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Abstract

Measurements of transverse momentum (pT ), pseudorapidity (η), mean transverse momentum

(〈pT 〉), and multiplicity distributions contribute to our understanding of the hadron production in

high-energy collisions and provide information on the event characterization, essential to the devel-

opment of future analysis. The charged particle transverse momentum distribution also provides tests

of the predictability of quantum chromodynamics. While we can describe the high-pT distribution

using perturbative quantum chromodynamics, we also need to use non-perturbative phenomenologi-

cal methods to depict the whole spectrum. Non-extensive statistical mechanics supplies one of those

methods, where it provides a parametrization that fits the power-law behavior for high-pT as well

as the exponential behavior for low-pT . Questions arise as to why a non-extensive statistical me-

chanical distribution successfully describes the experimental data and what are its possible physical

implications. Using proton-proton collision data collected by the CMS Experiment and made avail-

able through the CERN Open Data Portal, the pT , η, 〈pT 〉, and multiplicity distributions of charged

hadrons for proton-proton collisions with center-of-mass energies (
√
s) of 0.9, 2.76, and 7 TeV are

reproduced in this dissertation. The spectra obtained were then compared to those published by the

CMS and ATLAS collaborations. For the pseudorapidity and multiplicity distributions, their behav-

ior measures how close the distributions from the open data are to the published results. For the pT

distributions, the Tsallis distribution is used to fit the data, and comparisons are drawn between the

parameters obtained.

Keywords: charged particle production, nonextensive statistical mechanics, CMS Open Data
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Resumo

Medidas de distribuições de momentum transverso (pT ), pseudorapidez (η), momentum transverso

médio (〈pT 〉), e multiplicidade contribuem para o nosso conhecimento sobre a produção de hádrons

em colisões de altas energias e fornecem informações sobre a caracterização de eventos, essencial

para o desenvolvimento de análises futuras. As distribuições de momentum transverso de partículas

carregadas também fornecem testes sobre o poder de previsão da cromodinâmica quântica. Mesmo

podendo utilizar a cromodinâmica quântica perturbativa para descrever as interações com alto-pT ,

nós também precisamos utilizar métodos fenomenológicos não-perturbativos para reproduzir todo o

spectrum de momentum transverso. A mecânica estatística não-extensiva fornece um desses méto-

dos, onde ela oferece uma parametrização que faz o ajuste das distribuições de momentum transverso

considerando o comportamento de lei de potência para baixo-pT e o comportamento exponencial para

alto-pT . Questões surgem sobre o porquê da mecânica estatística não-extensiva descrever com sucesso

os dados experimentais e quais são suas possíveis implicações físicas. Utilizando dados de colisões

próton-próton coletadas pelo experimento CMS disponibilizadas pelo CMS Open Data Portal, nós re-

produzimos distribuições de pT , η, 〈pT 〉, e multiplicidade de hádrons carregados para colisões próton-

próton com energia de centro de massa (
√
s) de 0.9, 2.76 e 7 TeV. As distribuições obtidas foram

comparadas às distribuições publicadas pelas colaborações CMS e ATLAS. Para as distribuições de

pseudorapidez e multiplicidade, seus comportamentos medem o quão perto as distribuições dos dados

abertos estão dos dados publicados. Para as distribuições de momentum transverso, a distribuição de

Tsallis é utilizada para ajustar os dados, e comparações são feitas entre os parâmetros obtidos.

Palavras chave: produção de partículas carregadas, mecânica estatística não-extensiva, CMS Open

Data
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1 | Introduction

After more than a century of development, the Standard Model (SM) of particle physics [1–

3] represents the current knowledge about the elementary particles that make the universe and its

interaction forces. The SM provides us with great detail the description and the prediction of various

high-energy phenomena through quantum field theory (QFT). It also explains many of the current

experimental data. Details about the SM in the QFT context are found in various textbooks [4–6].

Fermions (particles with half-integer spin) and bosons (particles with integer spin) make up the

particles of the SM. The fermions compose the universe matter, while the bosons mediate their inter-

actions. Exemplifying these particles, we can start with the atoms, which are bound states of fermions

(electrons) orbiting a nucleus (made up of hadrons). The hadrons, in turn, are bound states of another

kind of fermions, the quarks. Quantum electrodynamics (QED) describes the atom bound state, where

virtual photons mediate electrically charged particle interaction. Quantum chromodynamics (QCD),

in turn, depict the hadron bound state, where virtual gluons mediate the interaction between color-

charged particles. The weak interaction completes the fundamental interactions of particle physics,

where it is responsible for radioactive atomic decay. Massive bosons, W and Z, mediate the weak

interaction. The weak force provides access for the electrically neutral part of the fermions of the

SM, the neutrinos. For a complete interaction model, we need to introduce the gravitational force.

However, gravity is not a part of the SM. Since the gravitation interaction is negligible compared

to other interactions, we only need to consider it on a macroscopic scale. Additionally, there is no

clear quantum picture of gravity. The Higgs boson, a spin-0 particle, completes the SM. It provides a

symmetry-breaking mechanism for which all the other particles acquire mass. Table 1.1 presents the

twelve fermions that make the SM, and Table 1.2 shows the four fundamental interactions and their

respective force mediators.

Even though the SM is a successful model, it still is an incomplete theory. Among its problems, we

can cite the lack of explanation of phenomena like the nature of dark matter, the particles’ mass origin,

1



CHAPTER 1. INTRODUCTION 2

Leptons Quarks

Particle Q/|e| mass (GeV) Particle Q/|e| mass (GeV)

First
Generation

electron e− −1 0.0005 down d −1/3 0.003
electron neutrino νe 0 < 10−9 up u +2/3 0.003

Second
Generation

muon µ− −1 0.106 strange s −1/3 0.1
muon neutrino νµ 0 < 10−9 charm c +2/3 1.3

Third
Generation

tau τ− −1 1.78 bottom b −1/3 4.5
tau neutrino ντ 0 < 10−9 top t +2/3 174

Table 1.1: The SM fermions divided into leptons and quarks [4].

Interaction Strength Boson Spin/Parity Mass (GeV/c2)

Strong (QCD) 1 Gluon g 1− 0
Electromagnetic (QED) 10−3 photon γ 1− 0

Weak 10−8 W Boson W± 1− 80.4
Z Boson Z0 1− 91.2

Gravity 10−37 ?

Table 1.2: The four known interaction forces [4].

the mechanism of generation of neutrino mass, among others. There are several models developed to

circumvent these various problems within the SM. Among them are theories like Supersymmetry, the

possibility of extra dimensions, grand unification theory, and string theory, among others.

Although the development of theories beyond the SM is essential, we still have to devote part

of our attention to better describing the phenomena present within the SM, which requires precision

testing. A detailed understanding of QCD is among these needs.

From an experimental viewpoint, we use particle accelerators as a source of information to de-

velop high-energy physics theories. One issue is how to model the interaction between partons (ele-

mentary particles that compose hadrons: quarks, anti-quarks, and gluons) from the QCD. Therefore,

we consider the scattering of hadrons in high-energy colliders such as the Large Hadron Collider

(LHC) [7], where we aim to describe the hadron-hadron interaction from a partonic model [8]. Ide-

ally, one would use QCD to explain all the processes that involve strong interaction. But that is not

possible, as we cannot fully describe hadron-hadron scattering from the first principles of the interac-

tion Lagrangian.

QCD can successfully describe the parton scattering involving high transverse momentum values

[8–10]. However, a problem arises when describing the low-pT part of the spectrum. We encounter
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CHAPTER 1. INTRODUCTION 3

this problem because on this scale, the strong coupling constant, αs(Q
2) (Q2 ≡ −q2 > 0, where q

represents the transferred momentum of the virtual gluon [8]), becomes too large for us to use the

QCD perturbative models. As a result, we obtain divergent cross-sections for pT approaching zero.

Since αs is inversely proportional to Q2, we will have low values of αs for high energies, and with

that, we can use the perturbative QCD (pQCD). But for lower values of transferred momentum, this

is no longer possible.

It is required to combine pQCD for the high-pT region with phenomenological models for the

low-pT sector to describe the entire pT spectrum in hadron collisions. Non-extensive statistical me-

chanics provides one of the phenomenological models, supplying the Tsallis distribution [11–13].

This distribution successfully describes the entire pT spectrum for high energy collisions [14, 15].

Consequently, questions arise about what physical implications can be implied from the Tsallis fit.

Other ways to phenomenologically analyze hadron collisions come from the formulation of Monte

Carlo event generators that simulate high-energy proton-proton collisions. These event generators

employ models that simulate the collision process on the parton level, using the current knowledge

(from QCD theory to experimental data) to describe the hard scattering, the parton shower, and the fi-

nal hadronization. Two examples of event generators are Pythia [16, 17], which uses the Lund Model

[18], and Phojet [19–21], which utilizes the Dual Parton Model [22–24].

The idea of using a statistical approach to explain hadron production in collisions of high energy

has been present since the mid-twentieth century [25]. Fermi proposed a method assuming that the

formation probabilities of the different types of particles are determined by the statistical weights of

these distinct possibilities. Over the next decade, Hagedorn proposed the statistical bootstrap model

(SBM) [26]. The SBM follows the Boltzmann-Gibbs statistics and consists of the idea that hadrons

make hadrons in an infinite chain. In this model, Hagedorn finds a critical temperature T0 ≈ 160

MeV that would later be interpreted as the temperature at which the bound states of hadrons break

down and form a new phase of matter, the quark-gluon plasma (QGP) [27, 28]. Soon after, Hagedorn

arrived at an empirical formula to describe the hadron production [28]. This formula accounted for

the spectrum’s exponential behavior for low-pT and power-law behavior for high-pT .

Tsallis’ approach arises from a generalization of Boltzmann’s statistics, called non-extensive sta-

tistical mechanics. The non-extensive parameter q characterizes this approach, giving us a measure-

ment of how far the experimental data diverges from the Boltzmann theory. For q → 1, we return to

the Boltzmann statistics. This model has been efficient in the description of high-energy phenomena,

as well as other fields. An extensive and detailed bibliography on the subject is found in [29]. As

3
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stated earlier, non-extensive statistical mechanics emerges as an efficient phenomenological model to

describe the charged hadron production in particle accelerators. More recently, the ALICE [30] and

CMS [31] experiments at the LHC have published results [32–37] using Tsallis statistics to fit the

data for the pT spectrum of hadrons at high energies.

Besides the transverse momentum distributions, other distributions, such as pseudorapidity, multi-

plicity, and 〈pT 〉 distributions, help in the collision characterization. This characterization is essential

for the understanding of standalone collisions. These distributions provide the experimental behavior

of collision properties necessary for the Monte Carlo model formulation. Thus, with experimental

results guiding simulation models, these distributions can provide insights regarding partonic inter-

actions. The data for these analyses are collected in a setting with low pile-up1 and with triggers set

to accept collisions with as with minimum bias as possible. These measurements are among the first

made by experimental collaborations and are present extensively in the literature [34–40].

This dissertation uses public data from the CMS Collaboration made available through the CERN

Open Data Portal [41] to explore these distributions. In addition to collision data (raw or recon-

structed), the CERN Open Data Portal also provides several sets of simulated and derived data from

high-energy collisions. These Monte Carlo datasets are essential for the corrections related to the

CMS detector. The portal also supplies the CMS software (CMSSW) [42], turning accessible to the

entire community the analysis of the data detected by the CMS.

The first objective of this dissertation is to reproduce the distributions of charged particles pro-

duced in proton-proton collisions using open data made available by the CMS Experiment for center-

of-mass energies of 0.9, 2.76, and 7 TeV. Among them are the distributions of multiplicity, aver-

age transverse momentum, pseudorapidity, and transverse momentum. Additionally, this dissertation

compares the distributions measured with open data and the results published by the CMS and AT-

LAS collaborations. This comparison provides the first indication of the possibility of reproducing

publishable results using data from the CERN Open Data Portal. After analyzing the fidelity of the

distributions from open data, this dissertation focuses on studying the transverse momentum spec-

trum, where the distributions are analyzed using parametrizations from non-extensive statistical me-

chanics. Finally, the measured distributions are compared to distributions from Monte Carlo tunings,

where details about why this kind of analysis should continue to be carried out are outlined.

1Since the LHC collides bunches of protons instead of single protons, multiple collisions can occur in the interaction
points. Thus, pile-up interactions are the interactions that are recorded simultaneously inside the CMS detector. As for
the low pile-up setting, the experiment aspires to obtain a dataset with only one collision per event.
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This dissertation is organized as follows: Chapter 2 highlights general aspects of QCD along

with hadron-hadron interactions. Specifically, the scenario for high-pt collisions is displayed. Chap-

ter 3 introduces the theory of non-extensive statistical mechanics and its formulation to describe the

hadron production in particle accelerators. Chapter 4 presents the CMS detectors and all the subde-

tectors relevant to this dissertation. It also shows the CERN Open Data Portal, its datasets, and the

software necessary for data analysis. Chapter 5 exhibits the simulated and collision datasets used in

this dissertation. It also displays the selection cuts applied to these datasets. Chapter 6 indicates the

corrections necessary to obtain the final distributions. Chapter 7 presents the results of this analysis.

Finally, Chapter 8 draws the dissertation’s conclusions. The calculations and equations introduced in

this dissertation follow the kinematic variable definitions present in Appendix A.
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2 | Hadron Interactions

2.1 Quantum Chromodynamics

We can separate the particles that make up the SM between fermions and interacting bosons.

Specifically regarding QCD, we consider only quarks and gluons, as they are the only fundamental

particles within the SM that carry the color charge. We group quarks and gluons into a new category

of particles called partons.

At the beginning of the 20th century, there was still no knowledge about the parton existence, only

hadrons, which are non-elementary particles composed of partons. Until the early 1930s, the known

hadrons were just the proton and the neutron, discovered through experiments with the atomic nucleus

[43, 44]. With the advancement of technology over the years, several experiments were carried out

analyzing the interaction of (supposedly) elementary particles at increasingly higher energies, leading

to several other hadron discoveries.

A new theory was formulated from the discovery of these new hadrons. This theory was composed

of particles called baryons (among them are the proton and the neutron) that interacted through the

exchange of other particles, later called mesons [45]. Baryons and mesons are two subcategories of

hadrons. Even with the failure of this theory to describe the strong interaction, it provided a basis for

the model that would follow, as it already used the concept of symmetries in group theory to formulate

a model for the strong interaction.

The quark concept emerged in the early 1960s [46] from the need to correctly describe the strong

interaction experimental data. The data indicated the conservation of two quantum numbers, labeled

as the third component of isospin and the hypercharge. When the known hadrons were organized

into a graph taking these two quantum numbers into account, the results looked like the SU(3) weight

diagrams. We can obtain all SU(3) representations as subrepresentations of tensor products of rep-

resentations 3 and 3∗. Thus, a proposal emerged stating that the fundamental representation of the
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SU(3) should correspond to the fundamental particles in hadron theory. With this, we obtained a

distinction between baryons and mesons. Baryons are composed of three quarks, while mesons are

formed by a quark and an antiquark.

Since quarks are fermions, they must obey the Fermi exclusion principle. For the quark model

to comply with this principle, it was necessary to introduce eigenstates that differentiate the quarks

within a hadron. This new quantum number was labeled as color. A quark is described by specifying

its flavor (u, d, s, c, b ou t) and its color (R, G, or B for red, green, or blue). Hadrons are postulated

as colorless (the sum of the colors results in white), that is, they contain equal mixtures of R, G, and

B. What in this context we call color is just a label for the orthogonal eigenstates in the color space

given by SU(3). We describe a quark q as a triplet in this space given by

q =


q1

q2

q3

 =


qR

qG

qB

 (q = u,d,s,c,t,b). (2.1)

Eight massless gluons mediate the strong interaction, corresponding to the eight SU(3) gauge

symmetry generators. Unlike previous attempts to describe the strong interaction from an approxi-

mate SU(3) flavor symmetry, we are now working with a theory with an exact SU(3) color symmetry.

More details can be found in several textbooks [5, 6, 47].

2.2 Perturbative QCD

An evolution of this theory is necessary so that the reproduction of experimental results is possi-

ble, where we need to go to the scenario in which particles can be scattered, created, or destroyed.

The measurable experimental parameters of quantum mechanics are given by probabilities. In the

Schrödinger representation, the measurements we want to predict are given by |
〈
f ; tf

∣∣i; ti〉 |2, where

|i; ti〉 is the initial state at a time ti, and
〈
f ; tf

∣∣ is the final state we are interested in at a time tf . We

now move to the quantum field theory, where we interpret coordinates and conjugate moments as op-

erators in the Heisenberg representation. For the case where we evolve momentum eigenstates from

a time t = −∞ to a time t = +∞, we call the time evolution operator the S matrix (or scattering

7



CHAPTER 2. HADRON INTERACTIONS 8

matrix). The S matrix is defined as [5]

〈f |S|i〉Heisenberg =
〈
f ; tf

∣∣i; ti〉Schrödinger . (2.2)

The S matrix has all the information about the evolution of the initial and final states. It is this matrix

that must be calculated to compare with the experimental results. If we want to perform calculations

that take interactions into account, we need to move to a scenario where we must compute the matrix

S perturbatively.

In QFT, we use the time-ordered perturbation theory to formulate the interaction process between

particles mediated through particle exchange. There are different temporal orderings of how the

interaction between particles can take place in a given scattering. A Feynman diagram represents the

sum over all possible arrangements.

Thus, Feynman diagrams appear as the ideal tools to calculate the S matrix. These diagrams also

supply a set of Feynman rules, which provide us with a way to represent the perturbation expansion. It

is the Feynman rules that establish the calculations of physical results in the QFT. There are different

ways to derive Feynman’s rules, which will not be covered here. These rules are found in [5, 6].

In short, it is necessary to use the S matrix to study collisions, and for it to be used successfully

in QCD, we need to use perturbation theory. At first, it is not guaranteed that we can perform a

perturbative expansion for QCD. As far as we know, the strong coupling constant (αs) has a value

approximately to a unit for the bound states, which is about two orders of magnitude larger than

the fine structure constant α ≈ 1/137 of QED, which in turn allows us to perform a perturbative

expansion.

The historical step was noting that αs depends on the energy we are working on, where we have

that its value decreases as energy increases. Thus, quarks behave almost as free particles in high-

energy collisions when the approximation between hadrons is small enough.

This phenomenon is called asymptotic freedom, a property that allows us to use perturbative

methods at high energies for QCD. The discovery of asymptotic freedom in non-abelian field theories

was the main reason for the QCD establishment [48, 49]. Going to higher orders of αs of a Feynman

diagram, fermion and gluon loops related to vacuum polarization will be introduced (for gluons also

carry color charge and therefore couple with each other). Figure 2.1 illustrates diagrams representing

loops for α2
s correction orders.

8
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g

q

g

(a)

g

g

g

(b)

Figure 2.1: Feynman diagrams for the α2
s-order corrections of the quark-gluon coupling.

From diagrams like those in Figure 2.1, we obtain an expression for the strong coupling constant

at high energies [8]

αs(Q
2) ≈ αs

1− αsb0
4π

ln

(
Q2

µ2

)
+

αsb0
4π

ln

(
Q2

µ2

)2

+ · · ·


≈ αs

1 +
αsb0
4π

ln

(
Q2

µ2

) ≡ 1

b0
4π

ln

(
Q2

Λ2

) (2.3)

where Λ2 = µ2 exp
(
−4π/αsb0

)
is the QCD scale parameter, Q2 is the transferred momentum, b0 =

11
3
nc − 2

3
nf , µ2 is the value of Q2 in which αs is measured, nc is the number of colors, and nf is the

number of quarks flavors.

For nc = 3 and nf = 6, we have b0 = 7 > 0, and so we get the addition of a positive term in

the denominator of Equation 2.3. Therefore, αs(Q
2) → 0 when Q2 → ∞. Thus, this is why quarks

and gluons appear as almost free particles when observed at high energies. Asymptotic freedom is an

essential ingredient for us to study the partons present in the hadronic structure perturbatively.

We can also note that αs(Q
2) → ∞ when Q2 → Λ2, and therefore we cannot use perturbation

theory for small values of Q2. Leaving the momentum space to the coordinate space, we get that

αs(r) =
1

b0
2π

ln

(
1

Λr

) , (2.4)

and thus we can see that the coupling becomes stronger as the separation between the quarks increases.

This phenomenon is thought to be the effect that creates the confinement of quarks within hadrons,

and consequently, we do not observe free quarks. As hadrons have a size of approximately 1 fm, it is

9
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defined that Λ ≈ 0.2 GeV.

2.3 Hadron-hadron scattering

From a hadron collider standpoint, like the LHC, all processes are connected in some way to the

interactions of quarks and gluons, whether they are proton-proton collisions or heavy-ion collisions.

It is possible to study the mechanisms of QCD through collisions at high energies by thinking of the

hadrons present in these collisions as parton clusters [8, 9]. We can separate hadron scatterings in

high-energy experiments into two categories, elastic and inelastic scatterings.

Both hadrons present in the collision maintain their shape and are not fragmented to form new

hadrons on elastic scatterings. The elastic collision of two hadrons A and B can be represented as

A+B → A+B. This process is only likely to happen if there is small momentum transferred in the

interaction.

The fragmentation of one or both hadrons present in the collision characterizes an inelastic scat-

tering. These events are categorized as diffractive (single or double diffraction) or non-diffractive

processes. By diffraction, we can make an analogy with light diffraction, where it is possible to char-

acterize the structure of obstacles through the diffraction pattern. In high-energy physics, we analyze

hadrons through diffraction, making it possible to study their composition.

Through the excitation of the partonic structure of the hadrons, new colorless hadrons, called

fragments, are formed. Fragments carry most of the momentum fraction of the primary particle

and manifest as high-energy jets in the forward or backward (or both) directions along the hadron

propagation axis. A jet is composed of few high-energy particles produced by the hadronization of a

parton.

Single-diffractive scatterings are the processes in which a singular hadron is fragmented. In this

type of process, the energy of the center of mass is much greater than the momentum transferred in

the interaction and results in particle jets being emitted either forwards or backward. These processes

are represented by A + B → A + X or A + B → X + B, where X represents all other particles

present in the final state.

Double-diffractive scatterings are the processes in which both hadrons are fragmented. In this

process, jets are emitted in both directions of the collision axis. They are represented as A + B →

X1 +X2.

10
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The rest of the possible events are classified as non-diffractive and are represented by the generic

process A+B → X . In most non-diffractive inelastic interactions, the partons of A and B decelerate

and combine to produce new hadrons with low momentum that fill the central region of the collision.

The remaining partons of A and B keep moving in the collision direction and eventually recombine

into other hadrons. The momentum transferred in the parton interactions in the central region is small.

The transverse momentum (pT ) of the final state is only a small fraction of the interacting hadrons’

total momentum (p), not exceeding 2 GeV. This type of collision is classified as soft. Figure 2.2

illustrates the possible types of hadron scattering mediated by a Pomeron1 P.

Double-diffractiveSingle-diffractive Non-diffractive
Elastic Scattering

Inelastic Scattering

Figure 2.2: Schematic view of the possible scatterings between hadrons A and B mediated by a
Pomeron P. The lower side of the illustration shows a qualitative spatial distribution of the final state
particles for each of the possible scatterings (the green dots represent the particles produced by the
collision and the purple dots represent the colliding hadrons in the initial state).

Two partons can also pass very close to each other. A small impact parameter b classifies these

collisions, with the partons scattering at large angles. The impact parameter is the variable conjugated

to the transverse momentum. Thus, an interaction between partons with a small impact parameter has

large transverse momentum. These high-pT scatterings require very large transferred momentum in

the process. These scattering processes are classified as hard.

Aiming to compare how much of the total hadronic cross-section is from each diffractive pro-

cess, Table 2.1 provides the experimental measurements of the cross-sections of the possible types of

proton-proton collisions at
√
s = 7 TeV. Since the total collision cross-section (σtot) is given by the

sum of the elastic (σel) and inelastic (σinel) cross-sections, we have that, for a given center-of-mass

energy
√
s,

σtot(s) = σel(s) + σinel(s) = σel(s) + σSD(s) + σDD(s) + σND(s) (2.5)

1A Pomeron is a color singlet object with the same quantum number as the vacuum. It is found in the context of the
Regge theory, and it is the Pomeron that mediates the interaction between colliding hadrons. More about the Pomeron
and Regge theory can be found in [50].
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where σSD, σDD, and σND are the single-diffractive, double-diffractive, and non-diffractive cross-

sections, respectively. Thus, even though σel and σND are not shown in Table 2.1, they can be cal-

culated using Equation 2.5. Therefore, we can see that soft processes (non-diffractive) dominate the

hadronic collisions, corresponding to approximately two-thirds of the inelastic events, which in turn

correspond to about three-fourths of the total events.

Measurement ALICE (
√
s = 7 TeV) ATLAS (

√
s = 7 TeV)

σtot (mb) – 95.35± 1.30
σinel (mb) 73.2+2.0

−4.6 ± 2.6 71.34± 0.36± 0.83
σSD (mb) 14.9+3.4

−5.9 ± 0.5 –
σDD (mb) 9.0± 2.6± 0.3 –

Table 2.1: Cross-section measurements for proton-proton collisions at
√
s = 7 TeV at the LHC. The

results are provided by the ALICE and ATLAS Collaborations [51, 52]. The CMS Collaboration also
carried out cross-section measurements [53, 54]. The CMS measurements are not included in this
table since it has a different event selection than the results from ALICE and ATLAS.

QCD successfully describes the parton scattering of hard interactions, that is, for high values of

transverse momentum (pT & 2 GeV). On the other hand, QCD calculations cannot be applied to

interactions with small transverse momentum values, as mentioned above. In high-energy hadron

colliders, such as the LHC, non-diffractive inelastic interactions are the most common type of hadron

scattering. As such, soft partonic interactions dominate the produced collisions. It is important to

remember that the separation of hadronic interactions between soft and hard is artificial and usually

depends on some cut in transverse momentum.

It is necessary to combine perturbative QCD (pQCD) with phenomenological methods to explain

a hadron collision at high energies, making it possible to study both the high pT and the low pT parts

of the transverse momentum spectrum.

2.3.1 Scenario for processes with high transverse momentum

At first, hadron-hadron scatterings seem complicated to explore since both particles have an un-

derlying structure. However, at high energies and with high values of momentum exchange, hadron

interactions appear to be less complex. In this regime, the interactions seem to be due to a hard scat-

tering of the hadron constituents. From that, we can draw some similarities between hadron-hadron

and electron-hadron collisions.

A typical example of a process with high pT is given by A + B → C + X . In this process, the

12
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C particle has a large transverse momentum with respect to the A− B collision axis (pT ≡ |p| sin θ,

where θ is the angle between the particle’s momentum p and the collision axis), and X represents all

other particles in the final state. The A and B colliding particles contain a and b scattering partons,

producing partons labeled c and d that carry a high transverse momentum.

For processes involving two particles in the initial and final state, it is interesting to define the

Mandelstam variables where we have that

s ≡ (pA + pB)
2

t ≡ (pB − pC)
2

u ≡ (pA − pC)
2,

(2.6)

where pi = (Ei,pi) is the quadrimomentum of the i particle. It is important to remember that the final

state does not exactly consist of two particles, but rather a particle (not necessarily elementary, with

high pT ) plus the remainder particles labeled as X . Considering circular hadron colliders, such as

the LHC, two hadron beams collide frontally with the particles A and B having the same momentum

magnitude and opposite directions. Their four-momentum are given by

pA = (EA,p) e pB = (EB,−p). (2.7)

Therefore, the invariant

s = (EA + EB,p− p)2 = (EA + EB)
2 (2.8)

is the square of the center-of-mass energy.

If s, t, u, M2, and pT are all large (that is, larger than m2
A,B,C , where mA,B,C is the mass of hadrons

A, B, or C), where M is the missing mass in the final state due to the particles labeled as X , we can

expect that no scales of intrinsic masses are governing the dynamics. Hence, Figure 2.3 can describe

the scattering process.

Essentially, we hypothesize that there are soft fragmentations given by A → a + α, B → b + β,

c → C + γ, d → X , where the fragments carry a finite fraction x of the momentum of the primary

particles. Furthermore, we use the hypothesis that all of the high pT arises from the hard scattering

a+ b → c+ d.

Another hypothesis is that a, b, c, and d are formed by partons with momentum qa, qb, qc, and qd,

respectively. If this is true, we can calculate the cross-sections of processes A + B → C +X if we
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Figure 2.3: Illustration of a high-pT A + B → C + X process generated from the a + b → c + d
fragmentation.

know

i. the parton distribution in hadrons fa,b
A,B(xa,b) (also called structure functions), which is a func-

tion of the momentum fraction given by xa,b = qa,b/pA,B. These functions describe the vertices

a and b in Figure 2.3 and can be determined from electron scattering. If A is a proton, the

function determination becomes possible;

ii. the fragmentation functions DC
c (zc), which represent the probability that the resulting parton c

will produce a hadron C that carries a fraction of the momentum given by zc = pC/qc. This

function describes vertex c in Figure 2.3. In principle, these functions can be determined from

processes such as e+e− = C +X;

iii. the hard scattering subprocess a+ b → c+ d.

Knowing the distribution functions of (i) and (ii), a model for a + b → c + d will completely

specify the cross-section for the process A + B → C + X . Inversely, if we have data about the

scattering A + B → C + X , we will be able to extract the behavior of a + b → c + d and thus

understand the underlying parton dynamics and the strong interaction nature.

In this way, the invariant differential cross-section becomes [9]

EC
d3σ

dp3C

∣∣∣∣∣
AB→CX

=

∫
dxaf

a
A(xa)

∫
dxbf

b
B(xb)

[
E
d3σ

dp3
(ab → cd)

]∫
dzDC

c (zc). (2.9)

Details on how to obtain this expression are found in [10, 55, 56].
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2.3.2 Parton model predictions

An important outcome of perturbative QCD is obtaining the relationship between the amount

of produced particles in hadron collisions and their transverse momentum values. Thus, the parton

model provides a way to connect the perturbative theory with a measurable distribution from hadron

collider experiments. Since pQCD only analyzes the high-pT part of the spectrum, it only provides

the cross-section for this regime. However, the pT behavior of the cross-section is already enough to

draw some questions around the parton model, which includes its prediction of the dominant partonic

subprocess in hadronic collisions.

In short, for a theoretical prediction about the high-pT region of a hadron-hadron collision, it is

necessary to know the distribution of quarks within the initial hadrons, the probability of finding a

hadron carrying a certain fraction of the momentum of a quark, and the differential cross-section for

an elastic scattering involving partons.

We can isolate these three steps. Therefore, it is possible to use other experiments to determine

these parameters. For example, we can use deep inelastic scattering processes from electron-proton

collisions to establish the hadron structure functions and data involving hadron production to de-

termine the fragmentation functions. It is necessary to adjust the experimental data to obtain the

subprocess a+ b → c+ d cross-section. With that, we can guess as to which is the parton scattering

predominant process.

Although we do not have a detailed knowledge of the structure and fragmentation functions, we

use the property that they only provide dimensionless parameters. Thus, these parameters are not

scale dependent [8]. Only the partonic scattering subprocess contains information dependent on the

energy scale, allowing us to establish a relationship between the hadron production and the transverse

momentum of the detected particles.

In the most basic parton model, the differential cross-section for the process a + b → c + d is

given from a dimensional counting rule [57–59] (which can also be found in [55]). This process

considers that n active fields (particles) participate in this reaction. The Lorentz invariant differential

cross-section of a scattering process between hadrons A and B that results in n − 2 particles in the

final state is given by [4]

dσ =
(2π)4

2EA2EB(vA − vB)

∣∣Mfi

∣∣2 δ4
pA + pB −

n−2∑
i=1

pi

 n−2∏
i=1

d3pi
(2π)32Ei

, (2.10)
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where vA,B is the velocity of the hadron A,B and Mfi is a Lorentz-invariant matrix element. The

element Mfi is related to the transition matrix element Tfi between a initial state |i〉 to a final state

|f〉, where

Mfi = (2E1 · · · 2En−22EA2EB)
1/2Tfi. (2.11)

Therefore, the cross-section dimension is given by

[dσ] =
1

[E]2
[|M|2]

[
d3p

2E

]n−2

[δ4(p)], (2.12)

where [y] represents the dimension of a generic parameter y. With [p] representing the momentum

dimension, we have that [E] = [p], [dσ] = [p]−2, and δ4(p) = [p]−4, so the dimension of M is given

by [
|M|2

]
= [p]−2(n−4) = [momentum]−2(n−4). (2.13)

In this case, where each of the elementary particles carries a fraction of the incident momentum, the

relevant momentum scale is given by fractions of
√
s′, where s′ = (pa + pb)

2. Thus, we have that

|M|2 ∼ 1

(s′)n−4
. (2.14)

We can perform the integration over the momenta of the fragments a, b, c, and d in the center-of-

mass frame of each particle. Its result will not provide a center-of-mass energy s′ dependence. The

flux factor will scale with s′ (or p2), as well as the d3pc/Ec factor. Therefore the Lorentz invariant

differential cross-section can be given as a function of s′

Ec
d3σ

dp3c

∣∣∣∣∣
ab→cd

∼ 1

(s′)2
|M|2 = 1

(s′)n−2
(2.15)

Since we are making a dimensional-only argument, we will not have information about dimensionless

quantities such as xT = 2pc,T/
√
s and the center-of-mass scattering angle θCM . A more general

expression for the cross-section is given by

Ec
d3σ

dp3c

∣∣∣∣∣
ab→cd

∼ 1

(s′)N
F (xT ,θCM), (2.16)

where N = 2−n = 2− (number of active participants) and F (xT ,θCM) is a scale-invariant function.

For the case where the transverse momentum of the scattered particle is high, we change the relevant
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scale from s′ to p2T,c, and hence

Ec
d3σ

dp3c

∣∣∣∣∣
ab→cd

∼ 1

(p2T,c)
N
F (xT ,θCM). (2.17)

If we disregard the hadron mass in our initial scenario of the process A + B → C + X (i.e.,

processes where
√
s � mA,B), we have that the center-of-mass energy squared can be given by

s = (pA + pB)
2 ≈ 2(pA · pB). (2.18)

And just as for the subprocess a+ b → c+ d, we have that

s′ = (pa + pb)
2 ≈ 2(pa · pb) = 2xaxb(pA · pB) ≈ xaxbs. (2.19)

Using this relationship between s and s′, we have, except for dimensionless factors, that

Ec
d3σ

dp3c

∣∣∣∣∣
ab→cd

∼ 1

(p2T,C)
N
F (xT ,θCM). (2.20)

We need to find which subprocess allows us to adjust the experimental data according to the p−2N
T

cross-section dependence. The dominant process in high-pT parton-parton scatterings can be assumed

to be given by qq → qq processes (or other processes 2 → 2, which may involve quarks of different

flavors and also gluons). Thus, the counting rule leads us to believe that the dependence on pT of

the differential cross-section is given by N = 4. In [60], a table illustrates the Mandelstam variables

relation for several 2 → 2 processes. However, the value of n ≈ 7 was found for proton-proton

collisions produced at the LHC [61]. It was also proposed that the fundamental process would consist

of a parton-meson scattering to obtain a value closer to that found experimentally, which would yield

a power index N = 8. In addition, there are also modified proposals that depict the fundamental

process as a meson production, like the reaction g + q → q + meson, which would provide a power

index N = 6.

The partonic model was quite successful when describing lepton scattering processes, such as

DIS and electron-positron annihilation. However, even if we cannot analyze hadron-hadron collisions

with the same level of detail as leptons scatterings, we still should not rule out this model. Even

though there are several obstacles, it is still possible to explain the dependence of the cross-section

17
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concerning the transverse momentum. Thus we can find that [8]

EC
d3σ

dp3C

∣∣∣∣∣
AB→CX

∼ p−N
T (1− xT )

m, (2.21)

where m is an arbitrary factor such that, together with N , the power values of pT and xT manage to

adjust the experimental data for hadron-hadron collisions. At least, this behavior indicates that it is

feasible to carry out the separation of this process in stages. In addition, we obtain an indication that

there is an underlying hard scattering process that must be described with fundamental particles.

In a way, the analysis for the pT dependence of the A + B → C + X process is more of a

phenomenological test for our choice of the cross-section of the partonic subprocess than a theory

that allows us to make claims about the quark scattering model. Although it has not been addressed

in this analysis, it is necessary to emphasize that there are characteristics of the data that we should

successfully fit if this model is correct. However, these characteristics are weakly dependent on

the partonic subprocess cross-section [56]. Although it seems that we disregard parameters to make

explicit the pT dependence of the hadron-hadron scattering differential cross-section, these parameters

are still necessary if we want to perform a real test of the quark model.

Finally, we conclude that the partonic model is efficient enough so that it is possible to carry out

a hadron collision analysis, allowing us to make a phenomenological study of the available high-pT

hadronic data. While it is not a theory that provides us with a more detailed picture of the collision

sub-processes, it still is an idea to be considered.

More details on how the partonic model describes high-pT processes in hadron collisions and

their consequences are found in [8, 10, 56]. The current scenario that considers the perturbative QCD

model and the phenomenological approach through non-extensive statistical mechanics can be found

in [62].

18



3 | Statistical Hadronic Models

Since pQCD cannot provide an equation that describes the entire pT spectrum, we need to look for

phenomenological models to complement the QCD theory. Usually, these models are based on sta-

tistical mechanical approaches. Specifically considering the hadronic model, nonextensive statistical

mechanics provide a framework that describes the entire pT spectrum.

This chapter starts by outlining the description of the hadronic production if we decided to use

the standard statistical mechanics, i.e., Boltzmann-Gibbs statistics. Next, the theory of nonextensive

statistical mechanics is introduced, focusing on the description of the hadronic production in high-

energy collisions.

3.1 Standard statistical mechanics

Statistical mechanics provides a macroscopic description of nature from a microscopic foundation

[63]. Even though we can know the interaction between particles, it is impossible to use the equations

of motion to describe the behavior of a system composed of a large number of components. Thus, we

combine mechanics with the theory of probabilities to arrive at a macroscopic description of a physical

system. Ultimately, the statistical approach should lead to the principles of classical thermodynamics.

The formulation of an entropic functional shortens the path to the macroscopic formulation of the

theory, ignoring part of the microscopic information of the system [64]. In statistical mechanics, the

entropy measures how the probability of a system being in a given state spreads through the possible

microstates. Moreover, it is the entropy that is related to the thermodynamical quantities. Thus, it

connects the systems’ microscopic information with the macroscopic laws.

However, the statistical formulation was not the first context in which the entropy appeared. The

term entropy was coined in 1865 by Clausius [65] when he associated the increase of entropy dS with
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the exchange of heat δQ into a closed system. For example, for a reversible process, we have that

dS =
δQ

T
, (3.1)

where T is the system temperature (in equilibrium with its surroundings). Thus, the Clausius entropy

has a thermodynamic definition and directly connects with a physical meaning.

As a consequence of Clausius’s understanding of the second law of thermodynamics, we find the

relation between the entropy, the internal energy U , and the work W done by a system. Therefore,

we have that the first law of thermodynamics gives

TdS = dU + δW = TdS = dU + PdV, (3.2)

where P and V are the pressure and the volume of the system, respectively. As a result, the entropy

is formulated as an extensive thermodynamic variable.

By extensive, we mean that the entropy is proportional to the number N of components of a

system in the thermodynamic limit, in other words,

0 < lim
N→∞

S(N)

N
< ∞. (3.3)

The statistical approach to mechanics was already present in Maxwell’s work on the kinetic the-

ory of gases [66, 67]. His work introduced concepts such as velocity distributions, mean free path,

and ergodicity. But it was not only until Boltzmann that the probability distributions connected to the

thermodynamic concept of entropy. Among his accomplishments are the formulation of entropy and

the second law of thermodynamics on a microscopic level [68]. Subsequently, Gibbs further comple-

mented Boltzmann’s work by adding statistical ensembles to describe the thermodynamic equilibrium

[69]. These ensembles directly connect with physical parameters through thermodynamic potentials.

The collection of these formulations composes the foundation of standard statistical mechanics and

is available in multiple textbooks [63, 70, 71]. We will refer to this formulation as Boltzmann-Gibbs

(BG) statistics.

For the BG statistics, the connection between the entropy and the array of probabilities {pi} of
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the possible microstates {i} for a set of W discrete states is given by

SBG = −kB

W∑
i=1

pi ln pi, (3.4)

with
W∑
i=1

pi = 1, (3.5)

where kB is a positive constant. Thus, for the specific scenario of equal probabilities (pi = 1/W for

all microstates), the BG entropy becomes

SBG = kB lnW. (3.6)

As a consequence of the definition from Equation 3.4, we obtain the property of additivity for the

BG entropy. By additive, we mean that the sum of the entropy of two probabilistically independent

subsystems A and B equals the entropy of the composed system A+B. Thus, for a joint probability

pA+B
ij = pAi p

B
j , we find that

SBG(A+B) = −kB

WA∑
i=1

WB∑
j=1

pA+B
ij ln pA+B

ij

= −kB

WA∑
i=1

WB∑
j=1

pAi p
B
j ln pAi p

B
j

= −kB

WA∑
i=1

pAi ln pAi − kB

WB∑
j=1

pBj ln pBj

= S(A) + S(B).

(3.7)

The probability restriction from Equation 3.5, the energy constraint

U ≡ 〈E〉 =
W∑
i=1

piEi, (3.8)

and the number of particles restraint

N ≡ 〈N〉 =
W∑
i=1

piNi (3.9)

provide, through entropy optimization, the BG weight for a system in thermodynamical for a system
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in thermodynamical equilibrium (thermal and chemical) equilibrium at temperature T and chemical

potential µ

pi =
1

ZBG

e−βEi+βµNi . (3.10)

Here, β = 1/kBT is the Lagrange multiplier related to the energy constraint, {Ei} is the systems’

energy spectrum, {Ni} is the microsystems’ number of particles, and ZBG is the partition function

given by

ZBG =
W∑
j=1

e−βEj+βµNj . (3.11)

Further analyzing the entropy, we can formulate relations between the entropy and thermodynamic

properties by using Lagrange multipliers. Thus, in the grand-canonical ensemble developed from the

previous constraints, we obtain that [70]

1

T
=

∂SBG

∂U
, (3.12)

that the internal energy is

U = − ∂

∂β
lnZBG − µN, (3.13)

that the expected number of particles is

N =
1

β

∂

∂µ
lnZBG, (3.14)

and that the grand thermodynamic potential is

A ≡ U − TSBG − µN = −kBT lnZBG. (3.15)

If we wish to describe hadrons statistically, we can begin with an ideal quantum gas in the BG

framework. In this formulation, we can frame the partition function in terms of the energy states

instead of the microsystems

ZBG =
W∑
j=1

e−βEj+βµNj =
∑
{nk}

eβ
∑

k(εk−µ)nk =
∏
k

∑
{nk}

e−β(εk−µ)nk =
∏
k

ZBG,k, (3.16)

where

ZBG,k =
∑
{nk}

e−β(εk−µ)nk , (3.17)
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and nk and εk are the number of particles and the energy of the particle in the state k, respectively. In

Equation 3.16, we have used the energy and number of particles conservation

Ni =
∑
k

nk (3.18)

Ei =
∑
k

nkεk. (3.19)

A quantum gas contains fermions and bosons, which obey the Bose-Einstein and Fermi-Dirac

statistics, respectively, that is,

nk = 0,1,2,3, · · · for bosons (3.20)

nk = 0,1 for fermions. (3.21)

Thus, the partition function in each energy state for bosons and fermions are, respectively,

ZB
BG,k =

∞∑
nk=0

(
e−β(εk−µ)

)nk

=
1

1− e−β(εk−µ)
(3.22)

ZF
BG,k =

1∑
nk=0

e−β(εk−µ)nk = 1 + e−β(εk−µ). (3.23)

Hence, the occupation factor in a given state k is

fB
k ≡

〈
nB
k

〉
=

1

β

∂

∂µ
lnZB

BG,k =
1

eβ(εk−µ) − 1
(3.24)

fF
k ≡

〈
nF
k

〉
=

1

β

∂

∂µ
lnZF

BG,k =
1

eβ(εk+µ) + 1
. (3.25)

The occupation factor can also be written as

fk =
1

eβ(εk−µ) − κ
with


κ = +1 for bosons

κ = −1 for fermions.
(3.26)
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As we have that the grand thermodynamical potential can be written as

A = −kBT lnZBG = −kBT
∑
k

lnZBG,k

= κkBT
∑
k

ln
[
1− κe−β(εk−µ)

]
= −κkBT

∑
k

ln (1 + κfk)
(3.27)

and that Equations 3.8 and 3.9 can be given as

U =
W∑
i=1

piEi =
W∑
i=1

∑
k

pinkεk =
∑
k

〈nk〉 εk =
∑
k

fkεk (3.28)

N =
W∑
i=1

piNi =
W∑
i=1

∑
k

pink =
∑
k

〈nk〉 =
∑
k

fk, (3.29)

then the entropy according to Equation 3.15 is

SBG =
1

T
(U − A− µN) =

1

T

∑
k

[
fkεk + κkBT ln (1 + κfk)− µfk

]
. (3.30)

Using Equation 3.26, we have that

eβ(εk−µ) =
1 + κfk

fk
⇒

β(εk − µ) = ln (1 + κfk)− ln fk ⇒

fk(εk − µ) = kBTκ
2 ln (1 + κfk)− kBTfk ln fk,

(3.31)

where we have used that κ2 = 1. Thus, Equation 3.30 becomes

SBG =
1

T

∑
k

[
−kBTfk ln fk + kBTκ

2 ln (1 + κfk) + kBTκ ln (1 + κfk)
]

= −kB
∑
k

[
fk ln fk − κ (1 + κfk) ln (1 + κfk)

]
.

(3.32)

Finally, we have that the entropy for bosons and fermions are, respectively,

SB
BG = −kB

∑
k

[
fk ln fk − (1 + fk) ln (1 + fk)

]
(3.33)

SF
BG = −kB

∑
k

[
fk ln fk + (1− fk) ln (1− fk)

]
. (3.34)

This formulation composes just one physical situation in the extensive array of systems corre-
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sponding to BG statistics. The main feature in these descriptions is that they all have the entropic

functional SBG at their core. However, even with its great success, the mechanical foundation of BG

statistics is not formulated from first principles, i.e., it is not deducted only from microscopic dynam-

ics. Thus, its formulation leaves room for the use of other entropic functionals, with the physical

system imposing which one should be applied.

The analysis of systems with long-range interactions is one of the examples of the shortcomings

of BG statistics. For this class of situations, the BG entropic functional is not suited for the study,

with one possible alternative existing in nonextensive statistical mechanics, addressed in Section 3.3.

3.2 Early phenomenological models

Statistical models to describe the hadronization phenomena in high-energy processes have been

present since Koppe [72] and Fermi [25] in the middle of the XX century. Fermi’s method assumed

that the particles produced in a collision evenly occupied the available phase space, with the possi-

ble number of particles generated being determined by statistical weights. This idea depicts strong

interaction processes only qualitatively but provides an upper limit to particle production.

Hagedorn developed a model [26] after accounting for the multiple newly-discovered hadronic

resonances in the following decades. In his statistical approach, he considered that higher and higher

hadronic resonances occur and participate in the system’s thermodynamics as if they were particles.

This analysis implicates a critical temperature corresponding to the highest possible temperature for

strong interactions. Eventually, this critical temperature would be interpreted as the temperature in

which a phase transition occurs, leading to a new state of matter, known as the quark-gluon plasma

(QGP) [27, 28].

In the attempt to develop a thermodynamical model for the strong interactions, we start by making

a few assumptions:

i. the collective motion of the system is negligible;

ii. there are many degrees of freedom;

iii. there is some internal equilibrium;

iv. the strong interactions are internal.

Much of the challenges of statistical mechanics come from handling interacting gases. Thus, the

last assumption is worth noticing, for it reduces the problem to a formalism similar to the ideal gas.
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This statement is satisfied considering that the gas consists of infinity components representing the

strong interaction. As a consequence of these assumptions, the structure of the theory results in what

Hagedorn called a hadronic bootstrap. It introduces the name fireball for all hadrons with a circular

definition, where it postulates that a fireball is a statistical equilibrium of an undetermined number of

all kinds of fireballs, which in turn consists of fireballs, and so on.

One of Hagedorn’s primary goals was arriving at the hadronic mass spectrum. He started by

considering a macroscopic system in the canonical formalism of standard statistical mechanics, which

gives, in natural units (k = 1), the partition function

ZBG =
∑
i

eβEi =
∑
i

eEi/T =

∫ ∞

0

σ(E)eEi/TdE (3.35)

where σ(E)dE is the number of energy states between E and E + dE. Since Z and σ(E) are each

other’s Laplace transforms, we can use the density σ(E) to obtain the partition function. However,

directly calculating σ(E) is not an easy task. Thus, we turn to the expression with the sum over the

possible energy states for assistance.

Considering particles of the type j with momentum pi (and thus energy εij =
√

p2i +m2
j , where

m is the particle’s mass), the partition function for an ideal quantum gas in a box of volume V is

Z(V,T ) =
∑
{ν}

exp

− 1

T

∞∑
i,j

νijεij

 , (3.36)

where νij are the occupation numbers according to the Pauli exclusion principle:

• νij = 0, 1 for fermions;

• νij = 0, 1, 2, · · · ,∞ for bosons.

Following the steps in reference [73], we find that

Z(V, T ) = exp

[
V T

2π2

∞∑
n=1

1

n2

∫ ∞

0

ρ(m;n)m2K2

(
nm

T

)
dm

]
, (3.37)

where ρ(m)dm is the number of excited hadrons with its mass between m and m+dm, and K2(nm/T )

is the Hankel function.

For Equation 3.35 to stay consistent with Equation 3.37, Hagedorn proposed the bootstrap condi-
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tion that is essentially
ln ρ(m)

lnσ(m)

m→∞−−−→ 1. (3.38)

The analytical results for this condition are further discussed in references [74, 75]. The bootstrap

condition establishes that all fireballs are on equal footing, i.e., the fireball entropy is the same function

of its mass as the entropy of its fireball components, which for Hagedorn was given by

ρ(m)
m→∞−−−→ CH

m5/2
em/T0 , (3.39)

where CH is a constant and T0 is the highest possible temperature of the system.

Even though it is impossible to prove or disprove the mass spectrum in Equation 3.39 by direct

experiments [76], we can still fit the available part of the spectrum, which behaves exponentially.

Hagedorn’s analysis yields T0 ≈ 160 MeV [76, 77]. This value is obtained by extrapolating a exper-

imental curve with the data of the mass spectrum (available in [78]) with the Equation 3.39. It is the

temperature T0 that operates as the boiling point of the hadronic matter, in which the particle creation

is so intense that the temperature can not increase. In modern terms, it is the temperature at which the

hadronic matter transitions into the QGP.

As a consequence of the thermodynamical approach through the standard statistical mechanics,

we obtain a Boltzmann-type transverse momentum distribution (∼ exp
(
−pT/T

)
, with a temperature

never larger than T0). Thus, the transverse momentum distribution only accurately describes the

low-pT sector of the spectrum. Since the transverse momentum distribution and the mass spectrum

are closely related, this is as far as we can go with the BG statistics.

In the following decades, researchers resorted to a semi-empirical formula to describe the pT

distribution [79, 80]. This approach combined the exponential behavior for low-pT and the power-law

behavior for high-pT , previously encountered in BG statistics and pQCD calculations, respectively.

Thus, we have that

E
d3N

dp3
= A

(
1 +

pT
p0

)−n

, (3.40)

where A, p0, and n are fitting parameters. For pT → 0 we have

E
d3N

dp3
≈ exp

(
−npT

p0

)
, (3.41)
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and for pT → ∞ we have

E
d3N

dp3
≈
(
p0
pT

)n

. (3.42)

3.3 Nonextensive statistical mechanics

As previously stated, there is not a reason that prevents the generalization of the BG statistical me-

chanics since it does not come from microscopic dynamics alone. Thus, even successfully describing

many situations, the BG statistical mechanics do not apply to various physical systems. For example,

it is inefficient or nonapplicable in the case of complex systems.

Since the BG statistical mechanics does not seem to be universal, Tsallis proposed in 1988 [11] a

generalization of the BG entropy in Equation 3.4, postulated as

Sq = kB
1−

∑W
i=1 p

q
i

q − 1
, (3.43)

where q is an entropic index. It is worth noticing that just as the BG statistical mechanics does not

have a complete mathematical formulation, the statistical mechanics generated by Equation 3.43 have

even less justification. Thus, the Tsallis entropy operates as a way to broaden the validity domain of

statistical mechanics.

As a generalization, the Tsallis entropy should return to the BG entropy for a specific case. Indeed,

for q = 1, we have that

S1 = lim
q→1

Sq = lim
q→1

kB
1−

∑W
i=1 p

q
i

q − 1
= lim

q→1
kB

1−
∑W

i=1 pip
q−1
i

q − 1

= lim
q→1

kB
1−

∑W
i=1 pi exp

[
(q − 1) ln pi

]
q − 1

= lim
q→1

kB

d
dq

{
−
∑W

i=1 pi exp
[
(q − 1) ln pi

]}
d
dq
(q − 1)

= lim
q→1

−kB

W∑
i=1

pi ln(pi) exp
[
(q − 1) ln pi

]
= −kB

W∑
i=1

pi ln pi = SBG.

(3.44)

Finding the maximum of Sq leads to the equiprobability situation, and thus, with pi = 1/W , we

have that

Sq = kB
1−W 1−q

q − 1
. (3.45)
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And with q = 1, we recover the Boltzmann entropy

S1 = lim
q→1

kB
1−W 1−q

q − 1
= lim

q→1
kB

1− exp
[
(q − 1) lnW

]
q − 1

= lim
q→1

kB

d
dq

{
1− exp

[
(q − 1) lnW

]}
d
dq
(q − 1)

= lim
q→1

kB lnW exp
[
(q − 1) lnW

]
= kB lnW = SBG.

(3.46)

For convenience, we express Equation 3.45 as

Sq = kB lnq W, (3.47)

where lnq(x) is labeled as the q-logarithm, defined as

lnq(x) ≡
1− x1−q

q − 1
(for x > 0; ln1(x) = ln(x)). (3.48)

An immediate property that follows from the Tsallis formulation is that Sq is said to be nonad-

ditive for q 6= 1. Indeed, for two independent systems A and B, with joint probability pAB,ij =

pA,ipB,j(∀(ij)), we have that

Sq(A+B)

kB
=

1−
∑WA

i=1

∑WB

j=1 p
q
AB,ij

q − 1
=

1−
∑WA

i=1

∑WB

j=1 p
q
A,ip

q
B,j

q − 1

=
2−

∑WA

i=1 p
q
A,i −

∑WB

j=1 p
q
B,j −

(
1−

∑WA

i=1 p
q
A,i

)(
1−

∑WB

j=1 p
q
B,j

)
q − 1

=
1−

∑WA

i=1 p
q
A,i

q − 1
+

1−
∑WB

j=1 p
q
B,j

q − 1
− (q − 1)

(
1−

∑WA

i=1 p
q
A,i

q − 1

)1−
∑WB

j=1 p
q
B,j

q − 1


=

Sq(A)

kB
+

Sq(B)

kB
+ (1− q)

Sq(A)

kB

Sq(B)

kB
.

(3.49)

Thus, as we can observe, the additivity property of the entropy depends only on the entropic

functional. The situation is quite different for the extensivity property, where it depends on both

the entropic functional and the correlations within the system. Additivity and extensivity sometimes

are used interchangeably, generating confusion when addressing the Tsallis statistical mechanics.

Thus, it is important to emphasize that the defining difference between the Tsallis and BG statistical

mechanics is that the BG entropy is additive, while the Tsallis entropy is not. That said, the name

nonextensive statistical mechanics has been spread for many years and will be used when referred to

the Tsallis formulation. However, the entropy refers to as nonadditive.
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Both the SBG and the Sq entropies appear as extensive or nonextensive, for they are dependent on

the system. Indeed, for systems with components weakly correlated, the SBG is extensive, whereas

the entropy Sq is nonextensive for q 6= 1. Alternatively, a system with elements strongly correlated

has an extensive entropy for a specific value of q 6= 1. Ultimately, the nonadditive entropy emerges

as a way to preserve the system’s extensivity, satisfying the macroscopic formulation of the entropy

brought by Clausius. Thus, in principle, the entropic index q can be chosen so that the entropy is

extensive.

Now, we turn to the thermodynamical results that emerge from the nonadditive entropy. Con-

sidering canonical ensembles, i.e., systems with one or more constraints, we have that formulating

the constraints is not as straightforward as in BG statistical mechanics. For example, establishing

the same restriction as Equation 3.8 yields unsatisfactory connections with thermodynamics. Further

discussions are present in [13].

Following the analyses exhibited in [14, 81–83], we start our thermodynamical approach through

Sq with the following constraints for the average energy Uq and the average number of particles Nq:

Nq =
∑
i

pqiNi (3.50)

Uq =
∑
i

pqiEi (3.51)

In this framework, pi are the probabilities of the accessible microstates with energy Ei and number

of particles Ni, pertaining to a grand canonical ensemble. The probability constraint is given by 3.5.

Considering the principle of maximum entropy, we obtain

∂

∂ni

Sq

kB
+ γ

1−
∑
i

pi

+ α

N −
∑
i

pqini

+ β

Uq −
∑
i

pqiEi


 = 0, ∀i, (3.52)

where γ, α, and β are the Lagrange multipliers related to the constraints 3.5, 3.50, and 3.51, respec-

tively. Thus, by differentiating Equation 3.52 and multiplying by q − 1, we have that

qpq−1
i + (q − 1)γ + q(q − 1)αpq−1

i Ni + q(q − 1)βpq−1
i Ei = 0 ⇒(

q + q(q − 1)αNi + q(q − 1)βEi

)
pq−1
i = −(q − 1)γ ⇒

pi =

[
−(q − 1)γ

q + q(q − 1)αNi + q(q − 1)βEi

] 1
q−1

=

[
q + q(q − 1)αNi + q(q − 1)βEi

−(q − 1)γ

] 1
1−q

.

(3.53)
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Inserting Equation 3.53 into Equation 3.5, we obtain that

∑
i

pi =
∑
i

[
q + q(q − 1)αNi + q(q − 1)βEi

−(q − 1)γ

] 1
1−q

= 1 ⇒

[
−(q − 1)γ

]1/(1−q)
=
∑
i

[
q + q(q − 1)αNi + q(q − 1)βEi

]1/(1−q)
.

(3.54)

Therefore, using Equation 3.54, eliminating q1/(1−q), and identifying the Lagrange multipliers α and

β as (in natural units, kB = 1)

α = −βµ and β = 1/T, (3.55)

respectively, where µ is the chemical potential, we have that the probabilities are given by

pi =

[
1 + β(q − 1)(Ei − µNi)

]1/(1−q)

Zq

, (3.56)

where Zq is the partition function given by

Zq =
∑
i

[
1 + β(q − 1)(Ei − µNi)

]1/(1−q)
. (3.57)

Another way of representing the system through quantum numbers is through the sets of occupa-

tion numbers. They also determine the number of particles and the system’s energy, where for a given

microstate i, we have that

Ni =
∑
k

nk (3.58)

Ei =
∑
k

nkεk, (3.59)

where nk and εk are the number of particles and the energy of the particle in the state k, respectively.

Thus, Equations 3.56 and 3.57 become

p{nk} =

[
1 +

∑
k β(q − 1)(εk − µ)nk

]1/(1−q)

Zq

, (3.60)

where

Zq =
∑
{nk}

1 +∑
k

β(q − 1)(εk − µ)nk

1/(1−q)

. (3.61)
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The main difference between Equation 3.60 and the probabilities obtained through BG statistical

mechanics is that Equation 3.60 cannot factorize into terms corresponding to each particle, for we do

not have the usual exponential weights. Explicitly, we have that

[
1 + (q − 1)(A+B)

]1/(1−q) 6=
[
1 + (q − 1)(A)

]1/(1−q) [
1 + (q − 1)(B)

]1/(1−q)
. (3.62)

One possible approximation is given by [82] and expanded by [83]. They argue that the correlations

between particles can be disregarded because we are dealing with a dilute gas, and thus the states of

different particles are regarded as statistically independent. This approximation results in

Zq =
∞∏
k=1

∞∑
nk=0

[
1 + β(q − 1)(εk − µ)nk

]1/(1−q)
. (3.63)

Thus, with Equation 3.63 and the mathematical arguments found in [82], the occupation factor in

nonextensive statistical mechanics is

fk =
1[

1 + β(q − 1)(εk − µ)
]1/(q−1) − κ

with


κ = +1 for bosons

κ = −1 for fermions.
(3.64)

The statements to arrive at Equation 3.64 consist of analyzing the partition function considering dif-

ferent ranges of the index q and seeing how the summation over nk behaves. For convenience, we

formulate Equation 3.64 as

fk =
1

e
β(εk−µ)
q − κ

with


κ = +1 for bosons

κ = −1 for fermions.
(3.65)

where exq is labeled as the q-exponential, defined as

exq =
[
1 + (q − 1)x

]1/(q−1)
(for x > 0; ex1 = ex), (3.66)

which is the inverse function of the q-logarithm.

Another way of arriving at Equation 3.64 is following the work in [14, 81, 84, 85]. We start by

generalizing the entropy for fermions and bosons given by Equations 3.33 and 3.34, which in the
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Tsallis formulation becomes

SB
q = −g

∑
k

[
f q
k lnq fk − (1 + fk)

q lnq (1 + fk)
]

(3.67)

SF
q = −g

∑
k

[
f q
k lnq fk + (1− fk)

q lnq (1− fk)
]
, (3.68)

with kB = 1. In this formulation, the constraints in Equations 3.28 and 3.29 are generalized to

U =
∑
k

f q
k εk (3.69)

and

N =
∑
k

f q
k . (3.70)

Thus, the principle of maximum entropy leads to

∂

∂fk

Sq + α

N −
∑
i

f q
k

+ β
(
U − f q

k εk
) = 0. (3.71)

Inserting the entropy for fermions SF
q given by Equation 3.68 into Equation 3.71, we have that

∂

∂fk
SF
q =

∂

∂fk

∑
k

−f q
k

(
1− f 1−q

k

q − 1

)
− (1− fk)

q

(
1− (1− fk)

1−q

q − 1

)
=

1

q − 1

{
−qf q−1

k + 1 + q(1− fk)
q−1
[
1− (1− fk)

1−q
]
− (1− fk)

q(1− q)(1− fk)
−q
}

=
1

q − 1

[
−qf q−1

k + 1 + q(1− fk)
q−1 − q − (1− q)

]
=

q

q − 1

[(
1− fk
fk

)q−1

− 1

]
f q−1
k

(3.72)
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Thus, replacing the SF
q derivative in Equation 3.71 with Equation 3.72, we obtain that

q

q − 1

[(
1− fk
fk

)q−1

− 1

]
f q−1
k − αqf q−1

k − βqf q−1
k εk = 0 ⇒

1

q − 1

[(
1− fk
fk

)q−1

− 1

]
= α + βεk ⇒

1− fk
fk

=
[
1 + (q − 1)(α + βεk)

]1/(q−1) ⇒

fk =
1[

1 + (q − 1)(α + βεk)
]1/(q−1)

+ 1

(3.73)

If we consider the entropy for bosons given by Equation 3.67 instead of the entropy for fermions, we

obtain
∂

∂fk
SB
q =

q

q − 1

[(
1 + fk
fk

)q−1

− 1

]
f q−1
k (3.74)

instead of Equation 3.72.Therefore, the occupation factor for bosons becomes

fk =
1[

1 + (q − 1)(α + βεk)
]1/(q−1) − 1

. (3.75)

Using the identifications α = −µ/T and β = 1/T (kB = 1 in natural units), we have that the

occupation factors for fermions and bosons are given by, respectively,

fF
k =

1[
1 + (q − 1)(εk − µ)/T

]1/(q−1)
+ 1

(3.76)

fB
k =

1[
1 + (q − 1)(εk − µ)/T

]1/(q−1) − 1
. (3.77)

Or, using the q-exponential defined in Equation 3.66, we have that

fF
k =

1

e
(εk−µ)/T
q + 1

(3.78)

fB
k =

1

e
(εk−µ)/T
q − 1

, (3.79)

which are the same expressions as the ones presented in Equation 3.65. It immediately follows that

for q → 1, we return to the occupation factors given by BG statistical mechanics (Equation 3.26).

Generally, the constraints in Equations 3.69 and 3.70 provide non-invariant occupation factors,

i.e., fk changes with a transformation of the energies’ zeros. Thus, it was proposed that the mean
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values used should be normalized, solving this problem [13, 86]. However, since fk are not probabil-

ities, the constraints used in this analysis are sufficient in the present context and do not need to be

normalized [84].

In the classical limit, i.e., for e(εk−µ)/T � 1 both Tsallis formulations for the Fermi-Dirac and

Bose-Einstein distributions return to a distribution similar to Boltzmann’s, generalized for q.

fF
k = e−(εk−µ)/T

q . (3.80)

Thus, changing to a continuum formulation (in natural units, } = 1)

∑
k

→ V

∫
d3p

(2π)3
, (3.81)

the number of particles given by Equation 3.70 becomes

N =
∑
k

f q
k = gV

∫
d3p

(2π)3

[
1 + (q − 1)

E − µ

T

]−q/(q−1)

, (3.82)

where g is the parameter added considering the degeneracy factor.

If we wish to describe the hadron production in particle accelerators, we can start by finding the

invariant differential yield, which according to Equation 3.82, can be given by

E
d3N

dp3
= gV

E

(2π)3

[
1 + (q − 1)

E − µ

T

]−q/(q−1)

. (3.83)

In terms of experimental parameters, that is, in terms of the transverse momentum pT and rapidity y,

Equation 3.83 becomes

E
d3N

dp3
= gV

mT cosh y

(2π)3

[
1 + (q − 1)

mT cosh y − µ

T

]−q/(q−1)

, (3.84)

where mT =
√
m2 + p2T is the transverse mass and m is the particles’ rest mass. Thus, for mid-

rapidity y = 0 and zero chemical potential, Equation 3.84 reduces to

E
d3N

dp3

∣∣∣∣∣
y=0

= gV
mT

(2π)3

[
1 + (q − 1)

mT

T

]−q/(q−1)

. (3.85)

The y = 0 approximation is appropriate because experiments collect collider data in a small range
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around mid-rapidity, where pT distributions are roughly independent of y. As for the zero chemical

potential, we assume that our system is in chemical equilibrium in the hadronic phase, i.e., there is no

formation of new hadrons (chemical freeze-out).

Ultimately, it is Equation 3.85 that is going to be used to analyze the differential yield of charged

particles in proton-proton collisions.
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4 | The CMS Experiment

4.1 The Large Hadron Collider and the CMS detector

Located on the Swiss-French border near Geneva, the Large Hadron Collider (LHC) [7] is cur-

rently the largest particle accelerator in operation. Built by the European Organization for Nuclear

Research (Conseil Européen pour la Recherche Nucléaire, CERN), the LHC is installed in a tunnel

with about 27 km in circumference and has already collided protons with center-of-mass energies as

high as
√
s = 13 TeV. In addition to proton-proton (p-p) collisions, the LHC has also performed lead

ion (Pb-Pb) collisions at a center-of-mass energy per nucleon pair as high as
√
sNN = 5.5 TeV.

The LHC appears as the Super Proton Synchrotron (SPS) successor. The SPS was an accelerator

that performed proton-proton and proton-anti-proton (p−p) collisions. Operating from 1981 to 1991,

the SPS had as its main achievement the discovery of the W and Z bosons, carried out by the UA1 and

UA2 experiments [87–90]. They provided confirming evidence of the unification between the weak

and electromagnetic interactions. As for the consideration of CERN particle accelerators, the LHC

emerged as the Large Electron Positron Collider (LEP) successor. The LEP was an electron-positron

accelerator and was the largest lepton accelerator ever built. Between 1989 and 2001, the same tunnel

that houses the LHC accommodated the LEP.

The LHC beam generation process begins at CERN. The proton source comes from the hydrogen

gas injection into a cylindrical metal called Duoplasmatron, where an electric field will separate the

gas, making negative hydrogen ions (H−). A radiofrequency system accelerates the particles and

focuses the particle beam.

Shortly after, the RF system takes the particles to a linear accelerator (LINAC2). Linear accelera-

tors use radiofrequency cavities to charge cylindrical conductors, alternating their charge positively or

negatively. Then, the potential difference between each cylinder accelerates the particles. The linear

accelerators produce stable bunches by synchronizing the particle sets arriving on the conductors with
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the radiofrequency period. When reaching the end of LINAC2, the protons reach an energy of about

50 MeV. After the LHC shutdown between 2019 and 2022, the LINAC4 will replace the LINAC2.

The LINAC4 will have protons attaining energies of 160 MeV at its end.

After passing through the linear accelerator, the protons arrive at the Proton Synchrotron Booster

(PSB). The PSB is a circular accelerator measuring 157 meters in circumference. It has radiofre-

quency cavities responsible for accelerating the protons to an energy of 1.4 GeV.

From the PSB, the protons leave to the Proton Synchrotron (PS), another circular accelerator, this

time with 628 meters in circumference. The PS accelerates the protons from 1.4 GeV to 25 GeV. The

PS is also responsible for providing the 25 ns spacing between the LHC proton bunches.

The protons leave the PS and go to the Super Proton Synchrotron (SPS), another circular accel-

erator, this time with a circumference of 6.9 km. The protons are accelerated to 450 GeV and then

taken to the LHC. The time to fill the LHC is estimated to be 4 minutes and 20 seconds. Inside the

LHC, each beam is accelerated to energies up to 6.5 TeV.

A process analogous to the one described above occurs for heavy-ion beams. Lead ion beams start

from a pure lead sample of about 500 mg. This sample is heated to about 500 ◦C to vaporize a small

number of atoms. Then, an electric current removes the electrons. In turn, the lead ions pass through

the LINAC3 linear accelerator and gain energies of 4.5 MeV per nucleon. The next step takes place

in the Low Energy Ion Ring (LEIR), which accelerates ions to energies of 72 MeV per nucleon. The

following steps are similar to the proton beams, where they are accelerated to 5.9 GeV on the PS,

177 GeV on SPS, and finally, reach up to 1.38 TeV at the LHC. In the PS, the rest of the surviving

electrons are removed. Figure 4.1 illustrates the CERN particle accelerator complex.

There are currently eight experiments at the LHC aimed at hadron collision studies, each with its

detector distinguishing experiment. The biggest experiments are the ATLAS (A Toroidal LHC Ap-

paratus) [91] and the CMS (Compact Muon Solenoid) [31], which are general-purpose detectors to

study the widest possible range of physical phenomena. Among the main experiments are the ALICE

(A Large Ion Collider Experiment) [30] and LHCb (The Large Hadron Collider Beauty Experiment)

[92] experiments. These detectors focus on the specific phenomena analysis. ALICE analyses the

Quark-Gluon Plasma (QGP) through a detector dedicated to heavy-ion physics, while the LHCb stud-

ies the matter-antimatter asymmetry in the universe through the study of mesons composed of the b

and c quarks.

Speaking specifically of the CMS, it is a general-purpose detector that contains a program of study
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Figure 4.1: CERN’s accelerator complex. Credits: CERN

that encompasses both the Standard Model (SM) and physics beyond the Standard Model (BSM).

Among the objectives for the study of physics BSM are analyses such as the search for extra di-

mensions, the search for particles that can compose dark matter, and the examination of the matter-

antimatter asymmetry in the universe. For physics within the SM, we can highlight the discovery

of the Higgs boson [93] as the main achievement. The CMS also performs SM precision tests and

analysis of the Higgs decay channels, further testing SM predictions.

The CMS has similar goals as the ATLAS experiment. The distinction arises from the detector dif-

ferences. Using two different techniques to study physical phenomena allows a more precise valida-

tion of the results obtained. What sets the CMS apart from other experiments is its high-performance

muon detection system, its ability to generate a high magnetic field through its solenoid magnet, and
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its compact detector. With a high-quality electromagnetic and hadronic calorimeter, and a reliable

particle tracking system, the CMS detects muons, photons, and electrons with high precision.

4.2 CMS detector

The CMS comes from the necessity to use a detector with an optimized muon detection system

to carry out proton collision analysis at high energies and high luminosities at the LHC. This choice

aims to supply precise measurements of the momentum of the muon, which in turn can provide clean

signatures of several physical processes (for example, the Higgs production). Thus, a magnetic con-

figuration with a strong magnetic field was chosen, supplying the demand for a compact detector. The

only practical way to generate a strong magnetic field under these conditions is through a solenoid.

The choice made for the CMS detector was a solenoid about 13 meters long and 3 meters wide that

generates a magnetic field of about 4 T. This choice ensures good resolution for highly energetic

muons.

The solenoid was designed large enough to accommodate the particle tracking system and the

calorimeters inside. The innermost part of the detector is composed of the particle tracking system,

essential for mapping the curved paths of charged particles. This system surrounds the collision inter-

action vertex and has a length of 5.8 meters and a diameter of 2.5 meters. One method of measuring

the particles’ momentum is to measure the particles’ trajectory curvature when considering the mag-

netic field. Therefore, that is another reason to have a high-quality tracking system. The tracker

system, composed of pixels and microstrips, is entirely made of silicon. Each measurement of the

particle position mapping has an accuracy of 10 µm. The tracking system is the part of the detector

that detects the highest number of particles. Thus, its technology needs to have high granularity and

a low response time.

The next step in designing the CMS detector was to build the best possible electromagnetic

calorimeter (ECAL). A good ECAL is necessary for better resolution in photon and electron detec-

tion. The collaboration knew beforehand that an accurate ECAL would be needed to detect the decay

of a Higgs into two photons, for example. The ECAL uses crystals with a |η| < 3.0 pseudorapidity

range. The ECAL is a hermetic calorimeter, i.e., it was built to detect all particles emerging from

the collisions. Silicon photodiodes in the barrel region and vacuum phototriodes in the endcap region

detect the scintillations generated by the particles. Since the π0 meson also decays into photons, a

preshower system positions before ECAL to identify these particles.
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The hadronic calorimeter (HCAL) surrounds the ECAL. It also has a pseudorapidity coverage of

|η| < 3.0. The HCAL is responsible for measuring the energy of hadrons. In addition, it also provides

indirect measurements of non-interacting particles, like neutrinos. HCAL is also a hermetic calorime-

ter. In this way, it is possible to identify if momentum and energy imbalance exist in a collision. This

process consists of adding the properties of each particle and checking the momentum/energy con-

servation, making it possible to identify the production of “invisible” particles. HCAL is a sampling

calorimeter, i.e., the material that produces the shower of particles is different from the material that

measures the deposited energy. Additionally, a frontal hadronic calorimeter (HF) is positioned 11.2

meters from the interaction point. The HF extends the pseudorapidity coverage to |η| < 5.2.

The muon detector chambers complete the CMS detector system. Muons are the only charged

particles that pass by both the calorimeters. Thus, it is ideal to designate specific detectors for these

particles. We can accurately track the position of muons by combining the muon position detection

in the multiple layers of each muon detection station with measurements of the muon position in the

tracking system. By relating the curved trajectories to the magnetic field, it is possible to measure the

momentum of particles.

The CMS experiment uses the right-handed coordinate system for particle accelerators, with the

origin being at the nominal interaction point. The z-axis is the beam axis, the x-axis points towards the

center of the LHC, and the y-axis points up (perpendicular to the LHC plane). Considering spherical

coordinates for the momentum vector, θ is the polar angle (angle with respect to the z-axis), and φ

is the azimuthal angle measured in the (x,y) plane, where φ = 0 is the +x and φ = π/2 is the +y

direction. In this coordinate system, the pseudorapidity is given as η = − ln[tan
(
θ/2
)
], where η = 0

for θ = 0 (direction of the y-axis), and the transverse momentum vector is given as pT = |p| sin θ,

where p is the particle’s momentum. More details concerning the CMS coordinate system is found in

the Appendix A.

Figure 4.2 illustrates the complete sketch of the CMS detector. More details on the CMS detector

lie in references [31, 94]. The technical notes [95–99] detail the specifications for each subdetector

(note that the notes are outdated and upgrades were made over the years). The following subsections

depict some of the characteristics of each part of the CMS detector.
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Figure 4.2: Schematic view of the CMS detector. Credits: CERN.

4.2.1 Superconducting solenoid

The CMS superconducting magnet achieves a uniform magnetic field of 4T inside the solenoid,

whose length is 12.5 m and diameter is 5.9 m. The magnetic flux outside the solenoid returns through

a 1.8 m thick iron yoke whose rings intersperse with the muon stations. The complete magnet system

is designed as a 12-sided structure. The dimensions of the whole system provide a length of 21.6 m

and an outside diameter of 14.6 m. The total mass of iron used is approximately 11600 tons.

Since it is a solenoid, it is made of coils of wire that produce a uniform magnetic field when elec-

tricity flows through them. As for the superconducting property, it allows the electricity to flow with-

out resistance and thus, creates a strong magnetic field. The coil operates at liquid helium temperature

to ensure the system’s superconductivity. In turn, the CMS conductor consists of a superconducting

cable, a pure aluminum stabilizer, and an aluminum alloy reinforcement.

The yoke consists of three rings that are part of the barrel and cover the superconducting solenoid

and six discs that act as “lids” (three placed at each end). Each ring of the barrel part comprises three
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layers of iron, 30 cm thick for the first ring, 63 cm for the second, and 63 cm for the third. It is these

layers that intersperse with the muon detectors. The two innermost disks positioned at the ends must

withstand the high axial magnetic field. Thus, the two innermost discs are thicker (60 cm) than the

outermost disc (30 cm). The superconducting coil is connected only to the barrel’s center ring. The

configuration of these subdivisions facilitates the assembly and maintenance of the muon detection

stations.

The coil, cryogenic system, vacuum pumping station, and protection system against supercon-

ducting magnet quenching compose the superconducting coil system. The cryogenic system consists

of an internal system with a winding circuit where liquid helium passes and an external system that

consists of compressors, a cold box, helium gas containers, and cryogenic lines. Magnet quenching

is the process in which there is an abrupt interruption in the magnet operation, where it changes from

its superconducting state to a resistive state. The quenching detection system is composed of triggers

capable of cutting the circuit and quickly discharging the current, working as a safety system. Figure

4.3 illustrates the magnet and its subsystems (with only one sector of the return yoke).

Figure 4.3: Three dimensional view of the superconducting solenoid system of the CMS detector.
Credits: CMS, CEA.
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4.2.2 CMS tracker

The CMS tracking system provides accurate measurements of the trajectories of charged particles

produced in the LHC collisions. Considering the luminosity of about 1034 cm−2s−1 from the LHC,

there will be approximately a thousand particles emerging from more than 20 simultaneous proton-

proton collisions passing through the tracking system every 25 ns. An all-silicon-based tracking

system provides a detector with high granularity and low response time.

The CMS tracker is composed of a pixel detector and a silicon strip detector. The pixel detector

contains three cylindrical layers with radii between 4.4 cm and 10.2 cm and the silicon strip detector

with ten cylindrical layers extending the tracker to a radius of 1.1 m. Endcaps are placed at the extreme

along the beam axis to complete the detection system, consisting of 2 layers at the ends of the pixel

detector and 12 layers at the ends of the microstrip detector. These endcaps extend the detection range

of charged particles to |η| < 2.5. Figure 4.4 illustrates the CMS tracking system.
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Figure 4.4: Layout of the CMS tracker, showing one quarter of the tracker system in the r − z plane.
Since the analysis in this dissertation only uses data from the LHC Run 1, the picture was modified
to match the configuration of the Tracker before the upgrades. Credits: CERN (Modified).

Silicon pixel detector

Besides reconstructing the charged particles’ trajectory, the pixel detector system is also necessary

for reconstructing the collisions’ primary and secondary vertices. Several LHC analyses are based on

b-quark physics. They use the method of identifying jets originating from the b-quark decay (b-

tagging). Hadrons that have a b-quark in their composition have relatively long lifetimes, of the order

of 10−12 s. When produced in LHC collisions, the combination of this “long” lifetime with Lorentz’s

time dilation factor generates b-tagged hadrons that travel a few millimeters before decaying. In this
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context, the pixel detector is positioned as close as possible to the interaction point to identify the

primary vertex (collision point) and the secondary vertex (the point at which the b-quark decays). The

analysis of other particles with “long” lifetimes also fit this scenario, such as the c quark and the τ

lepton.

The pixel detector system provides an optimal resolution by establishing the trajectory points in

the plane (r,φ,z), using pixel cells with dimensions of 100× 150 µm2. The pixel detector covers the

pseudorapidity range of −2.5 < η < 2.5. The positioning of the three barrel layers (BPix) and the

two endcap disks (FPix) combine so that a charged particle leaves at least 3 points of its trajectory in

almost the entire η range. In total, the BPix contains 48 million pixels covering 0.278 m2. As for the

FPix, it has 18 million pixels covering an area of 0.28 m2. Figure 4.5 exposes the pixel detector.

Figure 4.5: Illustration of the CMS pixel detector for the configuration of the CMS Tracker in the
LHC Run 1. Credits: [100]

Silicon microstrip detector

The silicon microstrip detector occupies the region between 20 cm and 116 cm from the interac-

tion point. It works with the pixel detectors to reconstruct trajectories and vertices (primary and sec-

ondary) and measure the produced charged particles’ momentum in the LHC collisions. The tracking

system divides into the Tracker Inner Barrel (TIB), the Tracker Inner Disks (TID), the Tracker Outer

Barrel (TOB), and the Tracker EndCaps (TEC).

The TIB system consists of four concentric layers in the barrel structure. Right after that, six

layers corresponding to the TOB system are positioned. The TID is composed of three discs at each

end, each made up of three concentric rings. The TEC consists of nine discs on each side, with each

disc being composed of 4 (outermost disc) to 7 (innermost disc) rings. The internal system (TIB and
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TID) extends the system to a radius of 55 cm and provides up to 4 points in the r − φ plane using

microstrips 320 µm thick. The TOB extends the trajectory system to 116 cm, consisting of microstrips

500 µm thick and providing at least 6 points in the r−φ plane. The TEC extend the detection system

up to ±118 cm in the z-axis, using microstrips with thicknesses between 320 and 500 µm to provide

up to 9 points in φ. This setting ensures that a trajectory within the range of |η| < 2.4 has between 8

and 14 points. The silicon microstrip detector has 9.3 million strips, containing an active area of 198

m2. Figure 4.6 illustrates the microstrip detector substructures along with the pixel tracker.

Figure 4.6: Sketch of the silicon microstrips along with the pixel detector in the CMS tracker. Credits:
CMS.

4.2.3 Electromagnetic calorimeter

The CMS ECAL’s functions include highly accurate photon, electron, and jet energy measure-

ments. The ECAL also provides a hermetic cover to analyze the processes’ missing transverse energy.

One of the main goals of the LHC before its construction was to study the symmetry breaking of

the electroweak theory through the Higgs mechanism. One of the Higgs boson decay channels is given

by H → γγ, where photons detection relies mainly on data collected by ECAL. Another objective

of the experiment was the search for supersymmetric particles. The cascade decay of particles such

as gluinos and squarks would result in the production of lepton pairs. These channels could provide

information about the spectrum of supersymmetric particles.

For this, a scintillating crystal calorimeter was chosen, offering a high energy resolution, as most

of the electron and photon energy is deposited in the homogeneous crystal. Lead tungstate crystals
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(PbWO4) were picked as the scintillating material of the calorimeter, as it is the material that best

meets the LHC operation condition. The ECAL consists of 61200 crystals in the barrel and 7324

crystals in each endcap. Silicon photodiodes (avalanche photodiodes, APDs) were used as photode-

tectors in the barrel part of the ECAL and vacuum phototriodes (VPTs) on the endcaps. APDs and

VPTs have the function of converting the scintillations to an electrical signal and amplifying it.

The barrel part of the ECAL (EB) covers the pseudorapidity range given by |η| < 1.479. The

barrel has 360 subdivisions in φ and 170 subdivisions in η, totaling 61200 crystals. In the EB, the

crystals have dimensions of 2.2 × 2.2 × 23 cm3. The front of the EB crystals locates at a radius of

129 cm from the collision axis. The ECAL endcaps (EE) extend the coverage in pseudorapidity to

|η| < 3.0. The EE crystals are arranged in an x − y plane, with their curvature focusing 130 cm

beyond the interaction point. Each endcap contains 138 subdivisions containing 5 × 5 crystals plus

18 different subdivisions in such a way as to establish the circular shape of the lids. In total, there are

3662 crystals at each end. Each crystal in the EE has 3× 3× 22 cm3 of dimension, with the distance

between the interaction point and the EE being 315.4 cm. Figure 4.7 illustrates the electromagnetic

calorimeter.

Figure 4.7: Sketch of the electromagnetic calorimeter component of the CMS detector. Credits: [101]
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In the EE region, preshower detectors are positioned in front of the ECAL. Thus, the photons

(with low energy and small separation) generated by the π0 decay are not confused with the highly

energetic photons generated by the Higgs boson decay. The preshower system has a finer grain than

EE crystals to avoid the false signals, containing detectors only 2 mm long. The preshower consists

of two layers of lead followed by silicon detectors. The lead layers cause the photons electromagnetic

shower, and sensors detect them. By detecting highly energetic photons with ECAL, it is possible

to extrapolate the path they traveled by identifying the hits in the preshower. Thus, it is possible to

calculate their energy and deduce if they are highly energetic photons or just a photon pair.

4.2.4 Hadronic calorimeter

The HCAL has as its goal the precise measurement of the energies and the direction of particle jets

and the events’ missing transverse energy. Thus, the CMS also indirectly provides the measurements

of quarks, gluons, and neutrinos. Determining the missing transverse energy is essential in searching

for physics BSM (therefore, the calorimeter must be hermetic). The search for supersymmetric parti-

cles is one example. The HCAL also assists the photon, electron, and muon identification along with

the ECAL and the muon detector.

As it is a sampling calorimeter, the HCAL is made of alternating layers of a dense absorber (in

this case, brass or steel) and plastic scintillators. When a hadron hits an absorber plate, it produces a

cascade of secondary particle showers. The showers travel through the plastic scintillators, emitting

a blue-violet light. This light shifts to the green side of the spectrum through “wavelength-shifting”

fibers. Then, the optical signals turn into electronic signals through hybrid photodiodes (HPDs). The

signal combination from the cascade of particles results in calorimeter towers. The towers measure

the particle’s energy and can indicate the particle type.

The HCAL consists of a hadron calorimeter barrel (HB) and endcaps (HE) constrained between

the ECAL and the superconducting magnet. They provide a pseudorapidity cover of |η| < 3.0. The

spatial restriction limits on the amount of material that the HB can use. Thus, an outer hadronic

calorimeter (HO) positions outside the superconducting solenoid, extending the barrel calorimeter.

This extension enhances the HCAL ability to absorb the hadronic shower. A forward hadron calorime-

ter (HF) is placed at 11.2 m from the interaction point. The HF extends the pseudorapidity range to

|η| < 5.2 and completes the HCAL.

The HB, a sampling calorimeter, covers the η range of 0 to approximately 1.4. It divides into
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two half-barrels, each containing 18 identical azimuthal wedges. In turn, each wedge splits into

four azimuthal angle sectors. The HB scintillator also divides into 16 η subdivisions. Thus, the HB

segmentation in η and φ is 0.087× 0.087.

The HE covers the 1.3 < |η| < 3.0 range and has the same subdivisions in φ as the HB. The HE

contains 14 segmentations in |η|, with 0.087 η spacing in |η| < 1.74 and between 0.09 to 0.035 for

|η| > 1.74.

The HO covers the |η| < 1.2 region. It is divided into 12 subdivisions in φ, each segmented into

six 5 degrees sectors. The HO is composed of 5 rings in eta, following the solenoid and the muon

chambers’ positions. Their segmentation follows the HB granularity, ending with 0.087 × 0.087

subdivisions in ∆η ×∆φ.

The HF is a cylindrical detector placed at 11.15 m from the interaction point. It has an outer radius

of 130 cm and an inner radius of 12.5 cm from the center of the beamline, extending the η cover to

|η| < 5.2. The segmentation of the HF detector is such that its ∆η×∆φ granularity is 0.175× 0.175

for |η| < 4.7 and 0.175× 0.35 for |η| > 4.7. Figure 4.8 illustrates a schematic view of one-fourth of

the HCAL.

Figure 4.8: Layout of the hadronic calorimeter of the CMS detector, showing one quarter of the
HCAL in the r − z plane. Credits: CMS.
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4.2.5 Muon detectors

The muon system is designed in such a way that it can identify muons, measure their momentum

with good resolution, and assist in the triggering. These measurements are essential for the CMS

physics program. For example, the discovery of the Higgs boson was the main goal of the experiment.

In turn, the Higgs is predicted to decay through the channel H → ZZ → 4l. This channel is called

“gold-plated” if the leptons are all muons because it has the best 4-particle mass resolution of the

possible 4-lepton channels. This resolution is achieved because the muons are less affected by the

tracker material than the electrons.

Following the superconducting magnet, the muon system also has a cylindrical shape. Thus, it

divides into a barrel section and two planar endcap detectors. The barrel region covers the |η| < 1.2

region, and the endcaps cover the 0.9 < |η| < 2.4 region. The drift tubes (DTs) and the cathode

strip chambers (CSCs) track the particles in the barrel and endcap regions, respectively. The trigger

capacities lie in the resistive plate chambers (RPCs) for both detectors. In total, there are 1400 muon

chambers: 250 DTs, 540 CSCs, and 610 RPCs.

The DTs are organized into four concentric layers around the beamline interspersed with the

return yoke. The three inner layers have 60 drift chambers (with five subdivisions in η and twelve

subdivisions in φ), while the fourth cylinder has 70 drift chambers (with thirteen subdivisions in φ).

Each DT chamber consists of 3 (or 2, for the outer layer) superlayers (SL), each made of four layers

of rectangular drift cells. Two of the SLs have wires parallel to the beamline, providing the track

measurement in the r − φ plane. The remaining SL has its wire perpendicular to the beamline and

provides the z-axis position (this SL is not present in the outer layer). The DTs are made of aluminum,

and their volume is filled with a mixture of 85% Ar +15% CO2 (kept at atmospheric pressure). When

a charged particle crosses a DT cell, it ionizes the gas that later will result in a digital signal.

The endcap muon sector consists of four detector stations containing the CSCs. The innermost

station has three rings of detectors, each containing 72 CSCs with a trapezoidal shape. The other three

stations have two rings, where the inner ring has 36 CSCs, and the outer ring has 72 CSCs. A charged

particle in the 1.2 < |η| < 2.4 range crosses three or four CSC. In the 0.9 < |η| < 1.2 range, it crosses

CSCs and DTs. Each CSC comprises layers of positively charged wires interleaved with negatively

charged copper cathode strips within a gas volume. The wires run in the φ direction and provide the

tracks’ radial coordinate, while the strips run in the r direction and supply the φ coordinate. When

a charged particle passes through the CSC, it ionizes the gas, which will send electrons to the wires,
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generating an avalanche of charged particles. This avalanche generates a digital signal. Alternatively,

the positive ions move towards the strips and induce a charged pulse, producing an electrical signal.

The gas composition, temperature, and pressure do not affect the CSC precision.

RPCs are fast gaseous detectors that consist of two high-resistive parallel plates (made of a phe-

nolic resin), one charged positively and the other negatively, separated by a gas volume. Aluminum

strips, placed on the outer surface of a resistive plate, perform the read-out. As a muon passes through

the chamber, it knocks electrons from the gas and generates an electron avalanche. The metallic strips

pick up the electrons, which are “invisible” to the resistive plates. The pattern of the hit strips provides

a quick measurement of the muon momentum. Its good time and spatial resolution provide the fast

particle tracking necessary for an efficient muon trigger. An RPC tags an ionizing event in about one

nanosecond, a much shorter time than 25 ns, which is the period between two consecutive bunches

crossing in the LHC. Thus, the RPC’s fast response time provides a reliable decision of whether the

CMS system stores an event.

Six layers of RPCs attach between the DT stations and the return yoke in the barrel sector. Two

RPCs locates on both sides of each of the two innermost DT stations, and one RPC is placed on the

front side of each of the two outermost DT stations. In the endcaps, four layers of RPCs localize

among the return yoke and the CSCs, covering the region up to |η| = 2.1. Two RPCs couple on each

side of the innermost yoke ring, while the third couples on the front side of the third yoke ring and the

fourth RPC situates on the backside of the last CSC. Figure 4.9 outlines the muon system substations

among the other CMS detectors. Figure 4.10 illustrates the CMS subdetectors and how each particle

type interacts with the detector.

4.2.6 Trigger system

The CMS trigger system [103] is composed of a trigger at the hardware level (Level-1 Trigger, L1)

and one in a computational module (High-Level Trigger, HLT). The triggers job is to select only the

events of interest between the millions of events registered by the detector at each second, diminishing

the computational work.

As the hardware system, the L1 trigger has to decide within 4 microseconds of a collision whether

an event should be accepted or rejected. The ECAL, HCAL, and the muons chambers process infor-

mation through several steps before the combined event information is evaluated at a global trigger.

Since the L1 trigger system includes the calorimeters, it also has a coverage of |η| < 5.2. The global

51



CHAPTER 4. THE CMS EXPERIMENT 52

Figure 4.9: Layout of one quarter of the CMS detector, highlighting the stations of the muon detection
system. Credits: [102]

trigger is the final step of the L1 trigger system and implements a variety of triggers, deciding if an

event will pass for a future evaluation by the HLT.

The HLT uses reconstructed objects (such as electrons, muons, and jets) and identification criteria

to retain only the events of interest. An HLT contains several trigger processes, each corresponding to

a specific trigger. Each HLT is implemented as a sequence of algorithmic steps, where a set of these

steps forms an HLT path.

Each trigger (L1 and HLT) has a prescale P related to it. Because the CMS detector detects only

a fraction of the events produced, the prescale is necessary to correct the events detection rate. The

prescale has a lower limit of 1, meaning that if P = 1, all events are stored. For P > 1, the CMS

keeps 1 out of P events. The L1 and HLT have independent scale factors for each event, such that the

total prescale is

Ptot = PL1 × PHLT, (4.1)

where PL1 is the prescale of the L1 trigger and PHLT is the prescale of the HLT trigger. The prescales

can change within a run but cannot change within a luminosity section1. Thus, it becomes necessary

to establish the prescales as the weights when filling a histogram.

1Luminosity sections are groups of temporally consecutive events with the same calibration configuration.

52



CHAPTER 4. THE CMS EXPERIMENT 53

Figure 4.10: Transverse slice of the CMS sub-detector and how each kind of particle interacts with
them. Credits: CMS.

4.2.7 Monitoring systems

The CMS detector uses several subsystems to monitor the collisions originating from the bunches

crossing inside the LHC. Among the ones worth noting in this dissertation are the Beam Scintillator

Counter (BSC) [104] and the Beam Pick-up Timing Experiment (BPTX) [105]. They are designed

to supply the proton beam and collision production information. Thus, they provide information

concerning the zero-bias and minimum-bias triggers.

BSCs are composed of multiple scintillator tiles that provide the hits and coincidence rates of

the proton collisions. The scintillators and PMTs used for the BSC are the same used in the OPAL

detector [106]. There are two BSC detectors on each side, one (BSC1) placed at 10.9 m from the

interaction point (in front of the HF), while the second (BSC2) lies at 14.4 m from the interaction

point. The BSC1 consists of two tile types: the disks and the “paddles”. The disks are in the innermost

part of the scintillator, with an inner radius of 22 cm and an outer radius of 45 cm, and provide the

2Beam halo muons are machine-induced muons traveling along the beam line. They are produced from processes such
as collisions of beam particles with residual gas inside the LHC vacuum chamber.
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rate information corresponding to the beam condition. The “paddles” are in the outermost part of the

BSC, at a radial distance between 55 cm and 80 cm, and supply the coincidence information used to

tag beam halo muons2. The BSC2 corresponds to two tiles at each side of the interaction point, with

an inner radius of 5 cm and an outer radius of 29 cm. It distinguishes between the beamline ingoing

and outgoing particles. The BSC configuration exposed in this section corresponds to the LHC Run

1 period, when the data used in this dissertation was collected.

The BPTX is a beam pickup device used everywhere around the LHC ring to monitor the beam

position. There are two for the CMS, at 175 m at the right and left from the interaction point. They

provide information on the timing and phase of each crossing bunch and its intensity. The experimen-

tal clocks’ phases compare with the measured one with a precision better than 200 ps, also allowing

the measurement of the interaction point z. The read-out of the BPTX signals is also sent as technical

trigger inputs to the CMS trigger system. They provide information on if each or both of the bunches

are occupied. If both beams are filled, it can indicate whether a collision is possible in this crossing

bunch. Thus, it provides a zero-bias trigger for the commissioning of the trigger system.

4.3 CMS Open Data

In the end of 2009, the CMS experiment at CERN began its data taking with the first collisions

produced by the LHC. In November 2014, the CERN collaborations solidified its openness commit-

ment with the first release of LHC data to the open community. The first batch came from the CMS

experiment, where the data from the first LHC run in 2010 was made available through the CERN

Open Data Portal [41].

The CERN community released multiple batches of data since its beginning. The datasets include

data from the ATLAS, CMS, LHCb, and ALICE collaborations. While some of the released data has

only the purpose of education as its goal, the scientific community can use most of the data available

to make research-level physical analyses. Focusing on the CMS Collaboration’s released data, it is

possible to access almost all of the collected data from proton-proton collisions from 2010 to 2012,

with the center-of-mass energy of the collisions ranging from 0.9 to 8 TeV. Heavy-ion collision data

was released as well, where it is possible to access data of Pb-Pb collisions with 2.76 TeV of center-

of-mass energy per nucleon pair.

The CERN Open Data Portal has multiple datasets regarding the same data-taking run. Each
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of these different datasets has different selection cuts deciding what kind of events are stored. The

triggers enforce the distinct criteria, where the thresholds on the hardware and software level select

what events to retain. For instance, one can use a specific dataset with events that have at least two

energetic photons to find the Higgs boson through the H → γγ channel.

Besides the data collected from high-energy collisions, the CMS Open Data also provides simu-

lated datasets. These datasets supply the necessary information to reach a physical analysis closer to

the truth. For example, they have the necessary details to extract the CMS detector’s track reconstruc-

tion efficiency required to correct the collision data.

Aside from the datasets, the CMS Open Data Portal contains the documentation necessary so that

the whole community can carry out the physical analysis. The documentation includes information

about how to access, extract, and analyze the data from the datasets. There are different guides and

tutorials regarding how to obtain the content from the physical objects, triggers used, luminosity, etc.

4.3.1 Collision datasets

The first step in an analysis is finding what dataset to use. The CMS Open Data provides multiple

primary datasets. Each primary dataset contains different selection cuts for the events stored. For

example, datasets imposing the presence of at least two high-energy muons [107] or datasets enforcing

the presence of at least one high-energy jet [108].

These datasets contain multiple files in the ROOT format (based on the ROOT framework [109]).

The ROOT files store the physical objects made for analysis. Most of these files are in the analysis

object data (AOD) format, containing high-level reconstructed objects (like muons, electrons, and

photons, for example). They also store properties like the particles trajectory, the calorimeter hits, and

the trigger information. Datasets in the raw format are also available, providing the CMS detectors

output.

The main difference between the primary datasets is the triggers run in the data taking. There is

a trigger set related to the selection cuts applied for each dataset. For example, datasets with events

imposing the two energetic muons condition contain triggers related to the event’s muon multiplicity

and their energy value. The sequence of algorithms of the possible triggers are found in the runs’

documentation in the CMS Open Data Portal.
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4.3.2 CMS software framework

The CMS software framework (CMSSW) [42] is necessary to analyze the CMS open data. The

CMSSW offers the tools needed to access, extract, and even reconstruct the data. There are also

tools to simulate events and their detection by the CMS detector. The CMSSW is available through

a Docker container or a Virtual Machine image. The executable cmsRun implements a job given

by a python configuration file. This configuration file tells what data to access and what modules to

execute. They ultimately generate ROOT files that are suitable for analysis.

The modules executed by the configuration file are the core of the analysis algorithm. Called

by EDAnalyzers, they are C++ programs that extract and analyze the physical objects from the

datasets. For example, in the Higgs reconstruction from the channel H → 4l, they are the programs

that access the lepton information from each event and execute the algorithm that reconstructs the

Higgs boson. They also are the programs that store the accessed (and calculated) physical values into

ROOT histograms. The CMS Open Data Portal provides several examples describing how to access

and analyze the data.

The EDAnalyzer module is also capable of extracting the trigger information. If we wish to

enforce a selection cut based on the trigger, it is possible to find if it was run, accepted, or produced

an error. The trigger prescale is also acquired through the EDAnalyzer. The prescale value is not

available for some runs, and in those cases, it is necessary to resort to the brilcalc tool [110].

4.3.3 Simulated datasets

Besides the simulated datasets made available by the CMS Open Data Portal, it is also possible

to run your Monte Carlo (MC) simulations in the CMSSW. Monte Carlo refers to the computational

algorithms based on random numerical samples. It generates particle collisions and simulates the

particle interaction within the detector material. Monte Carlo data serves as a synonym for simulated

data.

The cmsDriver executable generates configuration files using event generator fragments (like

Pythia [16, 17] and Herwig [111]). These fragments will be the difference between the configuration

files. Like the other configuration files, the cmsRun command executes the simulation file. It is

possible to control each step of the simulation: starting with the generation of events (GEN), to the

detector simulation (SIM), to the signal digitalization and trigger application, until the final event re-
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construction (RECO). Figure 4.11 illustrates the different stages present in the CMS event simulation.

Figure 4.11: Diagram outlining the data manipulation steps for Monte Carlo and collision datasets
and their equivalence. Credits: CERN Open Data Portal [41].

The GEN step uses one of the available event generators to simulate the beam collision. One way

to produce GEN-level datasets is through a general-purpose generator, like Pythia and Herwig, which

generates the event and the hadronization. Another way is using an array element generator (Matrix

Element generator), which brings the event to the parton level and then goes through a general-purpose

generator to hadronize the event. In this dissertation, the event generator produces the collisions and

the hadronization.

The SIM (simulation) step simulates how the produced particles interact with the CMS detector.

First, it digitalizes the signals produced by the generated particles going through the detector. When

going through the digitization, the L1 trigger is applied, filtering which events are stored. The next

step, DIGI2RAW, has the function of converting the digital signals into the raw format. The last SIM

step is the high-level trigger (HLT) simulation. This step filters the data according to the required

analysis. The CMS detector response in this step is based on GEANT 4 [112].

The last step, RECO, provides the reconstruction of the event. The RECO simulated files are in

the AOD format and have the same physical objects as the collision datasets. The output also has

information about the generated particles from the GEN step.
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5.1 Minimum bias measurements

As stated in Section 2.3, high-energy hadronic collisions fit two categories, elastic and inelastic

collisions. Both hadrons maintain their form and do not generate new hadrons on elastic hadron scat-

tering. Inelastic hadron scatterings characterize by the fragmentation of at least one hadron. These in-

elastic events are labeled as diffractive or nondiffractive (ND) processes. As for the diffractive events,

they can be categorized as single-diffractive (SD) or double-diffractive (DD) events, depending on the

number of fragmented colliding hadrons. In colliders like the LHC, where the center-of-mass energy

(
√
s) is in the TeV scale, ND interactions are the most common type of hadron scattering. Some stud-

ies also contain central-diffractive (CD) processes in the analysis of inelastic events. However, this

dissertation does not include this type of event in the analysis, since the cross-section of CD processes

is much smaller than the SD and DD cross-sections [54].

The charged particle production study developed in this dissertation analyzes standalone collisions

in a minimum bias (MB) setting. A MB dataset contains inelastic events with as small bias as possible,

i.e., with trigger conditions as loose as can be. The MB datasets include ND, SD, and DD events. For

comparison reasons, the results presented in this dissertation feature mainly non-single-diffractive

(NSD) interactions. This comparison motive comes mostly because experimental collaborations, such

as the UA5 in the SPS [113] and the CDF in the Tevatron [114], used to classify MB events as NSD

interactions. This classification was a result of the experimental approach, being due to the trigger

system that was inclined to detect NSD events.

The minimum bias event characterization is essential for describing hadronic collisions using

Monte Carlo event generators. This experimental characterization enables combining the calculations

from perturbative QCD with phenomenological models. Usually, to study soft interactions, experi-

mental collaborations use observables such as
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i. the charged-particle multiplicity as a function of the pseudorapidity, dN/dη vs. η, also called

pseudorapidity distribution (where N denotes the number of charged particles),

ii. the charged-particle multiplicity distributions, dNev/dnch vs. nch (where Nev is the number of

events and nch is the detected multiplicity), and

iii. the mean transverse momentum as a function of the charged particle multiplicity, 〈pT 〉 vs. nch.

The charged-particle multiplicity distributions, either as a function of the multiplicity or the pseu-

dorapidity, provide insights concerning the rate of partonic interactions. Since these distributions are

sensible to the collision center-of-mass energy, they supply a prediction of how the rate of partonic

interactions rises as a function of the center-of-mass energy. Thus, this type of study helps the event

generator tuning in the new energy frontier of the LHC.

As for the mean transverse momentum distributions, they are helpful in the tuning of color recon-

nection parameters in Monte Carlo event generators. Experimental distributions show that tracks from

high-multiplicity collisions have higher momentum on average than low-multiplicity events. This ef-

fect is explained by the color reconnection, where the color interference between partons introduces

a correlation between the transverse momentum and the multiplicity [115].

5.2 CMS Open Data datasets

Thus, the first decision concerning the dataset choice is to use datasets containing MB events. In

the CERN Open Data Portal, the MB datasets hold events after enforcing MB-like triggers during the

data taking. For example, these datasets contain triggers that select events if two proton bunches are

crossing in the detector (using the BPTX information) or if a collision occurred (through the BSC

hits).

The next step is to choose the proper MB dataset that satisfies our need to understand standalone

collisions. This criterion is implemented by using only datasets containing events collected in low

pile-up runs. Considering only the datasets with
√
s = 7 TeV, we have several options, such as [116–

120], collected in different runs. The dataset [116] is the most suitable for our analysis, for it contains

events detected in the low pile-up run of 2010. For dataset [116], collected in a commissioning run,

only about 6% of the selected events contain more than one reconstructed primary vertex. As for the

other datasets, more than 50% of the events had more than one reconstructed primary vertex. The

CERN Open Data Portal also has MB datasets with
√
s = 0.9 [121] and 8 TeV [122, 123]. The 0.9
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TeV events were also collected in commissioning runs with low pile-up and therefore were suitable

for this analysis, for only about 2% of the events had more than one reconstructed primary vertex.

However, due to the high pile-up in the data taking, none of the 8 TeV datasets were used. The CMS

Collaboration also provides datasets with
√
s = 2.76 TeV, but even though they are not MB datasets,

they are still suitable for all physics and features MB-like triggers. In the 2.76 TeV dataset used [124],

about 9% of the events contained more than one reconstructed primary vertex. Table 5.1 presents the

datasets explored. Figure 5.1 shows the percentage of events with each number of reconstructed

vertices.
√
s (TeV) Valid Events Lint (nb−1) Reference

0.9 ≈ 1.07× 107 > 0.120 [121]
2.76 ≈ 5.18× 107 231.448 [124]

7 ≈ 7.39× 106 4.927 [116]

Table 5.1: Collision datasets explored from the CMS Open Data Portal. The integrated luminosity
Lint values were extracted with the brilcalc tool mentioned in Section 4.3.2. For the 0.9 TeV
dataset, only one of the two collision runs had its Lint value available.
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Figure 5.1: Number of reconstructed vertices for datasets from CMS Open Data with
√
s = 0.9, 2.76,

and 7 TeV.

Considering the early measurements of the CMS Collaboration regarding the charged particle

production, they published results with
√
s = 0.9, 2.36, and 7 TeV [34–36, 40]. The samples with

60



CHAPTER 5. MINIMUM BIAS DATASETS 61

√
s = 0.9 and 2.36 TeV were collected in the last quarter of 2009, with collision rates of 11 and 3 Hz,

respectively. Additionally, the data with
√
s = 7 TeV was recorded in March 2010 with an interaction

rate of about 50 Hz. At these collision rates, the chance that two or more MB collisions occur is

minimum. However, the CMS open datasets correspond to 0.9 TeV runs at the beginning of February

2010 and 7 TeV runs in the middle of May 2010. Since all these samples were collected in the low

pile-up condition, they all have similar collision rates. The CMS Collaboration also published charged

particle distributions for
√
s = 2.76 TeV to compare with heavy-ion data [125]. This data sample was

collected in the 2011 LHC run, corresponding to an integrated luminosity of 230 nb−1. This dataset

seems to match the 2.76 TeV sample from the CERN Open Data Portal, which was recorded in March

2011.

This thorough selection is carried out because the primary vertex selection, exposed in Section

5.3, is crucial in the analysis. By using datasets with a considerable fraction of multiple reconstructed

primary vertices, we would need to either select the primary vertex with the highest multiplicity or

discard these events entirely. Both options would result in an undesirable bias in our event selection,

and thus this analysis only uses low pile-up data.

The CMS Open Data also provides simulated MB datasets corresponding to specific runs of data

taking. For this analysis, the suitable simulated datasets are those matching the commissioning runs

of 2010 (for the 0.9 [126, 127] and 7 TeV [128, 129] datasets) and run A of 2011 (for the 2.76 TeV

dataset [130, 131]). One similar characteristic of the chosen datasets is that they were all simulated

with the condition of no pile-up, meaning that there is only one collision per event. This aspect

mimics the low pile-up condition present in the data taking. Unfortunately, all the simulated datasets

available in the CMS Open Data Portal are from Pythia generators (Pythia 6 with tune Z21 and Pythia

8 with tune 4C [134]). Since we wish for model-independent results, the ideal scenario would be

utilizing datasets from simulations containing different particle generation procedures, i.e., simulated

from varying physical models. For example, considering the generators Pythia and Herwig, we have

differences in the estimation of the multiple partonic interactions, the hadronization models, and the

parton shower simulation.

This analysis was also carried out using natively simulated datasets to explore the effects of using

simulated datasets from different event generators. Since event simulation is very time-consuming,

this study was only done for collisions with
√
s = 7 TeV. Pythia and Herwig++ were the chosen event

1The tune Z2 is almost the same as the tune Z1 [132], the only difference is that the Z2 tune uses the CTEQ6L parton
distribution function [133].
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generators, for they were the only ones with MB fragments in the CMSSW repository. Appendix

B describes the configuration of the natively simulated datasets, including the necessary simulation

steps. All of the simulated datasets (available on the CERN Open Data Portal or simulated natively)

contain the detector response information (based on GEANT 4) of each data-taking run and provide

the simulation necessary to extract the detector’s track reconstruction efficiency. Table 5.2 shows the

simulated datasets used and their respective event generators.

√
s (TeV) Generator Tune Events DOI

0.9 Pythia 8 4C 2,270,000 [127]
0.9 Pythia 6 Z2 2,085,000 [126]

2.76 Pythia 8 4C 2,100,000 [131]
2.76 Pythia 6 Z2 2,005,000 [130]

7 Pythia 8 4C 1,995,000 [129]
7 Pythia 6 Z2 2,002,500 [128]
7 Pythia 8 4C 312,500 native
7 Herwig++ – 112,000 native

Table 5.2: Simulated datasets used for data correction.

As for the AOD physical objects used in this study, this analysis imposes the necessity of obtaining

information about the tracks (simulated or from the detector), the vertices, and the calorimeter hits.

Table 5.3 assigns the physical object to its data input tag. The CMS experiment reconstructs the tracks

and vertices objects using information from the pixel and microstrip trackers. In this dissertation, the

tracks represent the charged particles detected by the tracker. Section 5.3 explains in more detail the

use of the vertices for event selection.

Physical object Label Handle

Simulated particles genParticles GenParticleCollection
Track generalTracks reco::TrackCollection
Vertex offlinePrimaryVerticesWithBS reco::VertexCollection

Calorimeter hit towerMaker CaloTowerCollection

Table 5.3: Physical objects used in the analysis of this dissertation. Label represents the name of
the physical objects inside the AOD files. Handle designates the container that needs to be called to
extract the physical objects of the AOD file.

The 4.2.8 version of the CMSSW was used to analyze the collision datasets with
√
s = 0.9 and

7 TeV, and the simulated datasets with
√
s = 0.9, 2.76, and 7 TeV. The 4.4.7 version examines the

collision dataset with
√
s = 2.76 TeV.
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5.3 Event selection

The first applied event selection condition is related to obtaining a MB sample, i.e., a sample

containing standalone collisions with as minimum bias as possible. As stated in the previous section,

a MB-like trigger available in the MB datasets enforces this criterion. In this case, the triggers contain

thresholds related to the BPTX information and the BSC hits. The signal coincidence of both sides of

the BPTX ensures that two proton bunches are crossing the CMS interaction point at the moment of

a detected collision. The BPTX condition guarantees by itself a Zero-Bias dataset containing empty

events, collision events, and beam gas background. Thus, to secure a higher efficiency in selecting

collision events for a MB sample, the trigger also used the inclusive BSC condition that there is at

least one hit in any BSC detector (BSC signal from either side of the detector). Table 5.4 presents

the used trigger for each dataset. The triggers used in this dissertation are the same used by the CMS

Collaboration to obtain a MB dataset [135]. Notice that for the dataset with
√
s = 7 TeV, there is

an OR condition for the BPTX, meaning that the trigger requires at least one bunch crossing the

interaction point.

√
s (TeV) HLT trigger path Average prescale

0.9 HLT_MinBiasBSC_OR 1.00
2.76 HLT_L1BscMinBiasORBptxPlusANDMinus_v* 424.82
7.0 HLT_L1_BscMinBiasOR_BptxPlusORMinus 33.64

Table 5.4: Triggers used in each CMS Open Data dataset to enforce the event selection cut of a BSC
hit with proton bunches crossing.

The information about which triggers are available for each dataset is displayed on the dataset

webpage in the CERN Open Data Portal. The portal also contains the configuration files used in the

data-taking and HLT data processing step for each available run. For example, if we want to know

what comprises a specific trigger from a 2010 run, we can go to [136] and look into the configuration

files. In the case of the HLT_MinBiasBSC_OR trigger, we can see that its trigger path is

process.HLT_MinBiasBSC_OR = cms.Path( process.HLTBeginSequenceBPTX + process.

hltL1sMinBiasBSCOR + process.hltPreMinBiasBSCOR + process.HLTEndSequence ) .

The process.HLTBeginSequenceBPTX condition enforces that bunches are crossing in the

interaction point, and the process.hltL1sMinBiasBSCOR setting informs about the BSC hits.

In turn, we can see that the process.hltL1sMinBiasBSCOR step configuration uses a technical

trigger bit to provide the BSC information, given by the line
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L1SeedsLogicalExpression = cms.string( "34" ), .

The 34 bit used in this dissertation corresponds to an inclusive BSC signal (hit on either side of the

detector). The definition of each technical bit’s signal coincidence can be found in the CMSSW

repository [137]. For comparison, the HLT_MinBiasBSC trigger is also available and uses the

technical trigger bits 32, 33, 40, and 41, each corresponding to a BSC coincidence (BSC signals on

both sides of the detector).

Since the sample obtained through the first BSC trigger also contains background events, such as

events with beam halo2, other BSC-based triggers are used to provide information for the rejection

of these events. For the datasets from the commissioning run of 2010, i.e., the datasets with
√
s =

0.9 and 7 TeV, the trigger HLT_L1Tech_BSC_halo_forPhysicsBackground was used, cor-

responding to the technical trigger bits 36, 37, 38, and 39. For the dataset with
√
s = 2.76 TeV, the

trigger HLT_L1Tech_BSC_halo_v* was used to reject beam halo events.

The final dataset contains only events with at least one 3 GeV hit at each end of the hadronic

forward calorimeter (HF), providing a final sample populated mostly with NSD events. This condition

is the same imposed by the CMS Collaboration to obtain a dataset with NSD events. The Pythia 8

simulated datasets check the efficiency of this selection cut, for they are the only ones with information

about the type of event (if it is SD, DD, or ND). Table 5.5 exhibits the fraction of surviving events

and the selection efficiencies for each event type after the HF cut.

√
s 0.9 TeV 2.76 TeV 7 TeV

Event type Frac. (%) Selec. Eff. (%) Frac. (%) Selec. Eff. (%) Frac. (%) Selec. Eff. (%)

SD 20.4 15.8 18.8 22.7 17.3 27.7
DD 11.1 41.8 11.4 37.1 11.2 37.0
ND 68.5 96.3 69.8 98.0 71.5 98.7

NSD 79.6 88.7 81.2 89.5 82.7 90.3

Table 5.5: Fraction of SD, DD, ND, and NSD processes before the event selection cuts and their
respective selection efficiencies. All values were extracted from the Pythia 8 datasets.

Since the goal of this study is to analyze standalone collisions, events without a valid reconstructed

primary vertex (PV) were rejected. For this selection, vertices from a position farther than 15 cm from

the interaction point were rejected. PVs are reconstructed from tracks taken from the track collection,

with the offline beam spot enforcing a constraint in the fit of the vertex position. The beam spot is the

2The beam halo is a low-density particle halo that surrounds the core of the beam. It indicates a beam loss of the LHC
beam. More about the mechanisms that contribute to the beam halo can be found in [138].
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luminous region where protons of both beams interact. After applying the PV condition, the analysis

loops around the tracks that belong to a vertex instead of circling the track collection. For the case

where there is more than one reconstructed PV, the vertex with the highest multiplicity is chosen.

Figure 5.2 displays the flowchart of the event selection steps carried out in this dissertation. Table 5.6

presents the percentage of surviving events after each selection cut. The lower values for the surviving

events after the BSC cut for
√
s = 2.76 TeV can be explained by the fact that the 2.76 TeV datasets

contain events suitable for all physics and do not contain a majority of MB events (which occur for

the datasets with
√
s = 0.9 and 7 TeV).

Proton-Proton 
collision

Proton bunches 
crossing

Minimum Bias setting

BPTX trigger signal
BSC inclusive trigger 

(hit on either side of the detector)

Remove  beam halo

Beam halo rejection 
with BSC-based trigger

NSD event selection

HF coincidence
(3 GeV tower on both sides)

Valid proton-proton collision

Valid reconstructed PV within 15 cm of the 
interaction point with beam spot constraint 

Figure 5.2: Flowchart illustrating the the event selection steps.

√
s 0.9 TeV 2.76 TeV 7 TeV

Selection cut % of surviving events

BPTX + BSC signal 99.57 57.17 100.0
Beam halo rejection 97.97 57.17 99.99

HF coincidence 72.58 47.63 82.68
Valid reconstructed PV 65.67 40.98 74.77

Table 5.6: Percentage of surviving events after each selection cut for
√
s = 0.9, 2.76 and 7 TeV.

After all the selection cuts, 7,025,569, 22,718,660, and 5,525,148 events remained for the final

analysis for the datasets with
√
s = 0.9, 2.76, and 7 TeV, respectively.

The selection cuts mentioned in this section provide a dataset suitable for comparison with the

distributions published by the CMS Collaboration. However, the ATLAS Collaboration presents re-

sults without a selection cut that favors specific diffractive processes. Thus, the HF selection cut was

not applied for the pseudorapidity and transverse momentum distributions in the ATLAS kinematic

range.
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The distributions obtained from the physical objects of the CMS Open Data datasets must be

corrected considering that they provide only the reconstructed objects of the raw output of the CMS

detector. Thus, it is necessary to consider the detector’s efficiency in detecting and reconstructing

particles and how effective is the event selection so that the proper correction can be applied. The

corrections, extracted from the simulated datasets, are divided into three kinds: the track weights, the

event weights, and the spectrum correction (for the multiplicity distributions).

6.1 Track detection efficiency

The raw number of charged particles ∆N(pT ,η) present in a given bin with transverse momentum

width ∆pT and pseudorapidity width ∆η must be corrected considering a track weight, which depends

on pT and η, given by

wtr(pT ,η) =
1

εtr(pT ,η)
(1− fsec)(1− ffake). (6.1)

The correction accounts for the detector’s track reconstruction efficiency εtr, the fraction of secondary

tracks fsec (tracks that do not belong to the collision’s primary vertex), and the fraction of misidentified

(“fake”) tracks that does not correspond to any charged particle ffake.

The simulated datasets provide the detector’s track reconstruction efficiency, given by the ratio

between the number of generated charged particles in the GEN step in a (pT , η) bin Ngen and the

number of reconstructed charged particles in a (pT , η) bin matched to a generated particle after passing

the GEANT4 simulation of the CMS detector Nmatched
rec :

εtr(pT ,η) =
Nmatched

rec (pT ,η)

Ngen(pT ,η)
. (6.2)

The reconstructed particles are matched to the generated particle according to the ∆R parameter,
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given by

∆R =
√

(φgen − φrec)2 + (ηgen − ηrec)2, (6.3)

where φ is the azimuthal angle, η is the pseudorapidity, and (φgen, ηgen) and (φrec, ηrec) are the (φ, η)

coordinates of the generated and reconstructed particles, respectively. This parameter represents the

radius of an angular cone around the reconstructed particle. The generated particle with the minimum

∆R value compared to the reconstructed particle is selected as its match. A reconstructed particle

is labeled as misidentified if its ∆R matching value is greater than 0.05 (following the same value

used by the ATLAS Collaboration [139]). Figure 6.1 illustrates the detector’s track reconstruction

efficiency behavior as a function of the pseudorapidity (Figure 6.1a) and the transverse momentum

(Figure 6.1b) for
√
s = 7 TeV. The efficiencies are almost the same for all of the collision’s center-of-

mass energies. The reconstruction efficiencies in Figure 6.1 agree with the corrections published by

the CMS Collaboration in [36].
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Figure 6.1: The detector’s track reconstruction efficiency as a function of the a) pseudorapidity and
the b) transverse momentum for

√
s = 0.9, 2.76, and 7 TeV.

The simulated datasets also estimate the fraction of contaminated tracks. The secondary track rate

is obtained using the information on the decay status of the generated particles in the AOD datasets,

which indicates if the particle comes from the inital proton-proton collision or from a particle decay.
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The cone matching provides the fake track rate, given by the fraction of reconstructed particles with

a ∆R parameter greater than 0.3. Figure 6.2 displays the pseudorapidity and transverse momentum

dependency of the secondary and fake track rates.
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Figure 6.2: The secondary and fake track rates as a function of the a) pseudorapidity and the b)
transverse momentum.

As for the mean transverse momentum distribution, a correction factor was applied to each raw

multiplicity bin. The correction factor is given by the ratio
〈
pgen
T

〉
/
〈
prec
T

〉
, where

〈
pgen
T

〉
and

〈
prec
T

〉
are

the mean transverse momentum values for each raw multiplicity bin of the generated particles before

and after the detector reconstruction, respectively.

6.2 Event selection correction

The raw number of charged particles ∆N and the number of events Nev must be corrected con-

sidering an event weight wev. This correction is a function of the detected multiplicity nch. Thus, wev

is given by

wev(nch) =
1

εNSD(nch)
(1− fSD(nch)), (6.4)
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where εNSD is the NSD event selection efficiency and fSD is the fraction of SD events in the final

sample. The calculation of εNSD and fSD was carried out using the generated events of the Pythia

8 datasets, for it is the only one with the collision signal ID. Figure 6.3a presents the NSD event

selection efficiency as a function of the detected multiplicity. Figure 6.3b illustrates the SD event

surviving fraction as a function of the detected multiplicity. Besides the corrections related to the

event selection, the number of events has to be corrected considering the fraction of NSD events with

no reconstructed tracks f 0
NSD, which was found to be approximately 6.5%.
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Figure 6.3: a) NSD selection efficiency and the b) fraction of surviving SD events in the final sample
as a function of the detected charged particle multiplicity.

The NSD event selection corrections were not applied to the pseudorapidity and transverse mo-

mentum distributions in the ATLAS kinematic range, which did not contain this selection cut.

6.3 Multiplicity unfolding

For the multiplicity distributions, we have that the multiplicity spectrum obtained through the

analysis of the AOD files is not the true multiplicity spectrum. Thus, the raw detected multiplicity

spectrum must be unfolded to acquire the true multiplicity spectrum.
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The general relation between the measured spectrum {Mm} and the true spectrum {Tt} is given

as

Mm =
∑
t

RmtTt, (6.5)

where R is the response matrix that provides the probability of a measured value resulting from a

given true multiplicity. Figure 6.4 illustrates the response matrices for the CMS detector (obtained

with the simulated datasets) in the kinematic range of |η| < 2.4 and pT > 0.5 GeV. However, to

obtain {Tt} from {Mm}, a simple inversion of Equation 6.5 is not enough because in the expression

Tt =
∑
m

R−1
tmMm (6.6)

the inverted matrix R−1 cannot be inferred in every case (the matrix R might be singular). Addi-

tionally, even for cases in which R is invertible, the true spectrum obtained in Equation 6.6 usually

contains large statistical fluctuations.

A different method to obtain the unfolded distribution of a measured spectrum is given by [140],

based on Bayes’ theorem. This approach formulates that the conditional probability P (T |M) of a

cause T given an effect M is expressed as

P (T |M) =
P (M |T )P (T )

P (M)
, (6.7)

where P (M) and P (T ) are the initial probabilities of M and T , respectively, and P (M |T ) is the

conditional probability of a cause T to produce the effect M .

Considering the multiplicity distribution measurement, T is the true multiplicity of a collision

within the detector, and M is the measured multiplicity containing the detector effects. The prob-

abilities P (T |M), known as elements of the smearing matrix, are the values of interest and can be

determined from the components P (M |T ) of the response matrix. Thus, the probability spectra

{Mm} (measured distribution) and {Tt} (true distribution) need to be previously known. However,

Tt are the values that we aim to obtain. This contradiction is solved by the iterative method in [140],

which expresses the elements R̃tm of the smearing matrix as

R̃tm =
RmtPt∑
t′ Rmt′Pt′

, (6.8)

where Pt is the a priori distribution of the true spectrum. The next step is to calculate an unfolded
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Figure 6.4: Unnormalized response matrix in the kinematic range of |η| < 2.4 and pT > 0.5 GeV for
a)

√
s = 0.9, b) 2.76, and c) 7 TeV.

distribution Ut using the smearing matrix and the measured multiplicity, given as

Ut =
∑
m

R̃tmMm. (6.9)

For the next iteration, Ut replaces Pt as the a priori distribution, and the calculations in Equations

6.8 and 6.9 are carried out again. In this scenario, the first a priori distribution Pt is taken to be the

true multiplicity obtained with the simulated datasets instead of a flat distribution as described by

D’Agostini. This choice does not affect the result after a few iterations. The unfolded distribution

converges after approximately four iterations. Figure 6.5 displays the smearing matrices after all

iterations have been carried out.

Finally, after the convergence of Ut, the event selection weight (present in Section 6.2) is applied,
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Figure 6.5: Normalized smearing matrix in the kinematic range of |η| < 2.4 and pT > 0.5 GeV for a)√
s = 0.9, b) 2.76, and c) 7 TeV.

and the final multiplicity distribution U ′
t is given as

U ′
t =

(1− fSD)

εNSD
Ut. (6.10)

The correct employment of the unfolding algorithm (applied with the RooUnfold library [141]

in the ROOT Framework) was checked using only the simulated distributions. With the measured

multiplicity set as the simulated multiplicity after the detector effects, the unfolded distribution agrees

perfectly with the generated true multiplicity, as Figure 6.6 exhibits. The same sanity check was done

for the mean transverse momentum distribution, as Figure 6.7 shows, where the multiplicity unfolding

was applied after the correction factor
〈
pgen
T

〉
/
〈
prec
T

〉
.
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Figure 6.6: Sanity check of the unfolding algorithm for the charged particle multiplicity distribution.
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Figure 6.7: Sanity check of the unfolding algorithm for the mean transverse momentum distribution.

6.4 Transverse momentum extrapolation

Naturally, the CMS detector has a lower limit in transverse momentum for which tracks can be

reconstructed. The pT threshold for particle tracking depends on the track reconstruction method

and lies between 30 MeV to approximately 100 MeV [34]. This inefficiency is displayed in Figure

6.8a, where a cut in transverse momentum can be seen for the general tracks in the CMS Open Data

datasets. Another void can be observed while looking into the pT spectrum of the reconstructed tracks

that belong to a primary vertex, depicted in Figure 6.8b. This distribution suggests the existence of a

threshold going up to 210 MeV for the primary vertices’ particles in the range |η| < 1.0.
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Figure 6.8: Distribution of a) tracks from the TrackCollection and b) tracks belonging to a primary
vertex in the pT − η phase space for the dataset with

√
s = 7 TeV. The distributions were obtained

without selection cuts.

Therefore, only particles with pT > 250 MeV were selected for the transverse momentum and

pseudorapidity distributions. For comparison reasons (see [34–36]), an extrapolation for pT → 0 has

to be applied to the pseudorapidity distributions. This extrapolation is carried out using the distribu-

tion from nonextensive statistical mechanics in Equation 3.85, with the correction being dependent

on η with bins ranging from -2.5 to 2.5 in 0.5 widths. This extrapolation accounts for approximately

25% of the charged particle pseudorapidity distribution.

As for the multiplicity distributions, a selection cut selecting only charged particles with pT >

500 MeV was applied. This threshold was also chosen for comparison reasons, which repeats the

kinematic range of distributions published by the ATLAS and CMS collaborations [39, 40]. The

comparison with this specific kinematic range was decided because it is model-independent. Thus,

an extrapolation in transverse momentum was not necessary.

6.5 Systematic uncertainties

As for systematic uncertainties, we need to consider errors related to the reconstruction algo-

rithms, the event selection, the detector’s track reconstruction efficiency, and the models used to

correct the data.

Since this analysis uses datasets with reconstructed physical objects instead of the raw output of

the CMS detector, the uncertainties related to the reconstruction algorithms and the track contami-
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nation rate were extracted using the CMS published papers. Additionally, the error associated with

the event selection was also estimated using the CMS articles. The estimation of the event selection

uncertainty was chosen because of the time consumption of calculating the error, even though its com-

putation is possible with the CMS Open Data datasets. For example, one would need to use auxiliary

triggers to extract the uncertainty related to the BSC and BPTX triggers. One such analysis uses the

HLT_MinBiasBSC_NoBPTX trigger to analyze the BSC activity without crossing bunches, which

provides how often we could get false positive signals in the scintillator.

The articles [34, 35, 125] provide an upper estimation for the systematic uncertainty of around

4-5%. These articles use the same event selection to obtain a minimum bias sample, which requires

signals from the BPTX, BSC, and HF. They provide a event selection uncertainty of 3.0 [34], 3.5

[125], and 3.5 [35] percent for
√
s = 0.9, 2.76, and 7 TeV, respectively. We added one additional

percent to account for other sources, such as pile-up and track contamination. This percentage comes

from a conservative estimation of the remaining uncertainties using the values presented in the CMS

articles. It is worth reminding that not all of these articles have the same data-taking period as the

data from the CMS Open Data, as exposed in Section 5.2. Nonetheless, these articles still provide a

rough estimation of the systematic uncertainty.

The estimation of the remaining uncertainties related to the data corrections was carried out in this

analysis. The uncertainty is estimated by calculating the distributions using the multiple simulated

datasets in Table 5.2 for each center-of-mass energy. An uncertainty between 0.5 and 7 percent was

obtained for the track reconstruction efficiency, which is pT -dependent. The high values, especially

for
√
s = 0.9 TeV, correspond to the high-pT part of the pT distributions due to the lower number of

tracks.

As for the extrapolation for pT < 0.25 GeV, this correction is model-dependent since this analysis

opted for using the Tsallis distribution. Even though this parametrization is known for efficiently

describing the transverse momentum distribution, it still has some modifications in which equations

are employed. For example, we could use the Equation 3.85, which is thermodynamically consistent,

or an equation that only follows the non-extensive ansatz, such as [15]

E
d3N

dp3
= A

[
1− (1− q)

mT

T

]1/(1−q)

, (6.11)

and still fit the transverse momentum spectrum. These different descriptions provide an uncertainty

of 1-2% for the extrapolation for pT → 0. This uncertainty is higher for lower values of
√
s because
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pT distributions with lower center-of-mass energies have a lower percentage of charged particles in

the pT < 250 MeV region compared to collisions with higher
√
s.

The uncertainty related to the unfolding procedure was obtained by unfolding the multiplicity

distribution with response matrices calculated from different simulated datasets and by varying the

number of iterations. The calculation with multiple response matrices was carried out as a sanity

check, for the Bayesian unfolding procedure is model-independent. The error is nch-dependent and

was found to be 0.1-2.2% and 0.1-10.0% for
√
s = 0.9 and 7 TeV, respectively. The high upper limit

for
√
s = 0.9 TeV is due to the low number of events with high multiplicity. Table 6.1 shows the

systematic uncertainty value from the different sources for the datasets with
√
s = 0.9, 2.76, and 7

TeV.

√
s 0.9 TeV 2.76 TeV 7 TeV

Source Systematic uncertainty (%)

Track reconstruction 0.5-7.0 0.5-3.5 0.5-3.5
Extrapolation for pT < 250 MeV 1.8 1.6 1.5
Multiplicity unfolding 0.1-10.0 - 0.1-2.2
Remaining uncertainties (estimated from CMS papers) 4.0 4.5 4.5

Table 6.1: Summary of the systematic uncertainties affecting the charged particle distributions for√
s = 0.9, 2.76, and 7 TeV. Uncertainties were also estimated from CMS papers for

√
s = 0.9 [34],

2.76 [125], and 7 TeV [35].
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7 | Results

This chapter resumes the final charged particle distributions measured with the open data from

the CMS Collaboration. Measurements of the transverse momentum, pseudorapidity, multiplicity,

and 〈pT 〉 spectrum for
√
s = 0.9, 2.76, and 7 TeV are presented, and a comparison with papers

published by experimental collaborations is discussed.

7.1 Multiplicity and 〈pT 〉 distributions

Figure 7.1 shows the charged particle multiplicity distributions for
√
s = 0.9 and 7 TeV and their

comparison with the published data from the ATLAS and CMS collaborations [39, 40]. The ratio

of the published charged particle multiplicity distributions with respect to our results is shown in the

lower panel. Only tracks in the kinematic range of |η| < 2.4 and pT > 500 MeV were considered.

Figure 7.2 illustrates the mean transverse momentum spectrum as a function of the multiplicity for
√
s = 0.9 and 7 TeV and its comparison with the distributions from the ATLAS Collaboration [39].

The ratio of the published charged particle 〈pT 〉 distributions with respect to our results is displayed

in the lower panel.

The multiplicity and 〈pT 〉 distributions provide the first evidence that the plots obtained using the

open data from the CMS Collaboration are in reasonable agreement with the published results. The

distributions obtained with the open data and those published by the CMS Collaboration both contain

NSD events. However, the distributions from the ATLAS Collaboration do not include a selection

cut favoring a specific diffractive process. This difference is visible in the low multiplicity part of

the spectrum, which contains more SD events. Thus, the multiplicity distributions obtained in this

dissertation are closer to those published by the CMS Collaboration. As for the 〈pT 〉 results, the open

data distributions do not deviate by more than 4% of the ATLAS distributions, even though it has a

slightly different event selection.
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Figure 7.1: Charged particle multiplicity distributions in the |η| < 2.4 and pT > 500 MeV kinematic
range for a) 0.9 TeV and b) 7 TeV. Distributions from the ATLAS [39] and CMS [40] collabora-
tions are also presented. The ratio of the published distributions with respect to our results is shown
in the lower panel. The vertical bars represent the statistical and systematic uncertainties added in
quadrature.

7.2 Pseudorapidity distributions

The pseudorapidity distributions were calculated using that

1

Nev

dN

dη
=

1

Nev

Ntr

∆η
, (7.1)

where ∆η is the width of the η bin, ∆Ntr is the corrected number of tracks in a (pT ,η) bin, and Nev is

the corrected number of events that survived the selection cuts. The corrected number of tracks and

events are given by

Ntr =
∑
nch

N raw
tr (pT , η, nch) · wtr(pT , η) · wev(nch) (7.2)

and

Nev = (1 + f 0
NSD)

∑
nch

N selected
ev (nch) · wev(nch). (7.3)
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Figure 7.2: Charged particle 〈pT 〉 distributions as a function of the charged particle multiplicity in
the |η| < 2.4 and pT > 500 MeV kinematic range for a) 0.9 TeV and b) 7 TeV. Distributions from
the ATLAS Collaboration [39] are also present. The ratio of the ATLAS distributions with respect
to our results is shown in the lower panel. The vertical bars represent the statistical and systematic
uncertainties added in quadrature.

respectively, where nch is the event multiplicity (number of charged particles in an event), and wtr and

wev are the track and event weights outlined in Chapter 6. As mentioned in Section 6.2, the corrections

wev and f 0
NSD were not applied for the pseudorapidity and transverse momentum distributions in the

ATLAS kinematic range.

For comparison reasons, the pseudorapidity distributions in this dissertation are in two kinematic

regions. The first one contains only tracks with |η| < 2.5 and pT > 500 MeV and events with

nch ≥ 1 for the comparison with the distributions published by the ATLAS Collaboration. Figure

7.3 exhibits the pseudorapidity distributions in this phase space for
√
s = 0.9, 2.76, and 7 TeV and

its comparisons with the results from the ATLAS Collaboration. The ratio of the ATLAS charged

particle pseudorapidity distributions with respect to our results is shown in the lower panel.

The second kinematic region includes only tracks with |η| < 2.5 and pT > 0 MeV and events with

nch ≥ 0 to compare to the distributions published by the CMS Collaboration. The CMS Collabora-

tion has track reconstruction algorithms with different pT thresholds, going from as low as 30 MeV
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Figure 7.3: Charged particle pseudorapidity distributions with pT > 500 MeV and nch ≥ 1 for a)
0.9 TeV, b) 2.76 TeV, and c) 7 TeV. Charged particle pseudorapidity distributions from the ATLAS
Collaboration [39] are also presented. The ratio of the ATLAS distributions with respect to our results
is shown in the lower panel. The vertical bars represent the total uncertainty of the ATLAS data points.
The shaded bands represent the statistical and systematic uncertainties of the distributions from this
dissertation added in quadrature.
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for one method (pixel counting method [34]) to 100 MeV for the one with the largest cutoff value

(tracking method [34]). Thus, they extrapolated their pseudorapidity distributions to pT → 0 for all

reconstruction methods. As mentioned in Section 6.4, the cutoff value for the distributions in this

dissertation is 250 MeV. Therefore, an extrapolation using the Tsallis distribution is applied to each η

bin to consider charged particles with pT between 0 and 250 MeV. Figure 7.4 displays the pseudora-

pidity distributions in the CMS phase space for
√
s = 0.9, 2.76, and 7 TeV and its comparisons with

the results from the CMS Collaboration. The ratio of the CMS charged pseudorapidity distributions

with respect to our results is displayed in the lower panel.

The ATLAS and CMS experiments did not publish pseudorapidity distributions for
√
s = 2.76

TeV. However, they published pseudorapidity distribution with
√
s = 2.36 TeV, close enough to

draw some comparisons. The LHC 2.36 TeV run was carried out in 2010, during the first months

of operation, and it does not have datasets available in the CMS Open Data. Table 7.1 presents the

values obtained for the average charged particle multiplicity density dN/dη|η≈0 and its comparison

with the values obtained by the ATLAS and CMS collaborations for their specific kinematic ranges.

The CMS Collaboration published charged hadron pseudorapidity distributions instead of using a

broader selection including all charged particles. However, the comparison between this dissertation’s

distributions and the CMS distributions is still valid since leptons correspond to less than 1% of

the charged particle distribution [34, 35]. All the other distributions from the ATLAS and CMS

experiments present in this dissertation correspond to charged particle distributions.

√
s (TeV) dN/dη|η≈0(nch ≥ 0, pT > 0 MeV) dN/dη|η≈0(nch ≥ 1, pT > 500 MeV)

This dissertation CMS pub. This dissertation ATLAS pub.

0.9 3.6± 0.2 3.48± 0.02+0.13
−0.13 1.41± 0.06 1.343± 0.004+0.027

−0.027

2.36 – 4.47± 0.04+0.16
−0.16 – 1.74± 0.019+0.058

−0.058

2.76 4.5± 0.2 – 1.90± 0.09 –

7.0 5.5± 0.3 5.78± 0.01+0.23
−0.23 2.4± 0.1 2.423± 0.001+0.050

−0.050

Table 7.1: Comparison between the average charged multiplicity density values for η ≈ 0 obtained in
this paper with those published by the CMS and ATLAS collaborations [34, 35, 39]. The values from
this dissertation and from the ATLAS Collaboration are derived from charged particle distributions.
The values from the CMS Collaboration are obtained from charged hadron distributions.

The pseudorapidity distributions provide the second test of whether the open data distributions are

replicating the published results. Figures 7.3 and 7.4 show that the ratio between this dissertation’s
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Figure 7.4: Charged particle pseudorapidity distributions with pT > 0 MeV and nch ≥ 0 for a)
0.9 TeV, b) 2.76 TeV, and c) 7 TeV. Charged hadron pseudorapidity distributions from the CMS
Collaboration [34, 35] are also present. The ratio of the CMS distributions with respect to our results
is shown in the lower panel. The vertical bars represent the total uncertainty of the CMS data points.
The shaded bands represent the statistical and systematic uncertainties of the distributions from this
dissertation added in quadrature.
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distributions and the data from the experimental collaborations lies within the experimental error. The

spectrum ratios have an upper deviation of around 5% of the obtained value in the mid-rapidity region

(η ≈ 0).

The comparison of the pseudorapidity distributions also provides the first application of the Tsallis

parametrization to describe the transverse momentum distributions. Since the results of the ATLAS

Experiment had a pT cutoff of 500 MeV, the plots for this kinematic range are model-independent (the

data corrections relate only to the detector effects and not the event generators). But that is not the

case for the distributions in the kinematic range of the CMS detector. As mentioned earlier, the CMS

Experiment carries out an extrapolation for charged hadrons with transverse momentum below 100

MeV, which account for an increase of 5% in the estimated number of particles [34]. However, they

do not mention how they calculate the extrapolation. As for our distributions, they rely on a larger

extrapolation provided by the Tsallis parametrization. This correction supplies a result in agreement

with the model-dependent spectrum published by the CMS Collaboration. It is worth noting that this

correction belongs to the part of the spectrum described by nonperturbative QCD. Thus, by comparing

our distributions with the ATLAS and CMS experiments, we have results agreeing with measurements

containing both model-dependent and model-independent corrections.

7.3 Transverse momentum distributions

The corrected charged particle transverse momentum distributions were calculated using that

1

Nev

1

2πpT

d2N

dηdpT
(pT ,η) =

1

Nev

1

2πpT

∆Ntr

∆η∆pT
(7.4)

where ∆pT is the width of the pT bin. The yield given by Equation 7.4 was used to compare the

distributions obtained with the ones from both the ATLAS and CMS collaborations. Notice that the

differential yield Ed3N/dp3 from the CMS Collaboration was calculated similar to the way presented

in Equation 7.4 (aside from the pileup correction), as exposed in reference [36]. Therefore, for com-

parison reasons, the additional term in Appendix A.2 was not applied to the distributions.

Figure 7.5 shows the charged particle differential yield as a function of the transverse momentum

in the ATLAS phase space for
√
s = 0.9, 2.76, and 7 TeV and its comparisons with the results from the

ATLAS Collaboration. The ratio of the ATLAS charged particle transverse momentum distributions

with respect to our results is shown in the lower panel. Since the ATLAS Collaboration did not publish
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transverse momentum distributions with
√
s = 2.76 TeV, this dissertation compares the distribution

with
√
s = 2.76 TeV to a distribution for collisions with

√
s = 2.36 TeV. Figure 7.6 illustrates the

charged particle differential yield as a function of the transverse momentum in the CMS kinematic

range for
√
s = 0.9, 2.76, and 7 TeV and its comparisons with the results from the CMS Collaboration.

The ratio of the CMS charged particle transverse momentum distributions with respect to our results

is displayed in the lower panel. The histograms that provide the distributions in Figures 7.5 and 7.6

contain the same bin arrangement as the plots published by the experimental collaborations.

One important aspect when considering dealing with the CERN Open Data datasets is how far on

the pT spectrum we could have meaningful statistics. In this dissertation, we present pT spectra going

up to around 20, 30, and 50 GeV for
√
s = 0.9, 2.76, and 7 TeV, respectively. This threshold was

the highest possible cutoff value using the open data datasets. The main setback for higher pT values

came from the detector correction estimation, where there was not a sufficient number of events to

estimate the corrections. Nevertheless, the fraction of tracks with pT > 20 GeV is of the order of

10−6, which results in a large statistical uncertainty since our datasets have only 107 events. Thus,

only about 101 − 102 charged particles have pT > 20 GeV in our datasets.

However, the lack of events is not a problem for the experimental collaborations, where results

are published with a spectrum going up to 200 GeV [142]. This difference arises because we do not

have access to all data taking runs through the CERN Open Data Portal. Nevertheless, this problem

might be specific for this analysis since we rely only on low pile-up runs, usually carried out during

the commissioning step of the experiment. If we could use general Minimum Bias datasets, we could

obtain distributions with data from the 2010A, 2010B, 2011A, and 2011B runs (as an example for

collisions with
√
s = 7 TeV), and that should be enough.

Unlike the pseudorapidity distributions, the transverse momentum distribution corrections are all

model-independent and only reflect the detector effects. Figures 7.5 and 7.6 display that the open

data distributions and the ones published by the experimental collaboration exhibit roughly the same

behavior. The similarity in the distribution shape is confirmed by the fit using the Tsallis parametriza-

tion, where the charged particle differential yield was fitted using the equations

1

Nev

1

2πpT

d2N

dηdpT
= AmT

[
1 + (q − 1)

mT

T

]− q
(q−1)

(7.5)

and
1

Nev

1

2πpT

d2N

dηdpT
= A

[
1 + (q − 1)

mT

T

]− 1
(q−1)

. (7.6)
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Figure 7.5: Charged particle differential yield as a function of the transverse momentum with |η| <
2.5 and nch ≥ 1 for a) 0.9 TeV, b) 2.76 TeV, and c) 7 TeV. Distributions from the ATLAS Collaboration
[39] are also present. The ratio of the ATLAS distributions with respect to our results is shown
in the lower panel. The vertical bars represent the statistical and systematic uncertainties added in
quadrature.
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Figure 7.6: Charged particle differential yield in NSD events as a function of the transverse momen-
tum with |η| < 2.4 and nch ≥ 0 for a) 0.9 TeV, b) 2.76 TeV, and c) 7 TeV. Distributions from the CMS
Collaboration [36, 125] are also present. The ratio of the CMS distributions with respect to our results
is shown in the lower panel. The vertical bars represent the statistical and systematic uncertainties
added in quadrature.
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Equation 7.5 follows the thermodynamically consistent approach to nonextensive statistical mechan-

ics, described in Chapter 3. Equation 7.6 is the standard distribution of the nonextensive ansatz used

in other articles [15, 143] and is related to the one used by experimental collaborations.

The distributions used for the fit comparison are displayed in Figure 7.7 and use a different bin

arrangement than the plots in Figures 7.5 and 7.6. The different bin array was chosen to obtain fit

parameters with smaller uncertainties. Table 7.2 displays the fit parameters obtained using the Tsallis

fit (Equation 7.5) for the plots in Figure 7.7, along with the parameter values for the ATLAS and CMS

distributions. Figure 7.8 presents the values of the parameters q and T using both Equations 7.5 and

7.6. The fit of all datasets was performed in the transverse momentum range between 500 MeV and

10 GeV.
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Figure 7.7: Invariant differential charged particle yield in NSD events in the |η| < 2.4 range as a
function of the transverse momentum for

√
s = 0.9, 2,76, 7 TeV. The data was fitted to the Tsallis

distribution. The vertical bars represent the statistical and systematic uncertainties added in quadra-
ture.

Figure 7.8a shows that the q-index rises slightly with the center-of-mass energy of the collision,

which was something already present in the literature [15, 144]. The obtained values of the q-index

correspond to a power-law index n in the 8− 10 range when using the thermodynamically consistent

approach. This range extends to 6 − 10 when using Equation 7.6. This result allows comparing the
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√
s A (GeV−2) q n → q/(q − 1) T (GeV)

CMS Open Data 7 TeV 166± 19 1.143± 0.004 8.0± 0.2 0.114± 0.004

CMS 7 TeV 169± 175 1.144± 0.010 7.9± 0.5 0.113± 0.019

ATLAS 7 TeV 162± 56 1.143± 0.006 8.0± 0.3 0.117± 0.011

CMS Open Data 2.76 TeV 162± 20 1.135± 0.004 8.4± 0.2 0.109± 0.005

CMS 2.76 TeV 146± 127 1.135± 0.012 8.4± 0.7 0.113± 0.017

ATLAS 2.36 TeV 108± 130 1.139± 0.015 8.2± 0.8 0.105± 0.019

CMS Open Data 0.9 TeV 148± 17 1.123± 0.003 9.1± 0.2 0.106± 0.005

CMS 0.9 TeV 157± 181 1.123± 0.009 9.1± 0.6 0.105± 0.019

ATLAS 0.9 TeV 154± 79 1.121± 0.008 9.3± 0.5 0.107± 0.010

Table 7.2: Parameters obtained with the Tsallis fit for the charged particle differential yield distri-
butions. The CMS and ATLAS parameters were obtained by fitting the data from the references
[36, 39, 125] available in the HEPData portal. The results obtained in this dissertation are highlighted
in orange.
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Figure 7.8: Fit parameters a) q and b) T obtained with the Tsallis fit (Equation 7.5 for the black data
points and Equation 7.6 for the red data points) for the charged particle differential yield distributions.
The CMS and ATLAS parameters were obtained by fitting the data from the references [36, 39, 125]
available in the HEPData portal. The vertical bars represent the statistical uncertainty.
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phenomenological approach using nonextensive statistical mechanics and perturbative QCD, where

the parameter n relates to the number of active participants in the collision process [8], given by

n = 2 ×
[
(number of active participants in the process)− 2

]
. Both plots in Figure 7.8 also show

a difference in magnitude between the fit parameters obtained with Equations 7.5 and 7.6. This

difference does not have a physical meaning since the only pT distribution obtained from nonextensive

statistical mechanics using thermodynamical relations is Equation 7.5. At this moment, Equation 7.6

can only be interpreted as a fit equation.

From Figure 7.8b, we can not affirm that the parameter T is anything other than constant when

increasing the center-of-mass energy of the proton-proton collisions for the fits from both Equations

7.5 and 7.6. Studies present in the literature [145] explain that the main reason for using the ther-

modynamically consistent approach is because it predicts that the T parameter is a constant [146].

This result was made explicit by analyzing the distributions of various hadrons and seeing that only

Equation 7.5 provides a constant T for the different systems. However, hadron identification is absent

in this analysis, mainly because of the difficulty in developing identification algorithms for hadrons in

the CMS detector based only on the information from the tracker. Thus, we can not confirm that only

the thermodynamically consistent approach provides a constant T when analyzing just the charged

particle distributions, which can be interpreted as a summation over several hadrons. The Tsallis fit

provides a value of (110±5) MeV for the T parameter if it is supposed to be invariant. This parameter

is known as an effective temperature.

The analysis with the Tsallis fit also turns explicit the advantage of measuring distributions us-

ing open data. Usually, a researcher from outside of an experimental collaboration can only use the

distributions available in the HEPData Portal. These distributions are similar to those used in this

dissertation for the comparing data. The fit of these distributions results in fit parameters with large

values of statistical errors, mostly due to the restricted bin arrangement provided. These large error

values prevent us from drawing more precise conclusions concerning the measured parameters. How-

ever, using the open data, we can measure distributions with more suitable bin arrangements for the

analysis at hand. Thus, we can get more precise measurements for the fit parameters.

7.4 Comparison to Monte Carlo models

Figure 7.9 displays a comparison between the distributions of the observables obtained in this

dissertation and the same kind of distributions from Monte Carlo models for
√
s = 7 TeV. The ratio
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of the Monte Carlo charged particle transverse momentum distributions with respect to our results is

shown in the lower panel. The comparison was done only for distributions with
√
s = 7 TeV since

it is the only center-of-mass energy with simulated datasets from different event generators. The

distributions in Figure 7.9 are from inelastic collisions, not containing the selection cut to obtain a

sample with mostly NSD events.

The Pythia distributions, especially the Tune 4C, are the ones that best describe the LHC data. This

result is expected since the Tune 4C was modeled following some input from early LHC data. The

pseudorapidity (Figure 7.9c) and transverse momentum (Figure 7.9d) distributions from the Monte

Carlo models fall within 20% of the distributions obtained in this dissertation for most of the spectra.

The Herwig++ tuning estimates a pseudorapidity density about 20% higher than the results in this

dissertation, while the Pythia Tune Z2 provides a pseudorapidity density about 20% lower. The Pythia

Tune 4C provides the best description for the particles produced in the LHC collisions, containing a

pseudorapidity density about 10% lower than the measured value. As for the transverse momentum

distributions, the main difference between Herwig and Pythia tunings comes from the low-pT part of

the spectrum, with Herwig++ tuning overestimating the measured distribution by as much as 50%.

The advantage of the Pythia tunings comes from the description of the multiplicity distributions,

especially the distribution of the charged particle average transverse momentum as a function of the

multiplicity. Newer models simulate a color reconnection in the partonic interactions to describe the

region with high-nch, which has significant contributions from multiple partonic interactions. Thus,

Figure 7.9b makes visible the difference between the event generators as the multiplicity rises, where

the ratio between the Herwig++ distribution with respect to our results is increasingly lower. The

proportion between the Pythia distributions and our results is roughly constant with the multiplicity,

staying around 5%. A similar analysis goes for the multiplicity distribution (Figure 7.9a) where the

Pythia tunings offer a fair description within 20% of the measured distribution and the Herwig tuning

overestimates the high-multiplicity region of the spectrum by one order of magnitude.
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Figure 7.9: a) Charged particle multiplicity, b) charged particle 〈pT 〉, c) charged particle pseudorapid-
ity and d) charged particle transverse momentum distributions with nch ≥ 1, |η| < 2.5, and pT > 500
MeV for

√
s = 7 TeV. The same distributions for different Monte Carlo models are also displayed.

The ratio of the distributions from Monte Carlo datasets with respect to our results is shown in the
lower panel. The vertical bars and shaded bands represent the statistical and systematic uncertainties
added in quadrature.
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8 | Conclusions

This dissertation presented transverse momentum, pseudorapidity, mean transverse momentum,

and multiplicity distributions of charged particles produced in proton-proton collision in the LHC

using open data made available by the CMS Collaboration with center-of-mass energies of 0.9, 2.76,

and 7 TeV. The distributions followed the selection cuts and kinematic ranges of published results

from the ATLAS and CMS experiments [34–36, 39, 40, 125].

The analysis carried out in this dissertation outlined the necessary process which we have to

follow to produce results similar to the ones from experimental collaborations. This study includes the

dataset selection, using triggers for the selection cut of suitable events, and applying data corrections

using simulated datasets. The calculation of systematic errors is also discussed, even though it was

not performed in its entirety.

The comparison between this dissertation’s distributions and the CMS and ATLAS experiments

results provides validity of using datasets from the CERN Open Data Portal for physical analysis.

The ratios between the distributions were found to be in reasonable agreement. Specifically, the

multiplicity and pseudorapidity distributions indicate that the study in this dissertation is measuring

the same charged particle output from the LHC collisions as the CMS and ATLAS experiments.

The confidence that the results obtained in this dissertation agree with the data published by the

experimental collaborations allowed us to carry out a physical analysis of our own. This disserta-

tion’s study analyzes the transverse momentum spectrum using a parametrization from nonextensive

statistical mechanics. From this fit, we encounter a q-index that rises with center-of-mass energy,

and consequently, we find the power-law index n to decrease with the center-of-mass energy of the

collision. The q-index lies between 1.12 and 1.15, while the power-law index n exists between 6 and

10. As for the T parameter, known as an effective temperature, it is found to be roughly constant with

the center-of-mass energy, with its value being approximately 110 MeV. The fit parameters are also

found to agree with those obtained using the distributions from experimental collaborations.
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One of the shortcomings of this analysis is that we can not confirm how nonextensive statistical

mechanics relates to the underlying partonic process in hadronic collisions. However, it is still a re-

markable result that it can provide a distribution capable of fitting the transverse momentum spectrum

over several orders of magnitude using only three free parameters.

Besides the results from CMS and ATLAS presented in this dissertation, several other results from

experiments surrounding the LHC have been published concerning soft interactions. For example, the

ATLAS and CMS Collaborations have published the same observables present in this dissertation for
√
s = 8 and 13 TeV [147–150]. Since this analysis is essential for tuning Monte Carlo models, this

same analysis will be made in the Run 3 of the LHC, currently in commissioning, where they aspire to

reach a collision center-of-mass energy of 13.6 TeV. Besides studying Minimum Bias collisions, the

analysis of the underlying event is also important for tuning Monte Carlo models and characterizing

soft interactions. For example, studies are being made to improve color reconnection tunes based on

underlying-event data [151].

This dissertation illustrates the challenges of carrying out these analyses of soft interactions, high-

lighting the importance of having the data prepared in a certain condition (low pile-up collisions and

MB-like triggers) and the need to aspire for precision (a pT threshold as low as possible is desired).

Besides the methodology, this dissertation also presents an analysis that could gain from being carried

out using reconstructed LHC data (instead of published distributions), either inside the collaboration

or through open data. The study of the transverse momentum spectrum using nonextensive statistical

mechanics needs more precise measurements than the ones available in the HEPData repositories to

aspire for bolder descriptions of physical consequences.
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A | Kinematic Variables

A.1 CMS coordinates

The four-momentum P of a particle with rest mass m and Lorentz factor γ = 1/
√

1− β2, in

natural units (} = c = 1), is given by

P = (E,px,py,pz), (A.1)

where E is the particle’s energy and −→p = (px,py,pz) is the particle’s momentum.

This dissertation uses the standard coordinate system for particle accelerators. The z-axis is the

beam axis, the x-axis points towards the center of the accelerator, and the y-axis points up. Consid-

ering spherical coordinates for the momentum vector, θ is the polar angle (angle with respect to the

z-axis), and φ is the azimuthal angle (angle between the x-axis and the transverse momentum vector
−→pT = (px,py)).

However, experimental collaborations usually map a particle using the rapidity parameter y given

by

y =
1

2
ln

(
E + pz
E − pz

)
. (A.2)

instead of the polar angle. The advantage of using the rapidity of a particle comes from its additivity

under Lorentz transformations where

y′ =
1

2
ln

(
E ′ + p′z
E ′ − p′z

)
=

1

2
ln

(
γ(1− β)(E + pz)

γ(1 + β)(E − pz)

)
= y +

1

2
ln

(
1− β

1 + β

)
= y − 1

2
ln

(
1 + β

1− β

)
.

(A.3)

As a result, the rapidity differences are invariant under boosts along the beam direction, that is, ∆y =

∆y′. Since the experimental measurement of the rapidity is not straightforward, a new parameter
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called pseudorapidity is introduced, given by

η ≡ 1

2
ln

(
p+ pz
p− pz

)
= − ln

[
tan

(
θ

2

)]
. (A.4)

When the particles’ masses can be neglected (p >> m), we have that

y =
1

2
ln

(
E + pz
E − pz

)
=

1

2
ln

(√
p2 +m2 + p cos θ√
p2 +m2 − p cos θ

)
≈ 1

2
ln

(
p+ p cos θ

p− p cos θ

)

=
1

2
ln

(
1 + cos θ

1− cos θ

)
=

1

2
ln

[
cos2(θ/2)

sin2(θ/2)

]
= − ln

[
tan

(
θ

2

)]
≡ η.

(A.5)

and the pseudorapidity can be used in place of the rapidity. Figure A.1 illustrates the coordinate

system used.

LHC

center of 
the LHC

Figure A.1: The CMS coordinate system.

In this new coordinate system, we have that

p = pT cosh η,

px = pT cosφ,

py = pT sinφ,

pz = pT sinh η = mT sinh y, and

E = mT cosh y,

(A.6)

where mT ≡
√

m2 + p2T =
√

E2 − p2z.
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A.2 Invariant differential particle yield

When changing from cartesian coordinates to the (pT ,φ,y) coordinate system, we add a jacobian

determinant J , given by

J =

∣∣∣∣∣∣∣∣∣∣∣∣

∂px
∂pT

∂px
∂φ

∂px
∂y

∂py
∂pT

∂py
∂φ

∂py
∂y

∂pz
∂pT

∂pz
∂φ

∂pz
∂y

∣∣∣∣∣∣∣∣∣∣∣∣
J = (cos2 φ+ sin2 φ)pTmT cosh y = pTmT cosh y = pTE.

(A.7)

Thus, the invariant differential particle yield becomes

E
d3N

dp3
= E

d3N

dpxdpydpz
=

E

J

d3N

dφdydpT
=

1

pT

d3N

dφdydpT
=

1

2πpT

d2N

dydpT
. (A.8)

When considering the CMS coordinate system (pT ,η,φ), we have that

J =

∣∣∣∣∣∣∣∣∣∣∣∣

∂px
∂pT

∂px
∂φ

∂px
∂η

∂py
∂pT

∂py
∂φ

∂py
∂η

∂pz
∂pT

∂pz
∂φ

∂pz
∂η

∣∣∣∣∣∣∣∣∣∣∣∣
J = (cos2 φ+ sin2 φ)p2T cosh η = pTp,

(A.9)

and therefore the invariant differential particle yield is given by

E
d3N

dp3
= E

d3N

dpxdpydpz
=

E

J

d3N

dφdηdpT
=

E

ppT

d3N

dφdηdpT
=

√
p2 +m2

p

1

2πpT

d2N

dηdpT

=

√
1 +

m2

p2
1

2πpT

d2N

dηdpT
=

√
1 +

m2

p2T cosh2 η

1

2πpT

d2N

dηdpT
.

(A.10)
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B | Natively simulated datasets

The Pythia 8 dataset with
√
s = 7 TeV was simulated using the MinBias_7TeV_pythia8_cff.py

fragment present in the CMSSW repository. For comparisons reason, the Tune::pp was set to 5

(the same tuning as the Pythia 8 datasets available in the CERN Open Data Portal). The Tune 5

corresponds to the Tune 4C [134], containing modified multiparton interaction parameters to provide

a better agreement with the early LHC data. The fragment read as follows

process.generator = cms.EDFilter("Pythia8GeneratorFilter",

pythiaPylistVerbosity = cms.untracked.int32(1),

filterEfficiency = cms.untracked.double(1.0),

pythiaHepMCVerbosity = cms.untracked.bool(False),

comEnergy = cms.double(7000.0),

crossSection = cms.untracked.double(71390000000.0),

maxEventsToPrint = cms.untracked.int32(0),

PythiaParameters = cms.PSet(

processParameters = cms.vstring(’Main:timesAllowErrors = 10000’,

’ParticleDecays:limitTau0 = on’,

’ParticleDecays:tauMax = 10’,

’SoftQCD:minBias = on’,

’SoftQCD:singleDiffractive = on’,

’SoftQCD:doubleDiffractive = on’,

’Tune:pp 5’,

’Tune:ee 3’),

parameterSets = cms.vstring(’processParameters’)

)

)

The configuration file for the event generation and detector simulation of Y thousands of events was

obtained with the following command

cmsDriver.py MinBias_7TeV_pythia8_cff.py --mc --eventcontent=RAWSIM --datatier=

GEN-SIM --conditions=START42_V17B::All --step=GEN,SIM --python_filename=
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gensim_MB_seedX_Yk.py --no_exec --number=Y000 --fileout=gensim_MB_seedX_Yk.

root

Since multiple simulated files were needed, each contained a different seed number X for random

number generation, implemented with the following code:

process.RandomNumberGeneratorService = cms.Service("RandomNumberGeneratorService

",

generator = cms.PSet(

initialSeed = cms.untracked.uint32(X),

engineName = cms.untracked.string(’TRandom3’)

),

VtxSmeared = cms.PSet(

initialSeed = cms.untracked.uint32(X),

engineName = cms.untracked.string(’TRandom3’)

),

g4SimHits = cms.PSet(

initialSeed = cms.untracked.uint32(X),

engineName = cms.untracked.string(’TRandom3’)

)

)

For the digitalization step, the configuration file was obtained with

cmsDriver.py step1 --filein file:gensim_MB_seedX_Yk.root --step=DIGI,L1,DIGI2RAW

--datatier GEN-SIM-RAW --conditions=START42_V17B::All --fileout=

digi_MB_seedX_Yk.root --eventcontent RAWSIM --python_filename

digi_MB_seedX_Yk.py --number=Y000 --mc --no_exec

Finally, for the reconstruction step, the configuration file was obtained with the command

cmsDriver.py step2 --filein file:digi_MB_seedX_Yk.root --fileout

reco_MB_seedX_Yk.root --mc --eventcontent AODSIM --pileup NoPileUp --

customise Configuration/GlobalRuns/reco_TLR_42X.customisePPMC,Configuration/

DataProcessing/Utils.addMonitoring --datatier AODSIM --conditions

START42_V14B::All --step RAW2DIGI,L1Reco,RECO --python_filename

reco_MB_seedX_Yk.py --no_exec -n Y000

As for the Herwig++ dataset with
√
s = 7 TeV, the same steps as the Pythia 8 dataset were

followed. The only difference was the CMSSW code fragment, MinBias_7TeV_herwigpp_cff.py,

which read as

process.generator = cms.EDFilter("ThePEGGeneratorFilter",

herwigDefaultsBlock,

98
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cm7TeV = cms.vstring(’set /Herwig/Generators/LHCGenerator:EventHandler:

LuminosityFunction:Energy 7000.0’,

’set /Herwig/Shower/Evolver:IntrinsicPtGaussian 2.0*GeV’),

configFiles = cms.vstring(),

crossSection = cms.untracked.double(101900000000.0),

parameterSets = cms.vstring(’cm7TeV’,

’pdfMRST2001’,

’Summer09QCDParameters’,

’basicSetup’,

’setParticlesStableForDetector’),

filterEfficiency = cms.untracked.double(1.0),

Summer09QCDParameters = cms.vstring(’cd /Herwig/MatrixElements/’,

’insert SimpleQCD:MatrixElements[0] MEMinBias’,

’cd /’,

’cd /Herwig/Cuts’,

’set JetKtCut:MinKT 0.0*GeV’,

’set QCDCuts:MHatMin 0.0*GeV’,

’set QCDCuts:X1Min 0.01’,

’set QCDCuts:X2Min 0.01’,

’set /Herwig/UnderlyingEvent/MPIHandler:IdenticalToUE 0’)

)

99
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