable and a

master source term, which have different meaning depending on the value of the spin-

weight parameter s. The Klein-Gordon equation (2.1) in Schwarzschild is recovered

from the s = 0 case of this master equation. For s = ±1 and s = ±2, one obtains the

equations for NP scalars associated with independent components of the electromagnetic

and Weyl tensors, respectively. The exact expressions for Ψs and Ts arising from the

NP formulation of Maxwell’s (s = ±1) and linearized gravity equations (s = ±2) are

found in Teukolsky’s orginal work [27]. The Schwarzschild specialized Teukolsky master

equation (2.47) is a decoupled second-order partial differential equation that admits a

separation of variables of the form

Ψs =
∞∑
ℓ=0

ℓ∑
m=−ℓ

∫ ∞

−∞

dω

2π
e−iωt

sRℓmω(r) sYℓm(θ, ϕ), (2.48)

4πr2Ts =
∞∑
ℓ=0

ℓ∑
m=−ℓ

∫ ∞

−∞

dω

2π
e−iωt

sTℓmω(r) sYℓm(θ, ϕ), (2.49)

where sYℓm(θ, ϕ) are the spin-weighted spherical harmonics and the radial functions

sRℓmω(r) satisfy the Teukolsky radial equation in Schwarzschild spacetime:

∆−s d

dr

(
∆s+1dRℓmω

dr

)
+

(
r2ω2

f(r)
− 2isω(r − 3M)

f(r)
− ℓ(ℓ+ 1)

)
sRℓmω(r) = sTℓmω(r).

(2.50)

The modes Φ
(ret)
ℓmω (r) of the retarded scalar field in equation (2.46) are then given by

solutions of the equation above with s = 0, where the right-hand side is given by 0Tℓmω =

−δ(r− r′)/r2. It is worth mentioning that the in the axially symmetric Kerr spacetime,

a generalization of the spherical harmonic basis of angular functions is required.

To obtain solutions to the Teukolsky radial equation (2.50) the Green’s function

method shall be adopted. The causal field generated by point source must have the

properties of being purely ingoing at the event horizon and purely outgoing at infinity.

The study of the asymptotic behaviour of the radial equation (2.50), carried by Teukolsky

[27], reveals the existence of homogeneous solutions with the following properties:

sR
in
ℓmω(r) ∼ sB

trans
ℓmω ∆−se−iωr⋆ , r → 2M ; (2.51)

sR
up
ℓmω(r) ∼ sC

trans
ℓmω r−2s−1eiωr⋆ , r → ∞. (2.52)
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Where Btrans
lωs and Ctrans

lωs are transmission coefficients (which are constant in r). The

coordinate

r∗ ≡ r + rs log

(
r − rs
rs

)
, (2.53)

where rs = 2M is the Schwarzschild radius, is called a tortoise coordinate and has the

effect of placing the horizon at r∗ = −∞. When combined with the Fourier mode e−iωt,

sR
in
ℓmω has the “ingoing at the horizon” property and shall be referred to as the in

solution. Similarly, sR
up
ℓmω has the property of being purely outgoing at infinity and

shall be called the up solution. Then, provided that one can obtain these homogeneous

solutions, a Green’s function to the Teukolsky radial equation (2.50) with the desired

causal properties can be constructed from them. In Chapter 4, a method for obtaining

these homogeneous solutions in series of special functions will be presented. For the

scalar case, a Green’s function for the radial equation that is compatible with the causal

behaviour described is written as

gℓmω(r, r
′) =

−1

W
in/up
ℓmω

(
0R

in
ℓmω(r) 0R

up
ℓmω(r

′)Θ(r′ − r) + 0R
up
ℓmω(r) 0R

in
ℓmω(r

′)Θ(r − r′)
)
,

W
in/up
ℓmω ≡ ∆W( 0R

in
ℓmω, 0R

up
ℓmω), (2.54)

where W(Rin
ℓmω, R

up
ℓmω) is the Wronskian of the two solutions,

W(0R
in
ℓmω,0R

up
ℓmω) ≡ 0R

in
ℓmω

d

dr

(
0R

up
ℓmω

)
− 0R

up
ℓmω

d

dr

(
0R

in
ℓmω

)
, (2.55)

and W
in/up
ℓmω is constant in r.

In Schwarzschild spacetime, homogeneous solutions to the Teukolsky radial equa-

tion are related to solutions of the Regge-Wheeler (RW) equation [29],

∂2
r∗ sXℓmω +

[
ω2 − Vℓωs(r)

]
sXℓmω = 0, (2.56)

Vℓs(r) ≡ f(r)

(
ℓ(ℓ+ 1)

r2
+

2M(1− s2)

r3

)
, (2.57)

by the Chandrasekhar transformation [30]. The main advantage of working with the

Regge-Wheeler equation (2.56) is the fact that solutions to this equation with the desired

ingoing and outgoing properties exist in the form of regular waves:

sX
in
ℓmω(r∗) ∼ sB

trans
ℓmω e−iωr⋆ , r∗ → −∞; (2.58)

sX
up
ℓmω(r∗) ∼ sC

trans
ℓmω eiωr

⋆
, r∗ → ∞. (2.59)
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For the specific case of the scalar field, the Chandrasekhar transformation reduces to a

simple division by r,

0R
h
ℓmω(r) =

0X
h
ℓmω(r)

r
. (2.60)

Here h labels a generic homogeneous solution of the respective equation. From now on,

the label referring to s = 0 shall be dropped. Thus, the radial Green’s function modes

in equation (2.54) can be easily expressed in terms of solutions to the homogeneous

Regge-Wheeler equation. The retarded Green’s function to the Klein-Gordon equation

in Schwarzschild spacetime is written explicitly as

Gret(x, x′) = 2

∞∑
ℓ=0

ℓ∑
m=−ℓ

∫ ∞

−∞
dωe−iω(t−t′)gℓmω(r, r

′)Yℓm(θ, ϕ)Y ∗
ℓm(θ′, ϕ′), (2.61)

=
L

π

∞∑
ℓ=0

∫ ∞

−∞
dωe−iω(t−t′)gℓmω(r, r

′)Pℓ(cos γ), (2.62)

where the spherical harmonic addition theorem has been used and γ is defined by

cos γ = cos θ cos θ′ + sin θ sin θ′ cos
(
ϕ− ϕ′), (2.63)

which reduces to γ = ϕ − ϕ′ for θ = θ′ = π/2. The radial Green’s function modes

gℓmω(r, r
′) are to be obtained by solving either one of the radial equations and the

retarded field is obtained integrating this expression over the worldline as in equation

(2.4).



Chapter 3

WKB SOLUTIONS TO THE

REGGE-WHEELER EQUATION

In this chapter, approximate solutions to the homogeneous Regge-Wheeler equa-

tion for large-ℓ are obtained with the use of the Wentzel–Kramers–Brillouin (WKB)

method. This method consists in a powerful tool for obtaining approximate solutions

to linear differential equations whose exact solutions exhibit rapid oscillations or rapid

exponential growth or decay in a certain region. A detailed self-contained discussion of

WKB and other related methods can be found in the book by C. Bender & S. Orszag [31].

Throughout the first section of this Chapter, their construction of the WKB solutions

to a generic auxiliary equation is followed. When applying this method to the construc-

tion of asymptotic solutions to the Regge-Wheeler equation for large ℓ, I acknowledge

the work notes shared by N. Zilberman [32] regarding the obtention of the leading-ℓ

expressions for homogeneous solution satisfying the ingoing at the horizon boundary

condition.

3.1 THE GENERAL WKB SOLUTIONS

Instead of directly tackling the Regge-Wheeler equation (2.56), WKB solutions to

the following auxiliary equation shall be obtained:

λ2∂2
r∗X = UX. (3.1)

26
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Here λ is a formal small parameter and X and U are functions of r∗. The WKB solutions

to this equation are obtained by considering the following ansatz:

X ∼ exp

{ ∞∑
n=0

δn−1Sn(r∗)

}
with δ → 0, (3.2)

where δ is a formal expansion parameter and Sn(r∗) are functions to be determined by

perturbativelly solving the differential equation. The substitution of this ansatz into

equation (3.1) yields a differential equation for the functions Sn(r∗):

λ2

 ∞∑
n=0

δn−1S′′
n(r∗) +

( ∞∑
n=0

δn−1S′
n(r∗)

)2
 = U. (3.3)

Here ′ stands for the derivative with respect to r∗. This equation shall be solved in a

perturbative fashion for small λ and δ.

The dominant term on the left-hand side of equation (3.3) is a term proportional

to λ2/δ2. The fact that the right-hand side is O(1) implies that λ/δ must be O(1).

Then, without loss of generality, δ can be set to equal λ. The equation arising from the

O(λ0) terms in (3.3) is

S′
0
2(r∗) = U(r∗), (3.4)

and its integration yields

S0(r∗) = ±
∫ r∗

dr′∗
√

U(r′∗) + C0, (3.5)

where U has been written explicitly as a function of r∗ and C0 is a constant of integration.

The next-order terms in equation (3.3) are O(λ) and collecting them yields a differential

equation for the function S1(r∗):

S′′
0 + 2S′

1S
′
0 = 0. (3.6)

To solve this equation one needs to substitute the derivatives of S0(r∗), which are ob-

tained by differentiating equation (3.5). The solution for the function S1(r∗) is found to

be

S1(r∗) = −1

4
logU(r∗) + C1, (3.7)

where C1 is again a constant of integration. Similarly, the O(λn) terms in equation (3.3)

yield a differential equation for the function Sn(r∗) that depend on the derivatives of
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functions up to Sn−1(r∗). For a generic n ≥ 2, this equation reads:

2S′
0(r∗)S

′
1(r∗) + S′′

n−1(r∗) +
n−1∑
j=1

S′
j(r∗)S

′
n−j(r∗) = 0 (n ≥ 2). (3.8)

Expressions for the first few higher-order terms, taken from [31], are given:

S2(r∗) = ±
∫ r∗

[
U ′′

8U3/2
− 5(U ′)2

32U5/2

]
dr′∗, (3.9)

S3(r∗) = − U ′′

16U2
+

5U ′2

64U3
, (3.10)

S4(r∗) = ±
∫ r∗

[
d4U/dr′4∗
32U5/2

− 7U ′U ′′′

32U7/2
− 19(U ′′)2

128U7/2
+

221U ′′(U ′)2

256U9/2
− 1, 105(U ′)4

2, 048U11/2

]
dr′∗,

(3.11)

S5(r∗) = −d4U/dr′4∗
64U3

+
7U ′U ′′′

64U4
+

5(U ′′)2

64U4
− 113(U ′)2U ′′

256U5
+

565(U ′)4

2, 048U6
. (3.12)

Here the arguments of U(r′∗) and its derivatives have been omitted for cleaner notation.

One can check from (3.8) that all Sn(r∗) functions of even n inherit the ± sign from

S0(r∗). For the convergence of the WKB series, these functions must satisfy

|Sn(r∗)| ≫ λ|Sn+1(r∗)|. (3.13)

At this point, the connection between WKB solutions to the auxiliary equation

(3.1) and WKB solutions to the homogeneous Regge-Wheeler equation (2.56) shall be

made. First, the generic U(r∗) is replaced by its counterpart in the Regge-Wheeler

equation,

U(r∗) → Uℓωs(r) ≡ −ω2 + Vℓs(r), (3.14)

where r is taken to depend implicitly on r∗. Next, λ is set to 1 and the conditions for the

convergence of WKB series are imposed on the functions Sn(r∗) themselves. Namely, it

is required that ∣∣∣∣Sn+1(r)

Sn(r)

∣∣∣∣≪ 1. (3.15)
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If the above condition holds, two independent WKB solutions to the homogeneous

Regge-Wheeler equation can be written as

sX
WKB,+
ℓω (r) ≡ exp

{ ∞∑
n=0

Sℓωs
n (r)

}
, (3.16)

sX
WKB,−
ℓω (r) ≡ exp

{ ∞∑
n=0

(−1)n+1Sℓωs
n (r)

}
, (3.17)

where Sℓωs
n (r) is defined by replacing U(r∗) by Uℓωs(r) in the expression for the function

Sn(r∗) with the choice of the positive sign in every ± sign. General WKB solutions the

homogeneous Regge-Wheeler equation are then expressed as

sX
WKB
ℓω ≡ C+

ℓωs sX
WKB,+
ℓω (r) + C−

ℓωs sX
WKB,−
ℓω (r), (3.18)

where C
(±)
ℓωs are constants.

The substitution of the expression for Uℓωs(r) into equations (3.5), (3.7), (3.9)-

(3.12) reveals the following asymptotic behaviour of the Sℓωs
n (r) functions as ℓ → ∞:

Sℓωs
0 (r) = O(

√
ℓ), Sℓωs

1 (r) = O(log ℓ), (if lim
ℓ→∞

ω2/Vℓs(r) < 1) (3.19)

Sℓωs
2 (r) = O(ℓ−1), Sℓωs

3 (r) = O(ℓ−2), (if lim
ℓ→∞

ω2/Vℓs(r) < 1) (3.20)

Sℓωs
4 (r) = O(ℓ−3), Sℓωs

5 (r) = O(ℓ−4). (if lim
ℓ→∞

ω2/Vℓs(r) < 1) (3.21)

Thus, as long as the condition limℓ→∞ ω2/Vℓs(r) < 1 is satisfied, the WKB series re-

sembles a generalized asymptotic series as ℓ → ∞ that is uniform in ω and r. In this

case, Uℓωs(r) → +∞ as ℓ → ∞, so that Sℓωs
0 (r) is, subject to a choice of C0, real-valued

as ℓ → ∞ and the independent WKB solutions (3.16) and (3.17) are characterized by

exponential growth and decay. Near r = rs and r = ∞, Vℓs(r) → 0 and the behaviour

described in the above equations does not hold. This implies that in and up bound-

ary conditions cannot be directly enforced on WKB solutions obtained in the region of

Uℓωs(r) > 0. Instead, in and up WKB solutions in this region will be constructed by

matching the general WKB solutions (3.18) to other asymptotic solutions valid at the

horizon and at infinity.
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3.2 LEADING-ORDER APPROXIMATION AND ENFORCE-

MENT OF BOUNDARY CONDITIONS

The leading-order WKB approximation to a general homogeneous solution to the

Regge-Wheeler equation is obtained by considering terms up to O(S1(n)) in the expo-

nents of the independent solutions,

sX
WKB,+
ℓω (r) ∼ sX

WKB,+
ℓω,(0) (r) ≡ Uℓωs(r)

−1/4eS
ℓωs
0 (r), (for Sℓωs

2 (r) → 0) (3.22)

sX
WKB,−
ℓω (r) ∼ sX

WKB,−
ℓω,(0) (r) ≡ Uℓωs(r)

−1/4e−Sℓωs
0 (r). (for Sℓωs

2 (r) → 0) (3.23)

where Sℓωs
0 (r), is explicitly given by

Sℓωs
0 (r) ≡

∫ r∗

dr′∗
√
Uℓωs(r(r′∗)) =

∫ r

dr′
√
Uℓωs(r′)

f(r′)
. (3.24)

This and other integrals for the functions Sℓωs
n (r) of even n show in equations (3.9) and

(3.11) have representations in terms of combinations of Elliptic functions with compli-

cated arguments (see Appendix A), which shall not be directly used in the upcoming

analytical calculations. For limℓ→∞ ω2/Vℓs(r) < 1, the first neglected term, Sℓωs
2 (r), is

O(ℓ−1), so that the leading-order WKB approximation captures1 the leading-ℓ behaviour

as ℓ → ∞. In this section, the leading-order WKB solutions (3.16) and (3.17) will be

matched to asymptotic solutions near the horizon and for large r satisfying in and up

boundary conditions, respectively. As shall be seen, performing the matching of just

the leading-order solutions gives enough information for the construction of asymptotic

expansions for the in an up solutions beyond leading order except for an overall nor-

malization constant, as in both cases the contributions from one of the two independent

solutions are shown to vanish exponentially as ℓ → ∞.

3.2.1 THE WKB in SOLUTION

Now, asymptotic solutions to the Regge-Wheeler in the near-horizon limit shall be

obtained. To do so, the potential Vℓs(r) is expanded for small displacement away from

r = rs. This is achieved by defining δr ≡ r − rs and expanding Vℓs(r) for small δr/rs,

Vℓs(r) =

(
ℓ(ℓ+ 1)

r3s
+

(1− s2)

r3s

)
︸ ︷︷ ︸

vℓs≡

δr +O
(
δr2/r2s

)
. (3.25)

1Here, the use of the word “captures” is intentional, as the leading-order WKB approximation also
contains terms of sub-leading order with respect to the large-ℓ asymptotics.
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Approximate solutions to the Regge-Wheeler equation accurate up to O(δr/rs) are

sought. To obtain these, the displacement δr is re-expressed in terms of r∗ by expanding

the definition of the tortoise coordinate (2.53) for δr/rs ≪ 1,

r∗ = rs + 2M log

(
δr

rs

)
+O(δr/rs) =⇒ δr ∼ rse

k(r∗−rs) as δr/rs → 0, (3.26)

where k ≡ 1/rs. Thus, considering terms up to linear order in the expansion, the

Regge-Wheeler equation reads:

∂2
r∗ sXℓω +

(
ω2 − vℓsrse

k(r∗−rs)
)

sXℓω = O(δr2). (3.27)

An asymptotic general solution to this equation in the limit δr/rs → 0 can be written

as a combination of modified Bessel functions [33, Chapter 10]:

sXℓω ∼ CH,+
ℓωs I+α

(
2rs
√

vlsek(r∗−rs)
)
+ CH,−

ℓωs I−α

(
2rs
√
vlsek(r∗−rs)

)
, (δr ≪ rs) (3.28)

where α ≡ 2iωrs, Iα(x) is the modified Bessel function of the first kind and CH,±
ℓωs are

constants.

To obtain a purely ingoing solution, one needs to examine the asymptotic be-

haviour of the modified Bessel functions as their arguments approach zero (r∗ → −∞).

Using the relation [33, (10.30.1)]

Iα(z) ∼ 2−α zα

Γ(1 + α)
, (for z ≪ 1) (3.29)

one finds that, as r∗ → −∞, the two independent solutions that make up equation (3.28)

behave like ingoing and outgoing waves,

I±2iωrs

(
2rs
√
vlsrsek(r∗−rs)

)
∼

r±3iωrs
s v±iωrs

ℓs

Γ(1± 2iωrs)
e±iω(r∗−rs) as r∗ → −∞. (3.30)

Therefore, a normalized purely ingoing asymptotic solution is obtained by taking CH,+
ℓωs =

0 and

CH,−
ℓωs =

Γ(1− 2iωrs)e
−iωrs

r−3iωrs
s v−iωrs

ℓs

. (3.31)

Near the horizon a normalized in solution to the Regge-Wheeler equation is approxi-

mated by

sX
in
ℓω ∼ sX

H,in
ℓω ≡ CH,−

ℓωs I−α(2rs
√

vℓsrsek(r∗−rs)). (for δr/rs ≪ 1) (3.32)

https://dlmf.nist.gov/10
https://dlmf.nist.gov/10.30.E1
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Next, an expansion for the asymptotic in solution in the region of validity of the

WKB solutions is sought — that is, sX
H,in
ℓω shall be expanded for large positive Uℓωs(r).

This can be achieved by re-expressing r∗ in terms of δr and taking the leading asymp-

totics of the modified Bessel function [33, (10.40.5)] in equation (3.32) as vℓsr
2
sδr → ∞

(i.e. for large r2sVℓs(r)),

sX
H,in
ℓω ∼ e2rs

√
vℓsδr

(4πrs
√
vℓsδr)1/2

+ ie−2πωrs e−2rs
√
vℓsδr

(4πrs
√
vℓsδr)1/2

,
(
for vℓsr

2
sδr → ∞

)
. (3.33)

To obtain an asymptotic expansion for the leading-order WKB solutions near the hori-

zon, the functions Sℓωs
0 (r) and Sℓωs

1 (r) are expanded for small δr/rs with vℓsr
2
sδr → ∞.

One obtains:

Sℓωs
0 (r) ∼

∫ δr

dδr′rs

√
vℓsδr′

δr′
= 2rs

√
vℓsδr, (δr/rs → 0, vℓsr

2
sδr → ∞) (3.34)

Sℓωs
1 (r) ∼ log (vℓsδr)

−1/4 (δr/rs → 0, vℓsr
2
sδr → ∞). (3.35)

Thus, a leading-order WKB solution that is matched to a purely ingoing asymptotic

near the horizon is given by:

sX
WKB,in
ℓω,(0) (r) ≡ 1√

4πrs

(
sX

WKB,+
ℓω,(0) (r) + ie−2πωrs

sX
WKB,−
ℓω,(0) (r)

)
. (3.36)

Since the term containing sX
WKB,−
ℓω,(0) decays exponentially with Sℓωs

0 (r) = O(ℓ), it gives

negligible contribution to sX
WKB,in
ℓω (r) away from the horizon. Thus, one can write

sX
WKB,in
ℓω,(0) (r) ∼ 1√

4πrs
sX

WKB,+
ℓω,(0) (r). (for Vℓs(r)/ω

2 ≫ 1) (3.37)

Note that sX
WKB,in
ℓω (r) receives negligible contributions from sX

WKB,−
ℓω (r) still holds if

one consider higher-order terms in the WKB series. As the leading term in sX
WKB,−
ℓω (r)

falls faster than any higher-order contribution from the other independent solution as

ℓ → ∞ with limℓ→∞ ω2/Vℓs(r) < 1. Then, an expansion for the unnormalized in can be

written as

sX
in
ℓω(r) ∼ sX

WKB,in
ℓω (r) ≡ exp

{ ∞∑
n=0

Sℓωs
n (r)

}
(ℓ → ∞, for lim

ℓ→∞
ω2/Vℓs(r) < 1).

(3.38)

The accuracy of this expression compared to results obtained with the Black Hole Per-

turbation Toolkit [6] implementation of the MST method [2] (which will be discussed in

the following chapter) for Wolfram’s Mathematica is depicted in Figure 3.1.

https://dlmf.nist.gov/10.40.E5
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3.2.2 THE WKB up SOLUTION

An analogous procedure is followed to obtain an up solution. A leading asymptotic

expansion for the potential as rs/r → 0 is considered,

Vℓs(r) ∼ V far
ℓ (r) ≡ ℓ(ℓ+ 1)

r2∗
(rs/r → 0). (3.39)

Asymptotic solutions of the Regge-Wheeler equation as r/rs → ∞ are obtained by

solving

∂2
r∗ sX

far
ℓω +

(
ω2 − V far

ℓ (r)
)

sX
far
ℓω = 0. (3.40)

for Xfar
ℓω , so that solutions to the Regge-Wheeler equation are given by sXℓω ∼ Xfar

ℓω as

r/rs → ∞. Solutions to this equation are also given in terms of Bessel functions. The

general solution to (3.40) is obtained to be:

X far
ℓω =

√
r∗(cJJL(ωr∗) + cY YL(ωr∗)), (3.41)

where JL(x) and YL(x) with L = ℓ + 1/2 are Bessel functions of the first and second

kind, respectively, and cJ and cY are constants. The particular combination of these

functions that behaves like an outgoing wave at infinity is called the Hankel function of

the first kind, and is given by:

HL(ωr∗) = JL(ωr∗) + iYL(ωr∗). (3.42)

This function possesses the following asymptotic behaviour for large argument [33,

(10.17.5)]:

HL(ωr∗) ∼ −ie−iℓπ/2

√
2

πωr∗
eiωr∗ (ωr∗ → ±∞). (3.43)

Thus, an asymptotic solution to the Regge-Wheeler equation that behaves as a normal-

ized outgoing wave at infinity is written as:

sX
up
ℓω ∼ X far,up

ℓω (r∗) ≡ ieiℓπ/2
√

πωr∗
2

HL(ωr∗) (rs/r → 0). (3.44)

To perform the matching with the WKB leading-order expressions, this solution

shall be expanded for r2sVℓs(r) → ∞. Looking at the potential in equation (3.39), one

can see that this corresponds to expanding for L ≫ ωr∗. Here the asymptotic expansions

https://dlmf.nist.gov/10.17.E5
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for large order of JL(ωr∗) and YL(ωr∗) [33, (10.19)] are used,

√
r∗JL(ωr∗) ∼

√
r∗√
2πL

(eωr∗
2L

)L
(L → ∞), (3.45)

√
r∗YL(ωr∗) ∼ −

√
2r∗
πL

(eωr∗
2L

)−L
(L → ∞). (3.46)

Lastly, the leading asymptotic expressions for the functions Sℓωs
0 (r) and Sℓωs

1 (r) for

rs/r → 0 and L → ∞ (with Lrs/r → ∞) are obtained as

exp
{
Sℓωs
0 (r)

}
∼ exp

{∫ r

dr′

√
ℓ(ℓ+ 1)

r2∗

}
∼ rL∗

(
rs
r

→ 0,
Lrs
r

→ ∞
)
. (3.47)

Sℓωs
1 (r) ∼ log

√
r∗
L

(
rs
r

→ 0,
Lrs
r

→ ∞
)
. (3.48)

One can see that sX
WKB,+
ℓω,(0) and sX

WKB,−
ℓω,(0) are matched with

√
r∗JL(ωr∗) and

√
r∗YL(ωr∗),

respectively. From equation (3.45), one can see that sX
WKB,+
ℓω,(0) is multiplied by L−L.

Thus, once again, in the limit ℓ → ∞ (with limℓ→∞ ω2/Vℓs(r) < 1) one of the indepen-

dent WKB solutions gives negligible contribution to the solution sought. An unnormal-

ized up solution can then be written as:

sX
up
ℓω (r) ∼ sX

WKB,up
ℓω (r) ≡ exp

{ ∞∑
n=0

(−1)n+1Sℓωs
n (r)

}
(ℓ → ∞, for lim

ℓ→∞
ω2/Vℓs(r) < 1).

(3.49)

In Figure 3.1, a comparison of this expression to numerical results obtained using the

Black Hole Perturbation Toolkit [6] is seen.

3.3 THE GREEN’S FUNCTION MODES FROM THE

WKB SOLUTIONS

Lastly, an asymptotic expansion for the radial Green’s function modes in equation

(2.54) for ℓ → ∞ that is uniformly valid in ω and r as long as limℓ→∞ ω2/Vℓs(r) < 1

is written. To do so, the solutions to the homogeneous radial scalar field equation are

recovered (2.60) from the WKB Regge-Wheeler solutions,

Rin,WKB

ℓω ≡ 1

r
exp

{ ∞∑
n=0

Sℓω
n (r)

}
, (3.50)

Rup,WKB

ℓω ≡ 1

r
exp

{ ∞∑
n=0

(−1)n+1Sℓω
n (r)

}
, (3.51)

https://dlmf.nist.gov/10.19
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Figure 3.1: Relative error of the WKB large-ℓ solutions in equations (3.38) and (3.49)
truncated at n = 3 compared to solutions obtained from the Black Hole Perturbation
Toolkit [6] for s = 0, r = 6M and ωM = ℓ/20.

where Sℓω
n (r) ≡ Sℓω0

n (r). The Wronskian of these solutions, calculated as in equation

(2.55), is

W(Rin,WKB

ℓω , Rup,WKB

ℓω ) = − 2

r2

( ∞∑
n=0

Sℓω ′
2n (r)

)
× exp

(
2

∞∑
n=0

Sℓω
2n+1(r)

)
. (3.52)

Then, a generalized asymptotic expansion as ℓ → ∞ of the radial Green’s function

modes in equation (2.54) is

gℓmω(r, r
′) ∼ gWKB

ℓmω (r, r′) ≡ −1

rr′WWKB

(
exp

{ ∞∑
n=0

(
Sℓω
n (r) + (−1)n+1Sℓω

n (r′)
)}

Θ(r′ − r)+

+ exp

{ ∞∑
n=0

(
Sℓω
n (r′) + (−1)n+1Sℓω

n (r)
)}

Θ(r − r′)

)
,

(3.53)

for limℓ→∞ ω2/Vℓ(r) < 1, where Vℓ(r) ≡ Vℓ0(r) (s = 0) andWWKB ≡ ∆W(Rin,WKB

ℓω , Rup,WKB

ℓω ).

It is worth highlighting that the definition of these Green’s function modes in dependent

of the overall normalization constants of the homogeneous solutions, since any over-

all constant appearing in the numerator is canceled out by the same constant in the

Wronskian. The obtained homogeneous solutions show great agreement with the MST

solutions for large ℓ while being computationally cheap to evaluate (especially if com-

pared to full numerical solutions, which are particularly expensive to compute for large

ℓ).



Chapter 4

MST SOLUTIONS TO THE

TEUKOLSKY EQUATION

The most well established method for obtaining analytical solutions to the ho-

mogeneous Teukolsky radial equation in Kerr spacetime is the one developed by Mano,

Suzuki and Takasugi (MST) [2; 34]. Their method builds on a previous study of solu-

tions to spheroidal equations as series of different special functions carried out by Leaver

[35]. In his work, Leaver obtains a solution to this type of equation in the form of a

series of Coulomb wave functions that is valid everywhere except at the horizon. An-

other solution to Teukolsky’s equation valid everywhere except at r → ∞ in the form

of a series of hypergeometric functions was obtained by Mano, Suzuki and Takasugi [2].

In the region rs < r < ∞, the matching of the two solution is possible. Later, the same

three autors applied an analogous method to obtain series solutions to the homogeneous

Regge-Wheeler equation [36].

In this chapter, the MSTmethod for obtaining solutions the Schwarzschild-specialized

Teukolsky radial equation (2.50) is reviewed based on the original work of Mano, Suzuki

and Takasugi (MST) [2; 34] and on the later review by Sasaki & Tagoshi [37]

4.1 SOLUTION IN SERIES OF HYPERGEOMETRIC FUNC-

TIONS

A second-order differential equation with at most three regular singular points can

be transformed into a hypergeometric equation,

x(1− x)
d2y

dx2
+ [c− (a+ b+ 1)x]

dy

dx
− aby = 0, (4.1)

36
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where a, b and c are some real or complex parameters. One can check that the Teukolsky

radial equation possesses an irregular singular point at infinity. Therefore, its solutions

are not the hypergeometric functions that solve equation (4.1). However, one may

expect the further one is from the irregular singularity (i.e. the smaller the r), the more

the exact solutions to the Teukolsky radial equation should resemble solutions to the

hypergeometric equation (given the appropriate transformations). This indicates that a

solution to Teukolsky’s equation valid everywhere except at r → ∞ may be constructed

as series of hypergeometric functions. The fact that such a solution is valid at the

horizon, implies that it can be constructed to satisfy the ingoing boundary condition in

equation (2.51).

To pursue a series solution to the homogeneous Teukolsky radial equation satis-

fying the in boundary condition, the following transformation is done to Teukolsky’s

radial function:

sRℓmω(x) = (−x)−s−iϵeiϵxPin(x). (4.2)

Where x ≡ −ω(r − rs)/ϵ and ϵ ≡ 2Mω are dimensionless quantities. Subject to this

transformation, the Teukolsky Radial Equation (2.50) takes the form:

x(1− x)P ′′
in + [1− s− 2iϵ− 2(1− iϵ)x]P ′

in + [iϵ(1− iϵ) + ℓ(ℓ+ 1)]Pin =

= 2iϵ
[
−x(1− x)P ′

in + (1− s)xP ′
in

]
+
[
ϵ2 − iϵκ(1− 2s)

]
Pin. (4.3)

One can see that the left-hand side of this equation matches exactly the form of the

generic hypergeometric equation (4.1) and that the extra terms on the right-hand side

are explicitly of O(ϵ). Hence, a solution to this equation can be proposed as a series of

hypergeometric functions with ϵ as some sort of expansion parameter. When proposing

such a solution, an important aspect of MST and Leaver’s derivations is the inclusion of

a free parameter ν, called the Renormalized Angular Momentum. As shall be made clear

later, the introduction of this parameter will be crucial for guaranteeing the convergence

of the series. By adding [ν(ν + 1)− ℓ(ℓ+ 1)]Pin to both sides of the equation (4.3), one

arrives at:

x(1− x)P ′′
in + [1− s− 2iϵ− 2(1− iϵ)x]P ′

in + [iϵ(1− iϵ) + ν(ν + 1)]Pin =

= 2iϵ
[
−x(1− x)P ′

in + (1− s)xPin

]
+ (4.4)

+
[
ϵ2 − iϵκ(1− 2s) + ν(ν + 1)− ℓ(ℓ+ 1)

]
Pin.

It shall be required that ν → ℓ in the limit ϵ → 0, so that one recovers the original

differential equation at zero-th order. Also, one can check that this equation is unchanged

by the transformation ν → −ν − 1, ℓ → −ℓ − 1. Considering the form this equation,
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the following ansatz is proposed for the series solution:

Pin(x) =
∞∑

n=−∞
cνnpn+ν(x) (4.5)

pn+ν(x) = 2F1(n+ ν + 1− iϵ,−n− ν − iϵ, 1− s− iϵ; 1− s− 2iϵ;x). (4.6)

With the use of recurrence relations for the hypergeometric function and its derivatives

[33, Section 15.5],

xpn+ν =− (n+ ν + 1− s− iϵ)(n+ ν + 1− iϵ)

2(n+ ν + 1)(2n+ 2ν + 1)
pn+ν+1+ (4.7)

+
1

2

[
1 +

iϵ(s+ iϵ)

(n+ ν)(n+ ν + 1)

]
pn+ν −

(n+ ν + s+ iϵ)(n+ ν + iϵ)

2(n+ ν)(2n+ 2ν + 1)
pn+ν−1,

(4.8)

x(1− x)p′n+ν =
1

2
(s+ iϵ)

[
1 +

iϵ(1− iϵ)

(n+ ν)(n+ ν + 1)

]
pn+ν+ (4.9)

(n+ ν + iϵ)(n+ ν + 1− iϵ)

(2n+ 2ν + 1)

[
(n+ ν + 1− s− iϵ)

2(n+ ν + 1)
pn+ν+1

− (n+ ν + s+ iϵ)

2(n+ ν)
pn+ν−1

]
,

the differential equation (4.4) is turned into a three-term recurrence relation for the

series coefficients cνn:

αν
nc

ν
n+1 + βν

nc
ν
n + γνnc

ν
n−1 = 0, (4.10)

αν
n =

iϵ(n+ ν + 1 + s+ iϵ)(n+ ν + 1 + s− iϵ)(n+ ν + 1 + iϵ)

(n+ ν + 1)(2n+ 2ν + 3)
; (4.11)

βν
n = −ℓ(ℓ+ 1) + (n+ ν)(n+ ν + 1) + 2ϵ2 +

ϵ2
(
s2 + ϵ2

)
(n+ ν)(n+ ν + 1)

; (4.12)

γνn = − iϵ(n+ ν − s+ iϵ)(n+ ν − s− iϵ)(n+ ν − iϵ)

(n+ ν)(2n+ 2ν − 1)
. (4.13)

Like second order differential equations, three-term recurrence relations admit

two independent solutions in the form of sequences {c(1)n } and {c(2)n } [38]. A sequence

{c(1)n } is called minimal as n → ∞ if it satisfies limn→∞ c
(1)
n /c

(2)
n = 0. Conversely, a

sequence {c(1)n } is called minimal as n → −∞ if it satisfies limn→−∞ c
(1)
n /c

(2)
n = 0. In

both of these cases, the sequence c
(2)
n is called a dominant sequence. The ratio between

successive terms belonging to a sequence solution can be expressed recursively in the

https://dlmf.nist.gov/15.5
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form of continued fractions:

Rν
n ≡ cνn

cνn−1

= − γνn
βν
n + αν

nR
ν
n+1

; (4.14)

Lν
n ≡ cνn

cνn+1

= − αν
n

βν
n + γνnL

ν
n−1

. (4.15)

Rν
n and Lν

n are often called the right-mover and left-mover. The behaviour of solutions of

the three-term recurrence relation for large |n| is determined by the asymptotic behaviour

of the ratios βν
n/α

ν
n and γνn/α

ν
n as n → ±∞ [38]. By calculating these and evoking

the theorems from the asymptotic theory of difference equations (namely, theorems 2.1

through 2.3 in [38]), one can prove the existence of two independent solutions to the

three-term recurrence relation with the following asymptotic behaviour as n → ∞:

lim
n→∞

a
ν(min,+)
n

a
ν(min,+)
n−1

=
iϵ

2n
, lim

n→∞

a
ν(dom,+)
n

a
ν(dom,+)
n−1

=
2in

ϵ
. (4.16)

The sequence {aν(min,+)
n } corresponds to a minimal solution as n → ∞. Similarly, the

asymptotic behaviour of the recurrence relation as n → −∞ implies the existence of two

independent solutions satisfying:

lim
n→−∞

a
ν(min,−)
n

a
ν(min,−)
n+1

= − iϵ

2n
, lim

n→−∞

a
ν(dom,−)
n

a
ν(dom,−)
n+1

= −2in

ϵ
. (4.17)

The solution {aν(min,−)
n } corresponds to a minimal solution as n → −∞. These minimal

solutions are unique except for a overall normalization factor. Thus, one can use this

freedom to set {aν(min,±)
0 } = 1.

It is at this point that the previously introduced parameter ν becomes important.

In general, the minimal solutions {aν(min,+)
n } and {aν(min,−)

n } do not coincide. As shall be
discussed soon, it is mandatory that coefficients of the series of hypergeometric functions

are minimal for both n → −∞ and n → ∞ in order for the series to be convergent in

both directions. Selecting either one of the {aν(min,±)
n } sequences at this stage would

then lead to a diverging series as n → ∓∞. To fix this problem, the parameter ν shall be

chosen to make the two minimal sequences match. That is, ν is to be chosen by requiring

that the coefficients calculated from the left and right mover continued fractions agree

for any given n. Mathematically, this corresponds to solving

Rν
n+1L

ν
n = 1, (4.18)

for ν for any n (usually one solves it for n = 0). Solving this transcendental equation

requires either the use of numerical methods or of some sort of approximation, such as
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post-Newtonian theory. From now on, it shall be assumed that the coefficients chosen are

those of the minimal solution with, which will be simply denoted by {aνn} = {aν(min,±)
n }

with the choice of normalization aν0 = 1. The series coefficients are given by products of

the continued fractions Rν
n and Lν

n, i.e. for n > 2,

aνn = Rν
nR

ν
n−1 . . . R

ν
1 (4.19)

aν−n = Lν
−nL

ν
−n+1 . . . L

ν
−1. (4.20)

The asymptotic behaviour of the hypergeometric functions pn+ν for large |n| can
be extracted from the large-parameter asymptotic expansions given in [33, (15.12.5)].

The ratio between two consecutive pn+ν in the directions n → ±∞ for large |n| is

determined to be:

lim
n→∞

pn+ν

pn+ν−1
= lim

n→−∞

pn+ν

pn+ν+1
= 1− 2x+

√
(1− 2x)2 − 1. (4.21)

Therefore, the adoption of the coefficients from the minimal solution guarantees that

the ratio between consecutive (in the directions n → ±∞) decays with n−1 as |n| → ∞.

Moreover, one can check that the solution constructed indeed satisfies the ingoing

condition at the horizon by taking the x → 0 limit:

sRℓmω(x) ∼ (−x)−s−iϵeiϵx
∞∑

n=−∞
aνn. (4.22)

For now on this solution shall be denoted Rν
in. For the purpose of the later matching with

the Coulomb type solutions, it will be useful to re-express this solution as combination

of two independent series solutions to the Teukolsky equation.

The Teukolsky radial equation (2.50) is invariant under the transformation ℓ →
−ℓ − 1. By noting that αν

n = γ−ν−1
−n and α−ν−1

−n = γνn, one can see that the coefficients

of the series satisfy aνn = a−ν−1
−n . Therefore, the Rν

in (and pn+ν) solution constructed

preserves the symmetry ν → −ν − 1 (ℓ → −ℓ − 1) satisfied by equation (4.4). By

evoking the following identity [33, (15.8.3)],

sin (π(b− a))

π
2F1(a, b; c;x) =

(1− x)−a

Γ (b) Γ (c− a)
2F1

(
a, c− b; a− b+ 1;

1

1− x

)
+ (4.23)

− (−x)−b

Γ (a) Γ (c− b)
2F1

(
b, c− a; b− a+ 1;

1

1− x

)
, (4.24)

https://dlmf.nist.gov/15.12.E5.
https://dlmf.nist.gov/15.8.E3
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one can make explicit the symmetry in ν → −ν − 1 by expressing Rν
in as combination

of two independent solutions:

Rν
in = Rν

0 +R−ν−1
0 ; (4.25)

Rν
0 = e−iẑ+ϵ

(
−1 +

ẑ

ϵ

)−s−iϵ( ẑ

ϵ

)ν+iϵ ∞∑
n=−∞

aνn
Γ(1− s− 2iϵ)Γ(2n+ 2ν + 1)

Γ(n+ ν + 1− iϵ)Γ(n+ ν + 1− s− iϵ)

(4.26)

×
(
ẑ

ϵ

)n

2F1(−n− ν − iϵ,−n− ν + s+ iϵ;−2n− 2ν; ϵ/ẑ).

Where ẑ ≡ ωr so that 1 − x = ẑ/ϵ. The other independent solution is obtained by

substituting ν → −ν − 1 in the equation above. These solutions are, of course, valid

everywhere except at r → ∞.

4.2 SOLUTIONS IN SERIES OF COULOMB FUNCTIONS

In order to construct a solution possessing the outgoing at infinity property (2.52),

a solution valid at r = ∞ is sought. Such a solution was first obtained by Leaver as a

series of Coulomb wave functions. A generic Coulomb equation has the form:

d2w

dρ2
+

(
1− 2η

ρ
− ℓ (ℓ+ 1)

ρ2

)
w = 0. (4.27)

where η is a complex parameter. In the same spirit as the previous section, a trans-

formation that rearranges the Teukolsky radial equation (2.50) highlighting a Coulomb

equation on the left-hand side is performed. This transformation can be taken to be:

sRℓmω = ẑ−1−s
(
1− ϵ

ẑ

)−s−iϵ
fc(ẑ). (4.28)

Subject to this transformation, the Teukolsky radial equation becomes:

ẑ2f ′′
c +

[
ẑ2 + 2(ϵ+ is)ẑ − ℓ(ℓ+ 1)

]
fc = ϵẑ(f ′′

c + fc)− ϵκ(1− s− 2iϵ)f ′
c+

+
ϵ(1− s− iϵ)(1− iϵ)

ẑ
fc − [2ϵ2 − ϵ(ϵ+ is)fc].

(4.29)

From now on, a procedure very similar to the one in the previous section is followed.

One can see that the left-side of the above equation has the same form of the coulomb

equation (4.27) except for a global ẑ2 factor and that right-hand side is O(ϵ). A solution

to this equation as a series of Coulomb wave functions shall be proposed. Once again,
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the convergence of such a series solution will require the introduction of the renormalized

angular momentum. By adding the term [ν(ν+1)− ℓ(ℓ+1)]fc to both sides of equation

(4.29), one obtains

ẑ2f ′′
c +

[
ẑ2 + 2(ϵ+ is)ẑ − ν(ν + 1)

]
fc = ϵẑ(f ′′

c + fc)− ϵκ(1− s− 2iϵ)f ′
c+ (4.30)

+
ϵ(1− s− iϵ)(1− iϵ)

ẑ
fc + [ℓ(ℓ+ 1)− ν(ν + 1) +−2ϵ2 − ϵ(ϵ+ is)]fc.

The following ansatz is taken for the series solution:

fc(ẑ) =

∞∑
n=−∞

(−i)n
(ν + 1 + iη)n
(ν + 1− iη)n

bνnFn+ν(−is− ϵ, ẑ), (4.31)

where the Coulomb functions Fn+ν(−is−ϵ, ẑ) can be expressed in terms of the confluent

hypergeometric function 1F1(a, b; ẑ),

Fn+ν(η, ẑ) = e−iẑ2n+ν ẑn+ν+1Γ(n+ ν + 1− iη)

Γ(2n+ 2ν + 2)
1F1(n+ ν + 1− iη, 2n+ 2ν + 2; 2iẑ),

(4.32)

with η = −is − ϵ. The notation (x)n ≡ Γ(x + n)/Γ(x) stands for the Pochhammer

symbol. The reason for the inclusion of the Pochhammer symbols in the ansatz (4.31),

is that, by taking this particular form of ansatz, the coefficients bνn are shown to satisfy

the same recurrence relation as the coefficients aνn. That is, through the use of the

recurrence relations for the Coulomb wave functions [33, (33.17)],

1

ẑ
Fn+ν =

(n+ ν + 1 + s− iϵ)

(n+ ν + 1)(2n+ 2ν + 1)
Fn+ν+1 +

is+ ϵ

(n+ ν)(n+ ν + 1)
Fn+ν

+
(n+ ν − s+ iϵ)

(n+ ν)(2n+ 2ν + 1)
Fn+ν−1, (4.33)

F ′
n+ν = −(n+ ν)(n+ ν + 1 + s− iϵ)

(n+ ν + 1)(2n+ 2ν + 1)
Fn+ν+1 +

is+ ϵ

(n+ ν)(n+ ν + 1)
Fn+ν

+
(n+ ν + 1)(n+ ν − s+ iϵ)

(n+ ν)(2n+ 2ν + 1)
Fn+ν−1, (4.34)

one obtains the three-term recurrence relation for the coefficients bνn to be exactly the

same one as in equation (4.10). This fact is crucial for the later matching of the two

solutions.

https://dlmf.nist.gov/33.17
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A solution to the Teukolsky radial equation valid everywhere except at r = rs can

then be written as:

Rν
C = (2ẑ)νe−iẑ ẑ−s

(
1− ϵ

ẑ

)−s−iϵ
∞∑

n=−∞

[
aνn

(ν + 1 + iη)n
(ν + 1− iη)n

Γ(n+ ν + 1− iη)

Γ(2n+ 2ν + 2)
× (4.35)

×(−2iẑ)n 1F1(n+ ν + 1− iη, 2n+ 2ν + 2; 2iẑ)

]
.

It is still necessary to check, whether the choice of minimal coefficients is sufficient

to guarantee the convergence of the series. The large |n| behaviour of the Coulomb

functions can be investigated through the use of [33, (33.5.IV)], subsequent Coulomb

functions are found to satisfy:

lim
n→∞

Fn+ν

Fn+ν−1
= lim

n→−∞

Fn+ν

Fn+ν+1
=

2

ẑ
(4.36)

Thus, the choice of minimal coefficients guarantees the convergence of the series every-

where except at ẑ = 0 (r = rs).

Next, the outgoing boundary conditions at infinity shall be enforced on the series

solution obtained. To do so, it is useful to re-express the confluent hypergeometric

function 1F1(a, b, ẑ) as a combination of irregular confluent hypergeometric functions

U(a, b, ẑ) by use of the following relation [33, (13.2.41)]:

1

Γ(b)
1F1(a, b, 2iẑ) =

e−aπi

Γ(b− a)
U(a, b, ẑ) +

e(b−a)πi

Γ(a)
e2iẑU (b− a, b,−ẑ) (4.37)

The solution Rν
C can then be expressed as:

Rν
C = Rν

C,in +Rν
C,out; (4.38)

Rν
C,in = e−iẑ2νeiπ(ν+1−s+iϵ)Γ(ν + 1 + s+ iϵ)

Γ(ν + 1− s− iϵ)
ẑν+iϵ(ẑ − ϵ)−s−iϵ (4.39)

×
∞∑

n=−∞
inaνn(2ẑ)

nU(n+ ν + 1− s+ iϵ, 2n+ 2ν + 2; 2iẑ);

Rν
C,out = 2νe−πϵe−iπ(ν+1+s)eiẑ ẑν+iϵ(ẑ − ϵ)−s−iϵ (4.40)

×
∞∑

n=−∞
in
(ν + 1 + s− iϵ)n
(ν + 1− s+ iϵ)n

fν
n(2ẑ)

nU(n+ ν + 1 + s− iϵ, 2n+ 2ν + 2;−2iẑ).

https://dlmf.nist.gov/33.5.iv
https://dlmf.nist.gov/13.2.E41
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The asymptotic behaviour of these functions at infinity is obtained from the large-

argument asymptotics of U(a, b,±x) [33, (13.7.3)]

U(a, b,±x) ∼ x−a (x → ∞). (4.41)

Therefore the function Rν
C,out is found to be purely outgoing at infinity,

Rν
C,out ∼ Coutẑ

−1−2seiẑ (ẑ → ∞), (4.42)

where Cout is independent of ẑ. An expression for this function in terms of independent

solutions to the Teukolsky equation is sought. Another independent homogeneous solu-

tion to the radial equation can be found by replacing ν → −ν − 1 onto the equation for

Rν
c (4.35). By also re-expressing R−ν−1

c with the use of equation (4.37), one writes:

R−ν−1
C = R−ν−1

C,in +R−ν−1
C,out , (4.43)

where the functions R−ν−1
C,in and R−ν−1

C,up are obtained by replacing ν → −ν−1 in equations

(4.39) and (4.40). With the use of Kummer’s identity [33, (13.7.40)],

U(a, b, ẑ) = ẑ1−bU(a− b+ 1, 2− b, ẑ) (4.44)

One can express R−ν−1
C,in/up in terms of Rν

C,in/up,

R−ν−1
Cin =− ie−iπν sinπ(ν − s+ iϵ)

sinπ(ν + s− iϵ)
Rν

Cin, (4.45)

R−ν−1
Cout =ieiπνRν

Cout, (4.46)

which allows for the writing of an expression for Rν
up = Rν

Cout as a combination of the

two independent solutions,

Rup
C = γνR

ν
C + δνR

−ν−1
C ; (4.47)

γν =

(
e2iπν +

sinπ(ν − s+ iϵ)

sinπ(ν + s− iϵ)

)−1 sinπ(ν − s+ iϵ)

sinπ(ν + s− iϵ)
; (4.48)

δν = −
(
e2iπν +

sinπ(ν − s+ iϵ)

sinπ(ν + s− iϵ)

)−1

ieiπν . (4.49)

4.3 MATCHING OF THE TWO SOLUTIONS

Finally, the two types of solutions shall be matched in their common domain

of validity, rs < r < ∞. To do so, the functions 2F1(a, b; c; ẑ) and 1F1(a, b; ẑ) shall be

expressed in their series representation and the matching shall be achieved by demanding

https://dlmf.nist.gov/13.7.E3
https://dlmf.nist.gov/13.2.E40
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that each power of ẑ carries the same coefficient. Starting with Rν
0 , the ẑ dependent

terms inside the sum in equation (4.26) are collected and expressed as:

(
ẑ

ϵ

)n

2F1(a, b; c; ϵ/ẑ) =

(
ẑ

ϵ

)n ∞∑
j=0

(a)j(b)j
(c)jj!

ẑn−j =
∞∑
j=0

fj(n)ẑ
n−j . (4.50)

Where the parameters for the hypergeometric functions in (4.26) were abbreviated as

a, b and c and the coefficients fj(n) implicitly defined in the last equality depend on n

through a, b and c. Explicitly, fj(n) is given by:

fj(n) =
(−n− ν − iϵ)j(−n− ν + s+ iϵ)j

j!ϵn−j(−2n− 2ν)j
. (4.51)

Subject to these definitions, Rν
0 is re-expressed as

Rν
0 = e−iẑ+ϵ

(
−1 +

ẑ

ϵ

)ν−s( ẑ

ϵ

)ν+iϵ ∞∑
n=−∞

∞∑
j=0

aνn
Γ(1− s− 2iϵ)Γ(2n+ 2ν + 1)fj(n)

Γ(n+ ν + 1− iϵ)Γ(n+ ν + 1− s− iϵ)
ẑn−j ,

(4.52)

or, by collecting all the ẑ-independent terms,

Rν
0 = e−iẑ+ϵ

(
−1 +

ẑ

ϵ

)−s−iϵ( ẑ

ϵ

)ν+iϵ ∞∑
n=−∞

∞∑
j=0

C0
n,j ẑ

n−j , (4.53)

C0
n,j ≡ aνn

Γ(1− s− 2iϵ)Γ(2n+ 2ν + 1)

Γ(n+ ν + 1− iϵ)Γ(n+ ν + 1− s− iϵ)
fj(n). (4.54)

To explicitly write this expression as a sum over powers of ẑ, one can define a new index

k = n− j and consistently re-write the sums,

Rν
0 = e−iẑ+ϵ

(
−1 +

ẑ

ϵ

)−s−iϵ( ẑ

ϵ

)ν+iϵ ∞∑
k=−∞

∞∑
n=k

C0
n,n−kẑ

k. (4.55)

From the expression above, one can find that the pre-factor to each power ẑk in the sum

is given by:

Aν
0 ,k = e−iẑ+ϵ

(
−1 +

ẑ

ϵ

)−s−iϵ( ẑ

ϵ

)ν+iϵ ∞∑
n=k

C0
n,n−k. (4.56)

Next, a similar procedure is followed to obtain the coefficients of each power of

ẑ in the sum present in the solution Rν
C . The ẑ dependent terms inside the sum are
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collected and the confluent hypergeometric function is written in its representation:

ẑn 1F1(a, b; ẑ) =
∞∑
j=0

(a)j
(b)jj!

ẑn+j =
∞∑
j=0

gj(n)ẑ
n+j . (4.57)

The explicit expression for the coefficients gj(n) is obtained by substituting a and b for

the actual parameters of the confluent hypergeometric functions in equation (4.35):

gj(n) =
(n+ ν + 1 + s− iϵ)j
(2n+ 2ν + 2)jj!

. (4.58)

Collecting all ẑ-independent terms inside the sum in a single coefficient, Rν
C is expressed

as:

Rν
C = (2ẑ)νe−iẑ ẑ−s

(
1− ϵ

ẑ

)−s−iϵ
∞∑

n=−∞

∞∑
j=0

CC
n,j ẑ

n+j , (4.59)

CC
n,j = (−2i)naνn

Γ(ν + 1− iη)

Γ(ν + 1 + iη)

Γ(n+ ν + 1 + iη)

Γ(2n+ 2ν + 2)
gj(n). (4.60)

Again, the indices are redefined to obtain a explicit sum in powers of ẑ:

Rν
C = (2ẑ)νe−iẑ ẑ−s

(
1− ϵ

ẑ

)−s−iϵ
∞∑

k=−∞

k∑
n=−∞

CC
n,k−nẑ

k. (4.61)

Thus, the pre-factor to k-th power of ẑ in the sum is:

Aν
C,k = (2ẑ)νe−iẑ ẑiϵϵ−s−iϵ

(
−1 +

ẑ

ϵ

)−s−iϵ k∑
n=−∞

CC
n,k−n. (4.62)

Using the obtained results, the ratio between Aν
0,k and Aν

C,k for any given k is

calculated to be:

Kk
ν ≡

Aν
0,k

Aν
C,k

= 2−νϵs−νeϵ

( ∞∑
n=k

C0
n,n−k

)
(

k∑
n=−∞

CC
n,k−n

) . (4.63)

Though it is not shown here, the ratio Kk
ν is independent of k [37]. Therefore, one can

set Kν ≡ Kk
ν for any (integer) k and the matching of the solutions is expressed as:

Rν
0 = KνR

ν
C . (4.64)

In the upcoming chapters, the Coulomb type of solution will be adopted for the
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calculation of the self-force. Thus, it will be useful to express the Rν
in solution given in

equation (4.25) in terms of Rν
C and R−ν−1

C ,

Rin
C = KνR

ν
C +K−ν−1R

−ν−1
C . (4.65)



Chapter 5

REGULARIZATION

PARAMETERS FOR A

CIRCULAR GEODESIC

In this chapter, the WKB expressions constructed in Chapter 3 are used obtain

the Aα and Bα regularization parameters for the self-force for scalar charge in a circular

geodesic in Schwarzschild spacetime. After finishing this thesis, another derivation [39]

of these regularization parameters for circular geodesics in Schwarzschild using WKB

solutions to the Regge-Wheeler equation was noticed in the literature by the author.

The main difference of the work done by Bini, D., Damour, T. (2015) [39] to the

calculations performed in this chapter, is the fact that they take the specialization to

a circular geodesic from the start and derive WKB expression for the ℓm modes of the

field, while in this work expressions for the Green’s function ℓmω modes are written and

the integration over the source is carried out at the end.

To derive the expressions for the necessary regularization parameters, large-ℓ

asymptotic expressions for the self-force modes are obtained by following the multi-

scale analysis in [1; 25] to evaluate integrals over small proper-time intervals and for

large-ℓ.

48
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5.1 SPECIALIZATION TO CONSTANT ORBITAL RA-

DIUS

An equatorial circular geodesic at radius r0 in Schwarzschild spacetime is described

by the following relations in standard Schwarzschild coordinates:

z(τ) =
{
zt(τ), zr(τ), zθ(τ), zϕ(τ)

}
=
{
utτ, r0, π/2, u

ϕτ
}
, (5.1)

where τ is the proper-time parameter and the four-velocity along the geodesic is uα ={
ut, 0, 0, uϕ

}
with

ut =

√
r0

r0 − 3M
, uϕ =

1

r0

√
M

r0 − 3M
. (5.2)

Here the choice of zθ = π/2 is made without loss of generality due to the spherical

symmetry of Schwarzschild spacetime. The ℓ-modes of the Green’s function are defined

from equation (2.61) as

Gret
ℓ (x, x′) ≡ L

π
Pℓ(cos γ)

∫ ∞

−∞
dωe−iω(t−t′)gℓmω(r, r

′), (5.3)

where Gret(x, x′) =
∑∞

ℓ=0G
ret
ℓ (x, x′). Similarly, the ℓ-modes of the full self-force are

defined from equation (2.8) as

Fα,ℓ ≡ q2(δβα + uαu
β) lim

x→z(0)
∇β

∫ 0+

−∞
dτGret

ℓ (x, z(τ)), (5.4)

where the evaluation point of the self-force is chosen to be x = z(τ = 0) and Fα =∑∞
ℓ=0 Fα,ℓ. Motivated by the separation done in Hikida et al [3], the radial Green’s

function modes are separated into symmetric and anti-symmetric contibutions,

gℓmω(r, r
′) = g

(+)
ℓmω(r, r

′) + sign(r − r′)g
(−)
ℓmω(r, r

′), (5.5)

g
(±)
ℓmω(r, r

′) ≡ −1

2W in/up

(
Rin

ℓω(r)R
up
ℓω(r

′)±Rin
ℓω(r

′)R,up
ℓω (r)

)
, (5.6)

and the symmetric and anti-symmetric ℓ-modes of the Green’s function are similarly

defined as

G
(+)
ℓ (x, x′) ≡ LPℓ(cos γ)

∫ ∞

−∞
dωe−iω(t−t′)g

(+)
ℓmω(r, r

′), (5.7)

G
(−)
ℓ (x, x′) ≡ LPℓ(cos γ)

∫ ∞

−∞
dωe−iω(t−t′) sign(r − r′)g

(−)
ℓmω(r, r

′). (5.8)
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Lastly, the contribution of the (+) and (−) Green’s function modes to the self-force

ℓ-modes are defined as:

F
(−)
α,ℓ ≡ q2(δβα + uαu

β) lim
x→z(0)

∇β

∫ 0+

−∞
dτG

(−)
ℓ (x, z(τ)), (5.9)

F
(+)
α,ℓ ≡ q2(δβα + uαu

β) lim
x→z(0)

∇β

∫ 0+

−∞
dτG

(+)
ℓ (x, z(τ)), (5.10)

The Aα and Bα regularization parameters for the circular geodesic shall be shown to be

obtainable from the leading-ℓ of F
(−)
α,ℓ and F

(+)
α,ℓ , respectively. When evaluating expres-

sions regarding the (−) modes, the convention of taking the limit r → r′ “from above”

(r − r′ = 0+) is adopted. Choosing the opposite convention would change the resulting

expressions for F
(−)
α,ℓ by an overall minus sign coming from sign(r − r′).

For a orbit of constant radius zr(τ) = r0, one is allowed to bring the xr → zr part

of the limit inside the integral. Then, by explicitly expressing G
(±)
ℓ (x, x′) in terms of its

radial modes (5.6), the components of the self-force ℓ-modes in equation (5.9) can be

written as

F
(±)
r,ℓ ≡ q2 lim

x→z(0)

∫ 0+

−∞
dτ

L

π
Pℓ(cos γ)

∫ ∞

−∞
dωe−iω(t−zt)∂rg

(±)
ℓmω(r, r0)

∣∣∣∣
r=r0

, (5.11)

F
(±)
α,ℓ ≡ q2(δβα + uαu

β) lim
x→z(0)

∇β

∫ 0+

−∞
dτ

L

π
Pℓ(cos γ)× (5.12)

×
∫ ∞

−∞
dωe−iω(t−zt)g

(±)
ℓmω(r0, r0) (α ̸= r).

where the τ dependent quantities are zt = zt(τ) and γ = ϕ− zϕ(τ). For the purpose of

obtaining the regularization parameters for the circular geodesic, large-ℓ expansions of

the above expressions are sought.

Expressions for the anti-symmetric radial Green’s function modes and its deriva-

tive at r = r0 are easily written as

g
(−)
ℓmω(r0, r0) = 0 and ∂rg

(−)
ℓmω(r, r0)

∣∣∣∣
r=r0

=
1

2r20f(r0)
. (5.13)

For large ℓ, the g
(+)
ℓmω(r, r

′) modes and its derivative can be written in terms of WKB

solutions obtained in equations (3.50) and (3.51),

g
(+)
ℓmω(r0, r0) ∼ g

WKB,(+)
ℓmω (r0, r0) ≡ − 1

2r20f(r0)
(∑∞

n=0 S
ℓω
2n

′(r0)
) , (5.14)

∂rg
(+)
ℓmω(r, r0)|r=r0 ∼ ∂rg

WKB,(+)
ℓmω (r, r0)|r=r0 = − 1

2r30f(r0)

(
−1 +

∑∞
n=0 r0S

ℓω
2n+1

′(r0)∑∞
n=0 S

ℓω
2n

′(r0)

)
.

(5.15)
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The above asymptotic relations hold for ℓ → ∞ with limℓ→∞ ω2/Vℓ(r) < 1. Due to the

evaluation at r = r0, the above quantities end up depending only on derivatives of the

functions Sℓω
n (r), which simplifies a lot the calculations as one does not need to work

with the integrals coming from the even n functions (i.e. equations (3.9) and (3.11)).

Next, terms that are of the same order with respect to the WKB expansion are

collected by expanding (5.14) and (5.15) for Sℓω
n ≫ Sℓω

n+1,

g
WKB,(+)
ℓmω (r0, r0)

∣∣∣∣
r=r0

=
1

2r20f(r0)

∞∑
k=0

Sk(r0), (5.16)

∂rg
WKB,(+)
ℓmω (r0, r0)

∣∣∣∣
r=r0

=
1

2r30f(r0)

∞∑
k=0

Tℓω
k (r0). (5.17)

where the functions Sk(r0) and Tℓω
k (r0) are of order O(ℓ−2k−1). The first two terms in

each expansion are given here:

Sℓω0 (r0) =
1

Sℓω
0

′(r0)
=

f(r0)√
Uℓωs(r0)

, (5.18)

Sℓω1 (r0) = − Sℓω
2

′(r0)

Sℓω
0

′(r0)2
=

f (f ′V ′
ℓ + fV ′′

ℓ )

8Uℓω(r)5/2
−

5f2V ′2
ℓ

32U
7/2
ℓω

, (5.19)

Tℓω
0 (r0) =

−1 + r0S
ℓω
1

′(r0)

Sℓω
0

′(r0)
= −f(r0)

(
1

U
1/2
ℓω

+
1

4

r0V
′
ℓ

U
3/2
ℓω

)
, (5.20)

Tℓω
1 (r0) =

r0S
ℓω
3

′(r0)

Sℓω
0

′(r0)
+

(1− r0S
ℓω
1

′(r0))S
ℓω
2

′(r0)

Sℓω
0

′(r0)2
= (5.21)

= −
35f(r0)

3V ′3
ℓ

128U
9/2
ℓω

−
5f2V ′

ℓ (f (V ′
ℓ − 2r0V

′′
ℓ )− 2r0f

′V ′
ℓ )

32U
7/2
ℓω

−
f
(
r0f

′2V ′
ℓ + f (r0f

′′V ′
ℓ + f ′ (3r0V

′′
ℓ − 2V ′

ℓ )) + f2 (r0V
′′′
ℓ − 2V ′′

ℓ )
)

16U
5/2
ℓω

.

Here the argument r0 has been omitted from various functions for cleaner notation. All

derivatives are taken with respect to r evaluated at r = r0. The notation Uℓω(r) refers

to the specialization of Uℓωs(r) to s = 0.
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5.1.1 Fourier Transforms

Now, the radial modes at r = r0, which corresponds to the specialization needed

for the calculation regarding a circular geodesic, shall be transformed into the time-

domain. Since, ∂rg
(−)
ℓmω(r0, r0) is ω-independent, it trivially transforms to

1

2π

∫ ∞

−∞
dωe−iω(t−zt)∂rg

(−)
ℓmω(r0, r0) =

(t− zt)

2r20f(r0)
. (5.22)

To perform the Fourier transform of g
(+)
ℓmω(r0, r0) and its derivative, one must be aware

of the fact that the WKB solutions are not uniform in ω, which implies that a full repre-

sentation of the ℓ-modes of the Green’s function in the time-domain cannot be obtained

from those expressions. Instead, the more humble task of obtaining the contribution to

the Green’s function ℓ-modes coming from the ω2/Vℓ(r0) < 1 region of the spectrum is

accepted. The quantities Sℓω0 (r0) and Tℓω
0 (r0) are transformed to the time-domain by

re-expressing Fourier integrals as

1

2π

∫ ∞

−∞
dωe−iωtf(ω) → 1

2π

∫ ωcut

−ωcut

dωe−iωtf(ω), (5.23)

ωcut ≡
√
Vℓ(r0). (5.24)

The contributions coming from this restricted region of the frequency spectrum will

be proven to be enough (discussion at the end of this chapter) for the obtention of

regularization parameters for the circular geodesic.

From equations (5.18)–(5.21), one can see that each term in g
(+)
ℓmω(r0, r0) and

∂rg
(+)
ℓmω(r0, r0) depends on ω through some negative half-integer powers of Uℓω. To per-

form the ω integration of such terms, one can write∫ ωcut

−ωcut

dω

2π
e−iω(t−zt)

(
Vℓ(r)− ω2

)−p/2
= Vℓ(r)

(1−p)/2

∫ 1

−1

dω̄

2π
e−iω̄t̄

(
1− ω̄2

)−p/2
, (5.25)

where ω̄ ≡ ω/ωcut, t̄ ≡ ωcut(t− zt) and p is some integer. The integral on the right-hand

side of the above equation is a Hankel integral [40],∫ 1

−1
dω̄e−iω̄t̄

(
1− ω̄2

)−p/2
= 2(1−p)/2√πΓ(1− p/2)x(p−1)/2J(1−p)/2(t̄). (5.26)
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Combining the two equations above, a general formula for integrating U
−p/2
ℓω over fre-

quency is obtained:∫ ωcut

−ωcut

dω

2π
e−iω(t−zt)U

−p/2
ℓω = V

(1−p)/2
ℓ 2−(p+1)/2π−1/2Γ(1− p/2)t̄(p−1)/2J(1−p)/2(t̄).

(5.27)

The expressions for the integrals of the leading-terms Sℓ0 and Tℓ
0 are written here:

Sℓ0(r0, t, z
t) ≡

∫ ωcut

−ωcut

dω

2π
e−iω(t−zt)Sℓω0 (r0) =

J0(t̄)

2
, (5.28)

Tℓ
0(r0, t, z

t) ≡
∫ ωcut

−ωcut

dω

2π
e−iω(t−zt)Tℓω

0 (r0) = −f(r0)

2

(
J0(t̄) +

r0V
′
ℓ

4Vℓ
t̄J1(t̄)

)
. (5.29)

5.2 LARGE-ℓ EXPANSION AND INTEGRATION OVER

THE TRAJECTORY

In possession of the large-ℓ expansions of the radial modes of the Green’s function

at r = r0 in the time-domain, one can tackle the evaluation of the F
(+)
α,ℓ and F

(−)
α,ℓ

contributions to the full self-force modes for a circular geodesic. Equations (5.13) and

(5.22), imply that the only non-vanishing contribution coming from the (−) part of the

modes is

F
(−)
r,ℓ = q2 lim

x→z(0)
ε→0+

∫ ε

−∞
dτLPℓ(cos

(
ϕ− zϕ(τ)

)δ(t− zt(τ))

r20f(r0)
=

q2L

utr20f(r0)
. (5.30)

This term is divergent when summed over ℓ and is identified with AαL (α = r) in

equation (2.45) (as shall be seen, terms coming from the symmetric part are atmost

O(L0)),

Ar ≡ lim
L→∞

F
(−)
r,ℓ

L
=

q2

utr20f(r0)
for constant zr = r0. (5.31)

Now the assumption that the large-ℓ of F
(+)
α,ℓ comes solely from the integration of

the radial Green’s function modes over the restricted frequency region (5.23) is made.

This assumption is justified at the end of the this chapter for the case of a circular
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geodesic. In terms of (5.28) and (5.29), one can write

F
(+)
r,ℓ ∼ q2L

r30f(r0)
lim

x→z(0)
ε→0+

∫ ε

−∞
dτPℓ(cos γ)T

ℓ
0(r0, t, z

t), (5.32)

F
(+)
α,ℓ ∼ q2L

r20f(r0)
(δβα + uαu

β) lim
x→z(0)
ε→0+

∇β

∫ ε

−∞
dτPℓ(cos γ)S

ℓ
0(r0, t, z

t), (5.33)

for ℓ → ∞ with limℓ→∞ Vℓ/ω
2 < 1, perform the τ integrals and take the leading ℓ at the

end to get rid of any sub-leading terms. Instead, the evaluation of the above integrals is

avoided by adopting the multi-scale expansion approach introduced in [1; 25]. Recalling

the discussion in Chapter 2, the singular (as x → z) contributions to Φret and ΦS are

those coming form the “direct” part of the field (as opposed to the “tail” part), which at

the x → z limit are sourced on the particle’s position itself (i.e. ΦS has no tail). Thus,

the large-ℓ behaviour of F
(+)
r,ℓ must be obtainable by instead carrying out the τ integral

over a small interval that includes the particle’s current position. With this in mind,

the following quantities are defined:

F
(+)
r,ℓε ≡ Lq2

r30f(r0)
lim

x→z(0)

∫ ε

−ε
dτPℓ(cos γ)T

ℓ
0(r0, t, z

t), (5.34)

F
(+)
α,ℓε ≡

Lq2

r20f(r0)
(δβα + uαu

β) lim
x→z(0)

∇β

∫ ε

−ε
dτPℓ(cos γ)

∞∑
k=0

Sℓ0(r0, t, z
t). (5.35)

for a small positive ε. Inside the domain of integration, τ is small and one can expand

quantities in powers of τ . However, since the ultimate goal is to obtain the leading-ℓ

of the above expressions, one must be cautious about not losing information about the

large-ℓ the self-force modes.

The definitions in [1; 25] are adopted for the construction of expansions for small

τ and large ℓ. First, a new variable is defined as

Λ ≡ −Lτ. (5.36)

Quantities are then expanded for large L and small τ while keeping Λ fixed. For large-ℓ,

the Legendre function can be expanded as [41]

Pℓ(cos γ) =

√
γ

sin γ

[
J0(γL) +

1

8

(
cot γ − 1

γ

)
J1(γL)

L

]
+O(L−2). (5.37)

By taking γ = ϕ−zϕ(τ) = −utτ , the above equation is further approximated by writing

τ = −Λ/L and expanding for large L,

Pℓ(cos(ϕ− zϕ(τ)) = J0(Λu
ϕ) +

1

24

2(Λuϕ)2J0(Λu
ϕ)− ΛuϕJ1(Λu

ϕ)

L2
+O

(
L−3

)
. (5.38)
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The radial quantities, which depend on ℓ through Vℓ(r) (and its derivatives) and

on τ and ℓ through t̄, are expanded by re-expressing this potential in terms of L,

Vℓ(r0) = f(r)
L2

r2
− f(r)

(r − 8M)

4r2
(5.39)

and by writing (t − zt) = −utτ = Λ/L. The functions Sℓ0(r0, t, z
t) and Tℓ

0(r0, t, z
t) are

expanded as

2Sℓ0(r0, t, z
t) = J0

(
Λũt

)
+

(r0 − 8M)

8L2r0
ũtΛJ1

(
ũtΛ

)
+O

(
L−4

)
, (5.40)

2Tℓ
0(r0, t, z

t) = −f(r)J0
(
Λũt

)
− 1

4
ũt
(
rf ′ − 2f

)
ΛJ1

(
ũtΛ

)
+O

(
L−2

)
, (5.41)

where ũt ≡ ut
√

f(r0)/r0. Important information can be obtained by noticing that

the expansions constructed for Sℓ0(r0, t, z
t), Tℓ

0(r0, t, z
t) and Pℓ(cos γ) contain only terms

that are even in Λ. By applying either ∇t or ∇ϕ to the integrand in equation (5.35),

it becomes odd and vanishes when integrated over the symmetric interval. Thus, only

F
(+)
r,ℓϵ is non-vanishing. By changing the integration variable to Λ, one can write

F
(+)
r,ℓϵ ∼ − q2

2r30f(r0)

[∫ Lε

−Lε
dΛJ0(Λu

ϕ)
(
f(r)J0

(
Λũt

))
+ (L → ∞)

+
1

4
ũt
(
rf ′ − 2f

) ∫ Lε

−Lε
ΛJ0(Λu

ϕ)J1
(
ũtΛ

) ]
. (5.42)

The above expression depends on L only through the integration limits. Then, its

leading-ℓ is obtained by taking the limit L → ∞ with ε fixed (i.e. by replacing the

integration limits with ±∞). Using the results in [33, (10..22.5),(10.43.26)] for the

integrals involving products of Bessel functions, one can write∫ ∞

−∞
dΛ J0(ū

tΛ)J0(u
ϕΛ) =

2

ūt
2F1

(
1

2
,
1

2
; 1;

(uϕ)2

(ūt)2

)
, (5.43)∫ ∞

−∞
dΛ Λ J0(ū

tΛ)J1(u
ϕΛ) =

2

ūt2
2F1

(
3

2
,
1

2
; 1;

(uϕ)2

(ūt)2

)
. (5.44)

Then, by collecting the pre-factors in equation (5.42), the parameter Br for the circular

geodesic is obtained from the L → ∞ limit of the right-hand side of equation, as it yields

an O(L0) contribution for the self-force modes,

Br ≡ lim
L→∞

F
(+)
r,ℓϵ (5.45)

= − q2

ut
√
f(r0)r20

[
2F1

(
1

2
,
1

2
; 1;

(r0Ω)
2

f(r0)

)
− 1

2(ut)2f(r0)
2F1

(
3

2
,
1

2
; 1;

(r0Ω)
2

f(r0)

)]
,

where Ω ≡ uϕ/ut =
√

M/r30 is the orbital frequency of the particle. This result agrees

https://dlmf.nist.gov/10.22.E56
https://dlmf.nist.gov/10.43.E26
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with the results found in the literature [1; 42]. The remaining components of Bα vanish,

since only F
(+)
r,ℓϵ is non-vanishing.

Now, the reason why the restricted frequency integral gives correct results for the

Br regularization parameter is discussed. By integrating Gret(x, z(τ)) as in equation

(2.61) over τ before performing the frequency integral, one is faced with the following

integral:∫ ∞

−∞
dτeiωz

t(τ)Y ∗
ℓm

(π
2
, zϕ(τ)

)
=

1

ut

∫ ∞

−∞
dt′ei(ω−mΩ)t′Y ∗

ℓm(π/2, 0), (5.46)

=
2πY ∗

ℓm(π/2, 0)

ut
δ(ω −mΩ). (5.47)

The last equality implies that the ℓ-th mode of the field receives contributions from

frequencies satisfying ω = mΩ ≤ ℓΩ, which are verified to satisfy

lim
ℓ→∞

ω2

Vℓ(r0)
≤ (r0Ω)

2

f(r0)
< 1 for r0 > 3M, (5.48)

so that all the relevant frequencies for stable circular geodesics lie inside the region where

the large-ℓ asymptotics constructed from the WKB solutions are uniformly valid in ω.

The derivation shown in this chapter also holds for circular orbits that are not geodesics,

as long as the above condition is satisfied. Moreover, it is a fact that the regularization

parameters obtained in this chapter through analysis of the retarded Green’s function

must match ones that would be obtained from an analysis of the Detweiler-Whiting

Singular Green’s function (2.12), as the self-fields associated with these two Green‘s

functions must possess the same singular structure.



Chapter 6

SEMI-ANALYTICAL SCALAR

SELF-FORCE

REGULARIZATION IN

SCHWARZSCHILD

SPACETIME

A challenging aspect regarding the application of the mode-sum regularization

method to the calculation of the self-force is the fact that, while the regularization itself

is carried out at the level of the ℓ-modes of the self-force (i.e. in the time domain),

the field modes that need to be regularized are usually obtained by solving decoupled

field equations in the frequency domain. In particular, the radial Green’s function

modes (2.54) in the frequency domain can be written in terms of the MST in and up

homogeneous solutions given in equations (4.47) and (4.65) (with s = 0). Due to the

complicated ω dependence of these solutions, transformation of these Green’s function

modes into the time domain is not possible in analytical closed-form. Alternatively,

one can numerically evaluate the ℓ-modes of the full self-force — i.e. the self-force

calculated from the retarded field, prior to regularization (2.8) — and try to perform

the regularization by numerically subtracting from them the regularization parameters.

In principle, the subtraction of only the Aα and Bα parameters, which for the case of

a circular geodesic are given by (5.31) and (5.45), is enough to obtain a convergent ℓ-

sum for the self-force. However, in practice, this ℓ-sum exhibits very slow convergence

if one does not include higher-order regularization parameters [21]. To overcome this

problem without including these higher-order terms, the analytical post-Newtonian (pN)

57
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regularization method introduced by Hikida et al [3] will be applied to evaluate the

contribution to the self-force coming from the self-force modes of large enough ℓ. As

shall be made clear, for a calculation accurate to N pN orders, all self-force ℓ-modes

satisfying ℓ ≥ N + 1 are described by a single general pN expression, which can be

summed analytically from ℓ = N + 1 to ℓ = ∞.

In the following sections, the method introduced by Hikida et al [3] is reviewed

and their results regarding the application of this method to the calculation of the scalar

self-force for a particle in a circular geodesic in Schwarzschild [43] are reproduced. The

calculation done in this work differs slightly from the one in Hikida et al. [43] by the

fact that the self-force modes that are not covered by the generic pN expression (i.e. the

modes with ℓ < N + 1) are evaluated numerically, while in their work, individual pN

expansions are written for each one of these modes.

6.1 FRAMEWORK FORANALYTICAL REGULARIZA-

TION

Throughout this chapter, the MST solutions in series of Coulomb functions satis-

fying the in (4.65) and up (4.47) boundary conditions are adopted for the construction of

the radial modes of the retarded Green’s function (2.54). The radial modes in equation

(2.54) are re-expressed by explicitly writing 0R
in
ℓmω(r) = Rin

C (r) and 0R
up
ℓmω(r) = Rup

C (r),

gℓmω(r, r
′) =

−1

W
in/up
ℓmω

(
Rin

C (r)Rup
C (r′)Θ(r′ − r) +Rup

C (r) Rin
C (r′)Θ(r − r′)

)
, (6.1)

where

Rin
C (r) = KνR

ν
C(r) +K−ν−1R

−ν−1
C (r), (6.2)

Rup
C (r) = γνR

ν
C(r) + δνR

−ν−1
C (r). (6.3)

Even though the same notation is maintained, all of the MST quantities discussed in

this chapter are to be considered specializations for s = 0 of the ones constructed in

Chapter 4. By substituting the above equations into (6.1), one can express the radial

Green’s function modes in terms of the two independent Coulomb series solutions Rν
C

and R−ν−1
C (r). When doing so, due to the fact that Rin

C and Rup
C are linear combinations

of the same two basis functions, many of the terms that arise end up not carrying Theta

functions (i.e. the identity Θ(x)+Θ(−x) = 1 appears). Then, by collecting these terms,
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the following separation of the Green’s function modes is introduced [3]:

gℓmω(r, r
′) = gR̃ℓmω(r, r

′) + gS̃ℓmω(r, r
′), (6.4)

gR̃ℓmω(r, r
′) ≡ −1

(Kνδν −K−ν−1γν)W ν/−ν−1

{
δνK−ν−1R

−ν−1
C (r)R−ν−1

C (r′)+ (6.5)

+ γνKνR
ν
C(r)R

ν
C(r

′) + γνK−ν−1

(
R−ν−1

C (r)Rν
C(r

′) +R−ν−1
C (r′)Rν

C(r)
)}

,

gS̃ℓmω(r, r
′) ≡ −1

W ν/−ν−1

(
Rν

C(r)R
−ν−1
C (r′)Θ(r′ − r) +R−ν−1

C (r)Rν
C(r

′)Θ(r − r′)
)
, (6.6)

where

W ν/−ν−1 ≡ ∆W(Rν
C , R

−ν−1
C ), (6.7)

and W(Rν
C , R

−ν−1
C ) is the Wronskian of the two independent solutions calculated as in

equation (2.55). One can see that gR̃ℓmω(r, r
′) is a linear combination of homogeneous

solutions to the radial equation and, therefore, is itself a homogeneous solution. Thus,

contributions from this part of the Green’s function modes to the self-force must be

regular.

In the context of the separation of the radial Green’s function modes shown in

equations (6.4)–(6.6), the full self-force is expressed as

Fα = F R̃
α + F S̃

α , (6.8)

where F R̃
α and F S̃

α are the contributions to the self-force calculated from gR̃ℓmω(r, r
′) and

gS̃ℓmω(r, r
′), respectively. These are defined by replacing gℓmω(r, r

′) for either gR̃ℓmω(r, r
′)

or gS̃ℓmω(r, r
′) in equation (2.61) and calculating the respective self-force contributions

according to equation (2.7). Next, this separation is compared to the Detweiler-Whiting

decomposition presented in Chapter 2, in which the full self-force is separated as in

equation (2.40),

Fα = FR
α + FS

α . (6.9)

Since Fα is independent of the particular scheme adopted, the physical regularized self-

force, FR
α , can be expressed in terms of the remaining quantities by equating (6.8) and

(6.9),

FR
α = F R̃

α + F S̃
α − FS

α . (6.10)
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The fact that both FR
α and F R̃

α are regular implies that the singular contributions coming

from FS
α must be completely canceled out by those coming from F S̃

α . That is, F S̃−S
α ≡

F S̃
α − FS

α must be regular. This fact constrains the ℓ-modes of F S̃
α to have the following

structure:

F S̃
α,ℓ = ±AαL+Bα + D̃α,ℓ, (6.11)

where Aα and Bα are exactly the same regularization parameters as those coming from

F S̃
α in equation (2.45). The quantity D̃α,ℓ is at most O(ℓ−2) and is not constrained to

be equal to the parameter Dα,ℓ in equation (2.45), since the ℓ-sums of both of these

quantities converge. In fact, since
∑∞

ℓ=0Dα,ℓ = 0, the D̃α,ℓ terms give the only non-

vanishing contributions to F S̃−S
α ,

F S̃−S
α ≡

∞∑
ℓ=0

(
F S̃
α,ℓ − FS

α,ℓ

)
=

∞∑
ℓ=0

D̃α,ℓ. (6.12)

Similar to the separation done in the previous chapter, the modes of gS̃ℓω(r, r
′) will

be split into symmetric and anti-symmetric parts,

gS̃ℓω(r, r
′) = sign(r − r′)g

S̃(−)
ℓω (r, r′) + g

S̃(+)
ℓω (r, r′), (6.13)

g
S̃(±)
ℓω (r, r′) ≡ −1

2W
ν/−ν−1
ℓω

(
Rν

C(r)R
−ν−1
C (r′)±Rν

C(r
′)R−ν−1

C (r)
)
. (6.14)

As proven in [3, Appendix B], the contribution to self-force modes coming from the

g
S̃(−)
ℓω (r, r′) part of the radial Green’s function modes yield exactly the Aα regularization

parameter for any orbit. This allows for F S̃−S
α to also be expressed as

F S̃−S
α =

∞∑
ℓ=0

F
S̃(+)
α,ℓ −Bα, (6.15)

where F
S̃(+)
α,ℓ is the self-force contribution calculated from the g

S̃(+)
ℓω (r, r′) modes, which

is led by Bα for large ℓ. Thus, the obtention of only the F
S̃(+)
α,ℓ modes together with Bα

is enough for the calculation of the F S̃−S
α contribution to FR

α .

6.2 POST-NEWTONIAN EXPANSIONS

With the goal of rendering possible the analytical integration of the Green’s func-

tion modes over frequency, post-Newtonian expansions for these quantities shall be con-

structed. A post-Newtonian expansion is said to be of order N (and may also referred
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to as an N PN expansion) if contains terms up O(v2N), where v is the velocity of the

particle. In the slow motion approximation, one takes ẑ = ωr ∼ Ωr = O(v) (for a cir-

cular geodesic, the second relation becomes an equality). This construction also implies

that ϵ/ẑ = 2M/r = O(v2), which corresponds to a weak-field expansion.

At this point, it is convenient to perform a change in the normalization of the

homogeneous solutions so that, except for the overall factor of ẑν in equation (4.35), the

leading order in the pN expansion of the solutions with the new normalization is unit.

Solutions with the new normalization are defined as:

ϕν
C ≡ Γ(2ν + 2)

Γ(ν + 1 + iϵ)
Rν

C , (6.16)

and the new normalization for the other independent solution is found by replacing

ν → −ν − 1 in the above equation. The Green’s functions modes in equations (6.5)–

(6.6) can easily be re-expressed in terms of the solutions with this new normalization.

Next, the following quantities are defined:

Φν ≡
∞∑

n=−∞
aνnΦ

ν
n, ϕν

C = (2ẑ)νΦν . (6.17)

Φν
n ≡ e−iẑ

(
1− ϵ

ẑ

)−iϵ
[
(ν + 1− iϵ)n
(2ν + 2)2n

(−2iẑ)n 1F1(n+ ν + 1 + iϵ, 2n+ 2ν + 2; 2iẑ)

]
.

(6.18)

The analogous quantities referring to the other independent solution are obtained by

replacing ν → −ν − 1 in the above expressions.

6.2.1 Properties of the three-term recurrence relation

To start tackling the construction of pN expansions for the independent MST solu-

tions and ultimately for the Green’s function modes, the three-term recurrence relation

(4.10) that determines the coefficients aνn and the renormalized angular momentum ν

shall be studied. Following the analysis in [2; 37], expansions for aνn and ν in powers of

ϵ can be obtained by perturbatively solving the recurrence relation about ϵ = 0 subject

to the requirement that ν → ℓ for ϵ → 0. An important aspect of this analysis is that

generic series expansions for the recurrence relation coefficients (4.11)–(4.13) are not

uniform in n and ℓ, meaning that a general formula for the expansions of aνn and ν valid

for every n and ℓ cannot be written. The behaviour of these coefficients shall now be

studied for fixed integer ℓ > 0 (as shall be seen, ℓ = 0 needs to be handled separately).
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The following statements can be made about the coefficients:

αν
n = iϵ

(n+ ℓ+ 1)2

2ℓ+ 2n+ 3
+O(ϵ2) = O(ϵ) for n ̸= −ℓ− 1, (6.19)

βν
n = n(n+ 2ℓ+ 1) +O(ϵ) = O(1) for n ̸= −2ℓ− 1, n ̸= 0, (6.20)

γνn = iϵ
(ℓ+ n)2

2ℓ+ 2n− 1
+O(ϵ2) = O(ϵ). for n ̸= −ℓ. (6.21)

Whenever the coefficients are given by the non-special cases in the above equations, it

will be said that they are regular behaved. For n > 0, no special value arises and the

continued fraction equation (4.14) schematically acquires the form:

Rν
n =

O(ϵ)

O(1) +O(ϵ) O(ϵ)
O(1)+...

= O(ϵ) for n > 0, (6.22)

which implies that every next coefficient of the series in the direction of positive n

acquires a factor of ϵ,

aνn = O(ϵn) for n ≥ 0. (6.23)

In this case, the coefficients aνn and the continued fraction Rν
n will also be said to be

regular behaved.

Before tackling the study of the coefficients for n < 0, a constrain on ν can be

obtained by demanding that equation (4.18) is satisfied for n = 0,

Rν
1L

ν
0 = 1, (6.24)

Since Rν
1 = O(ϵ), one must have

Lν
0 = − αν

0

βν
0 + γν0L

ν
−1

= O(ϵ−1) (6.25)

for this equality to hold. Furthermore, the fact that αν
0 = O(ϵ) (6.19), implies that

the denominator of this continued fraction equation must be O(ϵ2). Accounting for the

expressions for these coefficients, this can only happen in two scenarios: either βν
0 = O(ϵ)

and Lν
−1 = O(1) but the leading order terms in the denominator cancel out (for any ℓ)

or βν
0 and Lν

−1 are at most O(ϵ2) and O(ϵ), respectively, and no cancellation is required.

The latter case will be taken as assumption and later checked for consistency. The fact

that βν
0 = O(ϵ2) implies that −ℓ(ℓ+1)+ν(ν+1) in equation (4.12) is O(ϵ2) or, in other

words,

ν = ℓ+O(ϵ2). (6.26)
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Using this relation, one can determine the leading order in ϵ of the coefficients and of

Lν
n for the special values of n in (6.21). The behaviour of Lν

n for any given n < 0 and

for ℓ ̸= 0 is found to be [2]:

Lν
n =


O(ϵ2) for n = −ℓ− 1,

O(1/ϵ) for n = −2ℓ− 1,

O(ϵ) for all other n < 0.

(6.27)

One can check that the assumption Lν
−1 = O(ϵ) is consistent with these expressions.

Then, each next coefficient in the negative n direction acquires a factor of ϵ until it

reaches an irregular behaved Lν
−ℓ−1,

aνn = O(ϵ−n) for − ℓ− 1 < n < 0. (6.28)

As in the positive case, these are said to have regular behaviour. An important fact is

that one can calculate coefficients up to aν−ℓ = O(ϵℓ) before encountering coefficients

with irregular behaviour. Then, if one is to write an expression that needs expansions of

the coefficients up to O(ϵℓ), no knowledge of the irregular behaved coefficients is needed,

as they are of too high order. When building the pN expansions for the independent

MST solutions, this fact will allow for the writing of a general pN formula for Φν valid

for large enough ℓ compared to the desired pN order, meaning ℓ values for which the

contributions associated with irregular behaved coefficients appear beyond the given pN

order.

6.2.2 Expansions for large enough ℓ

Now, the construction of generic pN expansions for gS̃ℓω(r, r
′) and gR̃ℓω(r, r

′) is dis-

cussed. To do so, it will be useful to re-write equation (6.18) for Φν
n by expressing the

confluent hypergeometric function in its series representation (4.57),

Φν
n = e−iẑ

(
1− ϵ

ẑ

)−iϵ
[
(−2iẑ)n

(ν + 1− iϵ)n
(2ν + 2)2n

∞∑
j=0

(n+ ν + 1 + iϵ)j
(2n+ 2ν + 2)jj!

(2iẑ)j

]
. (6.29)

One can note that the leading term in the pN expansion of this quantity is proportional to

ẑn = O(vn). For n ≥ 0, equation (6.23) states that aνn = O(ϵn) = O(v3n), which implies

aνnΦ
ν
n = O(v4n). Thus, to obtain an expansion for Φν containing terms up to O(v2N) the

sum over positive n can be halted at n = N/2. For negative n, the last regular behaved

coefficient is aν−ℓ. In the interval −ℓ ≤ n < 0, one has aν−n = O(ϵn) = O(v3n), which

implies aν−nΦ
ν
−n = O(v2n). Therefore, an expansion for Φν obtained only with knowledge

of the regular behaved coefficients is accurate up to the ℓ-th pN order. For Φ−ν−1, one
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order of accuracy is lost due to factors of 1/ϵ arising from expanding the Pochhammer

symbols about negative integer values. In this case, the expansion containing only regular

behaved coefficients is accurate to (ℓ− 1)-th pN order. Thus, for a calculation accurate

to the N-th pN order, all modes satisfying ℓ ≥ N +1 are considered large enough so that

pN expansions of both independent solutions contain only contributions from regular

behaved coefficients.

To obtain expansions for the renormalized angular momentum, one can express

the three-term recurrence relation (4.10) for n = 0 as a continued fraction equation,

αν
0R

ν
1 + βν

0 + γν0L
ν
−1 = 0, (6.30)

expand it in powers of ϵ and solve it for the expansion coefficients of ν. General ex-

pansions can be obtained by assuming regular behaviour up to a given negative n. For

example, by assuming regular behaviour up to n = −2, a generic expansion for ν accurate

to O(ϵ4) = O(v12) is obtained:

ν = ℓ+
2∑

k=1

ν2kϵ
2k, (6.31)

ν2 = − 15ℓ2 + 15ℓ− 11

2(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)
, (6.32)

ν4 = − 1

8ℓ(ℓ+ 1)(2ℓ− 3)(2ℓ− 1)3(2ℓ+ 1)3(2ℓ+ 3)3(2ℓ+ 5)

(
18480ℓ10 + 92400ℓ9 + 9800ℓ8+

− 235200ℓ7 − 382305ℓ6 + 64365ℓ5 + 278260ℓ4 − 9955ℓ3 − 73892ℓ2 + 8733ℓ+ 3240

)
,

These expressions of course do not hold for ℓ = 0 and ℓ = 1, since either Lν
−1 or Lν

−2 are

not regular behaved in these cases. The inclusion of higher-order terms in this expansion

is relatively easy, but for each next-order correction added, the general formula becomes

invalid for the next ℓ-mode (e.g. to obtain a general expression for the O(ϵ6) correction,

one would have to assume that Lν
−3 is regular behaved, thus rendering the general form

of this correction invalid for ℓ ≤ 2).

In possession of an expansion for ν, expansions for the series coefficients aνn are

obtained by expanding equations (4.19) and (4.20) in powers of ϵ. To obtain generic pN

expansions for Φν valid for N ≤ ℓ, one can set ẑ → vẑ and ϵ → v3ϵ and expand Φν in

powers of v, truncating at order O(v2N). Here, the generic formula for the expansion of
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Φν including terms up to third pN order (3PN) is explicitly written:

Φν = 1−
[

ẑ2

2(2ℓ+ 3)
+

ℓϵ

2ẑ

]
+

[
ẑ4

8(2ℓ+ 3)(2ℓ+ 5)
+

(
ℓ2 − 5ℓ− 10

)
ẑϵ

4(ℓ+ 1)(2ℓ+ 3)
+

+
ℓ(ℓ− 1)2ϵ2

4(2ℓ− 1)ẑ2

]
+

[(
4ℓ2 + 46ℓ+ 135

)
ẑ6

720(2ℓ+ 3)(2ℓ+ 5)
−

(
3ℓ3 − 27ℓ2 − 142ℓ− 136

)
ẑ3ϵ

48(ℓ+ 1)(ℓ+ 2)(2ℓ+ 3)(2ℓ+ 5)
+

−
(
ℓ3 − 18ℓ2 + 17ℓ− 4

)
ϵ2

8(2ℓ− 1)2
− ℓ(ℓ− 2)2(ℓ− 1)ϵ3

24(2ℓ− 1)ẑ3

]
+O(v8) (6.33)

Terms of higher order are given in Appendix B. This particular expression is valid for

ℓ ≥ 3. An expansion for Φ−ν−1 valid for ℓ ≥ 4 is easily obtained by replacing ℓ → −ℓ−1

in the above expression.

Next, the construction of pN expansions for gS̃ℓmω(r, r
′) and gR̃ℓmω(r, r

′) from the ex-

pansions of Φν and Φ−ν−1 is discussed. From the fact that Φν = O(1) and Φ−ν−1 = O(1),

one has ϕν
C = O(vℓ) and ϕ−ν−1

C = O(v−ℓ−1). When recovering the original normaliza-

tion of the homogeneous solutions through the inversion of equation (6.16), the solution

R−ν−1
C acquires a factor of ϵ. Thus, Rν

C = O(vℓ) and R−ν−1
C = O(v−ℓ+2). The leading

contribution to the Wronskian is found to be:

W(Rν
C , R

−ν−1
C )

ω
= −Γ(ν + 1 + iϵ)

Γ(2ν + 2)

Γ(−ν + iϵ)

Γ(−2ν)

[
(2ℓ+ 1)

ẑ2
+O(ϵ2)

]
= O(v) (6.34)

Then, the denominator in the equation for gS̃ℓω(r, r
′) (6.6) satisfies ωW ν/−ν−1 = O(ϵ),

which implies:

gS̃ℓmω(r, r
′) = O(1). (6.35)

This fact implies that all ℓ-modes of gS̃ℓmω(r, r
′) up to ℓ = ∞ are of the same order

in the pN expansion, meaning that the ℓ-sum cannot be truncated at some finite ℓ.

This shall not be a problem since expansions for all modes satisfying ℓ ≥ N + 1 can be

retrieved from the generic pN formulas for the homogeneous solutions as the one shown

in equation (6.33).

To understand how many ℓ-modes of gR̃ℓmω(r, r
′) need to be computed, one needs

to obtain expansions for the remaining quantities in equation (6.5). By replacing ν

with ν = ℓ+O(ϵ2) in equations (4.48)–(4.49) and (4.63) and expanding for small ϵ, the

following relations are obtained:

γν = O(1); δν =O(1); Kν = O(v−3ℓ−6); K−ν−1 = O(v3ℓ). (6.36)
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With the use of these relations, the leading term in the pN expansion of gR̃ℓmω(r, r
′) is

found to be

gR̃ℓmω(r, r
′) ∼ −

γνR
ν
C(r)R

ν
C(r

′)

δνW ν/−ν−1
= O(v2(ℓ−1)). (6.37)

Thus, one needs to obtain N+1 ℓ-modes of gR̃ℓω(r, r
′) for a calculation accurate to N pN

orders.

At this point, it is worth highlighting a remarkable property of gS̃ℓmω(r, r
′). As

seen in equation (6.33), apart from the factors of ẑν and ẑ−ν−1, the pN expansions

for the homogeneous Coulomb series solutions depend on the Fourier-frequency only

through integer (and also even) powers of ω. While the overall factors of ẑν and ẑ−ν−1

contain terms like log(ẑ) in their pN expansions, no log(ω) term appears in the pN

expansion of gS̃ℓmω(r, r
′), since these modes only depend on the homogeneous solutions

through combinations of the form Rν
C(r)R

−ν−1
C (r′), meaning that the factors of ων and

ω−ν cancel out (i.e. ẑν ẑ′−ν−1 = ω−1rνr′−ν−1). This implies that pN expansions of

gS̃ℓmω(r, r
′) are easily transformed analytically to the time domain. The other part of the

radial Green’s function modes, gR̃ℓω(r, r
′), do not share this property, since it contains

other combinations of Rν
C(r) and R−ν−1

C (r′). However, since gR̃ℓω(r, r
′) is associated with

regular contributions to the self-force, there is no issue in performing a full numerical

evaluation of the ℓ-modes of F R̃
α , as the ℓ-sum of these should converge exponentially.

6.3 THE SELF-FORCE FOR A PARTICLE IN A CIR-

CULAR GEODESIC

In addition to a general formula for the pN expansion of Φ(ν/−ν−1) for large enough

ℓ, a full analytical evaluation of F S̃−S
α accurate to N pN orders requires the obtention of

other N+1 expansions for the modes that are not covered by the generic formula. Instead

of obtaining such expansions, a semi-analytical calculation scheme shall be adopted. This

approach differs from Hikida et al (2005) [43] by the fact that they obtain individual pN

expansions for each one of the ℓ < N+1 modes, while these are evaluated and regularized

numerically in this work. In principle, one can start the analytical evaluation with the

use of the generic pN formulas at ℓ = N + 1. However, by instead starting at any

ℓ ≥ N+ 2, the computation of pN expansions for gR̃ℓmω(r, r
′) is bypassed, since equation

(6.37) implies that the leading term in the pN expansion of these modes will be at most

O(v2N+2). With this in mind, the following regularization procedure is proposed:

FR
α = FR,num

α + FR,pN
α , (6.38)
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FR,num
α ≡

ℓ0−1∑
ℓ=0

(
Fα,ℓ −AαL−Bα

)
, (6.39)

FR,pN
α ≡

∞∑
ℓ=ℓ0

F S̃−S
α,ℓ =

∞∑
ℓ=ℓ0

(
F

S̃(+)
α,ℓ −Bα

)
, (6.40)

where ℓ0 is some integer satisfying ℓ0 ≥ N + 2. The evaluation of FR,pN
α shall be

carried out analytically with the use of the general pN formulas, while the contributions

from the low-ℓ modes, FR,num
α , are to be evaluated numerically from equation (5.4)

with the Green’s function radial modes given in terms of the MST series solutions,

which are truncated after some desired precision is reached. For the circular geodesic

calculation, the regularization of the low ℓ-modes of the r-component of the self-force will

be performed by numerically subtracting the Ar and Br parameters given in equations

(5.31) and (5.45). The remaining components require no regularization, meaning that

they can be trivially calculated numerically and shall not be discussed in this work.

To obtain a pN expansion for F
S̃(+)
α,ℓ , g

S̃(+)
ℓmω (r, r′) is expressed as a sum over powers

of ω by collecting terms from all pN orders,

g
S̃(+)
ℓmω (r, r′) =

∞∑
k=0

ω2kg
S̃(+)
ℓmk (r, r′), (6.41)

where g
S̃(+)
ℓmk (r, r′) has been implicitly defined in the above equation as the coefficient to

the 2k-th power of ω in the pN expansion of g
S̃(+)
ℓmω (r, r′). These modes are transformed

into the time-domain by using the formula:∫ ∞

−∞

dω

2π
e−iω(t−t′)ω2kg

S̃(+)
ℓmk (r, r′) = (−1)kδ(k)(t− t′)g

S̃(+)
ℓmk (r, r′), (6.42)

where δ(n)(x) stands for the n-th derivative of the Delta function, δ(n)(x) ≡ ∂n
x δ(x). For

a generic geodesic orbit, the F
S̃(+)
α,ℓ contribution to the self-force modes at x = z(τ = 0)

is given by

F
S̃(+)
α,ℓ = 4πq2(δβα + uαu

β) lim
x→z(0)

∇β

ℓ∑
m=−ℓ

∞∑
k=0

∫ 0+

−∞
dτ

(
(−1)kδ(k)(t− zt(τ)) (6.43)

× g
S̃(+)
ℓmk (r, zr(τ))Yℓm(θ, φ)Y ∗

ℓm(zθ(τ), zφ(τ))

)
,
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where the worldline integration is easily performed by changing variables to zt,

F
S̃(+)
α,ℓ = lim

x→z(0)
4πq2(δβα + uαu

β)∇β

ℓ∑
m=−ℓ

∞∑
k=0

{
(−1)k∂2k

t

[
dτ(t)

dt
× (6.44)

× g
S̃(+)
ℓmk (r, zr(τ))Yℓm(θ, φ)Y ∗

ℓm(zθ(t), zφ(t))

]}
.

Now, equation (6.44) is specialized to a circular equatorial geodesic described by

the relations (5.1),

F
S̃(+)
α,ℓ = lim

x→z(0)

4πq2

ut
(δβα + uαu

β)∇β

ℓ∑
m=−ℓ

∞∑
k=0

{
(−1)kg

S̃(+)
ℓk (r, r0) (6.45)

× ∂2k
t Yℓm(π/2, φ)Y ∗

ℓm(π/2,Ωt)

}
.

To perform the summation over m, the formula given in [3] (with the correction found

in [44]) is used:

ℓ∑
m=−ℓ

m2n
∣∣∣Yℓm (π

2
, φ
)∣∣∣2 = λn(ℓ), for integer n, (6.46)

ℓ∑
m=−ℓ

m2n+1
∣∣∣Yℓm (π

2
, φ
)∣∣∣2 = 0, for integer n, (6.47)

where λn(ℓ) is implicitly defined by Taylor expanding

∞∑
n=0

λn(ℓ)x
2n

(2n)!
=

2ℓ+ 1

4π
eℓx2F1

(
1/2,−ℓ; 1; 1− e−2x

)
(6.48)

about x = 0 and equating the coefficients to each power of x. One can see that the t

and φ components of the self-force modes in equation (6.45) vanish, since one would be

taking an odd amount of derivatives of the spherical harmonic functions. Thus, the only

non-vanishing component of F
S̃(+)
α,ℓ is

F
S̃(+)
r,ℓ =

4πq2

ut

ℓ∑
m=−ℓ

∞∑
k=0

Ω2k

{
∂rg

S̃(+)
ℓk (r, r0)|r=r0m

2k|Yℓm(π/2,Ωt)|2
}
.

=
4πq2

ut

N∑
k=0

Ω2kλk(ℓ)∂rg
S̃(+)
ℓk (r, r0)|r=r0 (6.49)
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Here, the first few orders of the pN expansion of F
S̃(+)
r,ℓ , calculated from the general pN

formula (6.33), are written

F
S̃(+)
r,ℓ = − q2

2r20u
t

[
1−

(
2M

r0
− ℓ(ℓ+ 1)

(2ℓ− 1)(2ℓ+ 3)

)
(r0Ω)

2+ (6.50)(
6
(
3ℓ2 + 3ℓ− 2

)
(4ℓ2 + 4ℓ− 3)

(
M

r0

)2

−
9ℓ(ℓ+ 1)

(
3ℓ2 + 3ℓ− 2

)
4(2ℓ− 3)(2ℓ− 1)(2ℓ+ 3)(2ℓ+ 5)

)
(r0Ω)

4

]
+O(v6).

Since F
S̃(+)
r,ℓ is led by Br for large ℓ. A pN expansion for Br can be obtained by calculating

limℓ→∞ F
S̃(+)
α,ℓ ,

Br = − q2

2r20u
t

[
1− 2

(
M

r0
− (r0Ω)

2

4

)
+

(
9M2

2r20
− 27

64
(r0Ω)

4

)]
+O(v6). (6.51)

Then, by subtracting the above terms from F
S̃(+)
α,ℓ , a pN expansion for F S̃−S

α,ℓ is obtained,

F S̃−S
r,ℓ =

q2

r20u
t

[
3(r0Ω)

2

8(2ℓ− 1)(2ℓ+ 3)
− 3

4 (4ℓ2 + 4ℓ− 3)

(
M

r0

)2

+ (6.52)

+

(
9
(
184ℓ2 + 184ℓ− 135

)
128(2ℓ− 3)(2ℓ− 1)(2ℓ+ 3)(2ℓ+ 5)

)
r40Ω

4

]
+O(v6).

In Appendix B, pN expansions for the above quantities accurate up to five pN orders are

given. The 8PN expansions that are used for the upcoming calculations shall be made

available in a Mathematica notebook by the date of this thesis defense.

To estimate the error of a N -th pN order expansion of F S̃−S
r,ℓ , one can calculate

the (N+1)-th order correction to that expression. In Figure, 6.1 a plot of the estimated

error of a 7PN expansion of F S̃−S
r,ℓ as a function of ℓ and q =

√
4π and r0 = 6M is shown.

One can see that significant accuracy in the final result may be gained by starting the

analytical evaluation at a slightly higher ℓ0 value than ℓ0 = N+ 2.
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Figure 6.1: Estimated relative error of a 7PN expansion of F S̃−S
α,ℓ , obtained by calcu-

lating the 8PN correction to that expression, as a function of ℓ for M = 1, q =
√
4π at

various values of r0.

To evaluate FR,pN
r in equation (6.38), an 8PN general expansion for F S̃−S

r,ℓ is

summed analytically to infinity starting from different values of ℓ0 ≥ N + 2, while the

remaining modes in FR,num
r are evaluated numerically with the use of the Black Hole

Perturbation Toolkit [6] implementation of the MST method. The results obtained for

the self-force FR
α for various values of ℓ0 and r0 are shown in Table 6.1. These are

compared to the results in N. Warburton & L. Barack (2010) [45], which were obtained

by performing a numerical evaluation of the self-force modes up to ℓ = 50 and applying

a fitting technique to evaluate the contributions from the ℓ > 50 modes.

r0 ℓ0 FR,RpN
r FR

r Ref. value [45] | Rel. error |
10 1.212213× 10−4 1.654451× 10−4 0.01

6M 15 7.947239× 10−5 1.664123× 10−4 1.677283× 10−4 0.008

20 5.927987× 10−5 1.667781× 10−4 0.006

10 1.659632× 10−5 1.377700× 10−5 0.0005

10M 15 1.097126× 10−6 1.378068× 10−5 1.378448× 10−5 0.0003

20 8.205166× 10−6 1.378172× 10−5 0.0002

10 5.078874× 10−6 2.719935× 10−6 5× 10−5

14M 15 3.366070× 10−6 2.719996× 10−6 2.720083× 10−6 3× 10−5

20 2.519512× 10−6 2.720020× 10−6 2× 10−5

Table 6.1: Results for the self-force for particle in a circular geodesic at different r0
radius and for q2 = 4π and M = 1, calculated according to (6.38) with the use of 8PN
expansions for FR,RpN

r and for different ℓ0 values. In the last columm, one can see the
relative error of the expressions obtained compared to the results in [45] rounded to the
first significant figure.
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As expected, the results obtained for FR
r in Table 6.1 show great agreement with

the results taken from the literature the larger the orbital radius is. However, even for

the innermost stable circular orbit (ISCO) at r0 = 6M , where the pN series is expected

to converge more slowly, one can still get a relatively accurate result using the 8PN

expansions by calculating more ℓ-modes numerically.



Chapter 7

CONCLUSION

In this thesis a rather self-contained calculation of the scalar self-force for a cir-

cular geodesic in Schwarzschild spacetime has been performed through the review and

application of various techniques found in the literature. Two different methods for ob-

taining homogeneous solutions to the field equations were discussed, in the form of the

approximate large-ℓ WKB solutions derived in Chapter 3 and of the MST [2] solutions

reviewed in Chapter 4, and used in conjunction to calculate the self-force for circular

geodesic using an adaptation of the regularization method taken from Hikida et al (2004)

[3]. The obtained results showed good agreement with the reference values, even though

as few as 20 ℓ-modes have been explicitly computed numerically (compared to the 50

ℓ-modes computed in the results taken from the literature) and the chosen pN order for

evaluation of the remaining modes was relatively low (8PN).

An immediate generalization to the work done in this thesis would be to attempt to

obtain higher-order regularization parameters for the circular geodesic in Schwarzschild

spacetime with the use of the WKB solutions obtained. A generalization of such results

to other geodesic orbits would also be of great value.

72



Appendix A

EXPRESSION FOR THE Sℓω0
0 (r)

TERM OF THE WKB SERIES

For the purpose of illustrating the complexity of the even n functions in the WKB

series solution to the Regge-Wheeler equation, the full expression for Sℓω0
0 (r) is given:

Sℓω0
0 (r) =

(r − x2)
2(x1 − x4)

√
(r−x3)(x1−x2)
(r−x2)(x1−x3)

√
(r−x1)(r−x4)(x1−x2)(x2−x4)

(r−x2)2(x1−x4)2

r2
√
Uℓω0(r)x2(x2 − 2M)(x2 − x1)(x2 − x4)

×

×

(
2(2M − x2)(l(l + 1)x2 + 2M) + x2ω

2(x4(x2 − 2M)(x2 − x1)+

+ x2(2M(x2 − x1) + x2(x1 + x2)))

)
F
(
sin−1

(√
p(r)

)∣∣∣ q)+
ω2(r − x2)(r − x3)(x1 − x4)

√
(r−x1)(r−x4)(x1−x2)(x2−x4)

(r−x2)2(x1−x4)2

r2
√
Uℓω0(r)

√
(r−x3)(x1−x2)
(r−x2)(x1−x3)

E
(
sin−1

(√
p(r)

)∣∣∣ q)+
1

r2
√
Uℓω0(r)

{
(r − x2)

2(x1 − x4)
√

(r−x3)(x1−x2)
(r−x2)(x1−x3)

√
(r−x1)(r−x4)(x1−x2)(x2−x4)

(r−x2)2(x1−x4)2

x1x2(x1 − 2M)(2M − x2)(x2 − x4)
+

− ω2(r − x1)(r − x3)(r − x4)[
4M(2M − x1)(2M − x2)Π

(
x2(x1 − x4)

x1(x2 − x4)
; sin−1

(√
p(r)

)∣∣∣ q)
x1x2ω

2(2M − x1)(2M − x2)(4M + x1 + x2 + x3 + x4)×

×Π

(
x1 − x4

x2 − x4
; sin−1

(√
p(r)

)∣∣∣ q)+

− 16M3x1x2ω
2Π

(
(x2 − 2M)(x4 − x1)

(x1 − 2M)(x4 − x2)
; sin−1

(√
p(r)

)∣∣∣ q)]}.+ C0
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Here,

q ≡ (x1 − x4)(x2 − x3)

(x1 − x3)(x2 − x4)
, (A.1)

p(r) ≡ (r − x1)(x2 − x4)

((r − x2)(x1 − x4)
, (A.2)

and (x|y) and Π(x; y|z) are complete elliptic integrals of the second and third kind, respectively,

and F (x|y) denotes the incomplete elliptic integral of the first kind. The quantities xi are

(complex) solutions to the quartic equation:

Uℓω0(x) = 0. (A.3)



Appendix B

PN EXPANSIONS

In the equations below 5PN expansions for various quantities defined in Chapter 6 are

written.

Φν =

10∑
k=0

pk (B.1)

p0 = 1 (B.2)

p2 = − z2

4ℓ+ 6
− ℓϵ

2z
(B.3)

p4 =
z4

32ℓ2 + 128ℓ+ 120
+

(
ℓ2 − 5ℓ− 10

)
zϵ

4(ℓ+ 1)(2ℓ+ 3)
+

(ℓ− 1)2ℓϵ2

(8ℓ− 4)z2
(B.4)

p6 = − z6

48(2ℓ+ 3)(2ℓ+ 5)(2ℓ+ 7)
+

(
−3ℓ3 + 27ℓ2 + 142ℓ+ 136

)
z3ϵ

48(ℓ+ 1)(ℓ+ 2)(2ℓ+ 3)(2ℓ+ 5)
+ (B.5)

−
(
ℓ3 − 18ℓ2 + 17ℓ− 4

)
ϵ2

8(1− 2ℓ)2
− (ℓ− 2)2(ℓ− 1)ℓϵ3

(48ℓ− 24)z3

p8 =
(ℓ− 3)2(ℓ− 2)2(ℓ− 1)ℓϵ4

96 (4ℓ2 − 8ℓ+ 3) z4
+

(
5ℓ4 − 60ℓ3 − 625ℓ2 − 1548ℓ− 1108

)
z5ϵ

480(ℓ+ 1)(ℓ+ 2)(ℓ+ 3)(2ℓ+ 3)(2ℓ+ 5)(2ℓ+ 7)
+(

2ℓ6 − 61ℓ5 + 53ℓ4 + 386ℓ3 − 286ℓ2 − 4ℓ+ 24
)
ϵ3

48(1− 2ℓ)2ℓ(2ℓ+ 1)z
+

z8

384(2ℓ+ 3)(2ℓ+ 5)(2ℓ+ 7)(2ℓ+ 9)
+

+
z2ϵ2

96(1− 2ℓ)2(ℓ+ 1)(ℓ+ 2)(2ℓ+ 1)(2ℓ+ 3)3(2ℓ+ 5)
(48ℓ9 − 1152ℓ8 − 7040ℓ7+

− 8212ℓ6 + 10953ℓ5 + 15745ℓ4 − 10867ℓ3 − 7749ℓ2 + 6930ℓ− 768) (B.6)

p9 =
3i
(
3ℓ2 + 3ℓ− 2

)
ϵ3

2ℓ(ℓ+ 1)(2ℓ− 1)(2ℓ+ 3)
(B.7)
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p10 = − (ℓ− 4)2(ℓ− 3)2(ℓ− 2)(ℓ− 1)ℓϵ5

960 (4ℓ2 − 8ℓ+ 3) z5
− z10

3840(2ℓ+ 3)(2ℓ+ 5)(2ℓ+ 7)(2ℓ+ 9)(2ℓ+ 11)
+

− (ℓ(7ℓ(5ℓ((ℓ− 14)ℓ− 253)− 5822)− 73032)− 43968)z7ϵ

26880(ℓ+ 1)(ℓ+ 2)(ℓ+ 3)(ℓ+ 4)(2ℓ+ 3)(2ℓ+ 5)(2ℓ+ 7)(2ℓ+ 9)
+

− z4ϵ2

960(1− 2ℓ)2(ℓ+ 1)(ℓ+ 2)(ℓ+ 3)(2ℓ+ 1)(2ℓ+ 3)3(2ℓ+ 5)2(2ℓ+ 7)
(160ℓ11 − 5200ℓ10+

− 53840ℓ9 − 74872ℓ8 + 715258ℓ7 + 3065539ℓ6 + 4173300ℓ5 + 569492ℓ4 − 2743668ℓ3+

− 883399ℓ2 + 690870ℓ+ 37080)+

− zϵ3

192(1− 2ℓ)2ℓ(ℓ+ 1)2(2ℓ+ 1)(2ℓ+ 3)3(2ℓ+ 5)
(6480 + 59568ℓ+−115776ℓ2+

− 278316ℓ3 + 67017ℓ4 + 453521ℓ5 + 405867ℓ6 + 169443ℓ7 + 31236ℓ8 − 672ℓ9+

− 768ℓ10 + 16ℓ11)− ϵ4

192(1− 2ℓ)2ℓ(2ℓ− 3)(2ℓ+ 1)(2ℓ+ 3)z2
(4ℓ9 − 188ℓ8 + 483ℓ7+

+ 3127ℓ6 − 6795ℓ5 − 4211ℓ4 + 13208ℓ3 − 4404ℓ2 − 936ℓ+ 432) (B.8)

All of the other pk with k ≤ 10 that are not shown in the above expressions vanish.

The F
S̃(+)
ℓ modes obtained from this expansion reads:

F
S̃(+)
ℓ = − q2

2utr20

5∑
k=0

f
S̃(+)
2k (B.9)

f
S̃(+)
0 = 1 (B.10)

f
S̃(+)
2 =

2M

r
− ℓ(ℓ+ 1)r2Ω2

(2ℓ− 1)(2ℓ+ 3)
, (B.11)

f
S̃(+)
4 =

6
(
3ℓ2 + 3ℓ− 2

)
M2

(4ℓ2 + 4ℓ− 3) r2
−

9ℓ(ℓ+ 1)
(
3ℓ2 + 3ℓ− 2

)
r4Ω4

4(2ℓ− 3)(2ℓ− 1)(2ℓ+ 3)(2ℓ+ 5)
, (B.12)

f
S̃(+)
6 = −

8
(
−5ℓ2 − 5ℓ+ 3

)
M3

(4ℓ2 + 4ℓ− 3) r3
−

25ℓ(ℓ+ 1)
(
5ℓ4 + 10ℓ3 − 5ℓ2 − 10ℓ+ 8

)
r6Ω6

4(2ℓ− 5)(2ℓ− 3)(2ℓ− 1)(2ℓ+ 3)(2ℓ+ 5)(2ℓ+ 7)
+

+
ℓ
(
120ℓ5 + 360ℓ4 + 186ℓ3 − 228ℓ2 − 107ℓ+ 67

)
MΩ2

(1− 2ℓ)2(2ℓ+ 1)2(2ℓ+ 3)2
+

−
5
(
9ℓ6 + 27ℓ5 − 27ℓ4 − 99ℓ3 − 4ℓ2 + 50ℓ− 12

)
Mr3Ω4

2(ℓ− 1)(ℓ+ 2)(2ℓ− 3)(2ℓ− 1)(2ℓ+ 3)(2ℓ+ 5)
(B.13)
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f
S̃(+)
8 =

10
(
35ℓ4 + 70ℓ3 − 115ℓ2 − 150ℓ+ 72

)
M4

(2ℓ− 3)(2ℓ− 1)(2ℓ+ 3)(2ℓ+ 5)r4
+ (B.14)

−
245ℓ(ℓ+ 1)

(
35ℓ6 + 105ℓ5 − 35ℓ4 − 245ℓ3 + 168ℓ2 + 308ℓ− 272

)
r8Ω8

64(2ℓ− 7)(2ℓ− 5)(2ℓ− 3)(2ℓ− 1)(2ℓ+ 3)(2ℓ+ 5)(2ℓ+ 7)(2ℓ+ 9)
+

+
2
(
280ℓ6 + 840ℓ5 + 490ℓ4 − 420ℓ3 − 265ℓ2 + 85ℓ+ 18

)
M3Ω2

(1− 2ℓ)2(2ℓ+ 1)2(2ℓ+ 3)2r
+

− 7Mr5Ω6

(ℓ− 2)(ℓ− 1)(ℓ+ 2)(ℓ+ 3)(2ℓ− 5)(2ℓ− 3)(2ℓ− 1)(2ℓ+ 3)(2ℓ+ 5)(2ℓ+ 7)
×

× (25ℓ10 + 125ℓ9 − 175ℓ8 − 1450ℓ7 − 565ℓ6 + 3905ℓ5 + 2115ℓ4 − 4220ℓ3+

− 728ℓ2 + 2312ℓ− 480)− M2r2Ω4

2(ℓ− 1)(ℓ+ 2)(2ℓ− 3)(2ℓ+ 1)2(2ℓ+ 5) (4ℓ2 + 4ℓ− 3)
3×

× (5040ℓ12 + 30240ℓ11 + 33960ℓ10 − 107400ℓ9 − 222265ℓ8 + 87980ℓ7+

+ 380541ℓ6 + 49973ℓ5 − 214188ℓ4 − 27901ℓ3 + 49762ℓ2 − 42ℓ− 2700)

f
S̃(+)
10 =

12
(
63ℓ4 + 126ℓ3 − 203ℓ2 − 266ℓ+ 120

)
M5

(16ℓ4 + 32ℓ3 − 56ℓ2 − 72ℓ+ 45) r5
+ (B.15)

− 567ℓ(ℓ+ 1)r10Ω10

64(2ℓ− 9)(2ℓ− 7)(2ℓ− 5)(2ℓ− 3)(2ℓ− 1)(2ℓ+ 3)(2ℓ+ 5)(2ℓ+ 7)(2ℓ+ 9)(2ℓ+ 11)
×

×
(
63ℓ8 + 252ℓ7 − 42ℓ6 − 1008ℓ5 + 567ℓ4 + 3108ℓ3 − 2508ℓ2 − 4272ℓ+ 3968

)
+

+
6M4Ω2

(2ℓ− 3)(2ℓ+ 1)2(2ℓ+ 5) (4ℓ2 + 4ℓ− 3)
3
r2

(5040ℓ10 + 25200ℓ9 + 22680ℓ8 − 60480ℓ7+

− 103305ℓ6 + 7605ℓ5 + 67846ℓ4 + 2057ℓ3 − 16733ℓ2 + 1146ℓ+ 810)+

− 27Mr7Ω8

32(ℓ− 3)(ℓ− 2)(ℓ− 1)(ℓ+ 2)(ℓ+ 3)(ℓ+ 4)(2ℓ− 7)(2ℓ− 5)(2ℓ− 3)(2ℓ− 1)(2ℓ+ 3)
×

× 1

(2ℓ+ 5)(2ℓ+ 7)(2ℓ+ 9)
[1225ℓ14 + 8575ℓ13 − 18375ℓ12 − 221725ℓ11 − 121765ℓ10+

+ 1628025ℓ9 + 1905715ℓ8 − 4934615ℓ7 − 5687416ℓ6 + 9853452ℓ5 + 6824328ℓ4+

− 13192144ℓ3 − 2471712ℓ2 + 7290432ℓ− 1370880]+

− 3M2r4Ω6

4(3− 2ℓ)2(ℓ− 2)(ℓ− 1)(ℓ+ 2)(ℓ+ 3)(2ℓ− 5)(2ℓ+ 1)2(2ℓ+ 5)2(2ℓ+ 7) (4ℓ2 + 4ℓ− 3)
3×

× [201600ℓ18 + 1814400ℓ17 + 2156000ℓ16 − 23878400ℓ15 − 68525800ℓ14 + 82133800ℓ13+

+ 467565250ℓ12 + 116541700ℓ11 − 1207160341ℓ10 − 830800255ℓ9 + 1516390102ℓ8+

+ 1181435438ℓ7 − 1211990527ℓ6 − 74(5040ℓ10 + 25200ℓ9 + 22680ℓ8 − 60480ℓ7+

− 103305ℓ6 + 7605ℓ5 + 67846ℓ4 + 2057ℓ3 − 16733ℓ2 + 1146ℓ+ 810)4605125ℓ5+

+ 620195828ℓ4 + 193336002ℓ3 − 152171712ℓ2 − 9317160ℓ+ 952560] (B.16)
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From the ℓ → ∞ limit of the above result, one finds an expansion for Br:

Br =
q 2

2utr2

5∑
k=0

b2k (B.17)

b0 = 1 (B.18)

b2 =
2M

r
− r2Ω2

4
(B.19)

b4 =
9M2

2r2
− 27r4Ω4

64
(B.20)

b6 = −125

256
r6Ω6 − 45r3Ω4

32
+

10M3

r3
+

15M2Ω2

8
(B.21)

b8 = −8575r8Ω8

16384
− 175Mr5Ω6

64
+

175

8r4
− 315M2r2Ω4

128
+

35M3Ω2

4r
(B.22)

b10 = −35721r10Ω10

65536
− 33075Mr7Ω8

8192
+

189M5

4r5
− 4725Mr4Ω6

512
+

945M6Ω2

32r2
(B.23)

The FR,pN
r contribution to the regularized self-force up to 5PN and for a given ℓ0 is obtained

by subtracting the expansion for Br from the one for F
S̃(+)
ℓ and summing from a given ℓ0 to

infinity.
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