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Abstract
A test of General Relativity (GR) can be carried out using galaxy-galaxy Strong Lensing

systems. In the weak field approximation, it is possible to characterise the space-time metric

with two potentials: a Newtonian and a curvature one. The post-Newtonian parameter (γPPN)

can be defined as the ratio of these two potentials and it is equal to one in GR. As gravitational

lensing is sensitive to both potentials, while the stars kinematics of the lens galaxy are sensitive

only to the Newtonian potential, the combination of these observables yields constraints on

γPPN . The recent increase in the number of lens systems has reduced the statistical uncertainties

of γPPN , however this method still presents some sources of systematic errors. Particularly, it

is often assumed in the literature in this field that the anisotropy between the tangential and

the radial components of the velocity dispersion of the stars in the lens galaxy, denoted by β, is

constant. Furthermore, strong priors on β are usually set in the analyses that constrain γPPN

with the combination of strong-lensing and galaxy dynamics. Our objective was to investigate

the impact of the anisotropy parameter on the constraints on the γPPN , and to test if it is

possible to constrain β and γPPN simultaneously. In this work we used a data set of 80 strong

lensing systems from the BELLS, SLACS, LS2S and LSD surveys. We considered three classes

of models for β. The first one has β = β0 (constant) and we considered three sets of Gaussian

priors on this quantity. We found that the data allows one to constrain γPPN , but the results

depend on the prior. In particular, for high values of β0 the result is in tension with GR. We

also considered a flat prior in β0, which lead to very broad constraints on both γPPN,0 and β0.

The second class refers to models where β has a radial dependence, with β(r = 0) = 0 and

having a fixed asymptotic value at r → ∞. A free parameter, a, controls the transition from the

two regimes. In particular, we considered two radial profiles: the Osipkov-Merrit model (OM)

and Mamon & Lokas model (ML). In these cases the data does not place strong constraints

on a, but enables one to set constraints on γPPN , which peak at values below 1. Only at the

2.5σ level the results are consistent with GR. Finally, the third class is a generalisation of the

ML model, adding an arbitrary normalisation β0 to β(r). As in the pure β = const. model, we

could not successfully constrain β0 nor γPPN in this case. All models considered here have a

similar goodness-of-fit to the data. This shows that adding complexity to the models does not

improve the description of the current data. Therefore, the more parameters of the model, the

less it is favoured by the data. Fixing the asymptotic behaviour of β(r) or setting strong priors

on β0 sets rather strong constraints on γPPN , but they are incompatible with one another. In

addition, we have seen that β0 is strongly degenerate with γPPN , such that it is not possible

to constrain them simultaneously from the data. We conclude that the choice of model and/or

priors for β have a strong influence on the determination of γPPN .

Keywords: Strong Gravitational Lensing, Galaxy Dynamics, Modified Gravity



Resumo
Um teste da Relatividade Geral (RG) pode ser realizado usando sistemas de Lentes Gra-

vitacionais Fortes (SL). Na aproximação do campo fraco, é posśıvel caracterizar a métrica do

espaço-tempo com dois potenciais: um newtoniano e um de curvatura. O parâmetro pós-

newtoniano (γPPN) pode ser definido como a razão desses dois potenciais, e este é igual a um

na RG. O lenteamento gravitacional é senśıvel a ambos os potenciais, enquanto a cinemática

das estrelas da galáxia lente é senśıvel apenas ao potencial newtoniano, a combinação des-

ses observáveis fornece restrições sobre γPPN . Este método apresenta algumas fontes de erros

sistemáticos. Em particular, é frequentemente assumido na literatura dessa área que a ani-

sotropia entre as componentes tangencial e radial da dispersão de velocidade das estrelas na

galáxia lente, β, é constante. Além disso, são geralmente estabelecidas priors restritivos para

β nas análises de γPPN . Nosso objetivo foi investigar o impacto do parâmetro de anisotropia

nas restrições sobre γPPN e testar se é posśıvel restringir β e γPPN simultaneamente. Neste

trabalho, utilizamos um conjunto de dados de 80 sistemas de SL dos projetos BELLS, SLACS,

LS2S e LSD. Consideramos três classes de modelos para β. A primeira tem β = β0 (constante)

e consideramos três conjuntos de priors Gaussianos para essa quantidade. Descobrimos que os

dados permitem restringir γPPN , mas os resultados dependem do prior. Em particular, para

valores altos de β0, o resultado apresentará tensão em relação a RG. Também consideramos

um prior uniforme em β0, o que resultou em valores com altas dispersões tanto para γPPN,0

quanto para β0. A segunda classe refere-se a modelos onde β possui uma dependência radial,

com β(r = 0) = 0 e um valor assintótico fixo em r → ∞. O parâmetro livre a controla a

transição entre os dois regimes. Em particular, consideramos dois perfis radiais: o modelo

de Osipkov-Merritt (OM) e o modelo de Mamon & Lokas (ML). Nesses casos, os dados não

impõem restrições fortes em a, mas permitem restringir γPPN , que resulta em valores abaixo de

1. Os resultados são consistentes com a RG apenas em 2.5σ. Finalmente, a terceira classe é

uma generalização do modelo ML, no qual adicionasse um β0 arbitrário a β(r). Assim como no

caso β = const., não foi posśıvel restringir com sucesso nem β0 nem γPPN . Todos os modelos

considerados aqui apresentam uma adequação semelhante aos dados. Isso mostra que adicionar

complexidade aos modelos não melhora a descrição dos dados atuais. Portanto, quanto mais

parâmetros no modelo, menos ele é favorecido pelos dados. Fixar o comportamento assintótico

de β(r) ou estabelecer priors restritivos para β0 impõe restrições bastante fortes em γPPN , mas

elas são incompat́ıveis entre si. Além disso, observamos que β0 está fortemente degenerado com

γPPN , de modo que não é posśıvel restringi-los simultaneamente a partir dos dados. Conclúımos

que a escolha do modelo e/ou prior para β têm uma forte influência na determinação de γPPN .

Palavras-chave: Lentes Gravitacionais Fortes, Dinâmica de Galáxias, Gravidade Modificada
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Chapter 1

Introduction

Albert Einstein’s General Relativity (GR) Theory, published in 1915 [1, 2], remains the

leading theory for describing gravitation. It has passed important tests within just a few years

of its publication, including the correct prediction of variation in the Mercury’s perihelion [3] and

the solar eclipse of 1919 [4], which provided evidence for the bending of light in a gravitational

field [5]. Over the last century, further studies have supported GR, such as the observation of

relativistic effects in pulsars [6], which led to the Nobel Prize being awarded to Russell Hulse

and Joseph Taylor in 19931, and the observed delay of photons passing through gravitational

fields [7]. Additionally, understanding the relativistic nature of gravity was crucial for various

technological advancements, including the Global Positioning System (GPS) [8].

In 2015, the detection of the gravitational waves [9, 10] opened a new window for the study

of gravitation, leading to the 2017 Nobel Prize being awarded to Rainer Weiss, Barry Barish,

and Kip Thorne2. In the same year, the first detection of a gravitational wave produced by

the inspiral of a neutron star occurred, which was followed up by the Fermi Gamma-Ray Burst

Monitor [11]. This event, known as the kilonova GW170817, revolutionised the use of multi-

messengers in the study of gravitation. More recently, the reconstruction of images of the

shadow of the supermassive black hole in the centre of the galaxy M87 in 2019 [12] and the

supermassive black hole Sgr A* at the centre of the Milky Way in 2022 [13] represent significant

advancements in the field of General Relativity.

Notwithstanding the indisputable success of GR, specially at the solar system scales, there

are still some mysteries when it comes to galactic and cosmological scales. For example, there is

a large body of evidence that the Universe is in accelerated expansion [14]. To tackle this prob-

lem the concept of dark energy [15], an exotic element with negative pressure, was introduced.

However, a discrepancy persists in the measuring of the rate of expansion, represented by the

Hubble constant H0. Observations from the early Universe, such as the cosmic microwave

1https://nobelprize.org/prizes/physics/1993
2https://nobelprize.org/prizes/physics/2017
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background radiation (CMB), and those from the late Universe, such as type Ia supernovas,

exhibit a tension of up to 5σ [16].

In addition to that, there is more matter than it is observed [17], for this case, the hypoth-

esis of dark matter [18], a non-baryonic substance that makes most of the mass in galaxies

and galaxy clusters, but does not interact with radiation, and therefore can not be seen was

proposed. These two components (dark energy and dark matter) account for about 95% of the

current matter-energy content of the Universe [19].

Alternatively, there are modified gravity theories that aim to solve these problems by altering

the equations of motion, generally providing modifications to the GR Lagrangian. As for

example chameleon gravity theories that seek to find solutions that decouple the relativistic

effects in the solar system scale from the ones on cosmological scales [5, 20–22]. However, it is

still unclear if modifying the gravity theories would be sufficient to explain the aforementioned

cosmological phenomena without the aid of dark energy and dark matter. Therefore, further

testing is required.

The parametrized post-Newtonian (PPN) framework is as a quantitative method for testing

deviations from General Relativity. One of its key parameters, γPPN , quantifies the degree to

which space-time bends under the influence of mass. Experimental studies on light-bending

can constrain this parameter, which is expected to be equal to one in General Relativity [5,

21]. In this work we aim to measure the PPN parameter using data from strong gravitational

lensing systems (SL) [23–29].

Strong gravitational lensing is the phenomena where the light of a distant source is deflected

when by passing in the neighbourhood of a massive body, and forms multiple and/or highly

distorted images of same object. When the lens is a galaxy, and there is adequate alignment

between the source, the lens and the observer, the resulting images are arcs or, in some cases,

complete rings. These configurations become collectively known as “Einstein Rings” [18, 30].

In the case where the lens is an Early-type galaxy (ETG), two observable quantities can be

used as mass tracers for the lens: the relative angular position of the lensed image, known as

Einstein radius, θE and the velocity dispersion of the stars in the galaxy, σ, which reflect the

lensing effect and the stellar kinematics, respectively [31, 32].

It is possible to use strong gravitational lensing and knematic data to constrain γPPN ;

however, it is crucial to conduct a comprehensive investigation into the potential sources of

systematic errors. In this study, our particular focus is on the error introduced by the challeng-

ing task of modelling the dynamics of the galaxy, which is manifested in the anisotropy of the

velocity dispersion of the lens galaxy’s stars. This anisotropy is represented by the parameter

β. The majority of previous studies in this field commonly assume a constant value for the

anisotropy parameter [23, 33–35]. The main challenge lies in constraining this parameter since

it cannot be directly measured through observations. Nevertheless, existing literature on galaxy
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dynamics suggests that the anisotropy parameter should exhibit a radial dependence [32, 35].

The primary objective of this work is to explore the interplay between the modelling the

anisotropy in the velocity dispersion of the stars of the lens galaxy and the constraints on the

post-Newtonian parameter in Einstein Ring systems. In particular, we aim to investigate the

impact of radially dependent anisotropy parameters, β = β(r), using three different models:

the Osipkov-Merritt model [36, 37], the Mamon & Lokas model [35], and the Generalized Tirret

model [38, 39]. By comparing these different models with the results for constant β, we aim to

gain insights into the influence of anisotropy on the determination of γPPN .

This text is organised as follows: In the next three sections we will delve into the three

main concepts that are the building blocks of this work: the post-Newtonian Theory, strong

gravitational lensing and galaxy dynamics. Subsequently, in Chapter 2, we will outline the

methodology by presenting the models for β that are used in this work, discussing the com-

parison with observational data, and describing the statistical treatment applied. In Chapter

3 we aim to present the data set used and the results obtained. Finally, in Chapter 4 we will

summarise our conclusions and main insights that outcome from this study.

1.1 Post-Newtonian Theory

The post-Newtonian Theory arose in the previous century as a way to impose Newtonian

limit to slow moving bodies under weak gravitational fields [40]. Its metric is written as an

expansion in terms of the gravitational potential centred around the Minkowskian metric. Fur-

thermore, this metric can also be parametrized with the objective of performing physical tests,

resulting in the parametrized post-Newtonian (PPN) formalism. In this work, we will use the

PPN metric to the first-order expansion, given by [5, 21]

gPPN
00 = −1 + 2

GM

r
, (1.1a)

gPPN
0i = 0, (1.1b)

gPPN
ij =

(
1 + 2γPPN

GM

r

)
δij, (1.1c)

where G is the universal gravitational constant, M is the mass curving the space-time, r is

the distance to the body’s centre of mass, and γPPN is the PPN parameter that measures how

much the space-time bend for unity of mass.

This particular post-Newtonian parameter can be constrained using the bending of the

light in curved space-time, and therefore, it is crucial for experiments involving gravitational

lensing. However it is not the only PPN parameter, for other experiments, as for example the

measurement of the precession on the perihelion of Mercury, one might need a second order
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expansion of the PPN metric, which will be associated to a second PPN parameter [5, 21,

41]. Additionally, it is important to state that for this work we will assume a particular GR

modification in which γPPN is constant, if one wishes to consider other modifications it might

be necessary review the metric [20, 22, 42, 43]. The post Newtonian formalism can have an

infinite number of parameters, but in reference [5] it is discussed the first 10 of them.

In addition to that, in the weak field limit, it is often convenient to describe the metric of

space-time in terms of a Newtonian potential Φ and a curvature potential Ψ. This allows us to

express the comoving distance element ds2 as [26]:

ds2 = a2(τ)[−(1 + 2Φ)dτ 2 + (1 − 2Ψ)σijdx
idxj] (1.2)

Here, τ represents the proper time coordinate, xi corresponds to the spatial coordinate, and σij

is the spatial components of the metric in a space with constant curvature [44]. This formulation

enables us to define the slip η as the ratio of the two potentials [41]:

η ≡ Ψ

Φ
. (1.3)

For the metric on Equations (1.1) one can write the above potentials as

Φ =
GM

r
, (1.4a)

Ψ = γPPN
GM

r
. (1.4b)

Altogether, when using Equation (1.4) on Equation (1.3) it is possible to show that for this

particular case η|PPN = γPPN . That is the reason why γPPN is often referred to in the literature

as the ratio between the metric potentials [24–26]. Nonetheless, this statement is true only in

the aforementioned case [41].

In summary, the parametrized post-Newtonian framework provides us with useful tools to

test gravity. Gravitational lensing is sensitive to both potentials (Φ + Ψ), while the stellar

kinematics of the lens galaxy exclusively relates to the Newtonian potential (Φ). By combining

these observables, we can effectively constrain the parameter γPPN . In the next section we will

discuss the lens equation under this formalism.

1.2 Gravitational Lensing

Gravitational lensing is the phenomenon in which the light of a distant source is deflected

when passing by a gravitational field. Some consequences of this deflection are the deformation

of the source image (due to the lensing magnification), the appearance of multiple images and
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the time delay between images. It has several astrophysical applications, as for example the

observation of sources that would not be visible otherwise, the study of dark matter in clusters

(e.g. [31, 45, 46]), and, as will be discussed in this work, the study of the mass distribution

of the galaxies acting as lenses [47] and constraints on gravitation and cosmological theories

[23–28, 48].

Figure 1.1: The so called Horseshoe Einstein Ring from Hubble space Telescope. Image Credit:
ESA/Hubble & NASA

As a means to constrain the γPPN parameter, as discussed on the previous section, we

shall consider strong lensing systems in which the lens is an ETG and there is nearly perfect

alignment between source, lens and observer. In these systems, the images of the source can

take the form of complete rings, as illustrated in Figure 1.1, or more commonly, arcs, as depicted

in Figure 1.2. Although the SL systems utilised in this study exhibit more arc-like structures

rather than rings, these structures are commonly referred to as Einstein rings. These formations

can be modelled to determine a measure of the lensed image’s relative position, known as the

Einstein radius, denoted by θE.

In order to obtain the lens mass using the lensing effect one needs to solve the Lens equation.

Consider the system configuration illustrated in Figure 1.3: the red circle (S) represents the

source with an angular position θS in the sky plane, the yellow circle represents the lens aligned

with the observer along the line of sight (Z-axis), and the blue circles depict the potential

images formed when the source’s light passes through the lens. The angular position of the

images is denoted by θI , and the deflection angle is represented by α.

The reduced deflection angle, α, in Figure 1.3, is a function of the angular position of the

image, θI , scaled by the cosmological distances between the observer and source (DS) and
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Figure 1.2: Lensed arc in the system SDSS J120540.43+491029.3. Image Credit: NASA, ESA,
A. Bolton (Harvard-Smithsonian CfA) and the SLACS Team

between the lens and source (DLS). It can be obtained through the following equation [18]:

α(θI) =
DLS

DS

α̂(R), (1.5)

where α̂(R) represents the deflection angle as a function of the physical position of the image

in the lens plane, denoted by R. Since the angles involved are relatively small, we can relate

the physical position to the angular position using R = DLθ, where DL is the cosmological

distance between the observer and lens. For this configuration, the lens equation is given by:

θS = θI − α(θI). (1.6)

Along with this, the deflection angle can be calculated as follow [30]

α̂ =
2

c2

∫ ∞

−∞
∇⊥Ψ̃LdZ, (1.7)

where Ψ̃L is the lens’ potential and ∇⊥Ψ̃L is the projection of ∇Ψ̃L on the plane of the lens

(orthogonal to the line of sight) and can be calculated as ∇⊥Ψ̃L = ∇Ψ̃L − k̂(k̂ · ∇Ψ̃L).

In the previous section we defined the space-time metric in terms of two potentials, a

Newtonian potential Φ, and a curvature potential Ψ. The lens effect is sensitive to both
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Figure 1.3: Strong Lens Systems Configuration.

potentials, therefore one must use the potentials on Equation (1.4) to find the lens potential as

in [21]

Ψ̃L =
1

2
(Φ + Ψ) = −1 + γPPN

2

GM

r
, (1.8)

where M is the mass of the lens. Subsequently, one can replace the lens potential in Equa-

tion (1.8) on Equation (1.7) and obtain the deflection angle as

α̂(R) = (1 + γPPN)
2

c2
GM

R
R̂. (1.9)

In order to solve the lens Equation (1.6) for the Einstein ring, one must express the deflection

angle as a function of the image position α̂(RE), where RE = DLθE is the physical Einstein

radius. Additionally, as we are considering systems that have nearly perfect alignment between

source, lens and observer, we have that θS ≈ 0. Finally, by replacing this on Equation (1.6)

one can obtain an equation for the Einstein radius in terms of γPPN

θE =

√
(1 + γPPN)

2

(
4GM

c2
DLS

DLDS

)1/2

, (1.10)

where M is the mass of the lens, which deforms the space-time and causes the deflection of the

source light. Because of that, it will be referred to as lensing mass and it will be denoted as
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ME, from now on.

In order to calculate the lensing mass, one can integrate the surface mass density of the lens

Σ(R) from the centre of the lens up to the Einstein ring, i.e the mass enclosed by a cylinder

with radius equal to the Einstein radius, as illustrated in Figure 1.4(a). In such case, the three-

dimensional density, ρ, can be projected onto the plane of the sky by integrating it along the

line of sight (LOS), perpendicular to the sky’s plane, as shown in Figure 1.4(b). This density

profile, as we will demonstrate in the next section, can be approximated by a power law, as

given in Equation (1.22). With this we can obtain the surface density as

Σ(R) =

∫ ∞

−∞
ρ(r)dZ =

ρ0
r−α
0

R1−αB

(
α− 1

2
,
1

2

)
, (1.11)

where B is the beta function. And following that, the lensing mass will be giving by

ME =

∫
S

Σ(R)dx2 = 2π
ρ0
r−α
0

√
πλ(α)

R3−α
E

3 − α
, (1.12)

where λ(α) = Γ
(
α−1
2

)
/Γ

(
α
2

)
, and Γ is the gamma function.

(a) (b)

Figure 1.4: Mass distribution (a) on a cylinder and a sphere and (b) the projection in the plane
perpendicular to the line of sight

In this section, we obtained an expression for the Einstein radius in terms of the post-

Newtonian parameter γPPN by solving the lens equation. Alongside with that, we have cal-

culated the lensing mass of the galaxy acting as lens. In the next section we will explore the

kinematics of the stars in the lens galaxy.
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1.3 Galaxy Dynamics

In the previous section, we show that in strong lensing systems, a nearly spherical lens

can cause the source’s image to form arcs. ETGs provide examples of such lenses. These are

massive elliptical galaxies that have little gas and, consequently, little star formation [32, 33,

49, 50]. In general, their dynamics is dominated by the stellar velocity dispersion, which serves

as the primary indicator of their dynamical mass. The dynamics of ETGs can be described by

the Newtonian potential showed in Equation (1.4a).

As discussed in [32], it is impossible to follow each individual orbit of the stars in elliptical

galaxies. A more reasonable approach is to work with the probability f(x,v, t)dxdv of finding a

star in a position x with velocity v at a given the time t. Defining such a probability distribution

function is challenging, and f(x,v, t) can not be measured directly from observational data.

Therefore, we will explore the concept of a probability distribution to derive more practical

observables.

Following the concept of probability distribution function, one can define the star density

function as the probability to find a star regardless it velocity,

ν(x) ≡
∫

d3vf(x,v, t). (1.13)

As mentioned before, ETGs have a minimal amount of gas, consequently, their stars are re-

sponsible for the most of the mass of luminous matter. Therefore, it is reasonable to consider

ν(x) approximately equal to the brightness profile.

Having elucidated that, we can now define the stellar velocity dispersion tensor

σ2
ij =

1

ν(x)

∫
d3v(vi − vi)(vj − vj)f(x,v, t) = vivj − vivj, (1.14)

where vi is the mean velocity component i, obtained by doing

vi =
1

ν(x)

∫
d3vvif(x,v, t). (1.15)

In the case of a nearly spherical system, it is possible to select a coordinate system where the

velocity dispersion tensor is diagonal, as a result, σ2
ij is zero when i ̸= j.

The velocity dispersion discussed above can be associated with the one measured through the

electromagnetic spectra of the galaxy, however, Equation (1.14) still depends on the probability

distribution function. In order to calculate the velocity dispersion, we are going to use the

approach presented in the Chapter 4 of [32]. With that in mind, if each star of the system has

a Hamiltonian like

H =
1

2
v2 + Φ(x), (1.16)
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where v is the velocity of the star and Φ(x) is the (Newtonian) potential, then one can use the

Hamilton equation to write the collisionless Boltzmann equation as

∂f

∂t
+ v · ∂f

∂x
− ∂Φ

∂x
· ∂f
∂v

= 0. (1.17)

To solve Equation (1.17) one can make use of the spherical symmetry and write it on

spherical coordinates

∂f

∂t
+ vr

∂f

∂r
+

vθ
r

∂f

∂θ
+

vϕ
r sin θ

∂f

∂ϕ

−
(
∂Φ

∂r
− v2θ

r
−

v2ϕ
r

)
∂f

∂vr
−

(
∂Φ

∂θ
− v2ϕ cos θ

)
1

r

∂f

∂vθ
− 1

r sin θ

∂Φ

∂ϕ

∂f

∂vϕ
= 0,

(1.18)

First, we are looking for a stationary solution. Therefore the term ∂f/∂t is equal to zero.

Secondly, as we are consider spherical symmetry, we can eliminate any derivative in terms of

angular coordinates. The next step is to integrate Equation (1.18) over the velocity phase space,

using the Green theorem to keep the partial derivatives. Finally, by using Equation (1.15) we

obtain the so called Jeans Equation [32]

∂(νv2r)

∂r
+

ν

r

(
2v2r − v2θ − v2ϕ

)
= −ν

dΦ

dr
. (1.19)

For stationary systems, the average velocity components vi vanish [51]. In this context, it

is valid to express the radial component of the velocity dispersion tensor as σ2
ii = v2i , meaning

that v2r = σ2
r . Additionally, the second moments of the angular components of the velocity are

equal, implying that v2θ = v2ϕ = σ2
τ . The relationship between σ2

r and σ2
τ can be summarised by

the anisotropy parameter β, defined as:

β ≡ 1 −
v2θ + v2ϕ

2v2r
= 1 − σ2

τ

σ2
r

. (1.20)

This parameter measures the anisotropy between the radial and tangential velocity dispersion.

By definition its values are in the range [−∞, 1]. When β = 0 the galaxy is an isotropic system,

when β < 0 the tangential component of the velocity dispersion of the stars is privileged, when

β > 0 the stars velocities are radially biased. The parameter β can not be measured directly

by observations [50, 51], but there are works in the literature that discuss models for it [35–39,

52]. In this work we intend to address to what extent different models for β can affect the

measurement of the post-Newtonian parameter described in Section 1.1.

Earlier works on N-body simulations for galaxy dynamics suggest that, for ETGs, β should

be nearly zero close to the centre of the galaxy an increase monotonically with the radius [32].

Most recent publications in the matter use the magneto-hydrodynamic cosmological simulations
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project IllustrisTNG [33, 49–51]. In these series of papers they conclude again that galaxies

that have less internal gas and are at lower redshifts tend to have higher radial anisotropy, while

galaxies with more gas and at higher redshifts tend to be more tangentially biased. Because

the ETGs are represented by the first group, the condition β > 0, will be often used in this

work. In reference [33] they obtained a mean value ⟨β⟩ = 0.23 ± 0.19 for a simulated ETGs’

sample.

To solve the right side of Equation (1.19), it is possible to use the expression

dΦ

dr
=

GM(r)

r2
, (1.21)

where M(r) is the total mass (accountable by the visible and dark matter) of the galaxy enclosed

within a radius r from the galaxy centre. This mass will be referred to as dynamical mass and

will be denoted as Mdyn(r). This quantity is obtained by integrating the mass density profile

ρ over the volume of the galaxy up to radius r. For the case of the ETGs, ρ can be well

approximated by a power law [32]

ρ(r) = ρ0

(
r

r0

)−α

. (1.22)

where ρ0 and r0 are proportionality constants for the density and radius respectively and α is

the adjustable slope.

In the particular case in which α is equal to two, it corresponds t a singular isothermal

sphere (SIS), a self-gravitating ideal gas in equilibrium. Observational evidence has shown that

this is a good approximation to the the total density profile of the Early-type galaxies [53–56].

This is despite the fact that neither dark matter nor stars, the main components responsible

for the mass of ETGs, present such behaviour. This phenomena is known as the “bulge-halo

conspiracy”. The IllustrisTNG simulations has confirmed the SIS-like density profile for ETGs,

with a measured average value of ⟨α⟩ = 2.01 ± 0.17 in the simulated sample [33]. In addition

to that, it has found that the slope value is nearly constant for z < 1, and then shows a slight

increase with increasing redshift [33, 51]. In this work, we will let α be a free parameter, but we

will impose a Gaussian prior centred around the SIS value. The details of this will be discussed

on Section 2.3.

For the power law in Equation (1.22), the dynamical mass is given by

Mdyn(r) =

∫
V

ρ(r)dx3 =
4πρ0
r−α
0

r3−α

3 − α
. (1.23)
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Then, we can eliminate the proportionality constants ρ0 and r0 by using Equation (1.12)

M(r) =
2√

πλ(α)

(
r

RE

)3−α

ME. (1.24)

This approach provides a means to compare the lensing effects with the galactic dynamics.

All things considered, we can now move on to solving the Jeans Equation. By using Equa-

tions (1.20) and (1.21), we can rewrite the Jeans Equation (1.19) in a more commonly used

form found in recent literature [25]

d(νσ2
r)

dr
+

2β(r)

r
ν(r)σ2

r(r) = −ν(r)
GM(r)

r2
. (1.25)

As shown in [35], a general solution for this equation is given by

ν(r)σ2
r(r) =

1

f(r)

∫ ∞

r

f(r′)ν(r′)
GM(r′)

r′2
dr′, (1.26)

where f(r) represents the solution for the differential equation

d ln f

d ln r
= 2β(r). (1.27)

This equation can be solved using the following approach

f(r) = f(r1) exp

[∫ r

r1

2β(r′)
dr′

r′

]
, (1.28)

with r1 being an arbitrary reference radius.

The combination of SL and galaxy dynamics to constraint the post-Newtonian parameter

was used in 2006 by [23], where it was obtained γPPN = 0.98 ± 0.07 in a sample of 15 strong

lensing systems. Later, in 2010, [24] used 53 Einstein rings systems to constrain the PPN

parameter and the result was γPPN = 1.01 ± 0.05. In this same work it was shown that this

methodology can also be used to constrain cosmological parameters, such as the dark energy

density fraction ΩΛ, for which they obtained ΩΛ = 0.75 ± 0.17. The systematical errors in the

modelling of the lens galaxy dynamics were also evaluated in this reference. It was argued that

there are three main sources for such systematical errors. First the mas density profile shape,

which can be approximated by a power law with the slope α, considered a free parameter. In

the case of ETGs, α is approximately to 2, that is the value for a singular isothermal sphere

(SIS) [32]. Second there is the light density profile shape, for which it also considered a power

law with adjustable slope δ and the value δ = 2.40± 0.11 was used. And finally, the anisotropy

between the radial and tangential components of the stellar velocity dispersion, encoded in the

parameter β, is extremely difficult to quantify, consequently, β is also a source of systematic.
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The main conclusion of that work is that the systematical errors are comparable to the statistical

ones, and therefore this analysis is limited by it.

Subsequently, in [25] the PPN parameter was constrained with 80 SL systems and the result

was γPPN = 0.995+0.037
−0.047. In that paper it was also proposed to impose a prior on the space-time

curvature parameter Ωk, the matter density fraction Ωm and dark energy state equation ω, and

with that it was found that γPPN = 1.0000+0.0023
−0.0025. The systematic errors caused by α, δ and β

were estimated to account for an uncertainty of ∼ 25%. In the following year the paper [26] was

published, where they model the Einstein ring system ESO325-G004. The velocity dispersion

for this system was measured pixel by pixel, which allowed them to define a very precise model

for the lens’ dynamics. They found that γPPN = 0.97 ± 0.09.

Recently, in the work of reference [27], a sample of 120 systems, from the compilation

provided by [48], was used to measure γPPN , and for this, three models for the slope of the

mass density profile of the lens galaxy were considered. First it was consider to be constant

but constrained by a prior centred in 2, with this they obtained γPPN = 1.179+0.081
−0.096. The

second model was a parameterization in which α depends on the redshift of the lens, and it

resulted in γPPN = 1.455+0.154
−0.127. Finally, a model for which α is a function of the redshift and

the surface mass density of the lens galaxy was considered, and with that it was obtained

γPPN = 1.065+0.064
−0.074. In terms of the slope of the mass density, we are going to discuss later that

recent works on ETG’s dynamics has shown that α is constant and close to 2 when zL < 1,

then it increases steadily with the redshift [33, 49, 50], and because of that we are going to use

the first model for this dissertation.

Last but not least, in [28] the degeneracy between post-Newtonian parameter and the cur-

vature parameter was studied. With the same 120 SL systems cited above, they measured

γPPN = 1.11+0.11
−0.0.09 and Ωk = 0.48+1.09

−0.71. They also obtained γPPN = 1.07 ± 0.07 when Ωk is

fixed in zero, and Ωk = 0.12+0.48
−0.36 when γPPN is fixed in 1. It is also interesting to mention the

paper [48], in which they used a similar methodology, however instead of γPPN , they measured

Ωm, and with that it was demonstrated how flexible Einstein rings system are for probing

cosmological models.

All aforementioned works assumed a constant profile for β. In the next chapter we are going

to solve Equation (1.25) for different models for the anisotropy in the velocity dispersion of the

stars in the lens galaxy.
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Methodology

In this chapter we will dive further into models and procedures employed in this study to

address the research objectives. Section 2.1 presents the models of anisotropy between the

radial and tangential components of velocity dispersion of the stars in the lens galaxy that will

be used in this work. In addition to that, we solve the Jeans Equation (1.25) to obtain the

radial component for each case. Following that, in Section 2.2 we discuss how these results can

be related to the observational data. Finally, in Section 2.3, we derive the statistical framework

used in this analysis to fit the model to the data.

2.1 Anisotropy parameter models

One of the most challenging unknowns of the Jeans Equation (1.25) is the parameter that

measures the anisotropy between the radial and the tangential components of the velocity

dispersion of the stars in the lens galaxy, β. It cannot be directly measured through observation

[50] and inaccurate assumptions about this parameter can introduce biases on other galactic

properties [51]. A simple solution for Equation (1.26) is obtained by assuming a constant value

for β, this is one of the reasons why this approach is the most commonly used [23–25, 27, 28,

48]. However, previous studies in galaxy dynamics suggest that β should increase with the

radius r of the galaxy [32, 33, 35].

In this section, we explore models with radially varying β. The radial dependence is com-

monly parameterised as [52]

β(r) = β0 + β1
rn

rn + rna
. (2.1)

Here, β0 represents the value of β(r) when r = 0, while β1 is determined by β1 = β∞ − β0,

with β∞ denoting the asymptotic behaviour of the anisotropy profile as r tends to infinity,

and n is the slope that controls the sharpness of the anisotropy profile. Additionally, ra is

a characteristic radius defined in terms of the dimensionless parameter a and r200, given by
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ra ≡ ar200. Here, r200 is defined as the radius at which the mean density of the galaxy equals

200 times the present critical density of the Universe, denoted as ρcrit and it is obtained through

[32]

ρcrit =
3H2

0

8πG
, (2.2)

where H0 is the Hubble constant [19].

As it is difficult to define an exact radius for the galaxies, it is common to consider r200 as

a typical radius. In order to calculate it one can consider a sphere with homogeneous density

ρ200 = ∆ρcrit, where ∆ = 200, and therefore the mass will be given by

M200 =
4

3
πr3200ρ200. (2.3)

On the other hand, on can use Equation (1.24) and obtain M(r200) = M200. When applied to

Equations (2.2) and (2.3), r200 can be expressed as

r200 =

(
2µ

∆H2
0

)1/α

(2.4)

where µ incorporates the parameters from Equations (1.10) and (1.24), and is

µ ≡ 1

1 + γ

c2√
πλ(α)

DS

DLS

Dα−2
L

θ1−α
E

. (2.5)

For the parameterisation in Equation (2.1), the f(r) function in Equation (1.28) takes the

form

f(r) = (rn + rna )
2β1
n r2β0 . (2.6)

Notwithstanding the analytical intractability of solving Equation (1.26) with this particular f(r)

function, simple solutions can be obtained for fixed values for the parameters n, β0, and β∞.

In the following sections, we will explore several examples of β profiles with fixed parameters

found in the literature. Additionally, we will determine the corresponding solutions for the

Jeans Equation by assuming a power-law form for the brightness profile ν(r)

ν(r) = ν0

(
r

r0

)−δ

, (2.7)

where δ is the adjustable slope, while ν0 and r0 serve as reference values [24, 32].
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2.1.1 Constant Anisotropy Parameter β

When the objective is to test the General Relativity (GR) by combining strong lensing

and kinematical data, the most common solution for Equation (1.25) is to use a constant

anisotropy parameter, β = β0 [23–28]. In this case the f(r) function in Equation (1.28) is

given by f(r) = r2β0 , and by using this on Equation (1.26) it is possible to obtain the radial

component of the velocity dispersion as

σ2
r,0(r) =

[
GME

RE

]
2√

πλ(α)(ξ − 2β0)

(
r

RE

)2−α

. (2.8)

where the sub-index 0 indicate that it was obtained using constant β, ξ ≡ α + δ− 2, RE is the

physical Einstein radius, and as ME is the same mass as in Equation (1.10), the term in square

bracket can be replaced using the lens’ equation.

2.1.2 Osipkov-Merritt Model

The first radial model for β that we will introduce was presented independently by Osipkov

[36] and Merritt [37]. Although it was proposed in the 1980’s, it is still broadly used to solve

problems in galactic dynamics [52, 57]. The Osipkov-Merritt (OM) model has its parameters

fixed in the values β0 = 0, n = 2 and β∞ = 1, as result the OM anisotropy profile is given by

βOM(r, ra) =
r2

r2 + r2a
. (2.9)

For this model, the f(r) function in Equation (1.28) is f(r) = r2 + r2a, and by using this on

Equation (1.26) it is possible to obtain the radial component of the velocity dispersion as

σ2
r,OM(r) =

[
GME

RE

]
2√

πλ(α)ξ(ξ − 2)

(
r

RE

)2−α [
ξ − 2r2a

r2 + r2a

]
. (2.10)

This expression is valid when δ+α > 4, if this condition is not satisfied, it leads to a divergence

in Equation (1.26).

2.1.3 Mamon & Lokas Model

Next, we will solve the Jeans Equation for the Mamon & Lokas (ML) model presented in

[35], for which β0 = 0, n = 1 and β∞ = 1/2, and the anisotropy profile is given by

βML(r) =
1

2

r

r + ra
. (2.11)
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In this case the f(r) function in Equation (1.28) is given by f(r) = r + ra, and the solution of

the Jeans Equation is

σ2
r,ML(r) =

[
GME

RE

]
2√

πλ(α)ξ(ξ − 1)

(
r

RE

)2−α [
ξ − ra

(r + ra)

]
. (2.12)

For this model, the constraint on the slopes of the mass density and the brightness profile is

δ + α > 3.

Figure 2.1: The radial behaviour of β profiles. As will be described in details on the texts,
the orange dashed curves represent the Osipkov-Merritt Model, the purple solid lines represent
the Mamon & Lokas model, and the dotted green line represents the constant anisotropy value
used in [25]. On the left, the blue vertical lines denote the values of RE for each system used
in this analysis, and on the right, the black vertical lines denote their r200 values.

The behaviours of the aforementioned anisotropy profiles are depicted in Figure 2.1. The

Osipkov-Merritt Model given by Equation (2.9) is represented by the orange dashed lines, while

the Mamon & Lokas model given by Equation (2.11) is shown by the purple solid lines. The

value of a suggested by [35], a = 0.18, was used in the calculations. Each line corresponds to

a specific strong lensing system from the data set used in this work, which will be described in
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Section 3.1 and presented in Table 3.1. The shade of orange or purple indicates the value of r200

for each system, obtained using Equation (2.4). The dotted green line represents the constant

anisotropy value used in [25], β = 0.18. On the left, the blue vertical lines denote the values

of RE for each system, and on the right, the black vertical lines denote the corresponding r200

values.

From this figure, we can observe the asymptotic behaviour of the β profiles as r increases,

determined by the parameter β∞ which is fixed at 1 for the OM model and 0.5 for the ML

model. Additionally, it is worth noting that the Einstein radius RE corresponds to the radius

at which the arcs in strong lensing (SL) systems appear. For the systems used for this study,

the luminous radius of the lens galaxy is considerably smaller than RE. The velocity dispersion

is measured within the luminous radius, and consequently in a region where β is significantly

small. Notably, r200 is significantly larger than both RE and the luminous radius, as it accounts

for all the matter in the galaxy, including baryonic and dark matter components.

2.1.4 Generalised Tiret Model

Finally, we will examine a generalised version of Equation (2.11), given by

βGT = β0 + β1
r

r + ra
. (2.13)

This model is commonly known as Generalised Tiret (GT) [38, 39], because it is a generalisation

of the Tiret model, presented in [38], where β0 = 0. In the GT model, the function f(r) is given

by f(r) = r2β0(r+ ra)
2β1 . However, finding analytical solutions to Equation (1.26) using simple

functions remains generally impossible for this model. Nevertheless, a solution can be obtained

when β1 is a half-integer, such as 1/2 or 1. To facilitate comparison with the ML model, we

set β1 to 1/2. As a result, we obtain the following expression for the radial component of the

stellar velocity dispersion

σ2
r,GT(r) =

[
GME

RE

]
2√

πλ(α)(ξ1 − 3)(ξ1 − 2)

(
r

RE

)2−α [
ξ1 − 2 − ra

r + ra

]
, (2.14)

where ξ1 = δ + α− 2β0, and the condition δ + α− 2β0 > 3 is satisfied.

2.2 Line-of-sight velocity dispersion and the observational

conditions

In the previous section, we derived the radial component of the velocity dispersion of the

stars in the lens galaxy. Nonetheless, it is not possible to measure the three-dimensional
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components of the velocity dispersion. In order to compare the aforementioned models with

observational data it is necessary to project σr onto the plane of the sky. Subsequently, it is

required compute the mean value across the surface radius, taking into account both the surface

brightness and a function that incorporates the observational conditions. In this section, we

will demonstrate the process of performing these steps.

The velocity dispersion projected in the plane of the sky is known as the line-of-sight (LOS)

velocity dispersion, σLOS. It is obtained by integrating σ2
r and the brightness profile (ν(r))

along the line of sight. To calculate σLOS, we will use ν(r) defined in Equation (2.7), and adopt

the approach introduced in [58]. This approach involves solving the following equation

σ2
LOS(R) =

2

I(R)

∫ ∞

0

ν(r)σ2
r

(
1 − R2

r2
β

)
dZ. (2.15)

Here, I(R) represents the projection of the brightness profile along the line of sight

I(R) =

∫ ∞

−∞
ν(r)dZ =

ν0

r−δ
0

√
πλ(δ)R1−δ. (2.16)

For the first model introduced in the previous section it is possible to calculate the LOS

velocity dispersion analytically. Specifically, when considering a constant anisotropy parameter

β, we can use Equation (2.8) in Equation (2.15) to obtain

σ2
LOS,0 =

[
GME

RE

]
2[λ(ξ) − β0λ(ξ + 2)]√
πλ(δ)λ(α)(ξ − 2β0)

(
R

RE

)2−α

. (2.17)

Nevertheless, for the subsequent models, namely OM, ML and GT, it is no longer possible to

solve Equation (2.15) analytically.In order to overcome this challenge, we developed a numerical

code to solve it. Details of this code will be discussed in Appendix A.

The next step to compare the models with observational data is to compute the mean of

the squared velocity dispersion, ⟨σ2
LOS⟩. However, before proceeding, it is necessary to define a

weighting function, ω(R). The data that will be used in this analysis have velocity dispersion

measured by the Sloan Digital Sky Survey (SDSS) spectrograph, which has circular fibres with

a radius of 1.5”. Given that, in the case where the the fibre aperture θap and the atmospheric

seeing σatm satisfy the condition θap/σatm < 1.5, the function ω(R) can be treated as a Gaussian

convolution of θap and σatm, and approximated by [24]

ω(R) ≈ e−R2/2D2
Lσ̃

2
atm , (2.18)

where σ̃2
atm ≈ σ2

atm(1 + χ2/4 + χ4/40) and χ = θap/σatm.
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Following that, the men velocity dispersion can be obtained by solving

〈
σ2
LOS

〉
=

1

N

∫ ∞

0

ω(R)I(R)σ2
LOS(R)RdR, (2.19)

where N is the normalisation factor given by

N =

∫ ∞

0

ω(R)I(R)RdR =
1

2

√
πλ(δ)Γ

(
3 − δ

2

)(
2σ̃2

atm

θ2E

)(3−δ)/2

R
(3−δ)
E . (2.20)

Once again, it is possible to solve Equation (2.19) analytically for the model in which β is

constant. By using Equation (2.17) we obtain

〈
σ2
LOS,0

〉
=

[
GME

RE

]
2 [λ(ξ) − β0λ(ξ + 2)]√
πλ(δ)λ(α)(ξ − 2β0)

(
2σ̃2

atm

θ2E

)(2−α)/2 Γ
(
3−ξ
2

)
Γ
(
3−δ
2

) . (2.21)

As for the radial models of β, the integral in (2.19) will be solved numerically with the code

described in Appendix A.

Finally, the square root of ⟨σ2
LOS⟩ mimics the observed value for the velocity dispersion.

Our intention is to incorporate the effects that contribute to the observed quantity in order to

directly compare the values obtained from the spectra. This defines the theoretical quantity σ∗

from the modelling that should be directly compared to the velocity dispersion measured from

the spectra

σ∗(X, θE, zL, zS, θap, σatm) =
√
⟨σ2

LOS⟩, (2.22)

where θE, zL, zS, θap and σatm are the parameters obtained from observational data, and X is

the model parameters given by

X = (α, δ, β0, a; γPPN), (2.23)

where α, δ, β0, and a are parameters associated with the ETGs’ dynamics, and γPPN is the

post-Newtonian parameter to be determined in this study. In the next section we will describe

the application of σ∗(X, θE, zL, zS, θap, σatm) in the statistical analysis.

2.3 Statistical Treatment

In the previous sections, we obtained the model σ∗(X, θE, zL, zS, θap, σatm) for the velocity

dispersion of an early-type galaxy. Now, we will describe how we use this model to fit the ob-

served data. The data set employed consists of spectra obtained from the SDSS. Consequently,

we will refer to the measured velocity dispersion as σSDSS.

In order to compare the modelled velocity dispersion with the measured values, we consider

a Gaussian distribution for σSDSS. As a result, we can express the likelihood for each strong
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lens system as [59]

Li(σSDSS,i|σ∗) =
1√

2πε2SDSS,i

exp

[
−(σ∗ − σSDSS,i)

2

2ε2SDSS,i

]
, (2.24)

where εSDSS,i is the uncertainty in σSDSS. The likelihood for the whole sample is obtained by

multiplying the likelihood of each individual system

L({σSDSS}|σ∗) =
N∏
i=1

Li(σSDSS,i|σ∗), (2.25)

where N is the sample size. Equation (2.25) can result in very large values, which can be

computationally demanding. For this reason, it is often more convenient to work with the

logarithm of the likelihood, given by

log(L({σSDSS}|σ∗)) =
N∑
i=1

log(Li(σSDSS,i|σ∗)). (2.26)

This can speed up the calculation and allow us to compute cases which otherwise would re-

quire special packages. Additionally, the logarithmic operation maintains the position of the

maximum of the function.

One common approach to find the parameters X that best fit the data is Maximum Like-

lihood Estimation (MLE), which involves maximising Equation (2.25), as for example through

differentiation. However, as the complexity of the models increases, it becomes analytically

intractable and we also faced computational challenges to solve it. To address this, we adopt a

Bayesian approach. To begin, we define the posterior probability density function, P (X|σSDSS),

as

P (X|{σSDSS}i) ∝ L({σSDSS}|σ∗)
∏
i

P (Xi), (2.27)

where P (Xi) represents the prior for each parameter of the model. To simplify the calculations,

we can work with the logarithm of the posterior

log(P (X|{σSDSS}i)) ∝ log(L({σSDSS}|σ∗)) +
∑
i

log(P (Xi)). (2.28)

The function of the priors is to incorporate prior knowledge about a parameter. For instance,

in the case of ETGs the matter density slope α is approximated 2.0, that is the value of the

SIS. This result has been supported by various studies that have successfully fitted the data

[24, 25, 53], as well as N-body simulations [33, 49–51]. In this work we follow [25] and consider

a Gaussian prior for α, P (α), centred in µα = 2.0 with a dispersion of σα = 0.08. Additionally,
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for the slope of the brightness profile, δ, we follow [24], which also employs a Gaussian prior

for δ, P (δ), with mean µδ = 2.4 and dispersion σδ = 0.11. Priors used for the parameters

that characterise the anisotropy profile in the velocity dispersion, β0 and a, will be discussed

case-by-case in the next chapter. Finally, the post-Newtonian parameter γPPN is our parameter

of interest, therefore, we consider its prior P (γPPN) to be flat and unbounded, and by doing

this we do not insert any bias in its measurement.

To explore the parameter space, we employed Markov Chain Monte Carlo (MCMC) sim-

ulation [60]. This method generates Markov Chains (random walkers) by sampling from the

probability distribution described in Equation (2.28). Consequently, a posterior distribution is

obtained, which can then be used in a Gaussian kernel density estimator (KDE) [61] to derive

the probability density functions (PDF) for each parameter. Subsequently, we can maximise

the PDF for each parameter.

After obtaining the parameters that maximise the posterior, it is possible to calculate the

χ2 value for each model using [62]

χ2 = A− 2 ln(L(Xmax)) =
N∑
i=1

(σ∗(Xmax) − σSDSS,i)
2

ε2SDSS,i

. (2.29)

Here, L(Xmax) represents the likelihood calculated using Equation (2.25) at the point Xmax

that maximises the posterior. The term A is the normalisation constant, σ∗(Xmax) is the model

for the velocity dispersion discussed in Section 2.1 and calculated with the parameters that

maximize the likelihood. Additionally, we calculate the reduced χ2 as follows

χ2
red =

χ2

N − k
, (2.30)

where k is the number of parameters for which flat priors were used in the determination of

the posterior probability. Furthermore, we compute the Bayesian Information Criterion (BIC)

[63, 64] given by

BIC = k ln(N) + χ2 (2.31)

We selected the model employed by [25] as the null hypothesis and computed ∆BIC for each

case. These metrics provide a means to compare the models with each other, aiding in the

evaluation process. In the next chapter, we will present the main results obtained from this

analysis.
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Results and Discussion

In this chapter we will present the results obtained by employing the methodology described

in the previous chapter. In Section 3.1 we will discuss the data set used in these analyses.

Following that, in Section 3.2 we will display the results of the Markov Chain Monte Carlo

simulation used to explore the parameter space of the likelihood given in Equation (2.27).

Finally, in Section 3.3 we will compare the results of the preceding section and present the best

fits obtained for the post-Newtonian parameter.

3.1 Data set

Einstein Ring systems are relatively rare and difficult to detect, as an alignment of a few

arc-seconds between the source and the line-of-sight of the lens is required [65]. Nevertheless,

the emergence of the large-area surveys has significantly advanced the search for galaxy-galaxy

strong lenses [65–68]. Oliveira et al. (in preparation) will publish a database with 31569 SL

candidates, out of which 3601 system have measurements of zS and zL, and 409 have values

of θE derived from Strong Lensing. After several quality cuts, they ended up with a sample

containing about 206 systems that was used to constrain γPPN .

In a recent analyses, [27] used 120 strong lens systems to measure the post-Newtonian

parameter. Notwithstanding the fact that the increase in sample size improves significantly

the quality of the statistical analyses, it also introduces certain systematical challenges. For

instance, the function in Equation (2.18) is specific for circular slits, while the sample includes

data from rectangular slits, such that the modelling has to be adapted accordingly. In this

work, we will apply the methodology presented in the previous Chapter to the same data set

used by [25]. This approach enables a direct comparison of the effects of employing radial

models for β, while keeping all other aspects of the modelling identical.

All the strong lensing systems used in this study were compiled by [69] and are listed in

Table 3.1. The information presented in its columns is the name of each system, the redshift
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of the lens (zL), the redshift of the source (zS), the Einstein radius (θE), the circular fiber

radius (θap), the atmospheric seeing (σatm) (all three in arc-seconds), the velocity dispersion

measured from the spectra (σSDSS) in kilometres per second, and the name of the survey where

the system where discovered. Each row corresponds to one of the 80 systems used in this work,

including 13 systems from the Baryon Oscillation Spectroscopic Survey (BOSS) Emission-Line

Lens Survey (BELLS) [70], 22 from the Strong lensing Legacy Survey (SL2S) [71, 72], 42 from

the Sloan Lens Advanced Camera for Surveys (SLACS) [73, 74], and 3 systems from a SLACS’

percursor, known as the Lenses Structure and Dynamics Survey (LSD) [75, 76].

Name zL zS θE (′′) θap (′′) σatm (′′) σSDSS (km/s) Survey

J0747+4448 0.437 0.897 0.61 1 1.8 281 ± 52 BELLS

J1637+1439 0.391 0.874 0.65 1 1.8 208 ± 30 BELLS

J2303+0037 0.458 0.936 1.02 1 1.8 274 ± 31 BELLS

J2125+0411 0.363 0.978 1.2 1 1.8 247 ± 17 BELLS

J0151+0049 0.517 1.364 0.68 1 1.8 219 ± 39 BELLS

J0830+5116 0.530 1.332 1.14 1 1.8 268 ± 36 BELLS

J0944-0147 0.539 1.179 0.72 1 1.8 204 ± 34 BELLS

J1545+2748 0.522 1.289 1.21 1 1.8 250 ± 37 BELLS

J1337+3620 0.564 1.182 1.39 1 1.8 225 ± 35 BELLS

J1542+1629 0.352 1.023 1.04 1 1.8 210 ± 16 BELLS

J1215+0047 0.642 1.297 1.37 1 1.8 262 ± 45 BELLS

J1601+2138 0.544 1.446 0.86 1 1.8 207 ± 36 BELLS

J1631+1854 0.408 1.086 1.63 1 1.8 272 ± 14 BELLS

HST14176+5226 0.810 3.399 1.41 1.25 0.75 224 ± 15 LSD

CFRS03.1077 0.938 2.941 1.24 1.25 0.8 251 ± 19 LSD

Q0047-2808 0.485 3.595 1.34 1.25 0.7 229 ± 15 LSD

J2203+0205 0.400 2.15 1.95 1 0.9 213 ± 21 SL2S

J1411+5651 0.322 1.42 0.93 1 1.3 214 ± 23 SL2S

J0855-0409 0.419 2.95 1.36 0.7 0.6 281 ± 22 SL2S

J0213-0743 0.717 3.48 2.39 1 0.6 293 ± 34 SL2S

J1406+5226 0.716 1.47 0.94 1 0.9 253 ± 19 SL2S

J0217-0513 0.646 1.847 1.27 1.5 0.6 239 ± 27 SL2S

J1405+5243 0.526 3.01 1.51 1 0.8 284 ± 21 SL2S

J0223-0534 0.499 1.44 1.22 1 0.6 288 ± 28 SL2S

J0226-0420 0.494 1.232 1.19 1 0.6 263 ± 24 SL2S

Continued on next page
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Name zL zS θE (′′) θap (′′) σatm (′′) σSDSS (km/s) Survey

J1420+5630 0.483 3.12 1.4 1 0.8 228 ± 19 SL2S

J0214-0405 0.609 1.88 1.41 1 0.8 287 ± 47 SL2S

J2222+0012 0.436 1.36 1.44 1 0.9 221 ± 22 SL2S

J0225-0454 0.238 1.199 1.76 1 0.7 234 ± 21 SL2S

J0212-0555 0.750 2.74 1.27 0.9 0.7 273 ± 22 SL2S

J0849-0251 0.274 2.09 1.16 0.9 0.8 276 ± 35 SL2S

J0855-0147 0.365 3.39 1.03 0.7 0.6 222 ± 25 SL2S

J1420+5258 0.380 0.99 0.96 1 0.8 246 ± 23 SL2S

J0232-0408 0.352 2.34 1.04 1 0.7 281 ± 26 SL2S

J0219-0829 0.389 2.15 1.3 1 0.7 289 ± 23 SL2S

J2221+0115 0.325 2.35 1.4 1 1.2 222 ± 23 SL2S

J1359+5535 0.783 2.77 1.14 1 0.7 228 ± 29 SL2S

J0850-0347 0.337 3.25 0.93 0.7 0.6 290 ± 24 SL2S

J1636+4707 0.228 0.674 1.09 1.5 1.4 231 ± 15 SLACS

J1020+1122 0.282 0.553 1.2 1.5 1.4 282 ± 18 SLACS

J1630+4520 0.248 0.793 1.78 1.5 1.4 276 ± 16 SLACS

J1621+3931 0.245 0.602 1.29 1.5 1.4 236 ± 20 SLACS

J0822+2652 0.241 0.594 1.17 1.5 1.4 259 ± 15 SLACS

J1250+0523 0.232 0.795 1.13 1.5 1.4 252 ± 14 SLACS

J2300+0022 0.228 0.464 1.24 1.5 1.4 279 ± 17 SLACS

J1402+6321 0.205 0.481 1.35 1.5 1.4 267 ± 17 SLACS

J0109+1500 0.294 0.525 0.69 1.5 1.4 251 ± 19 SLACS

J1251-0208 0.224 0.784 0.84 1.5 1.4 233 ± 23 SLACS

J1142+1001 0.222 0.504 0.98 1.5 1.4 221 ± 22 SLACS

J0946+1006 0.222 0.608 1.38 1.5 1.4 263 ± 21 SLACS

J0808+4706 0.219 1.025 1.23 1.5 1.4 236 ± 11 SLACS

J1205+4910 0.215 0.481 1.22 1.5 1.4 281 ± 14 SLACS

J1627-0053 0.208 0.524 1.23 1.5 1.4 290 ± 14 SLACS

J0728+3835 0.206 0.688 1.25 1.5 1.4 214 ± 11 SLACS

J0037-0942 0.196 0.632 1.53 1.5 1.4 279 ± 10 SLACS

J1023+4230 0.191 0.696 1.41 1.5 1.4 242 ± 15 SLACS

J0029-0055 0.227 0.931 0.96 1.5 1.4 229 ± 18 SLACS

J1416+5136 0.299 0.811 1.37 1.5 1.4 240 ± 25 SLACS

J1531-0105 0.160 0.744 1.71 1.5 1.4 279 ± 14 SLACS

Continued on next page
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Name zL zS θE (′′) θap (′′) σatm (′′) σSDSS (km/s) Survey

J1106+5228 0.096 0.407 1.23 1.5 1.4 262 ± 13 SLACS

J0903+4116 0.430 1.065 1.29 1.5 1.4 223 ± 27 SLACS

J1525+3327 0.358 0.717 1.31 1.5 1.4 264 ± 26 SLACS

J0157-0056 0.513 0.924 0.79 1.5 1.4 295 ± 47 SLACS

J2321-0939 0.082 0.532 1.6 1.5 1.4 249 ± 8 SLACS

J1436-0000 0.285 0.805 1.12 1.5 1.4 224 ± 17 SLACS

J1403+0006 0.189 0.473 0.83 1.5 1.4 213 ± 17 SLACS

J2341+0000 0.186 0.807 1.44 1.5 1.4 207 ± 13 SLACS

J1153+4612 0.180 0.875 1.05 1.5 1.4 226 ± 15 SLACS

J0936+0913 0.190 0.588 1.09 1.5 1.4 243 ± 12 SLACS

J1016+3859 0.168 0.439 1.09 1.5 1.4 247 ± 13 SLACS

J2303+1422 0.155 0.517 1.62 1.5 1.4 255 ± 16 SLACS

J1134+6027 0.153 0.474 1.1 1.5 1.4 239 ± 12 SLACS

J1218+0830 0.135 0.717 1.45 1.5 1.4 219 ± 11 SLACS

J1451-0239 0.125 0.52 1.04 1.5 1.4 223 ± 14 SLACS

J1213+6708 0.123 0.64 1.42 1.5 1.4 292 ± 15 SLACS

J0044+0113 0.120 0.196 0.79 1.5 1.4 266 ± 13 SLACS

J0841+3824 0.116 0.657 1.41 1.5 1.4 225 ± 11 SLACS

J1143-0144 0.106 0.402 1.68 1.5 1.4 269 ± 13 SLACS

J1204+0358 0.164 0.631 1.31 1.5 1.4 267 ± 17 SLACS

J0330-0020 0.351 1.071 1.1 1.5 1.4 212 ± 21 SLACS

Table 3.1: The compilation of the Data Set used in this analysis.

In Figure 3.1 we summarise two properties of the data set that we have given special

attention to. Firstly, Figure 3.1(a) presents a histogram illustrating the distribution of the r200

for the 80 lenses in this sample, derived using Equation (2.4). It is possible to notice that this

radius falls within the range of a few hundred kiloparsecs, which is consistent with the expected

values for ETGs. This quantity is used to obtain the characteristic radius (ra) for the β models

discussed in Section 2.1. Secondly, Figure 3.1(b) displays the redshifts of the lenses. It is clear

that all the lenses have redshift values below 1 (zl < 1), allowing us to use the results of [33],

which indicate that the slope of the density profile, α, remains nearly constant at approximately

2 for galaxies at these redshifts. In the next section we will present the results obtained for this

data set after applied the methodology described in Chapter 2.
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(a) (b)

Figure 3.1: Some properties of the lenses in the data set: (a) the distribution of r200 of the
lenses in this sample, derived from Equation (2.4) and (b) the distribution of the lens redshifts.

3.2 Results of the Markov Chain Monte Carlo Simula-

tion

In this section, we present the results of the Monte Carlo Markov Chain (MCMC) simulation

conducted to explore the parameter space of Equation (2.27), for different models characterising

the anisotropy between the radial and tangential components of the velocity dispersion in the

lens galaxy. The statistical treatment employed in the MCMC analysis is outlined in Section

2.3, and the analysis is applied to the data set described in the previous section.

3.2.1 Constant Anisotropy Parameter β0

The model in which the anisotropy parameter is constant, β = β0, is described in the Section

2.1.1. This model has four parameters, namely the mass density slope α, the brightness profile

slope δ, the anisotropy parameter β0, and the post-Newtonian parameter γPPN,0. To begin,

we investigated the impact of three different Gaussian priors for β0. Firstly, we replicated the

findings of [25], who used a prior of β0 = 0.18±0.13. Subsequently, we adopted a prior based on

measurements conducted by [53], where strong lensing data was used to analyse the dynamics

of ETGs and they obtained β0 = 0.45±0.25. Furthermore, we incorporated the outcomes from

the studies of [33] on galaxy dynamics, where they obtained β0 = 0.23± 0.19 using a simulated

data set of ETGs . Additionally, we also considered the scenario of a flat prior, ranging between

0 and 1, for the anisotropy parameter.

The MCMC results for the three Gaussian priors are compiled in in Figure 3.2. This corner
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Figure 3.2: Result of the Markov Chain Monte Carlo for the model with β constant and with a
Gaussian prior. The purple distributions are the result for the β0 with Gaussian prior centred
in µβ0 = 0.45, the orange distributions are for µβ0 = 0.23, and the green distributions are
the results for µβ0 = 0.18. The shade of green, orange or purple in the bivariate distributions
indicate the density of data points, and the contours correspond to the 50th and 95th percentiles.
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plot provides an overview of the parameters phase space explored by the random walkers in

the Markovian Chains. The lower sections of the plot illustrate the multivariate distribution of

theses parameters, allowing us to gain insights on the correlation between them. The diagonal

displays the individual distribution for each parameter. The green distributions represent the

reproduction of the results in reference [25], the orange ones corresponds to the results obtained

when used the prior based on the study conducted by [33], and the purple distributions were

obtained with the prior derived from the measurements of [53].

The first two parameters in the left of the Figure 3.2 are α and δ. As expected, their

posterior distributions follow closely their prior described in section 2.3. Moreover, there is no

apparent correlation between these parameters and any other. Moving to the third parameter,

β0, it is possible to observe a significant correlation with γPPN,0. Lastly, the forth parameter

is the post-Newtonian parameter. Although this was the only parameter with a flat prior in

this analysis, for this case, its posterior also presents a Gaussian profile. This is a confirmation

that it is possible to use this methodology to constrain γPPN,0. A broader discussion on the

posterior obtained for the post-Newtonian parameter will be presented in Section 3.3.

Figure 3.3: Corner plot with the result for the Markov Chain Monte Carlo, for the model
with β constant and with a flat P (β0), varying between 0 and 1.The shades in the bivariate
distributions indicate the density of data points.
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The results of the MCMC simulation with a flat prior on β0, are summarised on Figure 3.3.

Similar to the previous case, the two first parameters, α and δ show no apparent correlation

between them and the other parameters, and also maintain their Gaussian posterior. For this

case the correlation between β0 and γPPN,0 is very strong. The posterior distribution of β0

increases until it reaches one, that is the value by which this parameter is limited by the prior.

This behaviour is explained by the fact that β0 is limited by one. Regarding γPPN,0, its posterior

distribution deviates from a Gaussian profile when the prior in β0 is considered flat. This shows

that when β is left unconstrained, this method is able to place only weak constraints on γPPN,0.

Nevertheless, the distribution still tends to favour values close to one.

Figure 3.4: Bivariate distribution of the free parameters β0 and γPPN,0, for the model with
β constant and with a flat prior. The shades of purple distributions indicate the density of
data points. The black point in the middle is the mode of the bivariate distribution function,
obtained by maximising this function. The orange curve marks the 1σ interval, and the error
bars are obtained by calculating the maximum distance between the mode and the 1σ interval.

It is possible to examine the relationship between γPPN,0 and β0 more closely in Figure 3.4.

These particular parameters are the only ones with a flat prior, which means they represent the

free parameters of this model. Therefore, we can analyse their bivariate posterior and maximise

it accordingly. The black point in the middle represents the maximum point of the bivariate

distribution, corresponding to β0 = 0.67+0.26
−0.67 and γPPN,0 = 1.62+1.17

−0.82, the uncertainties are con-

sidered as the maximum distance between the point that maximises the bivariate distribution

and the 1σ interval. Additionally, the 68.27% confidence interval is highlighted in orange.
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3.2.2 Osipkov-Merritt Model

The Osipkov-Merritt (OM) model, defined in Equation (2.9), is discussed in Section 2.1.2.

This model has four parameters, namely the mass density slope α, the brightness profile slope

δ, the parameter a that sets the scale radius of the model (ra = r200a), and the post-Newtonian

parameter γPPN,OM. As we did not have an accurate measurement of a and its uncertainties

from the literature, we considered its prior to be flat, and let it vary between 0 and 10.

Figure 3.5: Corner plot with the result for the Markov Chain Monte Carlo the Osipkov-Merritt
Model For radial β. The shades of purple and the contours in the bivariate distributions indicate
the density of data points and also add a third dimension to the plot, indicating the increase
in the density.

The MCMC result for this model is compiled in Figure 3.5. Each diagonal plot in the figures

is labelled with the parameter median, which corresponds to the 50th percentile. Additionally,

the distances from the median to the 84th and 16th percentiles are indicated, providing a mea-

sure of the parameter uncertainty. The posterior distribution of the first two parameters, α

and δ, are essentially the same as their Gaussian priors discussed in Section 2.3. The third pa-

rameter, a, shows a nearly flat posterior, indicating that this parameter could not be effectively

constrained using this methodology. Nevertheless, the data clearly favours values a > 1.7. In

contrast, the fourth parameter, γPPN,OM, presents a Gaussian-like posterior distribution, which

implies that this model allow us to successfully constraint this parameter. Furthermore, there

is no evident correlation observed among any of the parameters in this particular model.
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Figure 3.6: Bivariate distribution of the free parameters a and γPPN,OM, for the model with
the Osipkov-Merritt profile for β.The shades of purple distributions indicate the density of
data points. The black point in the middle is the mode of the bivariate distribution function,
obtained by maximising this function. The orange curve marks the 1σ interval, and the error
bars are obtained by calculating the maximum distance between the mode and the 1σ interval.

In this scenario, the free parameters are a and γPPN,OM, their bivariate distribution is shown

in Figure 3.6. As mentioned before, it is clear from this plot, that the posterior PDF for a

is almost flat. It goes to zero below 0 and 10, which are exactly the boundaries of our prior.

Therefore, this data has very little constraint power for a. Perhaps, lower values of a, close to

0 are disfavoured. This could be further tested by modifying the range of the flat prior. We

see a slight increase of the PDF for higher a. In brief the parameter a is largely constrained by

the data perhaps excluding too low values of a which means that β is very low at r200 and, in

particular at the optical radius, which is constrained by the optical data (see Figure 2.1). In

this figure the orange contour outlines the 1σ interval, and the black dot represents the point

of highest density, at a = 9.19+0.81
−8.09 and γPPN,OM = 0.89+0.04

−0.04, the uncertainties are considered

as the maximum distance between the point that maximises the bivariate distribution and the

1σ interval. Again, whereas γPPN,OM is well constrained by the data, the bounds on a largely

reflect the choice of boundary of the flat prior. Our result is compatible with 1 only above 2.5σ.
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3.2.3 Mamon & Lokas Model

The radial model proposed by Mamon & Lokas (ML) is defined in the Equation (2.11) and

discussed in Section 2.1.3. This model has four parameters, namely the mass density slope α, the

brightness profile slope δ, the parameter a that sets the scale radius of the model (ra = r200a),

and the post-Newtonian parameter γPPN,ML. The prior for a was, again, considered flat and

allowed to vary between 0 and 10. The MCMC result for this model is shown in Figure 3.7,

and the interpretation of this figure is similar to the one described in the previous section.

Figure 3.7: Corner plot with the result for the Markov Chain Monte Carlo the Mamon & Lokas
Model for radial β. The shades of purple and the contours in the bivariate distributions indicate
the density of data points and also ad a third dimension to the plot, indicating the increase in
the density.

As in the previous case, the posterior distributions of the initial two parameters, α and δ,

correspond closely to their Gaussian priors as described in Section 2.3. The third parameter,

a, exhibits an almost uniform posterior distribution, suggesting that this parameter cannot be

effectively constrained using this approach. Nevertheless, the data clearly favours values a >

1.5. Conversely, the γPPN,ML demonstrates a posterior distribution that resembles a Gaussian

curve, indicating successful constrain of this parameter. Moreover, no apparent correlation is

observed among any of the parameters in this specific model.

The behaviour of the free parameters in this particular case, namely a and γPPN,ML, is

illustrated in Figure 3.8. Within the plot, the 68.27% confidence interval is visually emphasised
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Figure 3.8: Bivariate distribution of the free parameters a and γPPN,ML, for the model with the
Mamon & Lokas profile for β.The black point in the middle is the mode of the bivariate dis-
tribution function, obtained by maximising this function. The orange curve marks the 68.27%
confidence interval, and the error bars are obtained by calculating the maximum distance be-
tween the mode and the 68.27% confidence interval.

using an orange contour. At the peak of the distribution, we find a black dot representing

the optimal values of a = 9.07+0.83
−8.33 and γPPN,ML = 0.90+0.03

−0.05. The uncertainties are defined

as the maximum separation between the point that maximises the bivariate distribution and

the 1σ interval. In this case, again, the derived bounds on a reflect the choice of the prior,

whereas γPPN,ML can be constrained with a relatively good precision. The result are consistent

withγPPN = 1 only at the 2.5σ level.

3.2.4 Generalised Tiret Model

The last model tested for the anisotropy profile of the lens galaxy is the generalisation of the

Tiret model, discussed in Section 2.1.4. We solved Equation (2.13) for the case where β1 = 0.5,

and it resulted in the velocity dispersion model (Equation (2.22)) that uses the five parameters

from Equation (2.23). As before, these parameters are the mass density slope α, the brightness

profile slope δ, the constant anisotropy value for low radii β0, the parameter that scales the

control radius in the β model a, and the post-Newtonian parameter γPPN,GT. The priors for

both β0 and a were considered flat for this model, therefore they are treated as free parameters.

We allowed β0 to vary between 0 and 1, and a to vary between 0 and 10. The MCMC results
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for this model are summarised in Figure 3.9, and the interpretation for this figure is analogous

to the previous cases.

Figure 3.9: Corner plot with the result for the Markov Chain Monte Carlo the Generalised
Tiret Model for radial β, with β1 = 0.5. The shades of purple and the contours in the bivariate
distributions indicate the density of data points and also ad a third dimension to the plot,
indicating the increase in the density.

Moreover, the posterior distribution of the third parameter β0 presents a moderate ascendant

profile, similar to what was observed in Figure 3.3, for the case when a flat prior in β0 was

also used, but with the assumption of constant anisotropy along the galaxy radius. In this

case, however, β0 is being limited by the data to 0.5 instead of 1, despite the fact that it was

allowed to vary until 1 during this simulation. This behaviour can be explained by referring

back to Equation (2.13), which shows that as r approaches infinity, β(r) tends towards β0 +

β1 = β∞. Given that the anisotropy parameter is limited to values less than or equal to one

(Equation 1.20), it follows that β0 + β1 ≤ 1. Therefore, if β1 is fixed at 0.5, then β0 must

be ≤ 0.5. Finally, β0 continues to present a positive correlation with the post-Newtonian

parameter.

Furthermore, the third parameter, a, displays a nearly flat posterior, that align with its

prior. That is equivalent to what happens in Figures 3.5 and 3.7, confirming that the scale
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parameter of the reference radius in the radial model for β can not be constrained using this

methodology. On the other hand, as in the previous models of β(r) low values of a ( < 1.3)

seem to be disfavoured by the data.

Lastly, the posterior of the free parameter, γPPN,GT, in Figure 3.9 does not present a Gaus-

sian profile. As the case β = β0 with a flat prior on β0 (Figure 3.3) it is no longer possible to

effectively constrain the post-Newtonian parameter. Yet, the distribution still tends to favour

values next to one.

Figure 3.10: Multivariate distribution of the free parameters β0, a and γPPN,GT, for the model
with the Generalised Tiret profile for radial β, with β1 = 0.5. The density of data points
is represented by the varying shades of purple in the distributions. The central black point
corresponds to the mode of the bivariate distribution function, which is obtained by maximising
this function. The orange curve denotes the 1σ interval, and the error bars are determined by
measuring the maximum distance between the mode and the 1σ interval.

This particular model consists of three free parameters: β0, a, and γPPN,GT. The multivari-

ate distribution of these parameters can be visualised in Figure 3.10. One notable observation

is the significant statistical fluctuation present in the density distribution of these model pa-

rameters. This can be attributed to the fact that this model has the largest number of free

parameters, making it computationally demanding. Within the plot, the orange curve indicates

the 1σ interval for each parameter. The black dot represents the point of highest density, at

β0 = 0.29+0.17
−0.29, a = 8.343+1.66

−8.34, and γPPN,0 = 3.97+5.38
−3.15. The uncertainties are quantified as the

maximum difference between the point that maximises the bivariate distribution and the 1σ
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interval. Even more strongly that in the previous cases, the bound on a is essentially deter-

mined by the boundaries of the flat prior. The lower bound on β0 is also determined by the

choice of the prior, whereas it is naturally limited by the data to β0 ≃ 0.5.

3.3 Posterior Probability Density Function and Model

Fitting

In the previous section, we discussed 3 classes of models for β. The first has β = β0 =

const. and we considered 3 sets of Gaussian priors from different origins, as well as a case with

a flat prior (spanning β0 = 0 to 1). The second class refers to models where β has a radial

dependence , starts with β = 0 and goes to a fixed asymptotic value at high distances. They

have a characteristic radius given by ra = ar200, these are the OM model and the ML model.

Finally, the third class is a generalisation of the ML model, where an arbitrary values of β0

may be added. The results are qualitatively similar within each class

Figure 3.11: Posterior Probability Distribution of γPPN for the models leading to Gaussian-like
posterior PDFs for this quantity. The first two leftmost curves, in purple and red, correspond
to the models incorporating radial β profiles from Osipkov-Merritt and Mamon & Lokas, re-
spectively. The remaining three curves represent models with a constant β = β0. The first
curve in green, reproduces the results of [25]. The second curve in orange, reflects the outcome
when using the prior on β0 based on the study conducted by [33]. Finally, the rightmost curve,
in blue, represents the results obtained using the P (β0) based on measurements from [53]. The
dashed black line represents the predicted value for the General Relativity case, γPPN = 1.
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From the aforementioned sets of models and prior, five of them yielded Gaussian-like PDFs

for the PPN parameter. For these cases, it becomes possible to obtain a good estimation for the

mean γPPN and its dispersion εγ, by fitting a Gaussian function to the PDF. Theses posteriors

are shown in Figure 3.11, where the dashed black line in this plot represents the predicted

value for the General Relativity case, γPPN = 1. The first two leftmost curves, in purple and

red, correspond to the models incorporating radial β profiles from Osipkov-Merritt (OM) and

Mamon & Lokas (ML) respectively. For the OM model we obtained ⟨γPPN,OM⟩ = 0.896±0.035,

while for the ML profile yielded ⟨γPPN,ML⟩ = 0.898± 0.037. Therefore, the models in this class

tend to prefer values of γPPN lower than 1.

The three curves in the right represent models with a constant β. The first curve, in green,

reproduces the results of [25], where the Gaussian prior β0 = 0.18 ± 0.13 was employed. By

fitting a Gaussian profile in the PPN parameter posterior we obtained γPPN,0 = 0.998 ± 0.041,

consistent with the value reported by [25], γPPN = 0.995± 0.042. The second curve, in orange,

reflects the outcome when using the prior β0 = 0.23± 0.19. Fitting a Gaussian to the posterior

of the PPN parameter we derived ⟨γPPN,0⟩ = 1.026 ± 0.041. Lastly, the rightmost curve, in

blue, represents the results obtained using β0 = 0.45 ± 0.25. For this case, fitting the posterior

of the PPN parameter yielded ⟨γPPN,0⟩ = 1.241 ± 0.55. we see that models with constant β

tend to prefer values of γPPN close to 1 or higher depending on the prior used.

Figure 3.12: Posterior Probability Distribution for γPPN , for the models that yield a broad and
skewed posterior for this parameter. The curve in purple is the result for β = β0 and a flat
prior on β0. The curve in orange is the result obtained by using the Generalised Tiret model.
The dashed black line correspond to γPPN = 1.
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Figure 3.12 displays the two cases for which the PDF of γPPN has a broad and skewed

shape, so that the constraints on γPPN are very broad. In any case, the PDF have a clear

peak. The purple curve represents the case in which the anisotropy parameter was considered

constant (β = β0) and a flat prior bonded by [0, 1] is assumed for β0. The value that maximise

this curve is γPPN,0 = 1.01+1.03
−0.14. The orange curve is the result obtained whit the generalised

Tiret model. This PDF has an even larger spread when compared to the previous case, but

it still presents a clear peak at γPPN,GT = 1.47+4.08
−0.56. The uncertainties presented above where

calculated by considering the 1σ interval.

To compare the goodness of fit of each model to the data presented in Section 3.1, we

calculated the χ2 and the χ2
red using Equations (2.29) and (2.30) respectively. The results are

presented in Table 3.2. The first column indicates the model, the second column shows the

corresponding χ2 value computed at the maximum of the posterior for the parameters with flat

priors, the third column displays the number of free parameters k, defined here as those with

flat priors, for each model, and the last column presents the χ2
red value.

β Model χ2 k χ2
red

β0 = 0.18 ± 0.13 186.19 1 2.36
β0 = 0.45 ± 0.25 186.33 1 2.36
β0 = 0.23 ± 0.19 186.25 1 2.36
Flat P (β0) 186.28 2 2.39

Mamon & Lokas 186.61 2 2.39
Osipkov-Merritt 186.68 2 2.39

Generalised Tirret 186.62 3 2.42

Table 3.2: This table displays the values of χ2 and χ2
red for each model.

The results in Table 3.2 are organised according to the different classes of models considered.

The first set of results corresponds to the model class in which β is equal to a constant value

β0. Following that, we present the results for the second class of models where β has a radial

dependence, with β(r = 0) = 0 and β(r → ∞) approaching an asymptotic value. Finally,

the last line in the table represents the generalisation of the ML model, with β(r = 0) = β0.

Notably, the χ2 values are quite similar for all models, indicating that they all provide similar

fits to the data1. However, the χ2
red values differ due to the penalty imposed by the number

of free parameters. Therefore, models with an equal number of parameters can be considered

equivalent among themselves. In brief, we do not see that the models with more parameters

1It may seem strange that models with more free parameters provide a slightly worse χ2 than models with
less parameters. However, we note that, for simplicity, the χ2 is being computed using the mode of the priors
for the parameter with Gaussian priors. In other words, we are not minimising the χ2 as a function of all
parameter, but only as a function of the parameters with flat priors, setting the other parameters at the peak
of their individual prior.
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provide a better fit to the data.

A relevant question to ask is whether the current data provide evidence either in favour

or against any of the considered models. To address this question we compute the Bayesian

Information Criteria (BIC) for each model, as indicated by Equation (2.31). The corresponding

results are presented in Table 3.3. The first column denotes the model, the second column shows

the BIC value, and the third column displays the ∆BIC. The ∆BIC represents the difference

between the BIC values of two models and is used to assess the evidence in favour of a particular

model. In this study, we adopt the model used by [25] as the null hypothesis and calculate the

∆BIC for the other models.

β Model BIC ∆BIC

β0 = 0.18 ± 0.13 190.58 0
β0 = 0.45 ± 0.25 190.71 0.14
β0 = 0.23 ± 0.19 190.63 0.058
Flat P (β0) 195.04 4.47

Mamon & Lokas 195.37 4.80
Osipkov-Merritt 195.44 4.87

Generalised Tirret 199.77 9.20

Table 3.3: The Bayesian Information Criterion for each model, as well the ∆BIC when taking
the model used by [25] as null hypothesis.

Similarly to the previous table, the results in Table 3.3 are organised according to the

different classes of models considered. The values of ∆BIC are commonly used to assess the

evidence of one model against another, where ∆BIC > 5, represents that there is strong evidence

against the model with the highest criterion value, and ∆BIC > 10, represents that the evidence

decisively favours the model with lowest BIC (see reference [63]). Based on this criterion, the

first three models (with Gaussian priors in β0) exhibit no evidence in favour of one over the

other. The subsequent three models face weak evidence against them, while the last model

encounters strong evidence against it. In brief, the models with only one free parameter (γPPN)

are equivalent in terms of the ∆BIC criterion. There is weak evidence against the models that

add an extra parameter, be it β0 or a. And there is strong evidence against the model with

two extra parameters (both β0 and a).
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Conclusions and Future Work

A quantitative test of General Relativity can be performed by combining strong gravitational

lensing data with the dynamics of the lens galaxies to constrain the post-Newtonian parameter

γPPN [23–28]. In this study, we investigate the impact of different models for the dynamics of

the lensing galaxy on the constraint of γPPN , focusing specifically on the parameter β, which

describes the anisotropy between the radial and tangential components of the velocity dispersion

of stars in the galaxy acting as lens. Our objective was to assess whether different models on

the anisotropy of the velocity dispersion influence the constraints on γPPN , and to explore the

potential to simultaneously constrain both β and γPPN .

We employ the data set used in reference [25], consisting of 80 galaxy-galaxy strong lensing

systems. Initially, we reproduce their results, which were obtained by assuming a constant β

and constraining it with a Gaussian prior centred at β0 = 0.18 ± 0.13. Subsequently, we test

two alternative priors for β0: one obtained from a study on galactic dynamics conducted by

[33], resulting in β0 = 0.23 ± 0.19, and another based on measurements performed by [53],

yielding β0 = 0.45 ± 0.25. Additionally, we allow β0 to be a free parameter by imposing a flat

prior on it. Furthermore, considering that the literature on galactic dynamics suggests that the

anisotropy profile of early-type galaxies should be radially dependent, we test three models for

the radial profiles: the Osipkov-Merritt model [36, 37] given by Equation (2.9), the Mamon &

Lokas model [35] given by Equation (2.11), and the Generalized Tirret model [38, 39] given by

Equation (2.13).

The main findings of this work can be summarised as follows:

• There exists a strong correlation between γPPN and β0. This correlation was observed in

cases where β0 was kept constant and constrained by Gaussian priors. As the mean of

the prior in β0 increased, the mode of the resulting probability density function (PDF)

shifted towards larger values of γPPN . This correlation was further confirmed in cases

where β0 was treated as a free parameter, specifically in the results obtained with a flat

prior for β0 and in the case of the Generalized Tirret profile.
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• When β0 is treated as a free parameter with a flat prior, the posterior PDF on γPPN is no

longer Gaussian. However, it still peaks at to values close to one, which is the predicted

value for General Relativity.

• The PDF for β0 tends to increase monotonically from β0 = 0, but decrease abruptly close

to 1 in the case where β is constant and close to 0.5 in the case of the GT profile. This

limitation arises from the fact that the total β is constrained to be no larger than 1 by

definition, as described in Equation (1.20).

• The dimensionless parameter a, which defines the characteristic radius ra in Equation (2.1),

could not be effectively constrained by this approach in any of the models that included

this parameter, namely OM, ML and GT. Although the data favours high values of a

(> 1.3).

• For the radial anisotropy profiles that have β0 fixed at zero, namely OM and ML, we

obtained Gaussian posterior PDF for γPPN .

• We calculated the χ2 and χ2
red value for each model as a quantitative measure of how

well they fit the data. Interestingly, we obtained values of χ2
red around 2.4 for all models

considered. This provides a reasonable fit, taking into account that we are using a quite

simple model for real systems which a much higher degree of complexity.

• We also calculated the Bayesian Information Criterion (BIC) and the ∆BIC, considering

the model with β0 = 0.18 ± 0.13 as the null hypothesis. The models with β0 constrained

by a Gaussian prior showed ∆BIC values close to zero, indicating that they are similar to

each other and have little to no evidence against them. The model with flat P (β0), as well

as the models with the OM and ML profiles for anisotropy, had ∆BIC values between 4

and 5, indicating weak evidence against them. Finally, the model with the GT profile had

a ∆BIC value of 9.20, indicating strong evidence against it. These BIC values arise from

the fact that the χ2 values are very similar for all the models, such that the difference

in the BIC value is primarily driven by the model complexity, which is reflected in the

number of free parameters.

• For the cases where γPPN could be well constrained, we performed a Gaussian fit to obtain

measurements for it. Reproducing the results of [25], we obtained ⟨γPPN,0⟩ = 0.998±0.041,

which is consistent with the value reported by [25], γPPN = 0.995 ± 0.042. When using

the prior in β0 based on the study conducted by [33], we derived ⟨γPPN,0⟩ = 1.026±0.041.

The results obtained using P (β0) based on measurements from [53] yielded ⟨γPPN,0⟩ =

1.241 ± 0.055. Taking these results at face value, we see that the first low constraint on

β0 yield results that are consistent with the expected value of γPPN for GR, which is
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γPPN = 1, within the 1σ interval. However, the last scenario deviates significantly from

the predicted value, exhibiting a difference above the 4σ level.

• For the model using the OM profile, we obtained ⟨γPPN,OM⟩ = 0.896 ± 0.035, and for the

ML profile, we obtained ⟨γPPN,ML⟩ = 0.898 ± 0.037. These two models yielded a value

of γPPN that is 10% lower than the expected value for GR. Given the derived error bars,

this represents a deviation of about 3σ with respect to the GR result.

• Although the models with free β0 did not result in Gaussian PDFs, they had clear peaks

and boundaries. For the model with β = β0 and flat P (β0), we obtained γPPN,0 =

1.01+1.03
−0.14. For the model with the GT profile and free β0, we obtained γPPN,GT = 1.47+4.08

−0.56.

It is undeniable that the anisotropy in the velocity dispersion of the lens galaxy has a

strong influence in the post-Newtonian parameter. It was necessary to set strong priors on β

to determine γPPN and the results are highly dependants on these priors. Additionally, models

incorporating radial dependence on the anisotropy parameter consistently yielded lower values

of γPPN , below the predicted value of 1 in GR. This strong correlation between β and γPPN

highlights the introduction of significant systematic errors in the measurement of γPPN due to

choices in β. These conclusion raise questions regarding potential selection bias in prior choices

for β in previous studies.

Furthermore, we could not effectively constraint β and γPPN simultaneously. When the

dynamics were unconstrained, the resulting constraints on γPPN were weak, as were those on

the anisotropy parameter a and β0. However, some conclusions could still be drawn. Although

the posterior PDF of γPPN displayed a broad range, it exhibited a peak near one. The data

disfavoured small values of a and imposed an upper limit of 1 on β.

The anisotropy parameter cannot be directly measured through observation [50]. However

it can be indirectly estimated, as demonstrated in reference [53], that inferred a value for β

using SL data. Additionally, N-body simulations, as seen in reference [33], allow for the study

of the anisotropy profile. Therefore, further progress in the field requires additional knowledge

on β, either from spatially resolved kinematical data or high resolution simulations.

Future studies can explore the effects of β models that are radially constant but depend on

other galactic properties, such as mass, eccentricity, and/or redshift. Additionally, one can also

explore the effects of solving the jeans equation for axisymmetric systems [32, 77]. Moreover,

employing larger data sets and defining subsets based on the aforementioned properties can

provide insights into the constraints on β and γPPN for each subset. Lastly, addressing differ-

ent sources of systematic errors, as for example the uncertainties caused the choice of stellar

templates for inferring the velocity dispersion of the lens galaxy with the spectra (see reference

[29]), would enhance the robustness of the analysis.
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Appendix A

Numerical Integration

One of the biggest technical challenges of this work was to solve Equations (2.19) and (2.15).

While these equations have exact analytical solutions for a constant β, the situation becomes

more complex when considering a radial profile for β. In such cases, these equations no longer

have analytically solvable solutions. This complexity arises due to the involvement of various

hyper-geometrical functions, even in the case of constant β, where the analytical solution is

already intricate. Incorporating radial components in β introduces additional local difficulties

that cannot be overcome through simple substitutions. To tackle this problem we developed a

code to numerically solve these integrals using specific libraries for this. In this Appendix we

will explain this process.

Most modern integration algorithms employ an automatic adaptive approach to the Gaus-

sian Quadrature (Gn) rule. Here n is the order of the integration rule and the precision of it

depends on this order. To understand how to use Gn rule, we will consider an one-dimensional

integral problem

I =

∫ b

a

f(x)dx, (A.1)

where f(x) is an arbitrary function and [a, b] represents the integration interval. A general

solution for I can be given by

I = Gn + O(n), (A.2)

where O(n) is the error.

The Gn rule can be given by [78]

Gn =
n∑

i=1

ωif(xi), (A.3)

where xi are the nodes defined defined as a fixed value within the interval [a, b], f(xi) is the

function evaluated in each node, and ωi denotes a weight for the function in that particular
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node. The process of solving a integral numerical with the Gn rule involves determining the

values for the nodes xi and the corresponding weights ωi. To accomplish this, we will follow

the approach presented by [78], and expand the function f(x) in a Taylor series around the

midpoint m:

f(x) = f(m)+f ′(m)(x−m)+f ′′(m)
(x−m)2

2
+f ′′′(m)

(x−m)3

6
+f ′′′′(m)

(x−m)4

24
+ ... (A.4)

Here, the midpoint is given by

m =
b− a

2
. (A.5)

By substituting Equation (A.4) into Equation (A.1), and solving the integral for x, we obtain

I = f(m)(b− a) + f ′′(m)
(b− a)3

24
+ f ′′′′(m)

(b− a)5

1920
+ ... (A.6)

It is important to notice that terms that multiply the odd derivatives will naturally become to

zero, this fact can simplify the calculations.

For the next step lets consider the case of the two points Gaussian quadrature rule, for

which n = 2, the integration rule will be denoted as G2 and Equation (A.3) will be expressed

as

G2 = ω1f(x1) + ω2f(x2). (A.7)

By using Equation (A.4) we can determine the values of f(x1) and f(x2) and rewrite Equa-

tion (A.7) as:

G2 = f(m)(ω1 + ω2) + f ′(m)[ω1(x1 −m) + ω2(x2 −m)] + ... (A.8)

Finally, we can compare Equations (A.8) and (A.6) to establish a system of equations. For

instance, the term multiplying f(m) has to be the same in both equations, therefore ω1 +ω2 =

(b− a). This allows us to determine solutions for the nodes and weights.

The aforementioned approach can be extended to any n-point Gaussian Quadrature rule.

The greatest advantage of this method lies in the fact that it does not evaluate f(x) directly

on the integration limits [a, b]. In other words, this implies that while the Gn rule requires the

function and its derivatives to be well-defined between a and b, it does not need to compute

precisely at those boundaries. As long as the limits exist, the method can successfully operate

even in open intervals.

Furthermore, an efficient numerical algorithm also needs to be automatically adaptive. In

essence, the algorithm should be capable of subdividing the primary interval into smaller in-

tervals in order to effectively address challenges within the function, for example local maxima

or minima of the function. To achieve this, the algorithm must be able to internally estimate
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and compute the relative error. This can be calculated as

E =
|I − Gn|

|I|
, (A.9)

where I is the real value of Equation (A.1) and Gn is the evaluation using n-point Gaussian

Quadrature.

Nevertheless, in many cases, determining an exact value for I is often not feasible. Conse-

quently, the strategy used by most routines is to calculate higher-order rules. To put it clearly,

using G2n+1 yields a more accurate result for the integral compared to using Gn. Therefore,

higher-order quadrature rules serve as improved approximations of the exact value. However,

this methodology can be computationally expensive, as it is unlikely that G2n+1 and Gn share

nodes and weights pairs. As a result, it will be necessary to calculate 3n + 1 pairs. An al-

ternative approach is to use the Gauss-Kronrod rule (GnK2n+1), where the integral value is

determined using Equation (A.3) and the exact value is estimated to be

K2n+1 =
n∑

i=1

ωif(xi) +
n+1∑
j=1

νjf(yj). (A.10)

For this case the nodes and weights in the first sum are the same as those obtained for Gn, as

a consequence it is only necessary to calculate 2n + 1 pairs in total.

In adaptive algorithm the numerically estimated error should satisfy

Enum =
|K2n+1 − Gn|

|K2n+1|
< εrel, (A.11)

where εrel is the reference error provided as input. If these conditions are not fulfilled, the

interval [a, b] from Equation (A.1) is subdivided into [a, c] and [c, b], and individual calculations

of Gn and E are performed for each sub-interval. If the conditions are still not met, further

subdivision is applied to the sub-interval with the higher error, leading to re-estimation of Gn

and E. This iterative process continues until either the conditions are satisfied or the maximum

subdivision limit is reached.

The application of these concepts to the problem at this work is not trivial, as Equa-

tions (2.19) and (2.15) can be summarised as a double integral as in

I =

∫ ∞

0

∫ ∞

R

e−R2/2b2 r−ξ

√
r2 −R2

(
1 − β

R2

r2

)
rRdrdR. (A.12)

Here, b = DLσ̃atm is the only parameter that depends on the data. For the data set presented

in Table 3.1, the histogram in Figure A.1 provides an overview of typical values assumed by b.

The median value is b = 0.006, with a minimum value of b = 0.003 and a maximum value of
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b = 0.013.

Figure A.1: Typical values for b = DLσ̃atm in the sample from Table 3.1.

As mentioned earlier, for the case in which β is constant, Equation (A.12) has the exact

solution

I =
1

2

[
B

(
ξ − 1

2
,
1

2

)
− βB

(
ξ + 1

2
,
1

2

)]
(2b2)(3−ξ)/2Γ

(
3 − ξ

2

)
. (A.13)

Therefore, we used this case as a reference to test three routines employing two distinct ap-

proaches. The first approach involved evaluating the inner integral with a smaller tolerance, and

subsequently using this result to evaluate the final integral. Two libraries were used for this

approach: scipy.integrate1, a Python package that employs the QAG (Quadrature Adaptive

Gaussian) function from the QUADPACK library [79], which is a FORTRAN-based package

for one-dimensional numerical integration, and the GNU Scientific Library (GSL) [80], a C

language library that also provides a QAG function based on QUADPACK. The GSL pack is

optimised for Cython, what make it easy to transfer the functions to python. Both aforemen-

tioned libraries employ the G7K15 rule for one-dimensional integration.

The second approach used Gaussian Cubature, which involves simultaneous evaluation of

both integrals by calculating the nodes xi and yi within a hypercube of size hd, where d denotes

the dimension of the integral to be solved. The library employed for this approach was Cuba

[81], specifically developed for C programming. This library also employ G7K15 rule, but extend

it to the multi-dimensionnal case. To use this function in python we wrapped up the C functions

into a python object.

We executed each routine using different values of εrel, specifically 10−1, 10−2, 10−3, 10−4,

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.dblquad.html
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10−5, 10−6, 10−7, 10−8, 10−9, and 10−10. Additionally, we varied the parameter b within the

range of 0.002 to 0.015 for each case. By doing so, we obtained the estimated value of the integral

Gn and the numerically estimated error Enum, which was calculated internally by the algorithm

using Equation (A.11). Finally, we calculated the true relative error using Equations (A.9) and

(A.13).

Figure A.2: Performance test for scipy.integrate.dblquad. The upper plot is the relative error
estimated by the algorithm, while the lower plot is the true error obtained with Equations (A.9)
and (A.13). Each line represents a value for b = DLσ̃atm.

Figure A.2 illustrates the performance test of the code using scipy.integrate.dblquad for

numeric integration. The upper plot presents the algorithm’s estimated relative error, while

the lower plot displays the true error obtained through Equations (A.9) and (A.13). Each line

corresponds to a different value of b = DLσ̃atm. Both cases exhibit oscillations, especially for

larger values of εrel. In the first case, the error seems to stabilise around εrel = 10−6, while in

the second case, stabilisation occurs between εrel = 10−3 for lower b values and εrel = 10−4 for

higher b values.

The stabilised estimated error ranges from 104 to 102, indicating that the algorithm may

not reach the error limit within the maximum number of sub-intervals. On the other hand, the

true error varies between 10−2 and 10−6. Overall, scipy.integrate.dblquad has two significant

drawbacks. Firstly, there appears to be a clear discrepancy in the error for different values

of b. This is problematic because we expect the algorithm to have consistent efficiency across

the entire data set. Secondly, there is no apparent correlation between the two errors. This
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discrepancy could pose a significant problem when applying the algorithm to scenarios where

the true value of the integral is unknown.

Figure A.3: Performance test for GSL. The upper plot is the relative error estimated by the
algorithm, while the lower plot is the true error obtained with Equations (A.9) and (A.13).
Each line represents a value for b = DLσ̃atm.

The performance test for GSL is displayed in Figure A.3. Similarly, the upper plot presents

the algorithm’s estimated relative error, while the lower plot displays the true error. In this

case, the numerically estimated error exhibits a behaviour that is closer to what we would

expect. The error decreases with εrel until the algorithm saturates. However, the true error

still shows significant oscillation for higher εrel, eventually stabilising at εrel = 10−3 for lower b

values, εrel = 10−4 for medium b values, and εrel = 10−5 for higher b values.

The stabilised estimated error ranges from 10−5 to 10−7, while the true error continues to

vary between 10−2 and 10−6. This observation is concerning as the estimated error is expected

to be overestimated rather than underestimated [78]. Additionally, there is still no apparent

correlation between the two errors, which will complicate the application of this algorithm to

functions where we lack the true value.

Figure A.4 illustrates the performance of the algorithm for numeric integration using Cuba.

The upper plot presents the algorithm’s estimated relative error, while the lower plot displays

the true error. These errors finally exhibit the expected behaviour, they monotonically decrease

with εrel until the algorithm saturates at εrel = 10−4. The stabilised estimated error is around

10−4, whereas the true error is approximately 10−5. The discrepancy in error values across b
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Figure A.4: Performance test for Cuba. The upper plot is the relative error estimated by the
algorithm, while the lower plot is the true error obtained with Equations (A.9) and (A.13).
Each line represents a value for b = DLσ̃atm.

is negligible. Moreover, both errors exhibit similar behaviour, making the estimated error a

metric more trustworthy to evaluate the integral of functions for which we do not have the true

value.

In Figure A.5, we compare the true errors for each routine. These errors were calculated

using the estimated integral result for various values of b, with εrel = 10−4, and employing

Equations (A.9) and (A.13). The green histogram represents the true errors calculated for the

results obtained using scipy.integrate.dblquad, the orange histogram represents the true error

calculated for the results obtained using GSL, and the purple histogram represents the error

when utilising Cuba.

It is evident that the error from scipy.integrate.dblquad exhibits a larger spread, with the

values of E surpassing 0.020. When GSL is used, there is an improvement, as the relative

error remains below 0.015. However, the most significant improvement is observed when using

Cuba, where the relative errors are smaller than 0.001. Therefore, this was the routine chosen

to develop the software used in this work.

In Figure A.6, the execution time test for all three tested routines is presented. The test

was performed using the Python module timeit to run each routine 100 times for each value

of εrel, with a fixed value of b = 0.06. The green dotted line represents the execution time

for scipy.integrate.dblquad, the orange dashed line corresponds to the execution time for GSL,
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Figure A.5: Comparison of true errors across different routines for numerical integration.
The green histogram represent the true errors calculated for the results obtained using
scipy.integrate.dblquad, the orange histogram represents the true error calculated for the re-
sults obtained using GSL, and the purple histogram represents the error when making use of
Cuba.

Figure A.6: Execution time test per εrel. The green dotted line represents the run time of the
scipy.integrate.dblquad algorithm, the orange dashed line indicates the integration time with
GSL, and the purple solid line corresponds to the run time of the Cuba algorithm. Each routine
was executed 100 times for comprehensive analysis.
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and the purple solid line is the execution time for Cuba. This test has demonstrated that by

choosing Cuba, we not only improve the accuracy of the integration algorithm but also achieve

a considerable gain in run time.

Figure A.7: Corner plot with the result for the Markov Chain Monte Carlo, for the model with
β constant and with flat P (β0). For this case it was used a numerical integration code to obtain〈
σ2
LOS,0

〉
.

After selecting the integration method, we replicated the results for a constant β with a

flat prior in β0. Figure 3.3 displays the outcome obtained using the exact solution for
〈
σ2
LOS,0

〉
,

as given by Equation (2.21). Conversely, Figure A.7 reproduces this result by employing the

Cuba routine for numerically integrating
〈
σ2
LOS,0

〉
. Both figures exhibit qualitatively equivalent

results, with the only difference being some statistical fluctuations observed in Figure A.7.

These fluctuations arise due to the reduced number of steps in the Markov Chain for this

particular case, which is a consequence of the computational cost. This test has validated our

code and has given us confidence in implementing it for models with radial anisotropy profiles,

where we cannot obtain ⟨σ2
LOS⟩ analytically.
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