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“Before I came here I was confused about

this subject. Having listened to your lecture

I am still confused. But on a higher level.”

- Enrico Fermi



Resumo

Apresentamos em linhas gerais o esquema de quantização canônica para o campo eletromag-
nético e a descrição de sua energia de ponto-zero. Esta energia é divergente e métodos matemáticos
de regularização e renormalização são necessários para torná-la finita. Devido à semelhança com o
caso eletromagnético, discutiremos um desses métodos aplicados a energia do vácuo de um campo
escalar quantizado na presença de superfícies onde o campo satisfaz condições de contorno ideais.
Definimos domínios limitados Ω ⊂ Rd, nos quais o campo pode satisfazer condições de contorno
ideais ou não ideais. Chamamos isso de condições de contorno de Dirichlet ideais para altas fre-

quências. Utilizando um procedimento de regularização analítica, obtemos a energia do vácuo para
um campo escalar sem massa a temperatura zero na presença de duas supercífices planas definindo o
domínio Ω = Rd−1 × [0, L] com condições de contorno de Dirichlet. Para abordar o caso de condições
de contorno não ideais, utilizamos uma expansão assintótica baseada em uma equação funcional
aproximada para a função zeta de Riemann, onde são definidas somas finitas fora do domínio original
de convergência. No contexto eletromagnético, mostramos que esta situação descreve a correção de
condutividade finita para a energia de ponto-zero. Finalmente, para obter a energia de Casimir para
um campo escalar sem massa na presença de uma caixa retangular, com comprimentos L1 e L2, ou
seja, Ω = [0, L1] × [0, L2] com condições de contorno não ideais, usamos uma equação funcional
aproximada da função zeta de Epstein.

Palavras-chave: Energia de Casimir, condições de contorno não-ideais, expansão assintótica.



Abstract

We present in broad strokes the canonical quantization scheme for the electromagnetic field
and the description of its zero-point energy. This energy gives rise to divergences, and mathematical
methods of regularization and renormalization are necessary to render them finite. In one such method,
due to its similarity to the electromagnetic case, we discuss the application of this method to the vacuum
energy of a quantized scalar field in the presence of classical surfaces. We define bounded domains
Ω ⊂ Rd, where the field can satisfy either ideal or non-ideal boundary conditions. We call it ideal

high-pass Dirichlet boundary conditions. Employing an analytical regularization procedure, we obtain
the vacuum energy for a massless scalar field at zero temperature in the presence of a slab geometry
Ω = Rd−1 × [0, L] with Dirichlet boundary conditions. To address the case of non-ideal boundary
conditions, we use an asymptotic expansion based on an approximate functional equation for the
Riemann zeta function, where finite sums are defined outside the original domain of convergence. In
the electromagnetic context, this situation describes the finite conductivity correction to the zero-point
energy. Finally, to derive the Casimir energy for a massless scalar field in the presence of a rectangular
box, with lengths L1 and L2, i.e., Ω = [0, L1] × [0, L2] with non-ideal boundary conditions, we employ
an approximate functional equation for the Epstein zeta function.

Keywords: Casimir Energy, Non-Ideal Boundary Conditions, Asymptotic Expansion.
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Chapter 1

Introduction

Quantum fields are fundamental mathematical objects in the description of natural phenomena.
With the construction of a Fock space, we may interpret excitation from a vacuum state in an asymptotic
limit as point-like particles. In this context, in Minkowski spacetime, fields can be represented using
annihilation and creation operators and particles manifest after an operation within a vacuum state.
The vacuum expectation value of a free quantum scalar field, for example, is zero in the absence of
spontaneous symmetry break (SSB). However, the expectation value of the square of a scalar field in
a vacuum state diverges. Since the energy density for a massive scalar field has this quadratic term
contributing, this quantity also diverges. As measurable quantities are always finite, some procedures
must be implemented to deal with divergent contributions.

To address this issue, assuming that the field satisfies classical boundary conditions, we intro-
duce boundaries, consequently modifying the zero-point energy. The Casimir effect is a measurable
macroscopic manifestation of this result [1–8] and it has been measured in different geometric configu-
rations [9–12]. The physical origin of the effect lies in the change in the vacuum modes associated with
the quantized electromagnetic field by the presence of macroscopic surfaces. Moreover, the Casimir
effect is not exclusive to electromagnetic fields; it can also manifest with other constrained fields, such
as massless fermionic fields, due to the interaction of quantum field vacuum modes with idealized
surfaces where the field satisfies classical boundary conditions [13]. Additionally, in the quasi-particle
landau scenario, the literature has been discussing the phononic Casimir effect. In this case, the speed
of light is replaced by the speed of sound in the medium [14].

As we discussed, in the canonical formalism for quantum fields, the vacuum energies are
divergent. To render these quantities physically meaningful, different approaches have been developed.
These approaches can be categorized into local [15–21] and global methods. In this context, our
focus relies on the global approach, which investigates the total energy of the quantized field with
idealized boundary conditions [22, 23]. This approach uses two natural methods to regularize and
renormalize the divergent vacuum energy. The first one is the cut-off method, where an ultraviolet
regulator function is introduced in the divergent sum of the eigenfrequencies. On general grounds,
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the regularized vacuum energy exhibits Weyl’s terms with a geometric origin, cut-off independent
contributions, and terms that vanish as the cut-off is removed. With these geometric terms in hand, we
can implement a renormalization procedure by introducing auxiliary boundaries and subtracting the
regularized energies of different configurations. The second set is analytic regularization procedures,
with a noteworthy method being zeta function regularization. We can use its special values to interpret
divergent series or products without the necessity of their removal. Although the cutoff method with
the auxiliary configurations and the analytic regularization discussed above are quite different in
their grounds, it is possible to compare them and show to be analytically equivalent in some specific
situations [24–27].

On the other hand, on physical grounds, the preceding discussion considered ideal boundary
conditions. For the electromagnetic field modes, this means perfect conductivity and it is an idealization.
However, metallic plates often behave as dielectric for high-frequency modes, and as conductors for
infrared modes. Following the original formulation, the issue of determining the conductivity correction
to the electromagnetic Casimir force arises. To derive this correction, Lifshitz proposed a model
treating the electromagnetic field as a classical field, where attractive or repulsive forces arise from the
fluctuating charges and currents of the boundaries [28]. In this dissertation, we obtain the correction
to the Casimir force for the case of non-ideal boundary conditions using a different method. Instead
of discussing the nonlinear problem of the microscopic modeling of finite conductivity i.e., nonideal
boundary conditions, we confine ourselves to make use of the spectral theory of elliptic differential
operators and the correction to the Casimir energy can be discussed using analytic regularization
procedure and approximate functional equations.

In our methodology, we use the fact that the total renormalized energy of scalar fields in the
presence of bounded domains can be derived using an analytic regularization procedure, where the
Dirichlet and Neumann Laplacian are useful technical devices. It’s known that the vacuum energy
in the slab geometry Rd−1 × [0, L] with Dirichlet boundary conditions can be written in terms of the
Riemann zeta function. To calculate its correction due to nonideal boundary conditions, we represent
the energy density using an asymptotic expansion derived by Hardy and Littlewood [29]. They obtained
an approximate functional equation for the Riemann zeta function written as finite sums beyond their
original domain of convergence. Next, we generalize the previous result in the case of a field in the
presence of a rectangular box with lengths L1 and L2 with non-ideal boundary conditions. This work
is based on the paper [30]

This dissertation is organized as follows. In Chap. 2, we present the canonical quantization
scheme for the electromagnetic field and its zero-point energy. In the next chapter, Chap. 3, we discuss
how to obtain the renormalized vacuum energy for a massless scalar field at zero temperature in the
presence of perfect mirrors, using the cutoff method and the analytic extension method. Then, in Chap.
4, we present the correction to the Casimir energy in the presence of dielectrics. Following that, we use
an approximate functional equation to obtain the same correction to the renormalized vacuum energy
due to nonideal boundary conditions for a slab geometry Rd−1 × [0, L]. This method is then applied
to obtain it in a rectangular box, with lengths L1 and L2, considering nonideal boundary conditions.
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Conclusions are provided in the last chapter, Chap.5. Here, we use ℏ = c = kB = 1.
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Chapter 2

Quantum Field Theory

2.1 Canonical Quantization and Fock space

The formulation of a quantum field theory introduced new aspects that are lacking in a classical
field theory. The canonical field quantization scheme establishes a correspondence between classical
quantities and quantum operators, making it easier to work with. However, as we shall see later, this
formulation encounters a divergence in the zero-point energies. Thus, the quantum field theory based
on the operator concept, in principle, requires additional prescriptions to deal with these infinities and
become a well-defined theory, such as Wick’s normal ordering, which is an approach to maintaining
the vacuum expectation value equal to zero in an infinite volume. Despite the divergence, after some
manipulations, this abstract mathematical construction leads us to many experimental manifestations.
Our first goal is to comprehend this quantization scheme and provide a brief overview of the associated
calculations, with a particular emphasis on the electromagnetic field and defining the vacuum state. In
order to achieve this, we first must recall some basic facts about the theory, see Refs [31, 32].

2.1.1 Field quantization and the vacuum energy

To begin, in order to describe an infinite number of degrees of freedom, our classical dynamical
variables are now considered as continuous fields in space and time, denoted by ϕ(x, t), with a
corresponding Lagrangian only depending on the field variable and their first derivatives, namely,

L(t) =
∫
d3xL[ϕ(x, t), ∂µϕ(x, t)]. (2.1)

where, L is the lagrangian density. Analogous to the particle mechanic, we define the momentum
canonically conjugate to the field variables as

Π(x, t) = ∂L(t)
δ(∂tϕ(x, t)) (2.2)

Once we have defined the classical dynamical variables of a physical system, the quantization
proceeds by replacing the classical fields with Hermitian operators. These operators must satisfy
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canonical equal-time commutation relations given by

[ϕ̂(x, t), Π̂(x′, t)] = iδ(x− x′); [ϕ̂(x, t), ϕ̂(x′, t)] = [Π̂(x, t), Π̂(x′, t)] = 0 (2.3)

Since we are working from now exclusively with operators, we can drop the "hat" notation. Thus,
ϕ̂(x, t) = ϕ(x, t) and Π̂(x, t) = Π(x, t).

If we want to construct an explicit representation of these operators, we can use a complete set
of "classical" solutions. Since our focus is to discuss the vacuum energy, it is more convenient to adopt
the momentum picture. Then, we expand our field operators on such a basis in terms of a generalized
Fourier decomposition in mode functions

ϕ(x, t) =
∫ d3k

(2π)3/2 e
ik·xϕk(t), (2.4)

Π(x, t) =
∫ d3k

(2π)3/2 e
ik·xΠk(t), (2.5)

where k · x = k0t − k · x. The mode functions are also promoted to operators and inherit their
commutation relations. By performing Fourier transforms in x and x′, after some algebra, we find

[ϕk(t),Πk′(t)] = iδ(k + k′), (2.6)

where the plus sign shows that the variable which is conjugate to ϕk is Π−k = Π†
k. An important fact

that has to be considered in the mathematical description is that a physical field has to satisfy certain
boundary conditions. Therefore, it is useful to consider the field not in an infinite space, but inside a
finite cubic box of volume V . At any given time, the operators ϕ(x, t) and Π(x, t) can be expanded in
terms of the Fourier series:

ϕ(x, t) =
∑

k

1√
V
eik·xϕk(t), (2.7)

Π(x, t) =
∑

k

1√
V
eik·xΠ−k(t). (2.8)

The following step is to develop a Hamiltonian description. Once we have the classical
Hamiltonian description of a physical system, the quantization of such a system is quite straightforward.
In terms of the operators ϕ and Π the field Hamiltonian H , formally identical with a classical Hamilton
function, is obtained as

H =
∫
d3x (Π∂tϕ− L(ϕ, ∂µϕ)) . (2.9)

At this point, only the fundamental postulate for the quantization of fields has been employed.
Unfortunately, this postulate alone is not sufficient to determine a measurable energy in a satisfactory
way. As we shall observe, singularities arise leading to divergent vacuum expectation values. Then, to
eliminate this result, the physical field theory requires renormalizabilty as a fundamental property. In
order to make this more transparent and to see how zero-point energies appear in the theory, let us now
consider the electromagnetic field, and then define its physical vacuum energy.
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2.1.1.1 The zero-point energy of the electromagnetic field

We turn now to the discussion of the zero-point energy of the electromagnetic field. To start,
let us describe the theory. The Maxwell’s equation in vacuum are

∇ · E = 0; ∇ × E = −∂B

∂t

∇ · B = 0; ∇ × B = ∂E

∂t

where E and B are the electric and the magnetic fields respectively. To the quantization scheme, it is
more convenient to rewrite Maxwell’s equations in a Lorentz covariant form. This is achieved by the
fact that the zero divergence of B and Faraday’s Law allows the introduction of the four-dimensional
vector potential Aµ = (A0,A) which characterizes the fields by

B = ∇ × A;

E = −∂A

∂t
− ∇A0

We now define the four-dimensional curl of this potential by an antisymmetric tensor of rank two
called the field strength tensor, written by

Fµν = ∂µAν − ∂νAµ. (2.10)

We note that

Fi0 = ∂0Ai − ∂iA0 = Ei, (2.11)

where E denotes the electric field. Similarly,

Fij = ∂iAj − ∂jAi = −eijkBk, (2.12)

where eijk denotes the three dimensional Levi-Civita tensor and B denotes the magnetic field vector.
In a matrix representation, we have

Fµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (2.13)

Although this formulation is useful for further calculations, the presented potential is not a directly ob-
servable quantity or uniquely determined. The introduction of a local gauge transformation, expressed
as

A
′

µ(x) = Aµ(x) + ∂µΛ(x), (2.14)

ensures that the values of the field strength tensor remain unaltered. This gauge invariance in the fields
leads to peculiarities in the Maxwell field theory, and we need to assume a gauge fixing. One particular
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choice of gauge condition that can be used is the Coulomb gauge, also known as the transverse gauge.
This choice requires the three-dimensional divergence to vanish

∇ · A = 0, (2.15)

i.e., the vector potential A(x, t) is a spatially transverse field, with polarization vectors orthogonal
to the direction of propagation. Initially, the theory has presented a vector field with four degrees
of freedom. However, as known from electrodynamics, the photon has only two polarization states.
Consequently, after the gauge fixing, the two "unphysical" degrees of freedom of the electromagnetic
field are eliminated, leaving only transverse photons.

Now that we have outlined the theory, we can study the dynamics and then proceed to the
quantization scheme. Let us consider the free field Lagrangian as

L = 1
4FµνF

µν = −1
2∂µAν(∂µAν − ∂νAµ) (2.16)

with Aµ as the independent dynamical variable. We can define the conjugate momentum fields as

Πµ = ∂L
∂(∂tAµ) = −F 0µ, (2.17)

and the first peculiarity of the Maxwell field theory appears. The time-like component Π0 vanishes

Π0(x) = −F 00 = 0, (2.18)

and as a result, the A0(x) component of the field would commute with all the field variables in the
theory. Therefore, A0(x) would act as a classical function even if we consider it as an operator. Without
loss of generality, we can set it equal to zero

A0(x) = 0, (2.19)

and once again, we are choosing a particular gauge for the theory, known as the temporal (axial) gauge.
Furthermore, in this gauge, the spatial components of the momentum coincide with the electric field

Πi = −F 0i = −(∂0Ai − ∂iA0) = Ei, (2.20)

The next step in the quantization scheme is to propose the following commutation rules

[Ai(x, t), Aj(x′, t)] = [Πi(x, t),Πj(x′, t)] = 0,

[Ai(x, t),Πj(x′, t)] = iδ
(tr)
ij (x− x′), (2.21)

where, in order to maintain the transversality, in the last relation, the usual δ-function is replaced by
the divergence-free transverse δ-function, which is a non-local operator given by

iδ
(tr)
ij (x− x′) = (δij − ∆−1∂i∂j)δ(x− x′). (2.22)
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As we can see, this both gauge choices,

A0(x) = 0; ∇ · A = 0, (2.23)

lead us to the Maxwell’s equations reduced to

A = 0, (2.24)

and, therefore to represent A and Π in terms of Fourier series, it is convenient to introduce a particular
four-dimensional vector basis {ϵ(λ)

k (λ = 1, 2); k/|k|} that represents the polarization. Since the vector
potential is transverse, this basis must satisfy the conditions

ϵ
(λ)
k · k = 0, ϵ

(λ)
k · ϵ(λ′)

k = δλλ′ . (2.25)

Defining the polarization vectors with respect to the direction of the momentum vector simplifies
things. Therefore, the vector nature of the field variable is now characterized by the polarization
vectors. Additionally, for a completeness relation for the basis, it requires that

∑
λ

ϵ
(λ)
k,i ϵ

(λ)
k,j + kikj

|k|2
= δij. (2.26)

Once again, our focus is to discuss the vacuum energy. For this reason, the Fourier representa-
tion of the fields A(x) and Π(x) is written in a finite box as

A(x, t) =
∑
k,λ

1√
V

exp(ik · x)ϵ(λ)
k A

(λ)
k (t), (2.27)

and
Π(x, t) =

∑
k,λ

1√
V

exp(ik · x)ϵ(λ)
k Π(λ)

−k(t), (2.28)

and, due to the hermiticity of A and Π, we get the relations

ϵ
(λ)
−kA

(λ)
−k(t) = ϵ

(λ)
k A

(λ)+
k (t); ϵ

(λ)
−kΠ(λ)+

k (t) = ϵ
(λ)
k Π(λ)

−k(t), (2.29)

which allow us to derive the commutation rules, in the momentum space, for the operators A(λ)
k (t) and

Π(λ)
k (t) as

[A(λ)
k (t), A(λ′)

k′ (t)] = [Π(λ)
k (t),Π(λ′)

k′ (t)] = 0; (2.30)

[A(λ)
k (t),Π(λ′)

k′ (t)] = iδλλ′δ(k − k′). (2.31)

Now, the Hamiltonian for electromagnetic field theory, in its canonical quantization form,
yields

H = 1
2

∫
V
d3x{Π2 + A · (−∇2A)}, (2.32)

where we used the identity, in the Coulomb gauge,
∫

V
d3x(∇ × A)2 =

∫
V
d3xA · (−∇2A). In terms

of the Fourier components, the Hamiltonian becomes an infinite sum of uncoupled harmonic oscillators

H = 1
2
∑
kλ

{Π(λ)+
k Π(λ)

k + ω2
kA

(λ)+
k A

(λ)
k }. (2.33)
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Then, we define the creation and annihilation operators a(λ)+
k and a(λ)

k in terms of A(λ) and Π(λ)

a
(λ)+
k =

√
ωk

2

(
A

(λ)
k − i

ω
Π(λ)+

k

)
, (2.34)

and
a

(λ)
k =

√
ωk

2

(
A

(λ)
k + i

ω
Π(λ)+

k

)
. (2.35)

We expect these operators to satisfy the commutation relations

[a(λ)
k , a

(λ′)+
k′ ] = δλλ′δ(k − k′); [a(λ)+

k , a
(λ′)+
k′ ] = [a(λ)

k , a
(λ′)
k′ ] = 0 (2.36)

This allows us to write the Hamiltonian in the form

H =
∑
k,λ

ωk

(
n

(λ)
k + 1

2

)
, (2.37)

where the energy of the confined field has a pure point spectrum and levels are determined by the
photon number operators n(λ)

k = a
(λ)+
k a

(λ)
k and the Fock representation, which characterizes the states

concerning the ground state, the vacuum state |0⟩. We can now define the vacuum of the quantized
electromagnetic field by a(λ)

k |0⟩ = 0. Consequently, the quantized free electromagnetic field also
carries an infinite zero-point energy,

E0 = ⟨0| H |0⟩ = 1
2
∑
k,λ

ωk. (2.38)

In this context, it is noteworthy that we can arrive at the equivalent expression for the vacuum energy
through a more straightforward approach by assuming a massless scalar field with Dirichlet boundary
conditions. Consequently, in our calculations for the Casimir energy in a quantum scenario, we will
consider this particular case.
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Chapter 3

The Quantum Vacuum

3.1 The divergent zero-point energy

A free quantized bosonic or fermionic field is mathematically equivalent to an infinite set
of uncoupled one-dimensional harmonic oscillators, each characterized by the frequency ωk. In the
vacuum state, the summation over increasingly higher frequencies, each possessing a zero-point energy

of
1
2ωk, results in a divergent quantity. However, infinities are not physically meaningful; therefore,

there exist several mathematical methods of regularization and renormalization that render them finite.
In this chapter, we present two examples of such approaches.

3.1.1 Casimir’s original approach - the cut-off method

First, we follow the Casimir’s original paper [1]. Let us define a bosonic field confined in a
finite cubic cavity of volume L3 i.e. bounded by perfectly conducting walls. To calculate the vacuum
energy, we put a perfect conducting square plate with side L at an adjustable distance parallel to the xy
plane. The physical vacuum energy of quantized fields can be understood as the difference between
two configurations. To calculate in this case, the plate is put first at a small distance a from the xy
plane and then at a considerable distance, let us say, for example, L/2, as in Fig. 1

a
L

L

L

ϵI ϵII

L

2
L

2

L

L

ϵIII ϵIV

x

zy

Figure 1 – Different configuration of a box with a conducting parallel plate

We note that the summation extended over all frequencies, in both cases, is a divergent quantity,
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but after some manipulations, the difference will be shown to have a well-defined meaning to be
interpreted as the interaction between the plate and the xy face.Inside this box, the field’s eigenmodes
are determined by requiring the following boundary conditions for the electric and magnetic field,
n · B = 0 and n × E = 0, on the walls. The field’s possible vibrations are defined by

0 ≤ x ≤ L; 0 ≤ y ≤ L; 0 ≤ z ≤ a; (3.1)

with the wave numbers given by

kx = π

L
nx; ky = π

L
ny; kz = π

a
nz (3.2)

where ni = 0, 1, 2..., with i = x, y, z. The frequencies are given from elementary theory as

k =
√
k2

x + k2
y + k2

z =
√
κ2 + k2

z . (3.3)

There are two normal modes for each ki from the two independent polarizations, for this reason, we
should multiply by a factor of 2. If a single ki is zero, we have only one independent polarization.
Since we assume that L is very large, kx and ky can be treated as a continuous variable. Thus, we find

ϵk =
∑

kx,ky ,kz

1
2 k =

∑
kx,ky ,kz

1
2
√
k2

x + k2
y + k2

z

=
(
L

π

)2 ∫ ∞

kx=0
dkx

∫ ∞

ky=0
dky

1
2
√
k2

x + k2
y +

∞∑
nz=1

√
k2

x + k2
y +

(
π

a
nz

)2
 . (3.4)

Introducing polar coordinates in the kx,ky plane,∫
dkxdky =

∫ ∞

0
dκ

π

2κ, (3.5)

where the angular part ranges from 0 to
π

2 for kx, ky > 0 . We have

ϵk = L2

2π

∫ ∞

0
dκ κ

κ
2 +

∞∑
nz=1

√
κ2 +

(
π

a
nz

)2
 . (3.6)

In the situation in which a is large, the summation in nz may be treated as an integral. Then,
with these two different configurations in hand, we can see the Casimir energy as

ϵ = L2

2π

∫ ∞

0
dκ κ

κ
2 +

∞∑
nz=1

√
κ2 +

(
π

a
nz

)2
−

∫ ∞

0

(
a

π
dkz

) ∫ ∞

0
dκ κ

(√
κ2 + k2

z

) , (3.7)

In this expression, the first term on the right-hand side represents the energy between the plates
satisfying the discussed boundary conditions. We then subtract from his the energy in the same region
but without imposing the boundary conditions. This allows kz to be treated as a continuous variable.

As discussed earlier, these summations are divergent quantities. To obtain a finite result, we
need to introduce a cutoff function f(k/kc) which satisfies f(k/kc) ≈ 1 for k ≤ kc and tends to

zero sufficiently rapidly for k ≫ kc and follows the condition f(1) = 1
2 . For this regularization to
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be legitimized on physical grounds we can interpret that the high-frequency mode does not interact
with the plates and therefore the zero point energy for these frequencies will not be influenced by the
position of the plate.

We define a new variable u = a2κ2/π2 and introduce the f(k/kc), whith k =
√
κ2 + k2

z .

ϵ = π2L2

4a3

∫ ∞

0
du

f
π

√
u+ n2

z

akc

 √
u

2 +
∞∑

nz=1

√
u+ n2

zf

π
√
u+ n2

z

akc

 +

−
∫ ∞

0
dnz

∫ ∞

0
du
(√

u+ n2
z

)
f

π
√
u+ n2

z

akc

 . (3.8)

Identifying F (n) as

F (n) =
∫ ∞

0
du
(√

u+ n2
z

)
f

π
√
u+ n2

z

akc

 , (3.9)

we can apply the Euler-Maclaurin formula, for p > 0 ∈ Z and a function F (x) is p times continuously
differentiable on the interval [m,n], known as

S − I =
n∑
m

F (x) −
∫ n

m
F (x)dx =

p∑
k=1

Bk

k!
(
F (k−1)(n) − F (k−1)(m)

)
, (3.10)

where the Bk is the kth Bernouli number. Therefore, in our case, we have
∞∑
0
F (n) −

∫ ∞

0
F (n)dn =

p∑
k=1

Bk

k!
(
−F (k−1)(0)

)
= −1

2F
(0)(0) − 1

12F
(1)(0) + 1

30 · 24F
(3)(0) + ... (3.11)

Introducing the variable w = u+ n2
z, we write

F (n) =
∫ ∞

n2
dw

(√
w
)
f

(
π

√
w

akc

)
︸ ︷︷ ︸

F (w)

, (3.12)

Now, we can use the Leibniz rule to know the value of the derivatives. We have

F (1)(n) = d

dn

(∫ ∞

n2
F (w)dw

)
= −F (n2) d

dn
n2 +

∫ ∞

n2 ��
���*0

∂

∂n
F (w)dw (3.13)

whence,

F (1)(n) = −2n2f
(
πn

akc

)
F (1)(0) = 0

F (3)(0) = −4. (3.14)

Thus, we find the energy per unit area to be

ϵd(a) = ϵ

L2 = − π2

720 · 1
a3 (3.15)

as long as akc ≫ 1. We can see that there exists a negative energy between two perfectly conducting
metal plates for low frequencies independent of the material, regardless of the material, even in a
vacuum situation.
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3.1.2 Analytic extension method

Another method used in order to obtain a finite result for the vacuum energy is the analytic
regularization procedure. A direct advantage of this method is that it allows shorter calculations, as we
shall see. We aim to obtain the Casimir energy for a massless scalar field at zero temperature in the
presence of a slab geometry Ω = Rd−1 × [0, L] with Dirichlet boundary conditions. This particular
scenario can be seen as a general description and the results can be extended to the electromagnetic
field in a three-dimensional manifold. First, let us assume a free neutral scalar field defined in a
(d+ 1)-dimensional flat space-time. Its field equation, the Klein-Gordon equation, reads(

∂2

∂t2
− ∆ +m2

0

)
φ(t,x) = 0. (3.16)

To proceed, we restrict the field to a d-dimensional box with lengths (L1 ×L2 × ...×Ld−1 ×Ld).
Assuming Dirichlet boundary conditions, the total energy of the quantized field in the vacuum state
inside the box is ⟨0|H|0⟩ = Ud(L1, ..., Ld−1, Ld) i.e. the vacuum energy. Using the condition Ld ≪ Li

for (i = 1, 2, ..., d− 1), and defining Ld = L, the unrenormalized vacuum energy can be written as

Ud(L1, ..., Ld−1, L) = 1
(2π)d−1

(
d−1∏
i=1

Li

)∫ d−1∏
i=1

dqi

∞∑
n=1

(
q2

1 + ...+ q2
d−1 +

(
nπ

L

)2
+m2

0

) 1
2

.

(3.17)

To discuss the case similar to the electromagnetic field let us assume m2
0 = 0 and the unrenormalized

vacuum energy per unit area is defined as

ϵd(L) = Ud(L1, ..., Ld−1, L)(∏d−1
i=1 Li

) , (3.18)

which is a divergent expression. Once we have the angular part of the integral over (d−1)-dimensional
k space, the product can be written as

ϵd(L) = (4π)
1−d

2

Γ
(

d−1
2

) ∞∑
n=1

∫ ∞

0
dr rd−2

[
r2 +

(
nπ

L

)2
] 1

2

. (3.19)

introducing the variable change x = L2r2/π2n2 and after a straightforward calculation, we get

ϵd(L) = (4π)
1−d

2

2Γ
(

d−1
2

) (π
L

)d ∫ ∞

0
dx x

d−3
2 (1 + x) 1

2

∞∑
n=1

nd. (3.20)

In the limit L → ∞ we should obtain the fundamental result that the vacuum is a Lorentz invariant
state of zero energy. Using the definition of the Beta function

B(m,n) =
∫ ∞

0

xm−1 + xn−1

(1 + x)m+n
dx = Γ(m)Γ(n)

Γ(m+ n) (3.21)

and an analytic continuation principle, the vacuum energy per unit area is given by

ϵd(L) = −
π

d
2 Γ
(
−d

2

)
2(2L)d

ζ(−d), (3.22)
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where ζ(s) the analytic extension of the Riemann zeta function which is a function of the complex
variable s = σ + it, where σ, t ∈ R. To give some sense in this divergent summation, as we indicated
above, the major interest in the ζ(s) as a function of a complex variable is to continue the definition
beyond the domain of convergence of the series. It is originally defined in the half-plane Re(s) > 1
through the Euler’s product

ζ(s) =
∏
p∈P

(1 − p−s)−1, (3.23)

where P denotes the set of all primes. Using the canonical decomposition of natural numbers, the
above expression, in the region where it converges, can be written as a Dirichlet series [33].

ζ(s) =
∞∑

n=1

1
ns
. (3.24)

The series is defined by summing over the set of natural numbers n ∈ N and can be extended to the
complex plane as a meromorphic function using the Poisson summation formula with a simple pole
at s = 1. Additionally, it is possible to show that Riemann zeta-function ζ(s) satisfies a functional
equation valid for s ∈ C \ {0, 1}, as we shall see. To start, in order to be as clear as possible, we rely
on the Poisson Summation formula, defining the Fourier transform of an integral function f on R by

f̃(x) =
∫ ∞

−∞
dy f(y)e−2πixy. (3.25)

Then
∞∑

−∞
f(n) =

∞∑
−∞

f̃(n), (3.26)

which both sides converge absolutely. Applying the transformation on f(x) = exp{−x2πν}, we have

f̃(n) =
∫ ∞

−∞
dx e−x2πνe−2πinx

= 1√
ν
e− πn2

ν , (3.27)

on completing the square and substituting y = x + in/ν. This provides that ν is real and positive.
Then we can see from the Poisson Summation Formula, the relation given by

θ(ν) = 1√
ν
θ
(1
ν

)
, (3.28)

where the theta function is

θ(ν) =
∞∑

n=−∞
exp{−n2πν}. (3.29)

Before considering the zeta function, we introduce

ψ(ν) = θ(ν) − 1
2 =

∞∑
n=1

e−πn2ν ; 2ψ(ν) + 1 = 1√
ν

{2ψ
(1
ν

)
+ 1}, (3.30)
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and its Mellin transform is for
s

2

ψ∗
(
s

2

)
=
( ∞∑

n=1
(πn2)− s

2

)
M

[
e−t; s2

]
= π− s

2

( ∞∑
n=1

n−s

)∫ ∞

0
t

s
2 −1e−tdt = π− s

2 Γ
(
s

2

)
ζ(s). (3.31)

We can identify that, by splitting the range of integration in the transformation integral at the point
ν = 1 and applying the relation 3.28 for ψ(ν), we get

ψ∗
(
s

2

)
= π− s

2 Γ
(
s

2

)
ζ(s) =

∫ 1

0
ψ(ν)ν s

2 −1dν +
∫ ∞

1
ψ(ν)ν s

2 −1dν

=
∫ 1

0
ν

s
2 −1

[
1

2
√
ν

{2ψ
(1
ν

)
+ 1} − 1

2

]
dν +

∫ ∞

1
ψ(ν)ν s

2 −1dν

=
∫ ∞

1
y

(1−s)
2 −1ψ(y)dy − 1

s(1 − s) +
∫ ∞

1
ψ(ν)ν s

2 −1dν (3.32)

where in the last step we have changed y = 1/ν. We therefore conclude that

π− s
2 Γ
(
s

2

)
ζ(s) =

∫ ∞

1
(ν s

2 −1 + ν
(1−s)

2 −1)ψ(ν)dν − 1
s(1 − s) . (3.33)

The analytic extension of the zeta function has a simple pole in s = 1. The integral contribution
converges due to the exponential decay of ψ(ν). This expression allows us to define ζ(s) in whole
complex plane. Notably, the right-hand side remains invariant under the interchange of s with 1 − s in
the critical strip and exhibits a point of symmetry at s = 1/2, thus

π− s
2 Γ
(
s

2

)
ζ(s) = π− 1−s

2 Γ
(1 − s

2

)
ζ(1 − s) (3.34)

using some properties of the Gamma function and defining ϑ(s) as

ϑ(s) = (2π)sΓ (1 − s)
Γ
(
1 − s

2

)
Γ
(

s
2

) , (3.35)

where ϑ(s) has meaning for every complex value of s not equal to a positive odd integer. We get a
reflection formula for the Riemann zeta-function

ζ(s) = ϑ(s)ζ(1 − s). (3.36)

This functional equation allows us to extend the ζ(s) to the half-plane σ ≤ 1
2 . Now, we have the zeta

function defined for the whole complex plane. The above calculations are an intermediate step crucial
to discussing the modifications in the renormalized vacuum energy of a scalar field in the presence
of surfaces where the scalar field satisfies non-ideal boundary conditions. As we can see, for the

three-dimensional manifold, i.e., for d = 3, we have Γ
(−3

2

)
= 4

√
π

3 and ζ(−3) = 1
120 we obtain

the same result as that found with the cutoff method.
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Chapter 4

Casimir Effect with non-ideal boundary
conditions

4.1 Corrections to the vacuum energy

In experiments on the vacuum energy between two plates, the simplifying assumption of perfect
conductivity at all field frequencies is unrealistic, and to get a physical result of the effect the Casimir
expression must contain the dielectric properties of the media. Lifshitz [28] developed a macroscopic
theory to describe these properties; however, his theory is fairly complicated, and occasional doubts
have been raised regarding its validity. His physical basis, in effect, assumes the interaction of the
objects as regarded as occurring through the medium of the fluctuating electromagnetic field which
is present both the interior and extends beyond its boundaries. Rather than presenting the details of
Lifshitz’s derivation, for simplicity, we follow a somewhat different approach that ultimately leads to
the same expression. This idea was first used by van Kampen, Nijboer and Schram [34] and in detail
in Milonni’s book [35].

4.1.1 Milloni’s Approach

We study the interaction between the plates occurring by a classical electromagnetic field that
extends beyond its boundaries, and the media is filled with dielectric constants, which have different
materials in each region. The interior of those plates has a dielectric constant ϵ3(ω), the half-space
z < 0 has a ϵ1(ω) and the region z > a has ϵ2(ω). This approach can be seen as a generalization
of the Casimir calculation, although the source of the effect is now the current and the polarization
fluctuations in the plates. Analogous to Casimir’s approach, we picture the interacting bodies bounded
by conducting walls separating three media with conducting plates at a distance a.
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a

x

zy

z0 a

ϵ2ϵ3ϵ1

We aim to find the natural frequencies ω that satisfy the Maxwell equations with the appropriate
boundary conditions. By the translation symmetry along the xy plane, we expect that the electric and
magnetic fields as free waves in this plane and only depend on coordinates z. Let us assume solutions
in the form

E0(r) = [ex(z)x̂+ ey(z)ŷ + ez(z)ẑ]ei(kxx+kyy), (4.1)

B0(r) = [bx(z)x̂+ by(z)ŷ + bz(z)ẑ]ei(kxx+kyy), (4.2)

and for this plane symmetry, given a mode of the field, even though generic, we can make ky = 0 by a
particular choice of coordinates without loss of generality. The Gauss law in the electric displacement
field implies

ikex + dez

dz
= 0, k ≡ kx. (4.3)

Using our solution, we have that the components of the electric field satisfy

d2ei

dz2 −K2ei = 0, (4.4)

where the index i = {x, y, z} and we have defined

K2 = k2 − ϵ(ω)ω2, K2 > 0. (4.5)

Thus, all the boundary conditions are satisfied if (1) ϵez and dez/dz are continuous and if (2) ey

and dey/dz are continuous. From equation 4.4 for the z component we have, avoiding unphysical
exponentially growing solutions,

ez(z) =


AeK1z, z < 0

BeK3z + Ce−K3z, 0 ≤ z ≤ a

De−K2z, z > a

(4.6)

where Kj ≡
√
k2 − ϵj(ω)ω2. The boundary condition (1) at z = 0 and z = a lead us to four linear

algebraic equations for A, B, C, D. In a matrix representation, we have
ϵ1 −ϵ3 −ϵ3 0
K1 −K3 K3 0
0 ϵ3e

K3a ϵ3e
−K3a −ϵ2e

−K2a

0 K3e
K3a −K3e

−K3a K2e
−K2a




A

B

C

D

 =


0
0
0
0

 . (4.7)
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The nontrivial solution to these equations is achieved when the determinant of the matrix of coefficients
vanishes. Bearing this in mind, a straightforward calculation leads us to the expression

(ϵ3K1 + ϵ1K3)(ϵ3K2 + ϵ2K3)
(ϵ3K1 − ϵ1K3)(ϵ3K2 − ϵ2K3)

e2K3a − 1 = 0. (4.8)

We can do an analogous approach for the boundary condition (2), and we get

(K1 +K3)(K2 +K3)
(K1 −K3)(K2 −K3)

e2K3a − 1 = 0. (4.9)

These equations provide us with all the allowed frequencies ω that need to be considered in the vacuum
energy summation. Since these modes depend on the continuum variable k, associated with the plane
waves in the xy-plane and on the discrete index n, to calculate the total zero-point energy

ϵ(a) = E(a)
L2 = 1

4π

∫ ∞

0
dk k

[∑
n

ω(1)
n (k) +

∑
n

ω(2)
n (k)

]
, (4.10)

where L is the length of the unbounded and non-compact dimensions and the ω(1)
n and ω(2)

n are the
frequencies associated with the boundary conditions (1) and (2), respectively. Although our primary
focus is on the Casimir energy, it is more straightforward to calculate the force and subsequently
perform integration to obtain the energy. For this purpose, examining the left-hand side of equations
4.8 and 4.9 and after a cumbersome calculation we get the force per unit area as

f(a) = − ∂

∂a
ϵ(a) = − 1

2π2

∫ ∞

0
dk k

∫ ∞

0
dξK3×

×

[ (ϵ3K1 + ϵ1K3)(ϵ3K2 + ϵ2K3)
(ϵ3K1 − ϵ1K3)(ϵ3K2 − ϵ2K3)

e2K3a − 1
]−1

+

+
[

(K1 +K3)(K2 +K3)
(K1 −K3)(K2 −K3)

e2K3a − 1
]−1

 . (4.11)

Despite this not being precisely the Lifshitz result, a slight manipulation can bring us to it. By
introducing a variable change to define k2 = ϵ3ξ

2(p2 − 1), K3 = √
ϵ3ξp, K

2
1,2 = ϵ3ξ

2s2
1,2, and ϵ3 = 1,

since we have a vacuum between the plates, we agree exactly with Lifshitz’s result in a conceptually
simpler way based on the zero-point energy.

f(a) = − 1
2π2

∫ ∞

1
dp p2

∫ ∞

0
dξ ξ3×

×

[ (s1 + ϵ1p)(s2 + ϵ2p)
(s1 − ϵ1p)(s2 − ϵ2p)

e2ξpa − 1
]−1

+
[

(s1 + p)(s2 + p)
(s1 − p)(s2 − p)e

2ξpa − 1
]−1

 . (4.12)

That’s not enough to obtain the correction for the Casimir effect. It’s important to stress
that this effect arises from frequencies ξ in the range of approximately ξ ≈ 1/a. Consequently, the
predominant frequencies fall within the infrared and visible regions of the electromagnetic spectrum.
For these frequencies, the dielectric constant in first and second order is

ϵ(ω) ≈ 1 −
ω2

p

ω2 , (4.13)
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where ωp is the plasma frequency of the material. We want to study identical imperfect conductors
separated by vacuum, i.e. s1,2 = s. Then, our expression for the force becomes

f(a) =− 1
2π2

∫ ∞

1
dp p2

∫ ∞

0
dξ ξ3

[(s+ ϵp)2

(s− ϵp)2 e
2ξpa − 1

]−1

+
[

(s+ p)2

(s− p)2 e
2ξpa − 1

]−1
 . (4.14)

For perfect conductors, we have (s+ϵp)2
/(s−ϵp)2 = (s+p)2

/(s−p)2 = 1 . However, in an approximation
scenario for imperfect conductivity, we get a slight deviation from the perfect case. We get, after some
manipulations, therefore

f(a) = fc(a)
[
1 − 16

3ωpa

]
, (4.15)

where we can identify the Casimir force for perfect boundary conditions fc(a). After calculating the
Casimir force, we can now integrate to obtain the energy

ϵ(a) = ϵc(a)
[
1 − 4

ωpa

]
. (4.16)

The Casimir energy Ec(a) has a factor a−3, then the effect of imperfect conductivity is therefore to
diminish the Casimir energy by a factor a−4.

4.1.2 Analytic extension approach for non-ideal boundary conditions

Following the structure outlined in the previous chapter, we now employ the analytic extension
method to derive the same correction to the Casimir energy as obtained by Lifshitz’s approach.

4.1.2.1 Driving in a guide wave

In our case, we are discussing the vacuum energy of a quantized scalar field in the presence of
boundaries, where the field satisfies non-ideal boundary conditions. Those can be understood as finite
conductivity conditions. We can call it ideal high-pass Dirichlet boundary condition. To clarify, our
boundary condition is over the frequencies, we can think of them as the following: for frequencies
smaller than some ωkc we do have the usual Dirichlet boundary conditions, otherwise, the plates are
transparent for the field. However, the crucial point behind the need for this approach, is that it is not
convenient to simply calculate the correction to the renormalized vacuum energy separating the effects
of the low-energy vacuum modes from the high-energy modes using a sharp cut-off, once that is a sum
of positive terms and it always yields to a positive energy density, i.e.,

ϵf.c.
d (L) =

kc∑
k=1

ωk > 0, (4.17)

where ωkc+1 is plasma frequence of the material.

We start using an analytic regularization procedure and the fact that for Dirichlet boundary
conditions the eigenvalues vary continuously under a smooth deformation of the domain (spectral
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stability of elliptic operator under domain deformation) and the minimax principle says that the
eigenvalues monotonously decrease when the domain is enlarger,

σm(Ω1) ≥ σm(Ω2), Ω1 ⊂ Ω2. (4.18)

By the above arguments, we can use approximate functional equation that expresses the Riemann zeta
function as finite sums, outside their original domain of convergence. We have presented so far the
main results of the zeta function and its properties. Despite that, the need for our work claims for more
advanced topics. We shall be concerned now with approximate functional equations. This result relies
on the description of the zeta function as a certain finite sum at the points s and 1 − s.

There are several methods to achieve the approximate functional equation, but we follow the
derivation discussed in more detail in Ref. [36]. Initially, we used a classical result by Hardy and
Littlewood. Let us write the Riemann zeta function as

ζ(s) =
∑

n≤nc

n−s +
∑

n>nc

n−s

=
∑

n≤nc

n−s + 1
Γ(s)

∫ ∞

0
dx xs−1

(∑
n>nc

e−nx

)

=
∑

n≤nc

n−s + 1
Γ(s)

∫ ∞

0
dx x

s−1 e−ncx

ex − 1 , (4.19)

where the absolute convergence justifies the inversion of the order of summation and integration. To
proceed, we analyze the following integral I(s). We have

I(s) =
∫

C
dz z

s−1 e−ncz

ez − 1 , (4.20)

where the contour C starts at infinity on the positive real axis, encircles the origin once in the positive
direction excluding the points ±2πi,±4πi, ... and returns to infinity. We obtain

I(s) =
(
e2π is − 1

) ∫ ∞

0
dx x

s−1 e−ncx

ex − 1 . (4.21)

Using the analytic continuation principle, if s is not a positive integer, we can write

ζ(s) =
∑

n≤nc

n−s + e−πisΓ(1 − s)
2πi

∫
C

dz z
s−1 e−ncz

ez − 1 . (4.22)

From the above equation, after a specific choice of variable, we can replace the contour C with straight
lines C1,C2, C3, C4, and use the residue theorem. Therefore we have

ζ(s) =
∑
n≤ x

1
ns

+ ϑ(s)
∑
n≤ y

1
n1−s

+ e−πisΓ(1 − s)
2πi

(∫
C1

+
∫

C2
+
∫

C3
+
∫

C4

)
, (4.23)

Following integration and some approximations, we obtain an approximate representation of the zeta
function in terms of finite sums

ζ(s) =
∑
n≤ x

1
ns

+ ϑ(s)
∑
n≤ y

1
n1−s

+O(x−σ) +O(t 1
2 −σ yσ−1), (4.24)
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for 0 ≤ σ < 1 holds for given x, y, t > C > 0 satisfying 2πxy = t where t ≫ 1. This is known as an
approximate functional equation and it is crucial for our main results.

Before proceeding, we need to be clear about the choice for the plasma frequency. For
simplicity, using the approximate functional equation, we discuss the case of a slab geometry Rd−1 ×
[0, L]. Making a parallel with the electromagnetic case, in the scalar field scenario, we define the
plasma frequency ωp and the plasma wavelength λp = 2π/wp. Next, we define a “critical" mode index
nc, which will be related to the plasma wavelength. In order to find an adequate maximum number
of states nc for a single compactified direction, we need to introduce first the notion of the density of
states ρ(k) in the phase space and the number of states dN = ρ(k)ddk that lies between k and k + dk.
In our d-dimensional space, where all the directions are finite and have lengths L1, L2, ..., Ld−1, L,
then the density of states is simply

ρ(k) =
(
L

πd

) d−1∏
i=1

Li , (4.25)

we can find the number of states inside a volume that possess the maximum value of moment kmax as

N(kmax) =
∫

|k|<kmax

ddkρ(k) = ρ
πd/2

Γ(d
2 + 1)

kd
max , (4.26)

where we have used the definitions of the volume of a sphere in d-dimensions. On the other side, we
are interested in obtaining the maximum number of states in a single compactified direction nc. We
have that

N(kmax) = πd/2

Γ(d
2 + 1)

nd
c . (4.27)

Therefore we identified nd
c = ρkd

max. Now, we relate the maximum wave number with the plasma
frequency of the material in such a manner that kmax = 2π/λp. With all this, after some algebra, we
conclude

nc = 2
(
L1/d

λp

)
d−1∏
i=1

L
1/d
i . (4.28)

Since all the directionsLi from i = {1, 2, ..., d−1} are much larger thanL, the only dependence
of the maximum number of states is of the form

nc(L) ≡
(
L

λp

)1/d

. (4.29)

In the Hardy and Littlewood approximate functional equation, Eq. 4.24, we choose

x = y =
(
L

λp

)1/d

= nc ⇒ t = 2π
(
L

λp

)2/d

= 2πn2
c . (4.30)

Using the asymptotic expansion, we get the Casimir energy as

ϵd(L) = −
π

d
2 Γ
(
−d

2

)
2(2L)d

[Hnc(−d) + ϑ(−d)Hnc(d+ 1)] . (4.31)

The quantities Hn(s) are the generalized harmonic numbers. Once the Eq. (4.31) only makes sense as
an analytic continuation, those finite sums must be understood as such. Moreover, we stress the fact
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that the equality holds by analytic continuation outside the strip 0 < σ < 1. This can be shown using
an analytic continuation of the asymptotic expansion.

Each generalized harmonic number has an expression for its domain of interest in the complex
plane. Lets us start from the second term in the sum, Hnc(d+ 1). Formally, this quantity is given by

Hnc(d+ 1) ≡
nc∑

n=1

1
nd+1 . (4.32)

However, since we start from Eq. (3.22), which is an analytic continuation, the finite sum should be
taken in the range of interest. In such a situation, we can use a known expression [37]

Hnc(d+ 1) = ζ(d+ 1) + (−1)d

d! ψd(nc + 1), (4.33)

which holds for nc ∈ R \ {−1,−2,−3, . . . } and d ∈ N, and ψm(x) is the polygamma function. Using
a recurrence relation and an expression for large arguments, we can write the polygamma function as

ψd(nc + 1) = (−1)dd!
nd+1

c

+ (−1)d+1
∞∑

k=0

(k + d− 1)!
k!

Bk

nd+k
c

, (4.34)

where Bk are the Bernoulli numbers and we take the convention B1 = 1/2. Using the definition of nc

and in the limit of L/λp ≫ 1 we can write

ψd(nc + 1) ≈ (−1)d+1
(
λp

L

)(d− 1)! − 1
2d!

(
λp

L

) 1
d

 , (4.35)

which allows us to write the Hnc(d+ 1) in powers of λp/L. For the first term of Eq. 4.31, we formally
have

Hnc(−d) ≡
nc∑

n=1

1
n−d

, (4.36)

and an analytic continuation can be obtained using some elementary operations and the uniqueness of
the analytic continuation, is straightforward to see that

Hnc(−d) = ζ(−d) − ζH(−d;nc + 1), (4.37)

where ζH(−d;nc + 1) is the Hurwitz zeta-function, defined by

ζH(s; a) ≡
∞∑

n=0

1
(n+ a)s

. (4.38)

Let us define the Casimir energy per unit area with non-ideal boundary conditions, i.e., finite
conductivity ϵf.c.

d by

ϵf.c.
d (L) ≡ − 1

Ld

πd/2

2d+1 Γ
(

−d

2

)
ζH(−d;nc + 1). (4.39)

Once this is performed, we can identify the contribution from the ideal boundary conditions, and the
remaining part can be regarded as a correction term. We get

ϵf.c.
d (L) = ϵd(L) + Γ(1 + d)λp

2 Γ
(
1 + d

2

) ( 1
4
√
π

)d
 1
Ld+1d

− λ
1
d
p

2Ld+1+ 1
d

 . (4.40)
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As we have observed, in the slab geometry, the Casimir energy is a negative quantity (ϵd(L) <
0), while the second contribution in the above equation is positive diminishing the Casimir energy. Note
that our first finite conductivity correction to the electromagnetic Casimir energy in a three-dimensional
manifold is the same as the correction obtained using the Lifshitz calculations. In contrast, the second
correction is smaller, with the Lifshitz formula giving a second correction as L−5, whereas ours gives
L− 13

3 . Therefore, we have succeeded in deriving the Casimir energy per unit area with non-ideal
boundary conditions.

The basic assumption that needs to be carefully investigated is the discussion of vacuum energy
in a bounded domain. In order to get a more complete result, in the next section, we generalize the
above result to the d = 2 dimensional case for a finite volume box.

4.1.2.2 Living in a box

Let us discuss now the eigenvalues of a second-order elliptic self-adjoint partial differential
operator on scalar functions on a bounded domain. We consider the eigenvalues of −∆ on a connected
open set Ω in Euclidean space R2. We assume that the massless scalar field is confined in a rectangular
box, with lengths L1 and L2 obeying Dirichlet boundary conditions. The eigenfrequencies that we use
to expand the field operator are given by

ωn1n2 =
(n1π

L1

)2
+
(
n2π

L2

)2
 1

2

; n1, n2 = 1, 2, .... (4.41)

The unrenormalized vacuum energy in this case is

U(L1, L2) = 1
2

∞∑
n1,n2=1

ωn1n2 . (4.42)

Making use of an analytic regularization procedure, the divergent expression can be written as

E(L1, L2, s) = 1
2

∞∑
n1,n2=1

ω−2s
n1n2 , (4.43)

for s ∈ C. Observe that, the vacuum energy is obtained when s = −1
2 . The above double series

converges absolutely and uniformly for Re(s) > 1. An analytic function, which plays an important
role in algebraic number theory is the Epstein zeta-functions associated with quadratic forms [38] ,
and its approximate equation can be derived as follows. Let’s start by assuming that

ϕ(a, b, c;x, y) = ax2 + cxy + by2, (4.44)

where a, b and c ∈ R and a > 0 and η = 4ab− c2 > 0. Lets us define the function A(s) by the series

A(a, b, c; s) =
∞∑′

n1,n2=−∞
ϕ−s(a, b, c;n1, n2), (4.45)

The above series defines an analytic function for s = σ + it, (σ ∈ R and t ∈ R) and σ > 1, where we
adopt the notation that the prime sign in the summation means that the contribution n1 = n2 = 0 (the
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origin of the mode space) must be excluded. This particular case of the Epstein zeta-function can be
continued analytically to the whole complex plane, except for a simple pole at s = 1 [39]. This double
series exhibits a functional equation that can be obtained using properties of the theta function or the
Poisson summation formula. Potter [40] showed that A(s), like, ζ(s), can be continued analytically
throughout the s-plane and that it satisfies the functional equation

A(a, b, c; s) = X(s)A
(1
a
,
1
b
,
1
c
; 1 − s

)
, (4.46)

where we define

X(s) =
(

2π
√
η

)2s−1 Γ(1 − s)
Γ(s) . (4.47)

If A is a positive constant, and

−1
8 ≤ σ ≤ 11

8 , x > A, y > A, 4π2xy = ∆t2, (4.48)

then

A(s) =
∑′

ϕ≤x

ϕ−s +X(s)
∑′

ϕ≤y

ϕs−1 +O

x 1
2 −σ

(
x+ y

|t|

) 1
2

log |t|

 . (4.49)

We are interested in the case where c = 0, henceforth we take A(a, b, 0; s) ≡ A(a, b; s) and

similar for ϕ. Let us define the function Z
( 1
L1
,

1
L2

; s
)

by

Z
( 1
L1
,

1
L2

; s
)

=
∞∑′

n1,n2=−∞

(
n2

1
L1

+ n2
2
L2

)−s

. (4.50)

We can find the vacuum energy written as

E(L1, L2; s) = 1
8Z

(
π2

L2
1
,
π2

L2
2
; s
)

− 1
4

[(
π

L1

)−2s

+
(
π

L2

)−2s
]
ζ(2s). (4.51)

As it was discussed, E(L1, L2, s) is analytic in s ∈ C \ {1
2 , 1}. Through the analytic continu-

ation of the Epstein and the Riemann zeta function, the vacuum energy U(L1, L2) = E(L1, L2; s =
−1/2) for the system with Dirichlet boundary conditions is written as

U(L1, L2) = π

48

( 1
L1

+ 1
L2

)
− L1L2

32π

∞∑′

n1,n2=−∞

(
n2

1L
2
1 + n2

2L
2
2

)− 3
2 . (4.52)

The next step involves discussing the scalar case similar to the electromagnetic of imperfect
conductors, characterized by a plasma frequency ωp. To obtain the correction to the Casimir energy
via asymptotic series, using the same approach discussed in the previous section, we will need to use
the Hatree-Littlewood approximate functional equation for the Riemann zeta function and also the
Potter approximate functional equation for the Epstein zeta function.
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Let’s start analyzing the Epstein zeta function. It’s convenient to introduce a λp term in our
expression in order to only have adimensional quantities and establish a parallel with the Casimir
energy in a finite conductivity scenario. In this case, we have

A
(
π2λ2

p

L2
1
,
π2λ2

p

L2
2

; s
)

=
∑′

Φ≤x

Φ−s
12 +X(s)

∑′

Φ≤y

Φs−1
12 , (4.53)

in order to the notation be lightened, we defined

Φ12 ≡ ϕ

(
π2λ2

p

L2
1
,
π2λ2

p

L2
2

;n1, n2

)

=
π2λ2

p

L2
1
n2

1 +
π2λ2

p

L2
2
n2

2 , (4.54)

once 4π2xy = η t2 and

η = 4
(
π2λ2

p

L1L2

)2

⇒ xy =
(
πλ2

p

L1L2

)2

t2. (4.55)

Since

X(s) =
(
L1L2

πλ2
p

)2s−1 Γ(1 − s)
Γ(s) , (4.56)

using a similar argument that we used before, but now all dimensions remain compact, we can define
the quantities

n(1)
c ≡

(
L1

λp

)1/2

and n(2)
c ≡

(
L2

λp

)1/2

⇒ xy =

 π(
n

(1)
c n

(2)
c

)2


2

t2, (4.57)

which, considering the fact that we do not have a preferred direction, indicate to us that the natural
choice for t should be

t = 1
π

(
n(1)

c n(2)
c

)2
⇒ x = y = n(1)

c n(2)
c . (4.58)

Looking back to the Eq. 4.53, we see that the sums are over all modes inside the ellipse defined by

n2
1

L1n
(1)
c n

(2)
c

+ n2
2

L2n
(1)
c n

(2)
c

=
(

1
πλp

)2

= constant, (4.59)

in the (n1, n2)-plane with the origin removed.

For the Riemann zeta-function contributions in Eq. 4.51, we have

ζ(2s) =
∑
n≤u

1
n2s

+ ϑ(2s)
∑
n≤v

1
n1−2s

, (4.60)

for α ≫ 1 where 2πuv = α. Proceeding exactly as in the slab bag geometry case, we find that

u = v ≡ n(i)
c =

(
Li

λp

)1/2

⇒ α = 2πLi

λp

; i = 1, 2. (4.61)
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Continuing from the previous section, we employ an analogous method using the same
harmonic number definitions, once the range in the complex plane will be the same. Considering the
case where s = −1/2 and manipulating the equations, is possible to find that

E(L1, L2; s) =
λ2s

p

8
∑′

Φ≤n
(1)
c n

(2)
c

Φ−s
12 +

(
L1L2

πλ2
p

)2s−1 Γ(1 − s)
Γ(s)

λ2s
p

8
∑′

Φ≤n
(1)
c n

(2)
c

Φs−1
12 +

−
λ2s

p

4

2∑
i=1


(
λp

Li

)−2s
2ζ(2s) − ζH(2s;n(i)

c +1)
+(−1)−4s+1ϑ(2s)

 1
2s

(
λp

Li

)−3s

− 1
2

(
λp

Li

)−6s+1
2
 .
(4.62)

We define the vacuum energy for finite conductivity Ef.c. as

Ef.c.
(
L1, L2, s = −1

2

)
= U f.c.(L1, L2) ≡ 1

8λp

∑
Φ≤n

(1)
c n

(2)
c

Φ
1
2
12 − 1

4

2∑
i=1

1
Li

[
ζH(−1;n(i)

c + 1) − 1
6

]
.

(4.63)
Therefore

U f.c.(L1, L2) = U(L1, L2) −
π2λ3

p

32(L1L2)2

∑
Φ≤n

(1)
c n

(2)
c

Φ− 3
2

12 + 1
2λp(2π)2

2∑
i=1

(λp

Li

)3/2

− 1
2

(
λp

Li

)2


(4.64)
is the Casimir energy for a rectangular box with non-ideal boundary conditions.
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Chapter 5

Conclusions

This work aims to show that the vacuum energy of quantum fields satisfying nonideal boundary
conditions can be calculated using spectral theory. First, we investigated the total energy of a quantized
massless scalar field satisfying ideal boundary conditions using an analytic regularization procedure.
Next, we extend the above result to the case of "imperfect conductor" boundary conditions, which we
denote as ideal high-pass Dirichlet boundary conditions. In this scenario, the crucial point is that it is
not convenient to simply calculate the correction to the renormalized vacuum energy by separating the
effects of the low-energy from the high-energy vacuum modes using a sharp cut-off. This procedure
effectively discards high-energy frequencies giving wrong results. Furthermore, we discussed the
Casimir energy associated with a massless scalar field assuming a slab geometry Rd−1 × [0, L]. To
obtain the correction to Casimir force in the case of ideal high-pass Dirichlet boundary conditions, we
use an approximate functional equation. This approach considers all the infinite modes through an
analytic continuation. To accomplish this, we represent the energy density using finite sums outside
the original domain of convergence of the Dirichlet series. Finally, we demonstrate how it is possible
to obtain the correction to the Casimir force generated by a massless scalar field in three-dimensional
spacetime in the presence of a rectangular box, with lengths L1 and L2.

We have discussed how zero-point fluctuations manifest as divergent vacuum energy. The
Casimir effect has been observed in laboratory settings, yet certain challenges persist, notably the
cosmological constant problem [41]. By introducing a cosmological constant as a free parameter in
Einstein’s equation and evaluating the stress-energy tensor at the vacuum state, we obtain the energy
density of the vacuum, which receives contributions from the zero-point fluctuations of all quantum
fields present in the universe. This energy density yields a divergent quantity, and as discussed,
regularization of these infinities becomes a crucial concern. Initially, following the approach proposed
in the finite conductivity case, we can introduce a sharp cut-off at k = M , where the physical
interpretation of M represents the scale at which the effective theory utilized earlier encounters
limitations [42]. However, similar to the plasma frequency case, this approach yields erroneous
outcomes. Imposing a cut-off solely on spatial momentum disrupts Lorentz invariance. Thus, to
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address this issue, the regularization scheme must preserve it [43]. A possible choice is the analytic
regularization with a noteworthy method being zeta function regularization. However, in this scenario,
the challenges extend beyond the choice of a regularization scheme. Even when all conditions are
adhered to, the theoretical expectation value for the cosmological constant often significantly deviates
from experimental observations. It is noteworthy that various observational findings, not only in
cosmology indicate disparities between theoretical predictions and empirical measurements [44, 45].
We aim to use our method of using asymptotic expansion and approximate functional equations to
shed light on this problem as in the case of the conductivity correction of the Casimir effect.

The primary insight of this work is that, in the case of imperfect boundary conditions, we have
to consider the ultraviolet modes by employing analytic continuation. Subsequently, an approximate
functional equation can be utilized to determine the correction to the Casimir energy arising from
imperfect boundary conditions. The analogy with the cosmological constant problem is evident.
An alternative approach to addressing the cosmological constant problem involves considering the
cosmological de Sitter model, characterized by a static cosmological model featuring a non-zero
cosmological constant. Within this framework, an Euclidean section in the de Sitter spacetime can
be identified and can assume a massive scalar field. To determine the vacuum energy via an analytic
continuation procedure, it is necessary to derive a suitable form of zeta function. Similar to the previous
scenario, if an approximate functional equation can be obtained, one can then explore the correction of
the vacuum energy responsible for generating the cosmological constant within the de Sitter spacetime.
This question deserves further investigations. Another possibility is to compare the result obtained
using a approximate functional equation with the Milloni’s method for the case of a electromagnetic
field in the interior of a rectangular waveguide.



29

Bibliography

[1] H. B. G. Casimir. On the attraction between two perfectly conducting plates. Indag. Math.,
10(4):261–263, 1948.

[2] J. Ambjørn and S. Wolfram. Properties of the vacuum. i. mechanical and thermodynamic. Annals

of Physics, 147(1):1–32, 1983.

[3] G. Plunien, B. Müller, and W. Greiner. The casimir effect. Physics Reports, 134(2):87–193,
1986.

[4] S.A. Fulling. Aspects of Quantum Field Theory in Curved Spacetime. EBL-Schweitzer. Cam-
bridge University Press, 1989.

[5] V. M. Mostepanenko and N. N. Trunov. The casimir effect and its applications. Soviet Physics

Uspekhi, 31(11):965, nov 1988.

[6] M. Bordag, U. Mohideen, and V.M. Mostepanenko. New developments in the casimir effect.
Physics Reports, 353(1):1–205, 2001.

[7] K. A. Milton. The casimir effect: recent controversies and progress. Journal of Physics A:

Mathematical and General, 37(38):R209, sep 2004.

[8] M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko. Advances in the

Casimir effect, volume 145. Oxford University Press, 2009.

[9] S. K. Lamoreaux. Demonstration of the casimir force in the 0.6 to 6µm range. Phys. Rev. Lett.,
78:5–8, Jan 1997.

[10] U. Mohideen and A. Roy. Precision measurement of the casimir force from 0.1 to 0.9µm. Phys.

Rev. Lett., 81:4549–4552, Nov 1998.

[11] F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan. Casimir forces and quantum electro-
dynamical torques: Physics and nanomechanics. IEEE Journal of Selected Topics in Quantum

Electronics, 13(2):400–414, 2007.



Bibliography 30

[12] G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko. The casimir force between real
materials: Experiment and theory. Rev. Mod. Phys., 81:1827–1885, Dec 2009.

[13] R. D. M. De Paola, R. B. Rodrigues, and N. F. Svaiter. Casimir energy of massless fermions in
the slab-bag. Modern Physics Letters A, 14(34):2353–2361, 1999.

[14] L. H. Ford and N. F. Svaiter. Fluid analog model for boundary effects in field theory. Phys. Rev.

D, 80:065034, Sep 2009.

[15] Lowell S. Brown and G. Jordan Maclay. Vacuum stress between conducting plates: An image
solution. Phys. Rev., 184:1272–1279, Aug 1969.

[16] Carl M. Bender and Patrick Hays. Zero-point energy of fields in a finite volume. Phys. Rev. D,
14:2622–2632, Nov 1976.

[17] Kimball A. Milton, Lester L. DeRaad, and Julian Schwinger. Casimir self-stress on a perfectly
conducting spherical shell. Annals of Physics, 115(2):388–403, 1978.

[18] Bernard S. Kay. Casimir effect in quantum field theory. Phys. Rev. D, 20:3052–3062, Dec 1979.

[19] Patrick Hays. Vacuum fluctuations of a confined massive field in two dimensions. Annals of

Physics, 121(1):32–46, 1979.

[20] A.A. Actor. Local analysis of a quantum field confined within a rectangular cavity. Annals of

Physics, 230(2):303–320, 1994.

[21] R.B. Rodrigues and N.F. Svaiter. Vacuum fluctuations of a scalar field in a rectangular waveguide.
Physica A: Statistical Mechanics and its Applications, 328(3):466–492, 2003.

[22] Timothy H. Boyer. Quantum electromagnetic zero-point energy of a conducting spherical shell
and the casimir model for a charged particle. Phys. Rev., 174:1764–1776, Oct 1968.

[23] Timothy H Boyer. Quantum zero-point energy and long-range forces. Annals of Physics,
56(2):474–503, 1970.

[24] N. F. Svaiter and B. F. Svaiter. Casimir effect in a D-dimensional flat space-time and the cut-off
method. Journal of Mathematical Physics, 32(1):175–180, 01 1991.

[25] N F Svaiter and B F Svaiter. The analytic regularization zeta function method and the cut-off
method in the casimir effect. Journal of Physics A: Mathematical and General, 25(4):979, feb
1992.

[26] B. F. Svaiter and N. F. Svaiter. Zero point energy and analytic regularizations. Phys. Rev. D,
47:4581–4585, May 1993.

[27] B. F. Svaiter and N. F. Svaiter. The stress tensor conformal anomaly and analytic regularizations.
Journal of Mathematical Physics, 35(4):1840–1849, 04 1994.



Bibliography 31

[28] E. M. Lifshitz. The theory of molecular attractive forces between solids. Sov. Phys. JETP,
2:73–83, 1956.

[29] G. H. Hardy and J. E. Littlewood. The approximate functional equations for ζ(s) and ζ2(s).
Proceedings of the London Mathematical Society, s2-29(1):81–97, 1929.

[30] E. Arias, G. O. Heymans, H. T. Lopes, and N. F. Svaiter. Vacuum energy with nonideal boundary
conditions via an approximate functional equation. Phys. Rev. D, 108:085019, Oct 2023.

[31] W. Greiner and J. Reinhardt. Field Quantization. Springer, 1996.

[32] Ashok Das. Lectures on Quantum Field Theory. WORLD SCIENTIFIC, 2008.

[33] A.E. Ingham. The Distribution of Prime Numbers. Cambridge Mathematical Library. Cambridge
University Press, 1990.

[34] N.G. Van Kampen, B.R.A. Nijboer, and K. Schram. On the macroscopic theory of van der waals
forces. Physics Letters A, 26(7):307–308, 1968.

[35] P.W. Milonni. The Quantum Vacuum: An Introduction to Quantum Electrodynamics. Elsevier
Science, 1994.

[36] A. Ivic. The Riemann Zeta-Function: Theory and Applications. Dover Books on Mathematics
Series. Dover Publications, Incorporated, 2013.

[37] Anthony Sofo. General order euler sums with multiple argument. Journal of Number Theory,
189:255–271, 2018.

[38] Paul Epstein. Zur theorie allgemeiner zetafunctionen. Mathematische Annalen, 56:615–644,
1903.

[39] L. H. Ford and N. F. Svaiter. One-loop renormalization of a self-interacting scalar field in
nonsimply connected spacetimes. Phys. Rev. D, 51:6981–6989, Jun 1995.

[40] H. S. A. Potter. Approximate equations for the epstein zeta-function. Proceedings of the London

Mathematical Society, s2-36(1):501–515, 1934.

[41] Steven Weinberg. The cosmological constant problem. Rev. Mod. Phys., 61:1–23, Jan 1989.

[42] Sean M. Carroll, William H. Press, and Edwin L. Turner. The cosmological constant. , 30:499–
542, January 1992.

[43] E. Kh. Akhmedov. Vacuum energy and relativistic invariance, 2002.

[44] S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua,
S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J.



Bibliography 32

Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMa-
hon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson,
A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, and The Supernova Cosmology
Project. Measurements of ω and λ from 42 high-redshift supernovae. The Astrophysical Journal,
517(2):565–586, June 1999.

[45] Adam G. Riess, Alexei V. Filippenko, Peter Challis, Alejandro Clocchiatti, Alan Diercks, Peter M.
Garnavich, Ron L. Gilliland, Craig J. Hogan, Saurabh Jha, Robert P. Kirshner, B. Leibundgut,
M. M. Phillips, David Reiss, Brian P. Schmidt, Robert A. Schommer, R. Chris Smith, J. Spy-
romilio, Christopher Stubbs, Nicholas B. Suntzeff, and John Tonry. Observational evidence from
supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal,
116(3):1009–1038, September 1998.


	Agradecimentos
	Epigraph
	Resumo
	Abstract
	Introduction
	Quantum Field Theory
	Canonical Quantization and Fock space 
	Field quantization and the vacuum energy
	The zero-point energy of the electromagnetic field



	The Quantum Vacuum
	The divergent zero-point energy
	Casimir's original approach - the cut-off method
	Analytic extension method


	Casimir Effect with non-ideal boundary conditions
	Corrections to the vacuum energy
	Milloni's Approach
	Analytic extension approach for non-ideal boundary conditions
	Driving in a guide wave
	Living in a box



	Conclusions
	Bibliography

