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José Abdalla Helayël-Neto
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Abstract

In this Dissertation, we aim to give a general contextualization of the activity on

Lorentz Symmetry Violation (LSV) and its relation with Supersymmetry (SUSY). We

adopt the superfield approach to SUSY in (1 + 3) dimensions and use it to formu-

late an supersymmetric version of the Yang-Mills-Carroll-Field-Jackiw model, with the

Lorentz-symmetry violating background introduced by means of a superfield. This LSV

supermultiplet induces a mixing term between the gauge-boson and the gaugino in the

component-field action. An introductory inspection of this mixing mechanism, induced

by background fermionic condensates and analogue to the axion/photon Primakoff ef-

fect, is carried out as a closure of this Dissertation.

Keyword: Supersymmetry, Lorentz Symmetry Violation, Carroll-Field-Jackiw mod-

els, Breaking of Supersymmetry, Primakoff effect, Mixing of particles.



Resumo

Nesta Dissertação, objetivamos dar uma contextualização geral das atividades em

Violação da Simetria de Lorentz (LSV) e em sua relaçao com a Supersimetria (SUSY).

Nós adotamos a abordagem de supercampos para a SUSY em (1 + 3) dimensões e

à usamos para formular uma versão supersimétrica do modelo de Yang-Mills-Carroll-

Field-Jackiw, com o fundo violador da simetria de Lorentz introduzido por meio de um

supercampo. Este supermultipleto LSV induz um termo de mixing entre o boson de

gauge e o gaugino na ação em termos dos campos componentes. Uma inspeção intro-

dutória à este mecanismo de mixing, induzido pelos condensados do fundo fermiônico

e analógo ao efeito Primakoff áxion/photon, é realizada como um fechamento desta

Dissertação.

Palavras-Chave: Supersimetria, Violação da Simetria de Lorentz, Modelo de

Carroll-Field-Jackiw, Quebra da Supersimetria, Efeito Primakoff, Mixing de part́ıculas.
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2.2 Poincaré Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Two-Component Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Dirac, Weyl and Majorana Spinors in the Weyl Representation . . . . . 18

3 Superspace and Superfields 20

3.1 Superspace in (1+3)D . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 The SUSY Algebra and its Representations . . . . . . . . . . . . . . . . 23

3.2.1 Massless Supermultiplets . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Massive Supermultiplets . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Chiral/Anti-Chiral Superfields . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 SUSY Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 N=1 Matter Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Super-Gauge Theories 34

4.1 Pure N=1 Abelian Super-Gauge Theory . . . . . . . . . . . . . . . . . 34

4.2 Pure N=1 Non-Abelian Super-Gauge Theory . . . . . . . . . . . . . . . 37

4.3 N=1 Super-Gauge-Matter Theory . . . . . . . . . . . . . . . . . . . . . 40

4.4 Super Yang-Mills N=2 Theory . . . . . . . . . . . . . . . . . . . . . . . 43



5 Lorentz Symmetry Violation in Supersymmetric Scenarios 46

5.1 Derivation of the Supersymmetric Non-Abelian Carrol-Field-Jackiw Model 46

6 Future Perspectives 50

7 Conclusions 52

A Translation of the 2-components notation to the 4-components nota-

tion 55

A.1 Weyl Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.2 Dirac Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.3 Majorana Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

B Fierz Rearrangement 58

C Bibliography 60



1 Introduction and General Considerations on the

Work

The Standard Model of Particle Physics (SM) is an cornerstone in modern science.

Nowadays, it’s predictions are verified with even greater precision and it stands as

the fundamental pillar of our present description of nature. However, even with so

many conquests, there are questions unanswered by the SM and they still persist ever

since new physics has being proposed. New physical scenarios, that we may collect

in a general framework we refer to as Physics Beyond the Standard Model, are then

expected and most welcome.

One of this new approaches is Supersymmetry (SUSY). First introduced in the

former Soviet Union by [21] by Gol’fand and Likhtman (1971) and some time later on

in the west by Abdus Salam, J. Strathdee [34] (1974) and J. Wess, B. Zumino [39] (1973),

it is centered in the idea of extending the Minkowski space-time by adding grassmannian

variables, and therefore proposing that physical space has a ”fermionic nature” implicit

to it. Assuming that the fundamental particles of physics comes from the irreducible

representations of the group that preserves the isometry of the space (an idea also

present in the SM), the so called supermultiplet carried by the superfields contains the

Lorentz non-unitary irreducible representation fields and it’s supersymmetric partners.

Today, SUSY has gave many contributions to contemporary physics, from the low-

energy condensaded matter physics to the highest energy scales physics like Superstring

theory, despite the fact it has not being experimentally verified yet.

Another key aspect linked to new physics beyond the SM is related to the conser-

vation of symmetries. From the perspective of the theories that constitute the SM,

for instance Quantum Field Theory, it’s expected the conservation of its fundamental

symmetries. But, experience shows the other way around. CP-symmetry, for instance,

can be violated in the context of Weak interactions, as was experimentally shown by
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C.S. Wu [41]. Since the finding of CP-violation, many physics have prospected, from

different points of view, the possibility that more general symmetries could also be vio-

lated, for instance CPT and Lorentz symmetry. In the context of high energy physics,

it has being proposed that at the Planck scale Lorentz symmetry could be violated [26].

Ever since, many theories have arise to describe effects from the violation of Lorentz

symmetry (LSV) and a model of this kind, reviewed in this dissertation, is the so called

Carrol-Field-Jackiw (CFJ) Electrodynamics [11]. In this theoretical framework, the

electromagnetic field couples to a background vector in which its origins comes from a

more fundamental physics. Since LSV occurs near the Planck scale 1019 GeV, H. Belich

et al. [5] observed the fact that, when LSV happens SUSY is still preserved because

it’s breaking scale is expected to be much lower (1012 GeV). Therefore, they proposed

that the LSV must be included in a supersymmetric scenario and introduced it via

a LSV supermultiplet. With this approach, the vectorial background not only gains

a more fundamental description, but also a fermionic background superpartner. In

recently works [38], the supersymmetric non-abelian version of an CFJ-type model was

developed, where the possibility of a gauge-boson/gaugino mixing mechanism is open,

analogously to the Primakoff effect, induced by the Majorana fermionic background.

In this dissertation, we will adopt the perspective present by H. Belich et al [5]. We

start with a brief review of the historical context (subsection 1.1) in which LSV arises

and it’s interception with Supersymmetry (subsection 1.2). After that, the physical

perspective assumed here (subsection 1.3), the CFJ-Electrodynamics, and its super-

symmetric version, are reviewed in more details. The Primakoff effect, and the mixing

induced by it, is algo present.

In section (2), we do a recapitulation of the Poincaré algebra and introduce the so

called Van-der Warden 2-component spinor notation, which we use in the entire text

to facilitate the construction of SUSY. Following that, in section (3) we construct the

SUSY algebra and its representation, and demonstrate the so called supermultiplets.
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Some aspects of Supersymmetry, like the preservation of the symmetry between bosonic

and fermionic degress of freedom, are also discussed. The procedure to construct the

superspace is also demonstrated, with a brief discussion of Grassmann variables and

its algebra. Afterward, actions invariant under supersymmetric transformation were

constructed and a SUSY covariant derivative was also introduced. In the same section,

the chiral/antichiral superfields were presented as the first representations of SUSY and

with it the procedure to derive Lorentz non-unitary representation matter fields terms

from it.

In section (4), we demonstrate how the framework of SUSY can also supply us with

gauge fields and gauge couplings. Higher representations of SUSY were explored, and

the abelian and non-abelian versions of Super-Gauge theories, with its gauge couplings,

were also developed. We ended the section by giving an example of an extended super-

symmetric theory, i.e. N = 2 Super-Yang-Mills theory, and discussed its properties.

With all the theoretical framework set in place, we derived from first principles

the supersymmetric version of the non-abelian CFJ model in section (5). A superfield

which induces the LSV is proposed, with its physical consequences pointed out. In

sequence, we prospected possible paths towards a gauge-boson/gaugino mixing , in-

spired in the Primakoff effect, in section (6). After the conclusions in section (7), we

presented in the appendix the dictionary to translate from the 2-components notation

to the 4-components spinor notation. The procedure of the Fierz rearrangement is also

demonstrated.

1.1 Historical Contextualization of Lorentz Symmetry Viola-

tion

Historically, the discussion about the breaking of Lorentz symmetry started with

Dirac [16], Bondi and Gold [10] in 1951. Dirac proposed a new Electrodynamics with

the presence of a privileged direction in space. The idea was to understand the origins
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of the divergences present in QED. Later on, Bondi and Gold showed that Dirac’s

Electrodynamics, with spatial anisotropy, has cosmological implications.

Since the 60’s were the decade of the CP violation in the weak interactions, with

Lee’s and Yang’s theoretical work on parity conservation [27] and the experimental veri-

fication of CP violation by C.S. Wu [41], the question of whatever or not others symme-

tries could also be violated, for instance CPT and Lorentz symmetry, was ”in the air”

during that time. In 1963, J.D.Bjorken [8] constructed a model of 4 fermions (an analog

to Heisemberg’s model) which constitutes vacuum expectation values characterized by

vectorial billinears. The point was to try to find an emerging Electromagnetism with

composed photons in the context of a spontaneous breaking of Lorentz symmetry. A

background vector which breaks the Lorentz symmetry also appears when we consider

the graviton as a Goldstone boson, as proposed by P.R. Phillips [32] in 1966. T.G.

Pavlopoulos also investigated J.D. Bjorken’s notion of Lorentz symmetry breaking in a

more deepen way [31]. In a more phenomenological perspective, L.B. Rédei (1967) pro-

posed space-time anisotrophys smaller than 10−16 cm (Electroweak scale) and explored

the implications of Lorentz symmetry violation on muon’s (g − 2) factor. Later on, in

1978, H.B. Nielsen and M. Ninomyia studied the β-function of a non-covariant Yang-

Mills theory and showed that the fixed point is in the region where Lorentz symmetry

is restored.

In early 80’s, the epoch of the Grand Unification, J. Ellis, M.K. Gaillard, D.

Nanopoulos, S. Rudaz [17] (1980) and A.Zee [42] (1982) discussed the possibility that

the proton decay, predicted by the Grand Unified Theories, could also happen with the

presence of small violations of the Lorentz symmetry. On the other hand, at the same

time, Mandelstrom demonstrated that the N = 4 Super-Yang-Mills theories are finite

in all orders of perturbation theory, but the demonstration was not explicitly Lorentz

covariant. There was a need at the time to understand the limits of Lorentz symmetry.

With this context in view, H.B. Nielsen et al. (1982-3) investigated the phenomenolog-
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ical limits in which Lorentz symmetry could be really preserved [29, 12, 30].

After the String’s Revolution (1984), a new phase on the understanding of LSV is

inaugurated by V.A. Kostelecký and S. Samuel in the context of String theory [26, 25]

(1989). It was shown that there exists tensorial modes in open strings which could

take non-trivial vacuum expectation values, and in turn could break Lorentz symme-

try. Also, phenomenological bounds on string theory and Lorentz symmetry violation

were discussed. In the early 90’s, a topological model due to background vector, which

breaks Lorentz symmetry, was proposed by S.M. Carroll, G.B. Field and R. Jackiw in

1990 [11]. The idea, initially, was to use this model with the assistance of astrophysical

data to propose bounds and estimates on the parameters that violates Lorentz sym-

metry. Some time later, at the Indiana University Center for Space-times Symmetries

(IUCSS), directed by V.A. Kostelecký, summer school of 1995, D. Colladay presented

”the minimal Standard Model Extension (SME)”. But, it was only in (1997-8) that

V.A. Kostelecký and D. Colladay full presented what is nowadays know as the Stan-

dard Model Extended (SME). [14, 15]. Today, this theoretical framework is the most

popular one used to investigates Lorentz symmetry violation phenomenologically.

However, the SME was not the only scheme at display. N. Seiberg and E. Witten

proposed in 1999 another framework know as non-commutative field theory [36]. They

proposed a non-commutability in the space-time coordinates, which in turn induces the

LSV. The fields associated with this theory are low energy limits of String theory. This

theoretical framework is not so popular as the SME, but is a very good approach to

Lorentz symmetry breaking.

At the same time, S. Coleman and S.L. Glashow [13] introduced a new approach

based on the hypotheses that Lorentz symmetry should be violated at very high energies,

i.e. at the Planck scale. They proposed to test special relativity at scenarios with

extreme high energies, like ultra high cosmic rays with energies to the order of 1011

GeV.
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In (2002-3), G. Amelino-Camelia [3] and J. Magueijo [28] introduced a new method

for Lorentz symmetry violation; the so called Double-Special Relativity. A theory with

two base invariants: the speed of light and an energy scale.

Another possible path to study LSV phenomenologically is to consider high fre-

quency photons with expanded or modified dispersion relations. Supported by astro-

physical high energy photons measurements, it is possible to relate deviations from

the photon dispersion relation with violation of Lorentz symmetry or even from ef-

fects due to Quantum Gravity, as discussed by G. Amelino-Camelia, et al. [2, 18, 4]

in (1997-2000). Even dispersion relations arising from Loop Quantum Gravity effects

were considered by R. Gambini and J. Pullin [20] (1999) and J. Alfaro, et al. [1] (2002).

1.2 The Relation Between Supersymmetry and Lorentz Sym-

metry Violation

In today’s understanding, Supersymmetry is a very good symmetry at high energies.

Despite the fact that there is no experimental verification of SUSY, we can prospect this

condition from a very solid theoretical point of view. The most general symmetry that

preserves the light cone space-time structure is the conformal symmetry (SO(2, 4)). The

representations of the conformal group must have zero mass or a continuous spectrum

of mass. Therefore, in the ultra-relativistic limit, the conformal symmetry is a good

symmetry. We can show that the conformal transformations can be derived from a

set of transformations given by Majorana spinors which obey a killing vector type

equation. Since the conformal transformations are related to this set of transformations

by fermionic billinears, we can show that the conformal group is the square of the local

SUSY group (SUGRA), i.e. SO(2, 4) ≃ (SUGRA)2.

From the perspective of high energy physics, (String theory[24] [25][26] or even Loop-

Quantum Gravity [20]) Lorentz symmetry is expected to be violated near Planck scale.

Therefore, a relationship between SUSY and LSV can be prospected. The first work
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in this direction was done by V.A. Kostelecký and M.S. Berger [7] in 2002. The idea

was to alter the Supersymmetry algebra by introducing a coupling with a background

vector. Later on, M.S. Berger studied the superfields realizations of this superalgebra

[6] in 2003. Following a different path, A.L.M.A. Nogueira, et al. [5, 35] proposed in

(2003-4) that, since Lorentz symmetry is expected to be violated at Planck scale (1019

GeV) and Supersymmetry is only broken at 1012 GeV, the primer should happen in a

scenario where the latter still holds. With this perspective in mind, they argued that

the Supersymmetry algebra should be preserved and that the LSV must be introduced

via a superfield. In this way, a supersymmetric fermionic background would also appear

and a microscopic origin for the Lorentz symmetry breaking could be studied.

In this spirit, P.A. Bolokhov, et. al [9] constructed a Supersymmetric QED with

Lorentz violation in 2005. They studied QED’s vacuum birefringence due to Lorentz

breaking. Also, the relation between supersymmetry breaking and LSV is explored by

A.Katz and Y. Shadmi [23] (2006) in the context of the splitting of the superpartner’s

masses. In modern days, A.Yu.Petrov, et al. [19] (2012) followed the same line of

introducing Lorentz breaking in the supersymmetry algebra.

1.3 The Supersymmetric Carroll-Field-Jackiw Model

Now, we would like to give some contextualization to the line of work followed by

this dissertation. Here, we consider the perspective of [5] in which the LSV happens in a

supersymmetric scenario. The Lorentz violating background now has a supersymmetric

nature, i.e. is introduced via a superfield. In this LSV multiplet, it’s present not only

the bosonic background but also it fermionic superpartner background. This also allows

us to bring forth a possible fundamental origin to the LSV background.

The so called Carroll-Field-Jackiw Electrodynamics,

LCFJ =
1

4
εµνλκvµAνFλκ,
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proposes a topological term in which, in order to preserve gauge symmetry, imposes the

following condition on the bosonic background vector:

∂µvν − ∂νvµ = 0. (1.1)

In section 5, we constructed the supersymmetric N = 1 non-abelian version of this

CFJ-term [37]. A Wess-Zumino chiral supermultiplet S = {s,Ψ, f}, which breaks the

Lorentz symmetry,

S(x, θ) = eiθσ
µθ̄∂µ(s(x) +

√
2θψ(x)− θ2f(x)), (1.2)

is introduced via a supersymmetric interaction term present in the superaction. It

contains a complex scalar boson s(x), a Majorana fermion Ψ(x) and an auxiliary field

f(x) (which will be eliminated by it’s fields equations). This superfield is neutral under

the gauge group, and imposing the right conditions to recover the CFJ-term, we obtain

the bosonic background in the form

vµ ∝ ∂µ Im{s}, (1.3)

i.e as a 4-gradient of a real scalar, which naturally has the condition to preserve gauge

symmetry (1.1). Since the fermionic background is a Majorana one, it can contribute

with the following billinears:
Ψ̄Ψ → scalar,

Ψ̄γ5Ψ → pseudo-scalar,

Ψ̄γ5γµΨ → pseudo-vector.

(1.4)

In the supersymmetric gauge sector V a = {Aa
µ,Λ

a, Da}, these fermionic billinears
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contributes to the gaugino’s dispersion relations with the following terms:

(Ψ̄Ψ)(Λ̄aΛa),

(Ψ̄γ5Ψ)(Λ̄aγ5Λ
a),

(Ψ̄γ5γµΨ)(Λ̄aγ5γ
µΛa),

(Ψ̄Σµνγ5Ψ)(Λ̄aΣµνγ5Λ
a).

(1.5)

It was also shown in [38] that the gauge boson and the gaugino, in this supersymmetric

LSV scenario, gains a mass:

mA = 2(Ψ̄Ψ) +
|v⃗|
2
,

mΛ = |v⃗|,
(1.6)

of the order of the background vector. Since Supersymmetry requires that particles of

the same supermultiplet to have the same mass, we can easily see that Supersymmetry

is broken. The last billinear in (1.5), after Fierz rearrangement, generates a mixing

term intermediated by the fermionic background:

LMixing = −i
√
2Ψ̄Σµνγ5Λ

aF a
µν . (1.7)

This term allows for a possible gauge-boson/gaugino conversion mechanism, an ana-

logue to the Primakoff effect, induced here by the Majorana fermionic background.

The introduction of this supersymmetric background turned possible a microscopic

explanation for the generalized Lorentz violating Dirac equation proposed by V.A.

Kostelecký and R. Lehnert [24] in the context of the SME model. Therefore, the

perspective assumed in this thesis allows for a more fundamental explanation for the

phenomenological nature of the violation of Lorentz symmetry.
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1.4 The Primakoff Effect

Now, we would like to discuss more in details the Primakoff effect. In the latter, a

axion-photon mixing is possible in the context of the Axion-Electrodynamics [40]:

LAxion-ED = −1

4
F 2
µν +

g

4
aFµνF̃

µν +
1

2
(∂µa)

2 − m

2
a2, (1.8)

where Aµ is the 4-potential photon field, a the axion field and F̃ µν = εµναβFαβ/2 the

electromagnetic field dual tensor. Considering a constant external magnetic field [33],

and the Lorenz gauge (∂µA
µ = 0), the field equations becomes:


□ϕ = g∇a · B⃗,

□A⃗ = g∂taB⃗ − g∇a× E⃗,

(□+m2
a)a = g∂tA⃗ · B⃗ + g∇ϕ · B⃗.

(1.9)

with □ = ∂2t − ∇2. If the external magnetic field is transverse to the momentum of

the waves, i.e. k⃗ · B⃗T = 0, then the gradient terms does not contribute to the field

equations, i.e. ∇a · B⃗T = ∇ϕ · B⃗T = 0. This can be seen by considering these terms in

momentum space. Also, we make the assumption that E⃗ << B⃗T . The field equations

becomes: 
□ϕ = 0,

□A⃗ = g∂taB⃗T ,

(□+m2
a)a = g∂tA⃗ · B⃗T .

(1.10)

Now, we consider the photon and axion dispersion relations as

ω2 = |⃗k|2 + ω̃2, (1.11)

where ω̃ is the contribution from some external effect in the presence of a magnetic

field, like the Cotton-Mouton effect or some solar plasma medium [22]. Assuming plane

waves solutions with k⃗ = kêz, we can write the field equations in the form:
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(ω2 + ∂2z )13 − 2ω2


∆⊥/ω 0 0

0 ∆||/ω ∆M/ω

0 ∆M/ω ∆a/ω




A⊥

A||

a

 = 0, (1.12)

with the defined quantities:

∆⊥ =
ω̃2
⊥

2ω
, ∆|| =

ω̃2
||

2ω
, ∆a =

m2
a

2ω
, ∆M =

igBT

2
(1.13)

and A|| the photon’s polarization component parallel to the magnetic field and A⊥ the

photon’s polarization component perpendicular to the magnetic field. In the ultra-

relativistic limit, i.e. ω >> ma and ω >> ω̃, we can linearize the operator:

(ω2 + ∂2z ) = (ω + i∂z︸︷︷︸
=k=ω

)(ω − i∂z) = 2ω(ω − i∂z). (1.14)

The linearized field equations becomes:(ω − i∂z)13 −


∆⊥ 0 0

0 ∆|| ∆M

0 ∆M ∆a




A⊥

A||

a

 = 0, (1.15)

From the undiagonal sector of the field equations, we can identify the Schrödinger

like equation:

−i∂z

A||

a

 =

∆|| ∆M

∆M ∆a


︸ ︷︷ ︸

HI

A||

a

 . (1.16)

Since the HI matrix is symmetric, the states can be diagonalized by a SO(2) matrix:A′
||

a′

 =

 cos θ sin θ

− sin θ cos θ


︸ ︷︷ ︸

P

A||

a

 , (1.17)

with the eigenvalues,

λ± =
∆|| +∆a

2
±
√

(∆|| −∆a)2

4
+ ∆2

M , (1.18)
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and the mixing angle

tan (2θ) =
2∆M

∆|| −∆a

. (1.19)

Consider now a beam of free particles (axions and photons) traveling in the presence

of a constant external magnetic field transverse to the momentum of the beam. We

can study the mixing process by analyzing the difference in phase between the diagonal

modes and the undiagonal parallel photon mode after a distance z is travalled (we

consider momentum of the modes in the z direction):A′(z)

a′(z)

 =

e−i(λ+−∆||)z 0

0 e−i(λ−−∆||)z

A′(0)

a′(0)

 .

In the undiagonal basis: A(z)
a(z)

 = P−1M(z)P

A(0)
a(0)

 , (1.20)

with

P−1M(z)P = e−i∆||z

cos2 (θ)e−iλ+z + sin2 (θ)e−iλ−z, sin (θ) cos (θ)(e−iλ+z − e−iλ−z)

sin (θ) cos (θ)(e−iλ+z − e−iλ−z), cos2 (θ)e−iλ−z + sin2 (θ)e−iλ+z

 .

(1.21)

The modulus squared of the off-diagonal elements gives us the photon-axion transition

probability:

Pa→γ(z) = sin2 (θ) sin2 (∆oscz), with ∆osc =
λ+ − λ−

2
,

which is the probability that a free axion particle travelling in a region with constant

transverse magnetic field can oscillate into a photon after a distance z. Since the mixing

matrix is symmetric, the probability is the same for the photon oscillating into an axion.

The parameter ∆osc has dimensions of length−1, therefore it can be used to estimate

the scale in which the oscillations can be observed, i.e. losc = 2π/∆osc.

In section (6) we showed that it is possible to generate an similar mechanism for the

mixing of gauge-boson/gaugino particles, induced not by an external magnetic field,

12



but now by a fermionic background. We developed the field equations of the model in

linearized form and discussed some implications of it.
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2 Spinors as Non-Unitary Representations of the

Lorentz Group

Here, we make a brief review of spinors as non-unitary irreducible representations of

the Lorentz Group in (1+3) dimensional Minkowski space-time. The space-time metric

is chosen to be gµν = diag(+1,−1,−1,−1), with µ, ν, ... = 0, 1, 2, 3 space-time indices

and i, j, .... = 1, 2, 3 space indices only.

2.1 Arbitrary Non-Unitary Representations of The Lorentz

Group

In covariant form, the Lorentz algebra, given by the antisymmetric generators Mµν ,

has the form:

[Mµν ,Mρσ] = igνρMµσ − igµρMνρ − igνσMµρ + igµσMνρ, (2.1)

with Moi = Ki and Mij = εijkJk the boost and rotations generators, respectively. In

terms of these generators, the algebra can be cast as:

[Ji, Jj] = iϵijkJk, [Ki, Kj] = −iϵijkKk, [Ji, Kj] = iϵijkKk. (2.2)

To study it’s representations, we can write the generators as:

J±
i =

1

2
(Ji ±Ki), (2.3)

in terms of which the algebra separates into two commuting su(2) algebras:

[J±
i , J

±
j ] = iϵijkJ

±
k , [J±

i , J
∓
j ] = 0. (2.4)

From these non-hermitian generators, we see that the Lorentz Group is a complex-

ified version of SU(2) × SU(2), which is the group SL(2,C) (actually, this group is

the universal cover of the Lorentz group). Since the Lorentz group is composed of two

14



commuting su(2) algebras, the space of the representations of this group is a tensor

product of the spaces of representations of two SU(2) groups. Therefore, we can write

the generators as:

J
(+)
i = J

(A)
i ⊗ 1, J

(−)
i = 1 ⊗ J

(B)
i , (2.5)

where JA
i are the generators of the su(2) algebra in the representation labeled by the

highest weight A = 0, 1/2, 1, 3/2, .... In this way, we can label the irreducible represen-

tations of the group SL(2,C) by the pair (A,B). Note that this representations are field

representations, i.e. they are non-unitary. Therefore, the Lorentz transformations can

be written as:

Λ(A,B)(a, b) = exp
(
iaiJi + ibjKj

)
= exp

(
i(ai − ibi)J

+(A)
i + i(ai + ibi)J

−(B)
i

)
. (2.6)

Since the group SO(3) ⊂ SL(2,C), we can decompose the irreducible representa-

tions of the Lorentz group into irreducible representations S ∈ SO(3) as:

(A,B) =

(A+B)⊕
S=|A−B|

S. (2.7)

2.2 Poincaré Algebra

The Poincaré group contains, in addition to the Lorentz group, the space-time

translations. The generators of space-time translations are the 4-momentum Pµ. It has

the following commutation relations with the Lorentz group generators:

[Pµ, Pν ] = 0, [Ji, Pj] = iϵijkPk, [Ji, P0] = 0, [Ki, Pµ] = iPµ, (2.8)

which contains the facts that the 4-translations commutes among themselves, that the

Pi and P0 are a vector and a scalar under 3-space rotations, and how Pµ is mixed under

a boost. In terms of the covariant Lorentz generators M[µν], the full Poincaré algebra
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can be read as:

[Pµ, Pν ] = 0,

[Mµν ,Mρσ] = igνρMµσ − igµρMνσ − igνσMµρ + igµσMνρ,

[Mµν , Pρ] = −igρµPν + igρνPµ.

(2.9)

Any element of the Poincaré group can be written in terms of it’s generators as:

P (ω, a) = exp

(
i

2
ωµνMµν − iaµPµ

)
. (2.10)

2.3 Two-Component Spinors

We construct here spinors as objects which its elements transforms under the fun-

damental representations of SL(2,C). Since, in the fundamental representation, the

elements of the group SL(2,C) are 2 × 2 matrices with complex entries Mα
β , then a

spinor is a two component object ψα ∈ C, α, β = 1, 2, transforming under the elements

of SL(2,C) as,

ψ′
α =M β

α ψβ. (2.11)

The representations of SL(2,C), namely M , are not equivalent to their complex

conjugate M∗. Therefore, we denote the two component objects transforming under

M∗ as ψ̄, i.e.:

ψ̄′
β̇
= (M∗) α̇

β̇
ψ̄α̇. (2.12)

This spinor is called dotted spinor and the spinor ψ is called an undotted one. We use

the dotted notation because the representations of the two spinor are not equivalent,

therefore we need to differentiate both indexes. If we complex conjugate the relation

(2.11), we can identify ψ̄α̇ with ψ∗
α.

The irreducible representation carried by ψ (i.e. M) is the (1/2, 0) representation

of the Lorentz group and the one carried by ψ̄ (i.e. M∗) is the (0, 1/2). They can be
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written as:

Λ(1/2,0) =M = exp

(
i(ai − ibi)

σi

2

)
,

Λ(0,1/2) =M∗ = exp

(
i(ai + ibi)

σi

2

)
,

(2.13)

where the σi, i = 1, 2, 3, are the Pauli matrices, i.e. half of then are the generators of

the su(2) algebra in the (1/2) irreducible representation.

Now, we introduce the antisymmetric matrices ϵ that lower and raise indices in the

spinorial space. They have the form:

ϵαβ = ϵα̇β̇ =

 0 1

−1 0

 , ϵαβ = ϵα̇β̇ =

 0 −1

1 0

 . (2.14)

with ϵαγϵγβ = δαβ and ϵα̇γ̇ϵ
γ̇β̇ = δ β̇

α̇ . They lower and raise the indices as

ψα = ϵαβψβ, ψα̇ = ϵα̇β̇ψβ̇. (2.15)

Using the notation defined in (2.15), we find that the spinors with raised indices

transforms as:

(ψ′)α = ψβ(M−1) α
β ,

(ψ̄′)β̇ = ψ̄α̇(M∗−1) β̇
α̇ .

(2.16)

Now, we introduce the matrices σµ which has naturally dotted and undotted index:

(σµ)αα̇ = (1,−σi)αα̇. (2.17)

Raising the indices with the antisymmetric tensors ϵ yields:

(σ̄µ)α̇α = ϵα̇β̇ϵαβ(σµ)ββ̇ = (1,+σi)α̇α. (2.18)

Since spinors are anti-commuting variables, i.e. ψ1χ2 = −χ2ψ1, the definition (2.15)

allows us to define the scalar product with the following summing convention:

ψχ = ψαχα = ϵαβψβχα = −ψβϵ
βαχα = −ψβχ

β,

ψ̄χ̄ = ψ̄α̇χ̄
α̇ = ψ̄α̇χ̄β̇ϵ

β̇α̇

= −ψ̄α̇χ̄α̇.
(2.19)
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Using this scalar product convention, we can construct the following vectorial quantities:

ψσµχ̄ = ψασµ

αβ̇
χ̄β̇, ψ̄σ̄µχ = ψ̄α̇(σ̄

µ)α̇βχβ. (2.20)

One can use this summing convention and prove the following identities:

χσµψ̄ = −ψ̄σ̄µχ , (χσµψ̄)† = ψσµχ̄

χσµσ̄νψ = ψσν σ̄µχ , (χσµσ̄νψ)† = ψ̄σ̄νσµχ̄

ψχ = χψ, ψ̄χ̄ = χ̄ψ̄ , (ψχ)† = ψ̄χ̄.

(2.21)

2.4 Dirac, Weyl and Majorana Spinors in the Weyl Represen-

tation

In the Weyl representation, the Dirac matrices are given by:

γµ =

 0 σµ

σ̄µ 0

 , γ5 = iγ0γ1γ2γ3 =

 12 0

0 −12

 , C =

 −iσ2 0

0 iσ2

 . (2.22)

A 4-component Dirac spinor carries a reducible representation (1/2, 0)⊕ (0, 1/2) of

the Lorentz group. It’s composed of a dotted and a undotted spinors as:

ΨD =

 ψα

χ̄α̇

 (2.23)

The Weyl (left/right) spinors are defined as as the Dirac spinors which are eigen-

states of the chirality matrix γ5, i.e. γ5ψD = ±ψD. The Dirac spinors with eigenvalue

(+1) are called Weyl-Left and the ones with (−1) Weyl-Right. In the Weyl representa-

tions of the gamma matrices, the Weyl-Left spinors are given by the undotted spinors

and the Weyl-Right by the dotted ones, i.e.:

ΨL =

 ψα

0

 , ΨR =

 0

χ̄α̇

 (2.24)

.
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We define the Majorana spinor as a Dirac spinor that is equal to it’s charge con-

jugate, i.e. ΨD = Ψc
D = CΨ̄t

D. In the Weyl representation of Dirac matrices, the

Majorana spinors has the form:

ΨMaj. =

 ψα

ψ̄α̇

 . (2.25)

In terms of the gamma matrices γµ, the Lorentz generators can be cast as:

Σµν =
i

4
[γµ, γν ] =

i

4

 σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ

 = i

 σµν 0

0 σ̄µν

 , (2.26)

where we can see that the undotted and dotted spinors transforms separately, the

generators being iσµν for ψα and iσ̄µν for ψ̄α̇ with

(σµν) β
α =

1

4
(σµ

αγ̇σ̄
ν, ˙γβ − σν

αγ̇σ̄
µ, ˙γβ),

(σ̄µν)α̇
β̇
=

1

4
(σ̄µ,α̇γσν

γβ̇
− σ̄ν,α̇γσµ

γβ̇
).

(2.27)

We finalize this section by saying that in the appendix A there is a dictionary to pass

from the 2-component notation to the 4-component one. From what follows, we will

consider the 2-component spinors notation and mention when the notation is changed.
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3 Superspace and Superfields

In the following section, we construct the superspace, which is the natural space to

study the emergence of supersymmetric theories. The idea is to expand the physical

space (xµ) by adding grassmannian coordinates (θα) that preserves the isometry of the

space.

3.1 Superspace in (1+3)D

We expand the Minkowski (1+3)D space-time (xµ) with grassmannian coordinates.

The coordinates θα are chosen to be Majorana spinors and the superspace it’s described

by the coordinates (xµ; θα, θ̄α̇), with α, α̇ = 1, 2.

Since the θ’s are anti-commuting coordinates, i.e. {θα, θβ} = 0, then any product of

more than two θ’s or more than θ̄’s vanishes. For grassmannian variables, the integration

is defined as
∫
dθ1θ1 = 1 and

∫
dθ1 = 0. Since θθ = 2θ2θ1 and θ̄θ = θ̄1θ̄2, we define

d2θ = 1
2
dθ1dθ2 and d2θ̄ = 1

2
dθ̄2dθ̄1 such that∫

d2θ θθ =

∫
d2θ̄ θ̄θ̄ = 1 −→

∫
d2θd2θ̄ θθθ̄θ̄ = 1. (3.1)

Note also that

1 =
∂θ1

∂θ1
∂θ2

∂θ2
=

1

2

(
∂θ1

∂θ1
∂θ2

∂θ2
− ∂θ2

∂θ2
∂θ1

∂θ1

)
=

1

4
ϵαβ∂α∂β θθ

∴
∫
d2θ =

1

4
ϵαβ∂α∂β,

∫
d2θ̄ =

1

4
ϵα̇β̇∂̄α̇∂̄β̇

(3.2)

where we defined the grassmannian derivatives as ∂α ≡ ∂
∂θα

and ∂̄α̇ ≡ ∂
∂θ̄α̇

. With the

above definitions, and the fact that θ†α = θ̄α̇ , we can easily see the hermicity property(
∂

∂θα

)†

=
∂

∂θ̄α̇
, (3.3)

with α = α̇.
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Using the summing convention (2.19), we can easily prove the following relations

with the grassmannian coordinates:

θαθβ = −1

2
ϵαβθθ , θ̄α̇θ̄β̇ =

1

2
ϵα̇β̇ θ̄θ̄

θαθβ =
1

2
ϵαβθθ , θ̄α̇θ̄β̇ = −1

2
ϵα̇β̇ θ̄θ̄

θσµθ̄θσν θ̄ =
1

2
θθθ̄θ̄gµν , θψθχ = −1

2
θθψχ.

(3.4)

A superfield is a continuous function of the coordinates of the superspace that carries

non-unitary irreducible representations of the Lorentz group. Due to the nature of the

grassmannian variables, an arbitrary scalar field can be expanded as:

F (x, θ, θ̄) = s(x) + θψ(x) + θ̄χ̄(x) + θθf(x) + θ̄θ̄m(x) + θσµθ̄vµ(x)

+ θθθ̄λ̄(x) + θ̄θ̄θΓ(x) + θθθ̄θ̄D(x),
(3.5)

where we can see the Lorentz representations carried by the components of the super-

field.

Now, we introduce the Supersymmetry (SUSY) transformations as translations in

superspace:

θ′α = θα + ϵα, θ̄′α̇ = θ̄α̇ + ϵ̄α̇, (xµ)′ = xµ + iθσµϵ̄+ iϵσµθ̄. (3.6)

Since the translations are a continuous symmetry, we can find the representation of

it’s generators in the coordinate space. Considering infinitesimal translations on the θ

coordinates only:

(1 + iϵQ)F (xµ, θ, θ̄) = F (xµ + iϵσµθ̄, θ + ϵ, θ̄)

→ iϵαQαF (x
µ, θ, θ̄) = ϵα(∂α + iσµ

αβ̇
θ̄β̇∂µ)F (x

µ, θ, θ̄).
(3.7)

We can see that the generators of Supersymmetry are given by:

Qα = −i∂α + σµ

αβ̇
θ̄β̇∂µ, (3.8)
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and the generators of translations on the θ̄ coordinates are it’s hermitian conjugate, i.e.

Q̄α̇ = i∂̄α̇ + θβσµ
βα̇∂µ. (3.9)

The generators satisfy the algebra

{Qα, Q̄α̇} = {−i∂α + σµ

αβ̇
θ̄β̇∂µ, i∂̄α̇ + θβσµ

βα̇∂µ}

= −2iσµ
αα̇∂µ = 2σµ

αα̇Pµ,
(3.10)

where we identified the generator of space-time translations as Pµ = −i∂µ. Therefore,

the SUSY variation of a Superfield is given by:

δF = (iϵQ+ iϵ̄Q̄)F. (3.11)

Now, we are interested in objects that transforms in the same way as a superfield.

Since the generators are differential operators, they obey the Libniz’s derivative rule and

with it a product of superfields transforms as a superfield. The space-time derivative ∂µ

commutes with the fermionic derivatives ∂α and ∂̄α̇, which implies that δ∂µF = ∂µδF ,

i.e. a space-time derivative of a superfield transforms as a superfield. On the other

hand, a fermionic derivative has a non-trivial commutator with the generators:

∂αδF = ∂α(iϵQ+ iϵ̄Q̄)F

= i(ϵβ[−i∂β + σµ
βγ̇ θ̄

γ̇∂µ]∂β + ϵ̄β̇[i∂̄β̇ + θβσµ

ββ̇
∂µ − δβασ

µ

ββ̇
∂µ])

= δ(∂αF )− iϵ̄β̇(σµ

αβ̇
∂µ),

(3.12)

and therefore ∂αF does not transform as a superfield. In order to preserve the tensorial

covariancy, we need to introduce a fermionic covariant derivative ∂α → Dα, such that

a covariant derivative of a superfield transforms as a superfield, i.e. DαδF = δDαF .

In order to obtain such covariant derivative, we need that the generators of SUSY

symmetry anti-commute with the covariant derivatives, i.e. {Dα, Qβ} = {D̄α̇, Q̄β̇} = 0,

due to the nature of the fermionic parameters of the transformations ϵ, ϵ̄. We find that:
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Dα = ∂α + iσµ

αβ̇
θ̄β̇∂µ,

D̄α̇ = ∂̄α̇ + iθβσµ
βα̇∂µ,

(3.13)

where D̄α̇ = (Dα)
† and (∂µ)

† = −∂µ. The covariant derivatives obey the anti-commutation

relations:

{Dα, D̄β̇} = 2iσµ

αβ̇
∂µ, {Dα, Dβ} = {D̄β̇, D̄α̇} = 0

{Dα, Qβ} = {D̄α̇, Qβ} = {Dα, Q̄β̇} = {D̄α̇, Q̄β̇} = 0.
(3.14)

3.2 The SUSY Algebra and its Representations

We constructed the superspace as an extension of the ordinary space-time. There-

fore, its natural to view the SUSY algebra, which is an algebra of the superspace, as

an extension of the Poincaré algebra (the space-time algebra). In the following section,

we develop the SUSY algebra from this point of view.

We enlarge the ordinary Poincaré algebra by generators that transform as dotted QI
α

and undotted spinors Q̄I
α̇ under the Lorentz group, and that commute with space-time

translations. We denote by I = 1, ...., N the different pairs of SUSY generators that we

add to the Poincaré algebra. Therefore, the SUSY algebra is given by

[Pµ, Q
I
α] = [Pµ, Q̄

I
α̇] = 0,

[Mµν , Q
I
α] = i(σµν)

β
α Q

I
β,

[Mµν , Q̄
I
α̇] = i(σ̄µν)

α̇
β̇
Q̇β̇,I ,

{QI
α, Q̄

J
β̇
} = 2σµ

αβ̇
Pµδ

IJ .

(3.15)

Note that M12 = J3 and thus [J3, Q
I
1] =

1
2
QI

1 and [J3, Q
I
2] = −1

2
QI

2. Since Q̄
1,I = (QI

2)
†

and Q̄I,2 = −(QI
1)

†, we also have [J3, (Q
I
2)

†] = 1
2
(QI

2)
† and [J3, (Q

I
1)

†] = −1
2
(QI

1)
†.

Therefore, the generators QI
1 and (QI

2)
† rise the spin (helicity) by 1/2, while QI

2 and

(QI
1)

† lower it by 1/2.
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We also have:

{QI
α, Q

J
β} = ϵαβZ

[IJ ], {Q̄I
α̇, Q̄

J
β̇
} = ϵα̇β̇(Z

[IJ ])∗, (3.16)

where the Z [IJ ] are central charges, which means they commute with all generators of

the full SUSY algebra. In the unextended SUSY algebra (N=1) there is no possibility

of central charges. For N > 1, we one talks about extended susy algebra. From the

algebric point of view there is no limit to N, but with increasing N the theories must

also contain particles with higher spin (helicity), and there seem to be no consistent

quantum field theory with spin (helicity) higher than 1 without gravity, or larger than

2 if we have gravity.

Since the full SUSY algebra contains the Poincaré algebra as a sub-algebra, any

representation of the full SUSY algebra also contains a representation of the Poincaré

algebra, although in general a reducible one. Since each irreducible representation of the

Poincaré algebra corresponds to a particle, an irreducible representation of the SUSY

algebra in general correspond to several particles. The states of the representations are

related to each other by QI
α and Q̄J

β̇
, and thus have spin (helicity) differing by units

of half. They form what is called a supermultiplet. Here, we will call an irreducible

representation of the SUSY algebra simply by supermultiplet. Using the spin-statistics

theorem, we can show that the Q and Q̄ change bosons into fermions and vice versa.

An irreducible representations of the SUSY algebra has the proprieties:

• Since P 2 is a Casimir operator of the SUSY algebra, all particles belonging to the

same supermultiplet have the same mass;

• For any state of a free SUSY theory |Ψ⟩, the positivity of the Hilbert space:

0 ≤ ||QI
α |Ψ⟩ ||2 + ||(QI

α)
† |Ψ⟩ ||2 = ⟨Ψ| {QI

α, Q̄
I
α̇} |Ψ⟩ = 2σµ

αα̇ ⟨Ψ|P µ |Ψ⟩ . (3.17)

Taking the trace with respect to the spinorial indices, and using Tr(σµ) = 2δµ0,

yields:

0 ≤ ⟨Ψ|P 0 |Ψ⟩ , (3.18)
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i.e. the energy P 0 in a supersymmetric free theory is always positive.

• A supermultiplet always contains an equal number of bosonic and fermionic de-

grees of freedom.

3.2.1 Massless Supermultiplets

Since for a massless supermultiplet P 2 = 0, we choose the reference frame where

P µ = E(1, 0, 0, 1), so that

{QI
α, Q̄

J
β̇
} =

 0 0

0 4E

 δIJ . (3.19)

Note that {QI
1, Q̄

J
1} = 0. Therefore, due to the positivity of Hilbert space, we must set

QI
1 = Q̄I

1 = 0. We are left with only the N generators QI
2 and Q̄J

2̇
. Due to the relations

(3.16), we see that, for massless supermultiplets, the central charges ZIJ must vanish.

We define

aI =
1√
4E

QI
2 , a†I =

1√
4E

Q̄I
2̇
. (3.20)

The aI and a†I are anti-commuting creation and annihilation operators:

{aI , a†J} = δIJ , {aI , aJ} = 0. (3.21)

Then, we choose a vacuum state, i.e. a state annihilated by all aI . Such a state will

carry some irreducible representation of the Poincaré algebra, i.e. it will be character-

ized by m = 0 and some helicity λ. We denote this state by |λ⟩. From the commutators

of QI
2 and Q̄

J
2̇
with the helicity operator, one sees that QI

2 lowers the helicity by half and

Q̄J
2̇
rises it by half. Then the supermultiplets have the form a†1....a

†
N |λ⟩ = |λ+N/2⟩.

In general, such supermultiplets will not have the helicities symmetrically distributed

about zero. Such supermultiplets cannot be invariant under CPT, since CPT flips the

sign of the helicity. To satisfy CPT, one needs to add to these multiplets its CPT

conjugate multiplets with opposite helicities and opposite quantum numbers.
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For N = 1 SUSY, the supermultiplets only contains 2 states: |λ⟩ and |λ+ 1/2⟩. We

denote then by (λ, λ + 1/2). We need to double then so they can be invariant under

CPT. We get the following supermultiplets:

• The chiral multiplet (0, 1/2)⊕ (−1/2, 0), corresponding to a Weyl fermion and a

complex scalar;

• The vector multiplet (1/2, 1) ⊕ (−1,−1/2), corresponding to a gauge boson and

a Weyl fermion (gaugino), both necessarily in the adjoint representation of the

gauge group;

• The gravitino multiplet (1, 3/2)⊕ (−3/2,−1), corresponding to a gravitino and a

gauge boson;

• The graviton multiplet (3/2, 2) ⊕ (−2,−3/2), corresponding to a graviton and a

gravitino.

Since the gravitino should only be present in a theory with gravity, so if N = 1 it can

only occur once and in the graviton multiplet. For helicities up to 2, we need to stop

here in the N = 1 supermultiplets.

A N = 2 supermultiplet has the form (λ, λ + 1/2, λ + 1/2, λ + 1). Considering

helicities not exceeding one, we get the following multiplets:

• The N = 2 vector multiplet (0, 1/2, 1/2, 1) ⊕ (−1,−1/2,−1/2, 0), correspond-

ing to a gauge boson, 2 Weyl fermions and a complex scalar, all in the adjoint

representation of the gauge group;

• The hypermultiplet: if λ = −1/2 we get (−1/2, 0, 0, 1/2). This may or may not

be CPT self conjugate. If it is, we call it a half-hypermultiplet. If its not, we have

to add its CPT conjugate (−1/2, 0, 0, 1/2).

For N = 4, and restricting again to helicities not exceeding one, there is a single N = 4

multiplet (−1, 4× (−1/2), 6×0, 4×1/2, 1). It contains a gauge boson, 4 Weyl fermions
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and 3 complex scalars, all transforming under the adjoint representation of the gauge

group.

3.2.2 Massive Supermultiplets

Considering now the massive case P 2 > 0 , in the rest frame Pµ = (m, 0, 0, 0), the

SUSY algebra becomes:

{QI
α, (Q

J
β)

†} = 2mδαβδ
IJ , {QI

α, Q
J
β} = ϵαβZ

IJ , {(QI
α)

†, (QJ
β)

†} = ϵαβ(Z
IJ)∗. (3.22)

By use of an appropriate U(N) rotation among the generators QI , we can put the

matrix representation the central charges ZIJ in the diagonal form:

ZIJ =



0 q1 0 0

−q1 0 0 0 ...

0 0 0 q2

0 0 −q2 0
...


(3.23)

with all qn ≤ 0, n = 1, ...., N/2. We assume N even, since otherwise there is an extra

zero eigenvalue of the Z-matrix which can be handled trivially.

We define the operators:

a1α =
1√
2
(Q1

α + ϵαβ(Q
2
β)

†)

b1α =
1√
2
(Q1

α − ϵαβ(Q
2
β)

†)

a2α =
1√
2
(Q3

α + ϵαβ(Q
4
β)

†)

b2α =
1√
2
(Q3

α − ϵαβ(Q
4
β)

†)

...

(3.24)

The operators arα and brα, r = 1, ..., N/2, and their hermitian conjugate satisfy the
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commutation relations

{arα, (asβ)†} = (2m− qr)δrsδαβ,

{brα, (bsβ)†} = (2m+ qr)δrsδαβ,

{arα, (bsβ)†} = {arα, asβ} = .... = 0.

(3.25)

The positivity of Hilbert space requires that 2m ≥ |qn|. If any of the qn saturate the

bound, i.e. |qn| = 2m, then the corresponding operators must be set equal to zero, as we

did in the massless case. Clearly, in the massless case the bound becomes 0 ≥ |qn|, thus

qn = 0 always. Again, we see that there cannot be central charges in the massless case

and the bound is always saturated, with only half non-vanishing fermionic generators.

In the more general massive case, i.e |qn| < 2m for all n, then we can construct the

states starting from an vacuum state with a minimal spin S, which is annihilated by all

anα and bnβ.

ForN = 1, we got four states denoted by
(
S, S + 1

2
, S + 1

2
, S + 1

)
. The (−1/2, 0, 0, 1/2)

multiplet, which is CPT self conjugate, or (−1,−1/2,−1/2, 0) ⊕ (1, 1/2, 1/2, 0). The

latter has the same states as a massless vector plus a massless chiral multiplet and can

be obtained from then via Higgs Mechanism. It corresponds to massive vector, a Dirac

spinor and a single real scalar field.

For N = 2, we have 16 states with spins ranging from [−1, 1]. This massive multiplet

can be seen as the sum of a massless N = 2 vector and hypermultiplets. A massive

N = 4 multiplet contains 28 = 256 states, including at least a ±2 spin. Such a theory

must include a spin-2 massive particle, which is not possible in quantum field theory.

The multiplets where some of the qn are equal to 2m, then we have whats is called

short or BPS multiplets. If all the qn equal to 2m, then we have the so called shortest

multiplets.
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3.3 Chiral/Anti-Chiral Superfields

A chiral superfield, i.e. the chiral multiplet (0, 1/2) ⊕ (−1/2, 0), is defined by the

superfield equations:

D̄α̇ϕ = 0, (3.26)

and a anti-chiral one by

Dαϕ̄ = 0. (3.27)

Translating the space-time coordinates by yµ = xµ + iθσµθ̄ and ȳµ = xµ − iθσµθ̄, we

can see that

Dαθ̄ = D̄α̇θ = Dαȳ
µ = D̄α̇y

µ = 0, (3.28)

hence ϕ = ϕ(yµ, θ) and ϕ̄ = ϕ̄(ȳµ, θ̄).

The chiral superfield ϕ has the component expansion:

ϕ(y, θ) = z(y) +
√
2θψ(y)− θθf(y), (3.29)

or Taylor expanding in xµ:

ϕ(x, θ) = z(x) + iθσµθ̄∂µz(x)−
1

4
θθθ̄θ̄∂2z(x) +

√
2θψ(x)− i√

2
θθ∂µψ(x)σ

µθ̄ − θθf(x).

(3.30)

Such a chiral superfied is composed of a complex scalar z and a Weyl fermion ψ, i.e a

(0, 1/2) representation. For the anti-chiral superfield:

ϕ̄(x, θ) = z†(x)− iθσµθ̄∂µz
†(x)− 1

4
θθθ̄θ̄∂2z†(x)+

√
2θ̄ψ̄(x)+

i√
2
θ̄θ̄θσµ∂µψ̄(x)− θ̄θ̄f̄(x).

(3.31)

Now, let us analysis the SUSY variation of the chiral superfield. The SUSY gener-

ators in the (yµ, θ, θ̄) variables are given by:

Qα = −i∂α , Q̄α̇ = i∂̄α̇ + 2θβσµ
βα̇

∂

∂yµ
. (3.32)
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Then,

δϕ(y, θ) = (iϵQ+ iϵ̄Q̄)ϕ(y, θ) =

(
ϵα∂α + 2iθβσµ

βα̇ϵ̄
α̇ ∂

∂yµ

)
ϕ(y, θ)

=
√
2ϵψ +

√
2θ(

√
2iσµϵ̄∂µz −

√
2ϵf)− θθ(−i

√
2ϵ̄σ̄µ∂µψ).

(3.33)

In terms of field components, the SUSY variations can be read as:

δz =
√
2ϵψ,

δψ =
√
2i∂µzσ

µϵ̄−
√
2fϵ,

δf =
√
2i∂µψσ

µϵ̄.

(3.34)

3.4 SUSY Actions

Now, let’s consider supersymmetric actions. Note that the product of chiral (anti-

chiral) superfields are still chiral (anti-chiral) superfields. Typically, one will have chiral

superpotentialsW (ϕ), which may depend on several chiral superfields ϕi. We can Taylor

expand, in terms of the variables (y, θ, θ̄),:

W (ϕ) = W (z(y)) +
√
2
∂W

∂zi
θψi(y)− θθ

(
∂W

∂zi
fi(y) +

1

2

∂2W

∂zi∂zj
ψi(y)ψj(y)

)
, (3.35)

where it’s understood that the derivatives are taken with respect to z(y). Now, since

supersymmetric theories are considered here as Representations of a superspace, we

introduce the supersymmetric action with a supersymmetric measure on integration

(d2θd2θ̄d4x):

S =

∫
d4x

{
d2θd2θ̄ F (x, θ, θ̄) +

∫
d2θ W [ϕ] +

∫
d2θ̄ (W [ϕ])†

}
. (3.36)

Actions of this form are automatically SUSY invariant, i.e. they transform at most by

a total derivative which in turn does not contribute to the field equations. This can be

seen by the SUSY variation of the superfields:

δF = (iϵQ+ iϵ̄Q̄)F = ∂α(−ϵαF ) + ∂̄α̇(−ϵ̄α̇F ) + ∂µ(−i(ϵσµθ̄ − θσµϵ̄)F ). (3.37)
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Since the ϵ and ϵ̄ are constant spinors, the integration on the grassmannian coordinates∫
d2θd2θ̄ only leaves the last term, which is a total derivative as claimed before. For

the superpotential W [ϕ], we can consider the SUSY variation on chiral superfields. In

the (y, θ, θ̄) variables:

δϕ = ∂α(−ϵαϕ(i, θ)) +
∂

∂yµ
[−i(ϵσµθ̄ − θσµϵ̄)]ϕ(y, θ) (3.38)

Again, integration on
∫
d2θ only leaves the last term which is a total derivative. The

analogous argument holds for anti-chiral superpotentials (W [ϕ])† and integration on∫
d2θ̄. This proves the Supersymmetry of (3.36).

From the nature of the expansion of the superfields and superpotentials, the only

term that will survive the integration in the grassmannian coordinates are the θθθ̄θ̄

terms, called D-terms. For the chiral/anti-chiral superfield, only the θθ/θ̄θ̄ terms,

which are called F-terms.

3.5 N=1 Matter Lagrangian

Since W [ϕ] and (W [ϕ])† are superpotentials, the kinetic terms must be developed

from F (x, θ, θ̄). A natural, and simple proposal, is to choose F = ϕ†ϕ. In terms of the

(y, θ, θ̄) variables, the D-term is given by:

ϕ†
iϕi

∣∣
θθθ̄θ̄

= ∂µz
†
i ∂

µzi − iψ̄iσ̄
µ∂µψi + f †

i fi + Total Derivatives. (3.39)

Therefore, the action assume the form:

S =

∫
d4xd2θd2θ̄ ϕ†

iϕi +

∫
d2θ W [ϕi] + h.c

=

∫
d4x

(
|∂µzi|2 − iψ̄iσ̄

µ∂µψi + f †
i fi −

∂W

∂zi
fi

∣∣∣∣
θ=0

+ h.c.− 1

2

∂2W

∂zi∂zj
ψiψj

∣∣∣∣
θ=0

+ h.c.

)
.

(3.40)

Note that the auxiliary fields fi have no kinetic term. They can be eliminated by their

field equations:

fi =
∂W

∂z†i
, f †

i =
∂W

∂zi
. (3.41)
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Substituting back into the action and putting in 4-components notation:

S =

∫
d4x

(
|∂µzi|2 − iΨ̄L,iγ

µ∂µΨL,i −
∣∣∣∣∂W∂zi

∣∣∣∣2
θ=0

− 1

2

∂2W

∂zi∂zj
ΨL,iΨL,j

∣∣∣∣
θ=0

+ h.c.

)
,

(3.42)

where we can see that the scalar potential is given by

V =
∑
i

∣∣∣∣∂W∂zi
∣∣∣∣2 . (3.43)

This kinetic term gives us several complex scalars zi and Weyl left ψL,i fields. It also

contains the Weyl right fermions. We can see this by rewriting the spinor kinetic term

with the use of the relations (2.21) :

iψ̄α̇(σ̄
µ)α̇α∂µψα = −i∂µψασµ

αα̇ψ̄
α̇ = iψασµ

αα̇∂µψ̄
α̇︸ ︷︷ ︸

iΨ̄Rγµ∂µΨR

+Total Derivative (3.44)

This proposal of kinetic term can also describe Majora fermions kinetic terms.

Again, we can rewrite the 2-components Weyl-left term as

iψ̄α̇(σ̄
µ)α̇α∂µψα =

i

2
(ψ̄α̇(σ̄

µ)α̇α∂µψα + ψασµ
αα̇∂µψ̄

α̇) + Total Derivative

=
i

2
Ψ̄Maj.γ

µ∂µΨMaj. + Total Derivative.
(3.45)

Now, for the Majorana and the scalar mass terms we can propose a superpotential in

the form:

W [ϕ] =
m

2
ϕ2
i ,

∂W

∂zi
= mϕi,

∂2W

∂zi∂zj
= mδij (3.46)

where the parameter m has canonical dimension 1 and the derivatives of the superpo-

tential with respect to zi are taken with θ = θ̄ = 0. Substituting this superpotential in

the action (3.42), with the spinors written as Majorana’s ones in 4-component notation,

we obtain

S =

∫
d4x

|∂µzi|2 − i

2
Ψ̄M,iγ

µ∂µΨM,i −m2|zi|2 −
m

2
(ψαψα + ψ̄α̇ψ̄

α̇︸ ︷︷ ︸
Ψ̄M,iΨM,i

)

 (3.47)
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For the Dirac fermions, we need that the right and left components are unrelated.

To archive this, we need another chiral superfield Ξ to construct the right-independent

part:

Ξ(y) = s(y) +
√
2θχ(y)− θ2h. (3.48)

Therefore, the Dirac kinetic terms can be derived from:

ϕ†
iϕi

∣∣∣∣
θ2θ̄2

+ Ξ†
iΞi

∣∣∣∣
θ2θ̄2

= |∂µsi|2 + |∂µzi|2 − iψ̄iσ̄
µ∂µψi − iχiσ

µ∂µχ̄i + f †
i fi + h†ihi + T.D.

= |∂µsi|2 + |∂µzi|2 − iΨ̄D,iγ
µ∂µΨD,i + f †

i fi + h†ihi + T.D.

(3.49)

To generate the Dirac’s mass terms, we write the superpotential as

W [ϕ,Ξ] = m(ϕ Ξ),
∂W

∂zi
= mΞi,

∂W

∂si
= mϕi,

∂2W

∂zi∂sj
= mδij,

∂2W

∂si∂sj
=

∂2W

∂zi∂zj
= 0,

(3.50)

where again we consider that the derivatives with respect to the scalar fields are taken

with θ = θ̄ = 0. Adding the superpotential terms, as in (3.42), to the Dirac’s kinetics

terms, we obtain the action:

S =

∫
d4x

|∂µsi|2 + |∂µzi|2 − iΨ̄D,iγ
µ∂µΨD,i −m2|zi|2 −m2|si|2 −m(χαψα + ψ̄α̇χ̄

α̇︸ ︷︷ ︸
Ψ̄DΨD

)


(3.51)

We end this section by demonstrating how to construct Yukawa interactions and

scalar self-interactions. Considering the action of the Weyl-left fermions (3.42), we

construct a superpotential in the form:

W [ϕi] =
∑
i

g

3!
ϕ3
i ,

∂W

∂zi
=
g

2
ϕ2
i ,

∂2W

∂zi∂zj
= gϕiδij, (3.52)

where again we consider the derivatives in the context of θ = θ̄ = 0. Substituting back

in (3.42):

S =
∑
i

∫
d4x

[
|∂µzi|2 − iΨ̄L,iγ

µ∂µΨL,i − g2|zi|4 + g(ziψ
α
i ψα,i + z†i ψ̄α̇,iψ̄

α̇
i )

]
. (3.53)
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4 Super-Gauge Theories

In this section, we introduce a supersymmetric scenario where Gauge theories can

naturally emerge, i.e. the Super-Gauge theories, and the supersymmetric generalization

of the gauge transformations. We will focus on the N = 1 Supersymmetry first, but in

the last subsection, we will construct SUSY’s with higher N.

4.1 Pure N=1 Abelian Super-Gauge Theory

The next N = 1 supermultiplet of higher spin is the vector multiplet (1, 1/2) ⊕

(−1,−1/2), which is in the adjoint representation of the gauge group. The correspond-

ing superfield V (x, θ, θ̄) is real and has the expansion:

V (x, θ, θ̄) = C(x) + iθχ− iθ̄χ̄+ θσµθ̄Aµ +
i

2
θθB − i

2
θ̄θ̄B† + iθθθ̄

(
λ̄+

i

2
/̄∂χ

)
−iθ̄θ̄θ

(
λ̄− i

2
/∂χ̄

)
+

1

2
θθθ̄θ̄

(
D − 1

2
∂2C

)
.

(4.1)

where /∂ ≡ σµ∂µ and /̄∂ = σ̄µ∂µ.

We can eliminate many of the components of this multiplet by making use of a su-

persymmetric generalization of a gauge transformation. Note that the transformation:

V ′ = V + ϕ+ ϕ†

= C + z + z† + θ(iχ+
√
2ψ) + θ̄(−iχ̄+

√
2ψ̄) +

i

2
θθ(B + 2if)

− i

2
(B† − 2if †) + θθθ̄

(
iλ̄− 1

2
/̄∂χ+

i√
2
/̄∂ψ

)
+ θ̄θ̄θ

(
−iλ− 1

2
/∂χ̄− i√

2
/∂ψ̄

)
+ θθθ̄θ̄

(
D

2
− ∂2C

4
− ∂2z

4

)
+ θσµθ̄(Aµ + i∂µz − i∂µz

†),

(4.2)

with ϕ a chiral superfield, implies that the vector field component Aµ must transforms

as an abelian gauge field,

A′
µ = Aµ + ∂µ(2 Im(z)). (4.3)
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Therefore, (4.2) is the supersymmetric generalization of an abelian gauge transforma-

tion. We can use this supersymmetric gauge freedom to eliminate the components

B,B†, χ, C . This choice of ”super gauge” is called the Wess-Zumino gauge, and it

reduces the vector multiplet to the form,

VWZ = θσµθ̄Aµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x). (4.4)

Since the expansion of (4.4) contains terms with at least one θ and one θ̄, the only

non-vanishing power of VWZ is

V 2
WZ = θσµθ̄θσν θ̄AµAν =

1

2
θθθ̄θ̄AµA

µ, (4.5)

with V n
WZ = 0, for n ≥ 3.

Since the product of VWZ does not generate kinetic terms for Aµ, we need to act with

covariant derivatives on V to generate this terms. We define the chiral and anti-chiral

quantities:

Wα = −1

4
D̄D̄DαV, W̄α̇ = −1

4
DDD̄α̇V. (4.6)

The condition D3 = D̄3 = 0 reflects the fact that Wα and W̄α̇ are chiral and anti-chiral.

Note that, if we transform the vector multiplet by the super gauge transformations

(4.2), the W superfields remain invariant:

W ′
α = Wα − 1

4
D̄D̄Dα(ϕ+ ϕ†) = Wα +

1

4
D̄α̇D̄α̇Dαϕ

= Wα +
1

4
D̄α̇{D̄α̇, Dα}ϕ = Wα +

i

2
σµ
αα̇∂µ��

��*
0

(D̄α̇ϕ) = Wα,

(4.7)

due to the condition that defines the chiral superfields, i.e. D̄ϕ = Dϕ† = 0. To calculate

Wα, we can use the Wess-Zumino gauge and the covariant derivatives in the (y, θ, θ̄),

Dα = ∂α + 2i(σµθ̄)α
∂

∂yµ
, D̄α̇ = ∂̄α̇. (4.8)

We can write the vector multiplet as:

VWZ = θσµθ̄Aµ(y) + iθθθ̄λ̄(y)− iθ̄θ̄θλ(y) +
1

2
θθθ̄θ̄(D(y)− i∂µA

µ(y)). (4.9)
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Then,

DαVWZ = (σµθ)αAµ + 2iθαθ̄λ̄− iθ̄θ̄λα + θαθ̄θ̄D + iθ̄θ̄((σµσ̄ν) γ
α − gµνδ γ

α )θγ∂µAν

+ θθθ̄θ̄(/∂λ̄)α.

(4.10)

Using the identity σµσ̄ν − gµν = 2σµν , we find that

DαVWZ = (σµθ)αAµ + 2iθαθ̄λ̄− iθ̄θ̄λα + θαθ̄θ̄D

+ 2iθ̄θ̄(σµνθ)α∂µAν + θθθ̄θ̄(/∂λ̄)α.
(4.11)

After noting that D̄D̄θ̄θ̄ = −4, we can compute the explicit form of the W’s superfields:

Wα = −iλα(y) + θαD(y) + i(σµνθ)αFµν(y) + θθ(/∂λ̄)α(y), (4.12)

where we used the antisymmetry of σµν contracted with ∂µAν to write the field strength

tensor associated with Aµ,

Fµν = ∂µAν − ∂νAµ. (4.13)

Since Wα is chiral,
∫
d2θ WαWα is a SUSY invariant Lagrangian. The F-term

associated with WαWα is given by

WαWα

∣∣
θθ

= −2iλ/∂λ̄+D2 − 1

2
(σµν σ̄ρσ)ααFµνFρσ

= −2iλ/∂λ̄+D2 − 1

2
F µνFµν +

i

2
FµνF̃

µν ,
(4.14)

where we used the fact that

(σµν σ̄ρσ)αα =
1

2
(gµρgνσ − gµσgνρ − iϵµνρσ), (4.15)

and we defined the dual field strength as F̃ µν = 1
2
ϵµνρσFρσ. To obtain the full super-

symmetric Maxwell Lagrangian, we need to add the complex conjugate of (4.14). With

the adequate normalization, we can write the supersymmetric N = 1 Maxwell theory

as

SSUSY
Maxwell =

1

4

∫
d4x

(∫
d2θ WαWα +

∫
d2θ̄W̄α̇W̄

α̇

)
=

∫
d4x

(
− i

2
Λ/∂Λ̄ +

1

2
D2 − 1

4
F µνFµν

)
,

(4.16)
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with the spinors,

Λ =

λα
λ̄α̇

 , (4.17)

in the 4-component notation.

4.2 Pure N=1 Non-Abelian Super-Gauge Theory

Here, we are interested in generalizing the theory (3.42) for any SU(N) gauge group.

Consider the vector multiplet (4.1) in the adjoint representation of the gauge group G,

i.e. V ≡ VaT
a, a = 1, 2, ..., dim (G), where the T a are the generators of the gauge group

in the adjoint representation. Therefore, by the exponential mapping, we can see that

the more fundamental object is actually eV . The non-abelian supersymmetric gauge

transformation now becomes:

eV → eϕ
†
eV eϕ, e−V → e−ϕe−V e−ϕ†

, (4.18)

where we can see that to first order in ϕ it reproduces (4.2). We will construct a susy

action that is a local symmetry of this transformation. This transformation (4.18) can

again be used to put the vector multiplet (4.1) in the WZ-gauge expression (4.4). From

what follows, we assume all quantities on this WZ-gauge. Note that one simply has:

eV = 1 + V +
V 2

2
. (4.19)

The non-abelian generalization of the superfield strength tensor is now defined as:

Wα = −1

4
D̄D̄(e−VDαe

V ), W̄α̇ = +
1

4
DD(eV D̄α̇e

−V ), (4.20)

which to first order in V reproduces the abelian case (4.12). Under the the transfor-
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mations (4.18), the superfield strength tensor:

W ′
α = −1

4
D̄D̄(e−ϕe−V e−ϕ†

Dα[e
ϕ†
eV eϕ])

= −1

4
D̄D̄(e−ϕe−V [(Dαe

V )eϕ + eV (Dαe
ϕ)])

= e−ϕ

{
− 1

4
D̄D̄(e−VDαe

V )−
��

����*
0

1

4
D̄D̄Dαϕ

}
eϕ = e−ϕWαe

ϕ,

(4.21)

i.e. it transforms covariantly under(4.18). Analogously, we can show that

W̄ ′
α̇ = eϕ

†
W̄α̇e

−ϕ†
. (4.22)

Using the expansion (4.19), we can find the explicit form of (4.20):

Wα = −1

4
D̄D̄

([
1− V +

V 2

2

]
Dα

[
1 + V +

V 2

2

])
= −1

4
D̄D̄

([
1− V +

V 2

2

] [
DαV +

DαV.V + V.DαV

2

])
= −1

4
D̄D̄

(
DαV +

DαV.V

2
+
V.DαV

2
− V.DαV

)
= −1

4
D̄D̄DαV +

1

8
D̄D̄[V,DαV ],

(4.23)

which the first term is the same as in the abelian case (4.12). The second term, therefore,

is the non-abelian contribution of the gauge group. The commutator has the form:

[V,DαV ] =

[(
θσµθ̄Aµ(y) + iθθθ̄λ̄(y)− iθ̄θ̄θλ(y) +

1

2
θθθ̄θ̄(D(y)− i∂µA

µ(y))

)
,

(σµθ̄)αAµ + 2iθαθ̄λ̄− iθ̄θ̄λα + θαθ̄θ̄D + iθ̄θ̄((σµσ̄ν) γ
α − gµνδ γ

α )θγ∂µAν + θθθ̄θ̄(/∂λ̄)α

]
= θ̄θ̄(σνµθ)α[Aµ, Aν ] + iθθθ̄θ̄σµ

αβ̇
[Aµ, λ̄

β̇],

(4.24)

and using again D̄D̄θ̄θ̄ = −4, then

1

8
D̄D̄[V,DαV ] =

1

2
(σµνθ)α[Aµ, Aν ]−

i

2
θθσµ

αβ̇
[Aµ, λ̄

β̇]. (4.25)
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Adding this to (4.12), we finally obtain the generalization of the super non-abelian

field strength tensor:

Wα = −iλα(y) + θαD(y) + i(σµνθ)αFµν(y) + θθ( /Dλ̄)α(y), (4.26)

where now the field strength Fµν and the covariant derivatives contains non-abelian

terms:

Fµν = ∂µAν − ∂νAµ −
i

2
[Aµ, Aν ], Dµλ̄ = ∂µλ̄− i

2
[Aµ, λ̄]. (4.27)

Now, we rescale the vector multiplet V by a factor of 2g, to express the non-abelian

coupling constant g,

V → 2g V ⇔ Aµ → 2g Aµ, λ→ 2g λ, D → 2g D. (4.28)

The field strength tensor and the covariant derivatives now assume the form:

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ], Dµλ̄ = ∂µλ̄− ig[Aµ, λ̄]. (4.29)

Finally, the F-term associated with WαWα is given by:

WαWα

∣∣
θθ

= −2g2(FµνF
µν + 4iλ /Dλ̄− 2D2 − iFµνF̃

µν), (4.30)

where we defined the dual of F µν in the same way as in the abelian case, i.e.:

F̃ µν =
1

2
ϵµνσρFσρ. (4.31)

Now, the vector multiplet (4.1) is considered in some representation of the gauge

group. Its generators satisfy the commutations relations:

[T a, T b] = if [abc]T c, (4.32)

with real structure constants f [abc]. The field strength tensor can be cast in the form:

F a
µνT

a = ∂µA
a
νT

a − ∂νA
a
µT

a − igAb
µA

c
ν [T

b, T c]

= (∂µA
a
ν − ∂νA

a
µ + gf bcaAb

µA
c
ν)T

a

∴ F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν ,

(4.33)
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and the covariant derivative,

Dµλ̄
aT a = ∂µλ̄

aT a − igAb
µλ̄

c[T b, T c] = (∂µλ̄
a + gf bcaAb

µλ̄
c)T a

∴ Dµλ̄
a = ∂µλ̄

a + gfabcAb
µλ̄

c.
(4.34)

To construct the supersymmetric non-abelian Lagrangian, we need to take the trace

with respect to the adjoint representation of the gauge group and introduce the coupling

constant:

τ =
Θ

2π
+

4πi

g2
. (4.35)

Therefore, the N=1 gauge generalized SUSY action becomes:

SN=1
Non-Abe.Gauge =

1

32π

∫
d4x Im

[
τ

∫
d2θTr(WαWα)

]
=

1

32π

∫
d4x Im

[(
Θ

2π
+

4πi

g2

)
(−2g2) Tr

[
(FµF

µν + 4iλ /Dλ̄− 2D2 − iFµνF̃
µν)
]]

=

∫
d4x

{
Tr

(
−1

4
FµνF

µν − i

2
Λ̄ /DΛ +

1

2
D2

)
+

Θ

32π2
g2Tr

(
FµνF̃

µν
)}

,

(4.36)

with the photino field Λ in 4-components notation. Note that the SUSY Lagrangian

Tr(WαWα), properly normalized, produced the conventionally normalizes gauge kinetic

terms Tr
(
F 2
µν

)
and the instanton density g2

32π2 Tr
(
FµνF̃

µν
)
associated with the Θ term.

4.3 N=1 Super-Gauge-Matter Theory

To include the matter Lagrangian, we consider now the chiral multiplets ϕi in some

representation of the gauge group R where the generators are given by the matrices

(T a
R)

i
j. They transform under the gauge group:

ϕ→ eiΛϕ, ϕ† → ϕ†e−iΛ†
, (4.37)

with Λ = ΛaT a
R a chiral superfield. Then, the gauge generalization of the matter kinetic

term is given by

ϕ†eV
aTa

ϕ = ϕ†
i (e

V )i jϕ
j. (4.38)
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To calculate the D-terms associated with the kinetic terms (4.38), we must evaluate the

terms of the expansion,

ϕ†eV ϕ = ϕ†ϕ+ ϕ†V ϕ+
ϕ†V 2ϕ

2
, (4.39)

where the first term was calculated in (3.39). The second one is given by

ϕ†V ϕ =
i

2
z†Aµ∂µz −

i

2
∂µz

†Aµz − 1

2
ψ̄σ̄µAµψ +

i√
2
z†λψ − i√

2
ψ̄λ̄z +

1

2
z†Dz, (4.40)

and the third one by
1

2
ϕ†V 2ϕ

∣∣
θθθ̄θ̄

=
1

4
z†AµAµz. (4.41)

Rescaling the vector multiplet V as in (4.28), we find that the kinetic matter terms are

given by:

ϕ†e2gV ϕ
∣∣
θθθ̄θ̄

= (Dµz)
†Dµz − iψ̄ /̄Dψ + f †f + g2z†AµAµz + i

√
2gz†λψ

− i
√
2gψ̄λ̄z + gz†Dz + Total Derivatives,

(4.42)

with the covariant derivative Dµ = ∂µ − igAa
µT

a
R.

Now, there is a last type of term that can appear if the gauge group is U(1) or

has U(1) factors. If there is at least one extra U(1) factor, we have several coupling

constants, i.e the so called Fayet-Ilioupoulos terms. Consider V A, the vector multiplet,

in the abelian case, or the component corresponding to an abelian factor. It transform

under (4.2). From the component expansion of the chiral (3.30) and anti-chiral (3.31),

one sees that the D-term transform as a DA → DA + Total Derivative. Being a D-

term, it also transforms as a total derivative under SUSY. Therefore, the Lagrangian

associated with those abelian terms:

LFI =
∑

A∈Abelian Factors

χA

∫
d2θd2θ̄ V A =

∑
A∈Abelian Factors

1

2
χADA. (4.43)

is SUSY and gauge invariant under the action.
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Finally, we can write the full N=1 SUSY non-abelian matter theory as:

SN=1
Non-Abe Gau/Matter =

∫
d4x

{∫
d2θd2θ̄ ϕ†e2gV ϕ+

∫
d2θ W (ϕ) + h.c.

+
1

32π
Im

[
τ

∫
d2θTr (WαWα)

]
+ 2g

∑
A

χA

∫
d2θd2θ̄ V A.

}
= (Dµz)

†Dµz − iψ̄ /̄Dψ + f †f + g2z†AµAµz + i
√
2gz†λψ

− i
√
2gψ̄λ̄z + gz†Dz − 1

2
wiwjψiψj + h.c.

+ Tr

(
−1

4
FµνF

µν − iλ /Dλ̄+
1

2
D2

)
+

Θ

32π2
g2Tr

(
FµνF̃

µν
)

+ g
∑
A

χADA,

(4.44)

where we defined the derivatives of the superpotential W (zi, z
†
i ) as

wi ≡ ∂W

∂zi
, wj ≡

∂W

∂z†j
, (4.45)

and we left the spinors in 2-component notation in order to emphasize the couplings of

the fermions with the superpotential.

From the action, we see that the auxiliary field equations are

f †
i =

∂W

∂zi
= wi, Da = −gz†T az − gχa, (4.46)

where it is understood that χa = 0 represents the absence of abelian gauge factors.
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Substituting back into the action, we finally get:

SN=1
Non-Abe Gau/Matter =

∫
d4x

{∫
d2θd2θ̄ ϕ†e2gV ϕ+

∫
d2θ W (ϕ) + h.c.

+
1

32π
Im

[
τ

∫
d2θTr (WαWα)

]
+ 2g

∑
A

χA

∫
d2θd2θ̄ V A.

}
= (Dµz)

†Dµz − iψ̄ /̄Dψ + g2z†AµAµz + i
√
2gz†λψ

− i
√
2gψ̄λ̄z − 1

2
wiwjψiψj + h.c.+ Tr

(
−1

4
FµνF

µν − iλ /Dλ̄

)
+

Θ

32π2
g2Tr

(
FµνF̃

µν
)
− V (z, z†),

(4.47)

where the scalar potential V (z, z†) is given by

V (z, z†) = f †f +
1

2
D2 =

∑
i

|wi|2 + g2

2

∑
a

|z†T az + χa|2. (4.48)

In order to recover the abelian case, we just need to make fabc = 0. The covariant

derivative would reduce to the usual abelian derivative, i.e. with the dependence on

the electric charge. Also, there would be no trace under the gauge fields and their

superpartners since the generator of the abelian group is proportional to the identity.

In addition, the gaugino field would have no gauge coupling, since it’s a Majorana

fermion and the latter has no charge. The latter is a consequence of the Majorana’s

condition.

4.4 Super Yang-Mills N=2 Theory

The N=2 multiplets with helicities (spins) not exceeding one are the massless N = 2

vector multiplet and the hypermultiplet. The latter can be massless or be a short (BPS)

massive multiplet. In this section, we will concentrate on N = 2 vector multiplets to

construct N = 2 super yang-mills theories.

We can decompose the N = 2 vector multiplet into an N = 1 vector multiplet and

an N = 1 chiral multiplet, but now all fields must be in the adjoint representation of
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the gauge group. Therefore, we must take the trace of the kinetic gauge matter term

(4.38) with respect to the indices of the gauge group representation. The Lagrangian

for this term becomes:

LN=1
Matter =

∫
d2θd2θ̄Tr (ϕ†e2gV ϕ), (4.49)

but now with

z = zaT a, ψ = ψaT a, f = faT a, ....., (4.50)

i.e. all fields in the adjoint representation of the gauge group.

In the adjoint representation of the gauge group, the generators are given by the

structure constants:

(T a)bc = −ifabc, (4.51)

with the generators normalized by

Tr (T aT b) = δab. (4.52)

Therefore, we can write terms of the form z†λψ as

z†λψ → z†bλ
a(T a)bcψ

c = −iz†bλ
afabcψ

c = iz†bfbacλ
aψc = z†bifbacδ

aeλeψc

= z†b Tr (ifbacT
aT e)λeψc = z†b Tr ([T

c, T b]T e)λeψc

= z†bλ
eψcTr (T b[T e, T c]) = Tr (z†[λ, ψ]).

(4.53)

Then, in terms of field components, the Lagrangian (4.49) becomes:

LN=1
Matter = Tr

[
(Dµz)

†Dµz − iψ̄ /̄Dψ + f †f + i
√
2gz†{λ, ψ} − i

√
2g{ψ̄, λ̄}z + gD[z, z†]

]
.

(4.54)

Adding the Lagrangian of the theory (4.36) to (4.49), we obtain

LN=2
S-YM =

∫
d2θd2θ̄ Tr (ϕ†e2gV ϕ) +

1

32π
Im

[
τ

∫
d2θTr (WαWα)

]
= Tr

[
(Dµz)

†Dµz − iψ̄ /̄Dψ + f †f + i
√
2gz†{λ, ψ} − i

√
2g{ψ̄, λ̄}z + gD[z, z†]

− 1

4
FµνF

µν − iλ /Dλ̄+
1

2
D2 +

Θ

32π2
g2FµνF̃

µν

]
(4.55)
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A sufficient condition, and a necessary one, for N = 2 SUSY is the existence of

an SUR(2) symmetry between the generators QI
α. Note that, since the N = 2 vector

multiplet contains the two Weyl fermions ψ and λ, this symmetry must also act on

then. The coefficients in (4.55) were also chosen in such a way as to have this SUR(2)

symmetry. Note also that the terms with anti-commutators in (4.55) also preserves this

symmetry.

We have not added a superpotential because a term of this type (unless linear in ϕ)

would break the SUR(2) symmetry and not lead to a N = 2 SUSY theory.

The auxiliary fields equations:

fa = 0

Da = −g[z, z†]a,
(4.56)

leading to a scalar potential

V (z, z†) =
1

2
g2Tr ([z, z†])2, (4.57)

which is due only to the auxiliary D fields of the N = 1 gauge multiplet.

With the ending of this section, we concluded the construction the Super-Gauge the-

ories. We stopped at the N=2 Super-Yang-Mills theories, but its possible to construct

theories with higher N. In the next section, we are interested in apply the developed

formalism to the study of Lorentz violating models.
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5 Lorentz Symmetry Violation in Supersymmetric

Scenarios

In this section, we develop a supersymmetric version of the non-abelian-Carrol-

Field-Jackiew model [38]. Following, we focus on the abelian case to study a possible

photon-photino mixing analogous to the Primakoff effect [33]. This mixing is possible

due to the fermionic sector of the supersymmetric multiplet which breaks the Lorentz

symmetry.

5.1 Derivation of the Supersymmetric Non-Abelian Carrol-

Field-Jackiw Model

We wish to build up the supersymmetric version of the Yang-Mills-Carroll-Field-

Jackiw Lorentz symmetry breaking type-term:

L =
1

2
ϵµνλκvµA

a
ν∂λA

a
κ +

g

3!
ϵµνλκfabcvµA

a
νA

b
λA

c
κ, (5.1)

with F µν defined in the context of some gauge group as in (4.29) and (4.33). The

supersymmetric version of the CFJ-term is given by:

SCFJ
SUSY =

∫
d4xd4θ{Wα,a(DαV

a)S + c.c.}, (5.2)

where c.c. denotes the complex conjugate, Wα,a and DαV
a
WZ are in the adjoint repre-

sentation of the gauge group, as was given in (4.26) for the former and the latter is

defined as:

DαV
a = (σµθ̄)αA

a
µ+2iθαθ̄λ̄

a− iθ̄θ̄λaα+ θαθ̄θ̄D
a+ iθ̄θ̄(σµνθ)αF

a
µν + θθθ̄θ̄( /D

ab
λ̄b)α. (5.3)

The chiral superfield S(x) is responsible for the breaking of the Lorentz symmetry:

S(x) = s(x)+iθσµθ̄∂µs(x)−
1

4
θ2θ̄2∂2s(x)+

√
2θψ(x)+

i√
2
θ̄2θ̄σ̄µ∂µψ(x)−θ2f(x), (5.4)
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with D̄α̇S(x) = 0. This superfield is neutral under the gauge group and its canonical

mass dimension is 0.

The F-term of Wα,a(DαV
a)S:

Wα,a(DαV
a)S

∣∣∣∣
θ2θ̄2

= Wα,a(DαV
a)

(
s(x) + iθσµθ̄∂µs(x)−

1

4
θ2θ̄2∂2s(x) +

√
2θψ(x)

− i√
2
θ2(σµθ̄)∂µψ(x)− θ2f(x)

)∣∣∣∣
θ2θ̄2

= −i2sλa /Dab
λ̄b + s(Da)2 − s

2
([F a

µν ]
2 − iF a

µνF̃
µν,a) +

√
2(λaσµνψ)F a

µν

+ (λa)2f + i
√
2(λaψ)Da,

(5.5)

and the complex conjugate

W̄ a
α̇(D̄

α̇V a)S

∣∣∣∣
θ2θ̄2

= −i2s†λ̄a ¯
/D
ab
λb + s†(Da)2 − s†

2
([F a

µν ]
2 + iF a

µνF̃
µν,a)

−
√
2(λ̄aσ̄µνψ̄)F a

µν + (λ̄a)2f † − i
√
2(λ̄aψ̄)Da.

(5.6)

The super-action becomes:

SCFJ
SUSY =

∫
d4x

{
− i2sλa /D

ab
λ̄b − i2s†λ̄a /̄D

ab
λb + (s+ s†)(Da)2 − s+ s†

2
(F a)2µν

+ i
s− s†

2
F a
µνF̃

µν,a +
√
2(λaσµνψ − λ̄aσ̄µνψ̄)F a

µν + i
√
2(λaψ − λ̄aψ̄)Da

+ (λa)2f + (λ̄a)2f †
}

=

∫
d4x

{
− 2i(∂µs)λ̄

aσ̄µλa − 4iRe{s}λ̄aσ̄µ∂µλ
a − 4iRe{s}gfabcλaσµλ̄bAc

µ

2Re{s}(Da)2 − Re{s}(F a
µν)

2 + 2ϵµνλκ(∂µ Im(s))Aa
ν∂λA

a
κ +

2g

3
ϵµνλκ(∂µ Im(s))fabcAa

νA
b
λA

c
κ

+
√
2(λaσµνψ − λ̄aσ̄µνψ̄)F a

µν + i
√
2(λaψ − λ̄aψ̄)Da + (λa)2f + (λ̄a)2f †

}
(5.7)

To obtain the CFJ-term, we impose under S(x) the following boundaries conditions:

Re{s} =
s+ s†

2
= 0 → s = −s† and Im{s} = φ =

vµx
µ

4
, (5.8)
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such that,

∂µ Im{s} = ∂µφ =
vµ
4
. (5.9)

Note also that:

fλ2 + f †λ̄2 = Re{f}(λ2 + λ̄2) + i Im{f}(λ2 − λ̄2). (5.10)

Reorganizing the terms, we find

SCFJ
SUSY =

∫
d4x

{
vµ
4
(2λ̄aσ̄µλa) +

1

2
ϵµνλκvµA

a
ν∂λA

a
κ +

g

6
ϵµνλκvµf

abcAa
νA

b
λA

c
κ

+
√
2(λaσµνψ − λ̄aσ̄µνψ̄)F a

µν + i
√
2(λaψ − λ̄aψ̄)Da +Re{f}([λa]2 + [λ̄a]2)

+ i Im{f}([λa]2 − [λ̄a]2)

}
(5.11)

Note that SUSY already provides the 4-curl condition that preserves the gauge sym-

metry of the theory

vµ ∝ ∂µφ → ∂µvν − ∂νvµ = 0. (5.12)

Translating to 4-components, we find

SCFJ
SUSY =

∫
d4x

{
vµ
4
Λ̄aγµγ5Λ

a +
1

2
εµνλκvµA

a
ν∂λA

a
κ +

g

6
ϵµνλκvµf

abcAa
νA

b
λA

c
κ − i

√
2(Λ̄aΣµνγ5Ψ)F a

µν

+ i
√
2(Λ̄aγ5Ψ)Da +Re{f}(Λ̄aΛa) + i Im{f}Λ̄aγ5Λ

a

}
.

(5.13)

Adding (4.36) (with Θ = 0):

SCFJ
SUSY + SGauge

SUSY =

∫
d4x

{
−

(F a
µν)

2

4
+

1

2
εµνλκvµA

a
ν∂λA

a
κ +

g

6
ϵµνλκvµf

abcAa
νA

b
λA

c
κ −

i

2
Λ̄a /D

ab
Λb

+
vµ
4
Λ̄aγµγ5Λ

a − i
√
2(Λ̄aΣµνγ5Ψ)F a

µν + i
√
2(Λ̄aγ5Ψ)Da +

1

2
(Da)2

+Re{f}(Λ̄aΛa) + i Im{f}Λ̄aγ5Λ
a

}
.

(5.14)
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The D field equations are Da = −i
√
2Λ̄aγ5Ψ. Substituting back these field equations,

and after Fiertz rearrangement (B), we finally obtain:

SCFJ
SUSY + SGauge

SUSY =

∫
d4x

{
−
(F a

µν)
2

4︸ ︷︷ ︸
Gauge term

+
1

2
εµνλκvµA

a
ν∂λA

a
κ +

g

6
ϵµνλκvµf

abcAa
νA

b
λA

c
κ︸ ︷︷ ︸

YM-CFJ type-term

− i

2
Λ̄a /D

ab
Λb

+
Rµ

4
Λ̄aγµγ5Λ

a − i
√
2(Λ̄aΣµνγ5Ψ)F a

µν +M1Λ̄
aΛa + iM2Λ̄

aγ5Λ
a

}
.

(5.15)

where we defined the quantities:

Rµ = vµ − Ψ̄γµγ5Ψ, M1 = Re{f} − Ψ̄Ψ

4
, M2 = Im{f}+ i

4
Ψ̄γ5Ψ. (5.16)

As can be seen, we were able to generate the YM-CFJ model with many contribu-

tions from supersymmetry. The gaugino field Λ, which is the supersymmetric partner

of the gauge-boson Aµ, in contrast to the conventional Super-Yang-Mills model has a

much more rich Lagrangian. In particular, the presence of the fermionic background

induces a mass term for the gaugino, which shows that SUSY is explicitly broken.

Also, a bilinear term in the gauge-boson and the gaugino field intermediated by the

fermionic background is present. This term allows for a possible gauge-boson/gaugino

mixing mechanism, analogue to the Primakoff effect, but here induced by a fermionic

background.
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6 Future Perspectives

In this section, we analyze the perspective of a possible Gauge-boson/Gaugino mix-

ing due to the fermionic background induce by the SUSY LSV Non-Abelian Carroll-

Field-Jackiw model. Here, we focus on the abelian case, i.e. fabc = 0, just for the

simplicity.

For a quantum mechanical mixing approach, analogue to the Primakoff effect, we

need to show the possibility to generate a mixing matrix from the equations of motion.

The field equations of motion are given by:
∂µF

µν + vµF̃
µν = −i2

√
2Ψ̄Σµνγ5∂µΛ,(

i/∂ − /R
2
γ5 − 2(iM2γ5 +M1)

)
Λ = −i2

√
2Σµνγ5Ψ∂µAν = −i

√
2Σµνγ5ΨFµν ,

∂µF̃
µν = 0,

(6.1)

with the field strength (and its dual) components given by: F i0 = Ei → E⃗, Fij = −ϵijkBk,

F̃ i0 = Bi → B⃗, F̃ij = ϵijkE
k.

(6.2)

The Lorentz generators (with the γ5 matrix) are given by:

Σµνγ5 =
i

4
[γµ, γν ]γ5 =

1

2

 0 iΣi

−iΣi ϵijkΣkγ5


4×4

, with Σi = 12 ⊗ σi =

σi 0

0 σi

 ,

(6.3)

and σi the Pauli’s matrices. Since we are interested in the fermionic background’s

effects only, for simplicity we disconsider effects from the vector background , and other

billinears different from Ψ̄Ψ, by considering vµ = Rµ = M2 = 0. In the Lorenz gauge,

i.e ∂µA
µ = 0, the field equations becomes: □Aν = −i2

√
2Ψ̄Σµνγ5∂µΛ,

(□+ 4M2
1 )Λ = −(−i/∂ + 2M1)(−i2

√
2Σµνγ5Ψ∂µAν).

(6.4)
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Now, we consider plane wave solutions to the equations,

Aν(x) = Aν(k)e−ikµxµ , Λ(x) = Λ(k)e−ikµxµ , (6.5)

with the 3-momentum k⃗ = kẑ and the dispersion relation kµkµ = 0. We linearize the

D’Alembertian operator as

□ = (∂2t − ∂2z ) = −(ω + i∂z)(ω − i∂z︸︷︷︸
−k

) = −2ω(ω + i∂z). (6.6)

Therefore, in 3-momentum space, we can write the field equations as−2ω(ω + i∂z)A
ν = −2

√
2Ψ̄Σµνγ5kµΛ,

−2ω(ω + i∂z)Λ + 4M2
1Λ = (/k + 2M1)(2

√
2Σµνγ5ΨkµAν).

(6.7)

Dividing by −2ω, we have(ω + i∂z)A
ν =

√
2

ω
Ψ̄Σµνγ5kµΛ,(

ω + i∂z − 2M2
1

ω

)
Λ = (/k + 2M1)

(
−

√
2

ω
Σµνγ5ΨkµAν

)
.

(6.8)

As we can see from the symmetry of the coupling, its possible to build a mixing

mass matrix from these field equations, but there are some details that must be deal

with first. One of then is the difference in canonical dimension between the photon’s

field Aµ and the photino’s field Λ. The primer has canonical dimension 1 and the latter

canonical dimension 3/2. If we try to write down a mass matrix from these equations,

it would have a undefined mass dimension, which in turn would lead to problems in the

diagonalization process necessary to obtain the matrix which relates the mixed fields.

Other question necessary to be addressed is how to relate the different nature of the

fields. The photino field is a spinor, and therefore different from the vectorial nature of

the photon field. To relate then, one must be projected into the space of the other. This

must also be considered in the mixing process. These points are going to be considered

in future research before considering a mixing matrix.
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7 Conclusions

In this Master Dissertation, we have developed the full formalism of Supersymmetry

and derived its superfield as irreducible non-unitary representations of SUSY algebra.

In the process, we have shown how the superfields could generate, in the context of

the superactions, all the irreducible non-unitary Lorentz fields (all the gauge and mat-

ter fields present in the Standard Model of Particle Physics and it’s supersymmetric

partners) kinetic, potential and interaction terms.

With this context in mind, we would like to, first of all, emphasize here the full

power and richness of Supersymmetry. It not only allows us to construct an formalism

able to board in the physics of the Standard Model, but also proposes new particles, i.e.

the supersymmetric partners, that can be candidates to solve some of the challenges in

physics. Furthermore, there are many contributions done by SUSY to different aspects

and areas of Physics, namely Non-Renormalizability, implications on String theory, on

gravitational interaction, i.e. named Supergravity, it’s applications to condensed matter

theory, the neutralino as a dark matter candidate, and so on, that are so profound and

vast that cannot be contained in this dissertation.

Second, we would like to highlight the incredible capacity of SUSY to provide a

theoretical framework for a Unified Fundamental Physics. As we have shown over this

dissertation, Supersymmetry allows us to derive all the Standard Model like matter

field, with its self interactions and Yukawa couplings, and also the Gauge fields with

it’s respectively gauge couplings. Therefore, if we assume that Supersymmetry is a

fundamental symmetry of Nature, as once envisioned by Abdus Salam and many others,

it allows us to unify all the fundamental aspects present in the Standard Model in one

unique fundamental principle which is, in the point of view of this Master’s student, a

desirable feature.

As a third, we desire to shed light upon the great contributions given by Super-

symmetry to the context of the Lorentz symmetry violation. In the construction of
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the supersymmetric Yang-Mills-CFJ model, we showed how adopting the perspective

described in section (1.3) allowed for a more fundamental explanation of the LSV. We

demonstrated that, not only the vector background gained a more fundamental descrip-

tion of it’s origin, but also the Supersymmetry allowed it to have a Majorana fermionic

background superpartner. The latter gave many contributions to the model. Both the

gauge-boson and the gaugino gained a mass in the model, with a splitting of it. This

showed that bringing the LSV to a supersymmetric scenario caused also the breaking

of SUSY. Also, the model allowed for a mixing term between the gauge-boson and the

gaugino, induce by the fermionic background. As we have discussed in section (6), it’s

possible to derive a mixing process similar to the Primakoff effect. We emphasized,

however, that some points must be deal with before this mixing process could be done.

These points center deeply in the difference of both fields as mathematical and physical

objects. They belong to different spaces and has different canonical mass dimensions.

A new approach is needed to deal with this aspects. Nevertheless, we would like to

stress that the mixing process is still possible and will be topic of future research. It’s

an important, and great conclusion of this dissertation, to highlight the perspective of

this Primakoff like gauge-boson/gaugino mixing induced by the Majorana background.

Finally, it is the most honest and truthful aim of this Dissertation to argue for,

and to defend, the Supersymmetry not only as a theory, but also a fundamental aspect

and symmetry of Nature. In our Research Group, we adopt the viewpoint that the

superspace is not a merely mathematical tool, but a representation of physical space,

with the grassmannian coordinates reflecting the fermionic nature intrinsic to space-

time. Although we cannot measure these coordinates, they have physical implications

to it’s non-unitary representations and therefore to the physics derived from it. Despite

the fact Supersymmetry was not experimentally verified yet, the implications of it

to Elementary Particle Physics gives sufficient pro arguments to believe on it, in the

opinion of this author. Also, it’s important to point out that the most important play-
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role of theoretical physics is not to just give physical sciences mathematical models,

but well ornamented principles and visions of the physical world. As once quoted by

Einstein, ”Physics is not the merely act of cataloging experimental data, but first of all

a vision of the world” and that ”Science is Man’s truthful wish to create a simple and

clear vision of the world”. What gives Science consistency, clarity, and depth meaning

is harmony, beauty and simplicity. We, as scientists, should aim at these aspects in

order to build up knowledge based on truth and humility before the diverse challenges

of Nature. The author attributes these qualities to Supersymmetry, and therefore as

an extraordinary path to understand Nature.
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A Translation of the 2-components notation to the

4-components notation

Here, we show how to translate the 4-components spinors to the 2-components

dotted/undotted spinors notation. The γ-matrices are given in the Weyl representation

as discussed in section 2.4.

A.1 Weyl Spinors

In terms of the 2-component spinors, the Weyl left ΨL and the Weyl right ΨR spinors

are given by:

ΨL =

ψα

0

 , ΨR =

 0

ψ̄α̇

 . (A.1)

The Dirac’s conjugate of then:

Ψ̄L = Ψ†
Lγ0 =

(
0 ψ̄α̇

)
, Ψ̄R = Ψ†

Rγ0 =
(
ψα 0

)
. (A.2)

The Weyl’s left kinetic terms:

iΨ̄Lγ
µ∂µΨL = i

(
0 ψ̄α̇

) 0 (σµ)αα̇∂µ

(σ̄µ)α̇α∂µ 0

ψα

0


= iψ̄α̇(σ̄

µ)α̇α∂µψα,

(A.3)

and the Weyl right ones,

iΨ̄Rγ
µ∂µΨR = i

(
ψα 0

) 0 (σµ)αα̇∂µ

(σ̄µ)α̇α∂µ 0

 0

ψ̄α̇


= iψα(σµ)αα̇∂µψ̄

α̇.

(A.4)
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A.2 Dirac Spinors

We can think of Dirac spinors as spinors with left and right components unrelated,

i.e. independent. Therefore:

ΨD =

ψα

χ̄α̇,

 (A.5)

with the Dirac’s conjugate,

Ψ̄D = Ψ†
Dγ

0 =
(
χα ψ̄α̇

)
. (A.6)

The Dirac spinor kinetic term can be written as:

iΨ̄Dγ
µ∂µΨD = i

(
χα ψ̄α̇

) 0 (σµ)αα̇∂µ

(σ̄µ)α̇α∂µ 0

ψα

χ̄α̇,


= iψ̄α̇(σ̄

µ)α̇α∂µψα + iχα(σµ)αα̇∂µχ̄
α̇,

(A.7)

and the Dirac spinor mass term as:

mΨ̄DΨD = mχαψα +mψ̄α̇χ̄
α̇. (A.8)

A.3 Majorana Spinors

From the Majorana condition, i.e. Ψ = Ψc, we find that, in terms of the 2-

components spinors, the Majorana spinors have the form:

ΨMaj. =

ψα

ψ̄α̇

 , (A.9)

with the left and right components related by ψR = εψ∗
L and the antisymmetric matrix

given by

ε =

 0 1

−1 0

 . (A.10)

The Dirac’s conjugate:

Ψ̄Maj. = Ψ†
Maj.γ

0 =
(
ψα ψ̄α̇

)
. (A.11)
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The Majorana’s kinetic terms can be expressed as:

i

2
Ψ̄Maj.γ

µ∂µΨMaj. =
i

2

(
ψα ψ̄α̇

) 0 (σµ)αα̇∂µ

(σ̄µ)α̇α∂µ 0

ψα

ψ̄α̇


=
i

2
ψ̄α̇(σ̄

µ)α̇α∂µψα +
i

2
ψα(σµ)αα̇∂µψ̄

α̇

(A.12)

The Majorana’s mass term:

mΨ̄Maj.ΨMaj. = mψαψα +mψ̄α̇ψ̄
α̇. (A.13)

For use in section 5, we also demonstrate the following Majorana’s billinears:

iΛ̄γ5Λ =
(
λα λ̄α̇

)12 0

0 −12

λα
λ̄α̇

 = iλαλα − iλ̄α̇λ̄
α̇,

Λ̄γµγ5Λ =
(
λα λ̄α̇

) 0 (σµ)αα̇∂µ

(σ̄µ)α̇α∂µ 0

12 0

0 −12

λα
λ̄α̇


= λ̄α̇(σ̄

µ)α̇αλα − λασµ
αα̇λ̄

α̇ = 2λ̄α̇(σ̄
µ)α̇αλα,

Λ̄Σµνγ5Ψ =
(
λα λ̄α̇

)i(σµν) β
α 0

0 i(σ̄µν)α̇
β̇

12 0

0 −12

ψβ

ψ̄β̇


= iλα(σµν) β

α ψβ − iλ̄α̇(σ̄
µν)α̇

β̇
ψ̄β̇.

(A.14)
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B Fierz Rearrangement

In this appendix, we demonstrate how to do the so called Fierz Rearrangement.

The set of matrices:

ΓA = {14, γ
µ, γ5, γ

µγ5,Σ
µν}, (B.1)

forms a basis for the space of the complex 4× 4 matrices. Therefore, any matrix that

belongs to this space can be written as

Mαβ =
∑
A

cAΓ
A
αβ. (B.2)

With the inverse matrices of the basis, i.e.

(ΓA)−1 = ΓA = {14, γµ, γ5,−γµγ5,Σµν}, (B.3)

we can calculate the expansion coefficients:

MΓB =
∑
A

cAΓ
AΓB

Tr{MΓB} =
∑
A

Tr
{
cAΓ

AΓB

}
Tr{MΓB} =

∑
A

cATr
{
δAB14

}
Tr{MΓB} =4 cB.

(B.4)

Therefore, we can cast the 4× 4 matrices as:

Mαβ =
∑
A

(
Tr{MΓA}

4

)
ΓA
αβ (B.5)

As an example, we will calculate an rearrangement needed in section (5). If Λ and

Ψ are Majorana spinors, then we can rewrite the billinear:

Λ̄γ5Ψ = (Λ̄γ5Ψ)t = −Ψtγt5Λ̄
t = Ψ̄Cγt5C

−1︸ ︷︷ ︸
γ5

Λ = Ψ̄γ5Λ. (B.6)
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Also, the following quantities vanishes:

Λ̄γµΛ = (Λ̄γµΛ)
t = −ΛtγtµΛ̄

t = Λ̄CγtµC
−1Λ = −Λ̄γµΛ = 0

Λ̄ΣµνΛ = (Λ̄ΣµνΛ)
t = −ΛtΣt

µνΛ̄
t = Λ̄CΣt

µνC
−1Λ = −Λ̄ΣµνΛ = 0.

(B.7)

With these billinears in mind, we construct the Fierz rearrangement of the quantity:

(Λ̄γ5Ψ)(Λ̄γ5Ψ) = Λ̄α(γ5)αβΨβΨ̄σ(γ5)σρΛρ

= (ΨβΨ̄σ)Λ̄α(γ5)αβ(γ5)σρΛρ

=
1

4
(ΨβΨ̄σΓA,σβ)Γ

A
βσΛ̄α(γ5)αβ(γ5)σρΛρ

= −1

4
(Ψ̄σΓA,σβΨβ)Λ̄α(γ5)αβΓ

A
βσ(γ5)σρΛρ

= −1

4

[
Ψ̄ΨΛ̄Λ + Ψ̄γ5ΨΛ̄γ5Λ + Ψ̄γµγ5ΨΛ̄γµγ5Λ

]
,

(B.8)

where we used the expansion:

ΨβΨ̄σ =
1

4
Tr
{
ΨΨ̄ΓA

}
ΓA
βσ. (B.9)
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[29] Holger Bech Nielsen and I Picek. The rédei-like model and testing lorentz invari-

ance. Physics Letters B, 114(2-3):141–146, 1982.

[30] Holger Bech Nielsen and I Picek. Lorentz non-invariance. Nuclear Physics B,

211(2):269–296, 1983.

[31] TG Pavlopoulos. Breakdown of lorentz invariance. Physical Review, 159(5):1106,

1967.

[32] Peter R Phillips. Is the graviton a goldstone boson? Physical Review, 146(4):966,

1966.

62



[33] Georg Raffelt and Leo Stodolsky. Mixing of the photon with low-mass particles.

Physical Review D, 37(5):1237, 1988.

[34] Abdus Salam and J Strathdee. Super-gauge transformations. Selected Papers of

Abdus Salam (with Commentary). Edited by ALI A ET AL. Published by World

Scientific Publishing Co. Pte. Ltd, pages 404–409, 1994.

[35] AP Baeta Scarpelli, H Belich, JL Boldo, LP Colatto, JA Helayel-Neto, and ALMA

Nogueira. Remarks on the causality, unitarity and supersymmetric extension of

the lorentz and cpt-violating maxwell-chern-simons model. Nuclear Physics B-

Proceedings Supplements, 127:105–109, 2004.

[36] Nathan Seiberg and Edward Witten. String theory and noncommutative geometry.

JHEP, 09:032, 1999.

[37] R. C. Terin, W. Spalenza, H. Belich, and J. A. Helayël-Neto. Aspects of the
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