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RESUMO

Esta dissertação de mestrado tem como intuito principal ap-

resentar novas técnicas matemáticas em álgebras de Cayley-

Dickson e (super)álgebras graduadas de Lie Zn
2 . As princi-

pais aplicações destas novas ideias são as teorias de partícu-

las e parapartículas, eletromagnestismo de dyons e Teoria-

M octoniônica. No contexto das álgebras de Cayley-Dickson,

procurou-se apresentá-las sob a óptica da Construção de

Cayley-Dickson, na qual foi criada uma representação matri-

cial que comporta a não-associtividade das álgebras hiper-

complexas como octônionsO e sedênionsS. Assim, foi possível

estabelecer uma relação entre a álgebra da base octoniônica e

a álgebra das matrizes de Pauli e Dirac para, então, criar a la-

grangiana octoniônica do eletromagnetismo de dyons. Para as

álgebras graduadas de Lie, nos concentramos na apresentação

de um método de dobração, no qual se obtem uma álgebraZn
2 a

partir de uma outra de dimensão n −1. Além disso, foi demon-

strado um cálculo para perturbações em sistemas de álgebras

graduadas que permite a análise não só para pequenas per-

turbações, mas de ordens maiores. Espera-se que este último

tenha aplicação em sistemas de partículas e parapartículas que,

mediante uma perturbação, passam a interagir de modo não

usual entre si.

Palavras chave: Álgebras de Cayley-Dickson; Álgebras gradu-

adas de Lie; Superálgebras graduadas de Lie; Parapartículas;

Dyons.
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ABSTRACT

This master’s dissertation aims to present new mathemati-

cal techniques in Cayley-Dickson algebras and graded Lie (su-

per)algebras over Zn
2 . The main applications of these new ideas

are in the theories of particles and para-particles, dyon electro-

magnetism, and octonionic M-theory.

In the context of Cayley-Dickson algebras, the focus was on pre-

senting them from the perspective of the Cayley-Dickson con-

struction, in which a matrix representation was created that

accommodates the non-associativity of hypercomplex algebras

such as octonions O and sedenions S. This made it possible to

establish a relationship between the algebra of the octonionic

base and the algebra of Pauli and Dirac matrices, and then to

create the octonionic lagrangian for dyon electromagnetism.

For graded Lie algebras, the focus was on presenting a doubling

method, in which an algebra Zn
2 is obtained from another of di-

mension n −1. In addition, a calculation was demonstrated for

perturbations in systems of graded algebras that allows analy-

sis not only for small perturbations but also for higher orders.

It is expected that the latter will have applications in systems of

particles and para-particles that, through a perturbation, inter-

act in an unusual way.

Keywords: Cayley-Dickson algebras; Graded Lie algebras;

Graded super Lie algebras; Para-particles; Dyons.
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Mathematics, rightly viewed,

possesses not only truth, but

supreme beauty - a beauty cold

and austere, like that of sculpture.

– RUSSEL, BERTRAND. 1912
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Introduction

Mathematical physics is an area of study that combines the theories and methods

of physics with advanced mathematics. However, more than just a connection between

two fields of knowledge, we can also understand mathematical physics as the area in which

physicists create advanced mathematical techniques useful for overcoming mathematical

limitations existing in physical theories. Therefore, the purpose of this master’s disserta-

tion is to present new techniques created in the context of Cayley-Dickson algebras [1], [2],

[3] and graded Lie (super)algebras Zn
2 [4], [5], [6] hoping they will be useful for particle and

para-particle physics theories [7] as well as for Maxwell and dyonic electromagnetism [8].

At first, this work aims to revisit the main Cayley-Dickson algebras - complex num-

bers (C), quaternions (H), octonions (O), and Cayley-Dickson sedenions (S) - according to

the doubling construction. This mathematical formalism is an important tool for verifying

how we can build new algebras by doubling algebras of smaller dimensions. In addition, it

makes it possible to understand how the properties of algebras relate to those of other alge-

bras used in doubling.

It is known that for complex numbers and quaternions there is a matrix represen-

tation that is compatible with their algebras [9], [10]. Therefore, a detailed construction of

the matrices that correspond to the algebras C and H is also presented. However, this work

proposes a matrix construction for algebras of higher dimensions. We sought to develop the

matrix representation technique for the construction of Cayley-Dickson algebras, allowing

elements of non-associative algebras, such as octonions and sedenions, to be written as ma-

trices. For octonions and split-octonions, this technique is an alternative to Zorn matrices

[11],[12] and it is expected to be used, for example, as a possibility of writing Clifford algebra

C lO(10,1) of octonionic M-theory [13] matrices with real entries and in dimensions of 32×32.

In addition, through the matrix representation of the bases of octonionic numbers, it was

possible to construct the octonionic version of the dyonic electromagnetism Lagrangian [8].

It was also possible to verify global and local quaternionic symmetries for the SU (2) group,

through a simple and already known relationship between quaternionic base elements and

Pauli matrices [14].
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4 CONTENTS

In the context ofZn
2 -graded Lie algebras and superalgebras, after a brief presentation

of Z2, Z2
2, and Z3

2, a new technique was demonstrated that allows for the creation of these

algebras from others of the same nature but with smaller dimensions. This practice is called

Doubling Construction for Zn
2 (super)algebras and was used to create a representation for a

Z3
2 algebra of supersymmetry N = 2.

Also presented was an approach to perturbations in graded (super)algebra systems.

In this formalism, the perturbation was inserted into the mapping of a (super)algebra of any

dimension, so that the rules of commutation or anticommutation were modified. As a result,

we had that the result for the Lie bracket was ambiguous, generating both a commutation

and an anticommutation simultaneously for the generators of the algebra in question; un-

like the usual case, in which the Lie bracket will be either just a commutation or just an

anticommutation. This formalism seems to indicate a new way of constructing Volichenko

algebras from graded Lie (super)algebras [15]. It is expected that the results obtained are

fully capable of being applied to descriptions of systems where there is symmetry breaking

or perturbations capable of modifying the interaction between particles.



Chapter 1

Cayley-Dickson Algebras

In this work, we will call by Cayley-Dickson algebras all the hyper-complex algebras

that can be produced from a sequence of doublings starting from real numbers. This sequen-

tial procedure of creating new algebras was introduced by Arthur Cayley and Leonard Dick-

son [1] and such algebras are constantly applied in mathematical physics. Some examples

of this application is the use of Quaternion algebra (H), a non-commutative Cayley-Dickson

algebra, as a tool for Maxwell electromagnetism [16], [17] and for rotation of rigid bod-

ies [18]. Recently, Giardino also used quaternions to build a constrained four-dimensional

quaternion-parametrized conformal field theory [19]. Cohl Furey used division algebras -

a special kind of parabolic Cayley-Dickson algebras - to construct standard model particles

representations [20]. Octonions (O), a normed non-associative algebra, is a elegant math-

ematical tool for dyonic electromagnetism and Sedenions (S), a non-alternative and non-

division algebra, are useful for introduce gravitation in this model [8].

In this chapter, Cayley-Dickson algebras will be presented and its most important

properties, attempting to a particular presentation of elements of algebras coincident Cayley-

Dickson doubling construct. So it is not wrong to say that the most important subject of this

chapter is not the algebras but the procedure of doubling construction as a powerful tool to

understand characteristic aspects of each algebra.

1.1 Preliminary concepts

A Cayley-Dickson algebra A is a hyper-complex algebra over the Reals (R) with a bi-

linear mapping M that is characterized as follows:

M :A×A → A

a,b ∈A | M (a,b) ∈A

M is the multiplication and it will be defined shortly afterwards. There are other

5



6 CHAPTER 1. CAYLEY-DICKSON ALGEBRAS

properties for A and M that are important. They are:

1, a ∈A | M (1, a) =M (a,1) = a (1.1)

that is 1 ∈A and 1 is the neutral element of mapping the M .

The Cayley-Dickson doubling construction is a mathematical tool that allows the cre-

ation of Cayley-Dickson algebras that have 2N base elements, from the doubling of another

algebra with N base elements [1]. The most important algebras formed from this process

are Complex numbers(C), Quaternions (H), Octonions (O) and Sedenions (S). They are ob-

tained through successive doubling of the Reals (R).

Before starting presentation of Cayley-Dickson construction, it is important to men-

tion that, according to the Hurwitz theorem, R,C,H andO are the only four possible division

algebras [2]. A division algebra A over R is an alternative, finite-dimensional, real vector

space with a bi-linear product M , such that:

M : A× A → A

(a,b) → ab, a,b ∈ A

It satisfies the conditions, for any a,b:

ab = 0 ⇔ a = 0 or b = 0 (1.2)

and

a(ab) = a2b (1.3)

The relation (1.3) is the alternativity property for division algebras.

There are two main operations that arises from definition of division algebras:

• Conjugation: If a,b ∈A, a division algebra, then the conjugation satisfies:

(a∗)∗ = a

(ab)∗ = b∗a∗

• Norm: A division algebra can be normed A if N is a positive-definite quadratic form,

such that:

N : A →R+

and for any a ∈ A, one can have:

N (a) = a∗a, N (a) ∈R+.
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The most important Cayley-Dickson algebras have the following properties:

• R: Commutative and associative.

• C: Commutative, associative and alternative.

• H: Non-commutative, associative and alternative.

• O: Non-commutative, non-associative and alternative.

• S: Non-commutative, non-associative and non-alternative1.

The Cayley-Dickson doubling construction is a powerful tool to understand how a

new property arises when a new algebra is constructed from another. It is, suppose a algebra

A with a certain quantity of properties and now let’s use Cayley-Dickson doubling to con-

struct a new algebra A2 from A. When doubling occurs, it’s is possible to verify that there

are more properties in A2. Then, if we doubling A2 its new property - the one that does not

exists in A - will be directly responsible for the new property of A4. For example, lately will

be shown that the non-associativity of octonions is a consequence of non-commutative of

quaternions.

1.2 Cayley-Dickson doubling construction

As mentioned before, Cayley-Dickson doubling construction is a process to produce

a new hyper-complex algebras from a given algebra. Furthermore, following this process,

one can verify that a 2n-dimensional Cayley-Dickson algebra can be constructed after n suc-

cessive doublings from R, so that the elements of a 2n-dimensional algebra are “vectors”

represented by 2n real components each multiplying an element of the hyper-complex ba-

sis.

A Cayley-Dickson algebraA2 is defined by the following operations [21]:

1. Multiplication: (x, y) · (z, w) = (xz +ϵw∗y, w x + y z∗).

2. Conjugation: (x, y)∗ = (x∗,−y).

3. “Norm”: N (x, y) =N (x)−ϵN (y).

4. Multiplication by a real number: a(x, y) = (ax, ay), a ∈R.

5. Conjugation of multiplication: [(x, y) · (z, w)]∗ = (z, w)∗ · (x, y)∗

1Later, we will see that since Cayley-Dickson Sedenions are formed from a doubling of octonions, thus they
cannot be classified as a division algebra, because property (1.2) is not always true.
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where x, y ∈A. IfA2 is a division algebra, then ϵ=−1. For split-divisionA2, ϵ= 1. Operations

4 and 5 are immediate consequence of operations 1 and 2, but is important to explicit it here

because it will be useful to next calculations.

For Cayley-Dickson doubling construction we choose ϵ=±1 and a algebra A to rep-

resent elements of other algebraA2 as the ordered pair (x, y), whose x, y ∈A.

Split-division algebras are not a division algebra because the property (1.2) is not

always true for its elements.

Operation (3) is only called norm for division algebras and that is why the word was

written in quotes.

Now we have all the concepts needed to start building the Cayley-Dickson algebras.

But first, we need to know one last detail. By choosing ϵ=−1,

• C are a doubling of R;

• H are a doubling of C;

• O are a doubling ofH and

• S are a doubling ofO.

1.3 Complex numbers

The usual presentation for a complex number z is:

z = a +bi , a,b ∈R (1.4)

One can also present z as the ordered pair (a,b), such that:

z = a(1,0)+b(0,1) (1.5)

where:

1 ≡ (1,0), i ≡ (0,1). (1.6)

If we use the property of multiplication for Cayley-Dickson construction, it will be

possible to verify that i 2 =−1:

i 2 ≡ (0,1) · (0,1) = (−1∗1,0) =−(1,0) (1.7)

Multiplication between two complex numbers z = a +bi and w = c +di written ac-

cording to (1.4) is

z ·w = (a +bi ) · (c +di )

= (ac −bd)+ (ad +bc)i (1.8)
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If we use the Cayley-Dickson’s multiplication and representation (1.5),

z ·w = (a,b) · (c,d)

= (ac −d∗b,d a +bc∗)

= (ac −bd , ad +bc)

= (ac −bd)(1,0)+ (ad +bc)(0,1) (1.9)

It is easy to verify that the results (1.9) and (1.8) are equivalents. The conjugation z∗

of the complex number z is:

z∗ = a −bi . (1.10)

According to Cayley-Dickson’s conjugation,

z∗ = (a,−b) = a(1,0)−b(0,1) (1.11)

The norm of a complex number can be calculated by z∗z using the form (3):

z∗z = (a +bi )(a −bi )

= a2 +b2 (1.12)

Using the Cayley-Dickson’s definition of norm,

N (z) =N (a,b) =N (a)+N (b) (1.13)

and the property of N (a), then

N (z) = a2 +b2 (1.14)

1.4 Quaternions

To create quaternions (H) we will use ordered pairs of complex numbers. A quater-

nion v can be presented as

v = (z, w), z, w ∈C (1.15)

The quaternion number v can be represented in by a vector with reals components.

For it, just write z = a +bi and w = c +di , where a,b,c,d ∈R. Then,

v = (z, w) = (a +bi ,c +di )

= a(1,0)+b(i ,0)+ c(0,1)+d(0, i ) (1.16)

Let’s represent the quaternionic base as:

e0 = (1,0), e1 = (i ,0), e2 = (0,1), e3 = (0, i ) (1.17)
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By using the Cayley-Dickson multiplication is possible to establish that:

ei e j =−e0ηi j +εi j k ek (1.18)

where ηi j is the metric of quaternions and εi j k is the totally antisymmetric Levi-Civita sym-

bol. It is easy to verify that:

ηi j = δi j −→


1 0 0

0 1 0

0 0 1

 (1.19)

Since the quaternions metric is euclidean is not necessary to distinguish to upper and

lowed indices. The same occurs for octonions. Split-quaternions and split-octonions have a

non-euclidean metric and therefore for both will be necessary to write indices superimposed

ou lowered2.

But now, let’s back to the representation of quaternions as ordered pairs of complex

numbers. From this presentation it is possible to analyse the origin of the non-commutativity

of quaternions. Given two quaternions, v = (z, w) and u = (x, y), where x, y, z, w ∈C. We have

u · v = (x, y) · (z, w)

= (xz −w∗y, w x + y z∗) (1.20)

and

v ·u = (z, w) · (x, y)

= (zx − y∗w, y z +w x∗) (1.21)

Results (1.20) and (1.21) are not the same because y∗ ̸= y , w∗ ̸= w , z∗ ̸= z and x∗ ̸= x.

Quaternions are non-commutative because operation of conjugation applied in a complex

number generates a different complex number - this not happens to real numbers. That is

the first example of how a property of a algebra can be responsible to a new property when

it is doubled.

Later will presented a matrix realization for quaternions and complex and how it can

be used to construct a matrix representation for Cayley-Dickson doubling construction.

1.5 Octonions

The procedure to represent octonions in terms of the Cayley-Dickson construction is

the same as before, remembering that the ordered pair is of quaternions.

2This reasoning is similar to when we are working with elements of Minkowski space
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Therefore, let’s choose quaternions v and u such that q = (v,u), q ∈O. To represent

octonion q as a “vector” with real components we need at first to do the same to quaternions

v and u. Considering

v = ae0 +be1 + ce2 +de3, a,b,c,d ∈R (1.22)

and

u = f e0 + g e1 +he2 +me3, f , g ,h,m ∈R, (1.23)

then,

q = (ae0 +be1 + ce2 +de3, f e0 + g e1 +he2 +me3)

= a(e0,0)+b(e1,0)+ c(e2,0)+d(e3,0)+ f (0,e0)+
+g (0,e1)+h(0,e2)+m(0,e3) (1.24)

One can define:

E0 = (e0,0), E1 = (e1,0), E2 = (e2,0), E3 = (e3,0)

E4 = (0,e0), E5 = (0,e1), E6 = (0,e2), E7 = (0,e3) (1.25)

The basis can be divided into two groups: E0,E1,E2,E3 are an associative subalgebra

of the base and it’s is isomorphic to quaternion basis. E4,E5,E6,E7 are the non-associative

part of the octonionic basis.

The multiplication between two elements of the basis is defined as:

Ei E j =−µi j E0 +Ci j k Ek , (1.26)

where Ci j k is the structure constant of octonions, it is totally anti-symmetric. µi j Is the

i j−component of a metric. It is defined as:

µi j = δi j −→



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


(1.27)

The values of Ci j k are given in the following table:
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C123 = 1 C213 =−1 C312 = 1

C132 =−1 C231 = 1 C321 =−1

C145 = 1 C246 = 1 C347 = 1

C154 =−1 C257 = 1 C356 =−1

C167 =−1 C264 =−1 C365 = 1

C176 = 1 C275 =−1 C374 =−1

C415 =−1 C514 = 1 C617 = 1 C716 =−1
C426 =−1 C527 =−1 C624 = 1 C725 = 1
C437 =−1 C536 = 1 C635 =−1 C734 = 1
C451 = 1 C541 =−1 C642 =−1 C743 =−1
C462 = 1 C563 =−1 C653 = 1 C752 =−1
C473 = 1 C572 = 1 C671 =−1 C761 = 1

Table 1.1: Structure constants of octonions.

One can now consider three different octonions, p, q and r , and apply definition of

the associator [•,•,•]:

[p, q,r ] = (pq)r −p(qr ) (1.28)

For associative algebras, operation (1.28) is null. But for p, q,r ∈ O it is not always

true. To verify this cause within the scope of the Cayley-Dickson construction, let’s write p, q

and r as follows:

p = (a,b), q = (c,d), r = (g ,h) (1.29)

where a,b,c,d , g ,h ∈H.

Therefore,

(pq)r = ((a,b)(c,d))(g ,h)

= (ac −d∗b,d a +bc∗)(g ,h)

= (acg −d∗bg −h∗d a −h∗bc∗, hac −hd∗b +d ag∗+bc∗g∗) (1.30)

and

p(qr ) = (a,b)((c,d)(g ,h))

= (a,b)(cg −h∗d ,hc −d g∗)

= (acg −ah∗d − (hc −d g∗)∗b, (hc +d g∗)a +b(cg −h∗d)∗)

= (acg −ah∗d − c∗h∗b − g d∗b, hca +d g∗a +bg∗c∗−bd∗h) (1.31)

Let’s now substitute (1.30) and (1.31) in (1.28):

[p, q,r ] = ([a,h∗d ]+ [c∗,h∗b]+ [g ,d∗b], h[a,c]+d [g∗, a]+b[c∗, g∗]

+b[d∗,h]+ [b,hd∗]) (1.32)
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(1.32) Shows that the non-commutativity of quaternions is responsible for the non-

associativity of octonions.

One can use the associator to proof the alternativity of octonions. At first, let’s back

to the table 1.1 and verify the following identity:

Ci j kCm j k = δi m (1.33)

It is important to say that result (1.33) is not a summation. For a summation, then3:

1

6
Ci j kCm j k = δi m

The identity (1.33) will be useful on the next calculation. Now, let’s apply the associ-

ator on any three of the seven elements of octonion basis:

[Ei ,E j ,Ek ] = (Ei E j )Ek −Ei (E j Ek )

= (δi j E0 +Ci j l El )Ek −Ei (−δ j k E0 +C j kmEm)

= −δi j Ek +δ j k Ei +Ci j l (−δlk +Cl knEn)−C j km(−δi m +Ci mp Ep )

= −δi j Ek +δ j k Ei −Ci j k +C j ki +Ci j lClknEn −C j kmCi mnEn

= −δi j Ek +δ j k Ei + (Ci j lClkn +C j kmCmi n)En (1.34)

So, let’s do i = j and i , j ̸= k:

[Ei ,Ei ,Ek ] = −δi i Ek +Ci kmCmi nEn (1.35)

Using the result (1.33) on (1.35),

[Ei ,Ei ,Ek ] = −Ek +δknEn = 0 (1.36)

When choosing j = k and j ,k ̸= i , the calculation will be analogous to the immedi-

ately previous process.

If one choose i = k and i ,k ̸= j , then:

[Ei ,E j ,Ei ] = (Ci j
lCl i

n +C j i
mCmi

n)En

= (δ j
n −δ j

n)En = 0 (1.37)

So, according to (1.36) and (1.37), one can see that the elements of octonion basis

form a alternative basis. Furthermore, it’s is possible to state that the operation [Ei ,E j ,Ek ]

can be written in terms of a totally anti-symmetric tensor Ti j kn such that:

[Ei ,E j ,Ek ] = Ti j k
nEn (1.38)

3The Einstein sum convention is adopted in this case.
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Returning to table 1.1, it’s is possible to verify that:

[Ei ,E j ,Ek ] = [Ek ,Ei ,E j ] = [E j ,Ek ,Ei ] (1.39)

where,

[Ek ,Ei ,E j ] =−δki E j +δi j Ek + (Cki lCl j n +Ci j mCmkn)En (1.40)

and

[E j ,Ek ,Ei ] =−δ j k Ei +δki E j + (C j klCl i n +Cki mCm j n)En (1.41)

When adding up (1.34), (1.40) and (1.41), we have:

[Ei ,E j ,Ek ] = 2

3
(Ci j lCl kn +C j kmCmi n +Cki pCp j n)En (1.42)

Therefore:

Ti j kn = 2

3
(Ci j lClkn +C j kmCmi n +Cki pCp j n) (1.43)

where

Ti j kn = 0, if {i , j ,k} =


{1,2,3}, {2,4,6}, {3,5,6}.

{1,4,5}, {2,5,7},

{1,6,7}, {3,4,7},

(1.44)

and

T1247 = 2 T2345 = 2

T1256 =−2 T2367 =−2

T1346 =−2 T4567 =−2

T1357 =−2

Another operation should be presented (it will be useful for future analysis) is the

anti-associator {•,•,•}:

{a,b,c} = (ab)c +a(bc) (1.45)

If a,b,c ∈O, the result of (1.45) can be null. It is a peculiarity of octonions because it

result does not happen for any other division algebra.

For any three elements of the octonion’s basis we have:

{Ei ,E j ,Ek } = (Ei E j )Ek +Ei (E j Ek )

= (−δi j E0 +Ci j l El )Ek +Ei (−δ j k E0 +C j kmEm)

= −δi j Ek −δ j k Ei +Ci j l (−δlk +ClknEn)+C j km(−δi m +Ci mnEn)

= −δi j Ek −δ j k Ei −2Ci j k E0 + (Ci j lCl kn +C j kmCi mn)En (1.46)

According to (1.46) one can verify that:

{Ei ,E j ,Ek } = Si j k + Ai j k (1.47)
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where Ai j k is the part totally antisymmetric of (1.47) and Si j k is the part partialy symmetric.

By choosing i , j ,k different indexes:

{Ei ,E j ,Ek } = −2Ci j k E0 + (Ci j lCl kn +C j kmCi mn)En = Ai j k

{E j ,Ek ,Ei } = −2C j ki E0 + (C j kmCmi n +Cki tC j tn)En = A j ki

{Ek ,Ei ,E j } = −2Cki j E0 + (Cki tCt j n +Ci j lCkln)En = Aki j (1.48)

Then, by adding the three equations of (1.48), we get:

Ai j k =−2Ci j k E0 (1.49)

In order to determine an expression for Si j k one can do:

{Ei ,Ei ,Ek } = Si i k =−2Ek ,

{Ei ,E j ,E j } = Si j j =−2Ei ,

{Ei ,E j ,Ei } = Si j i = 2E j (1.50)

Therefore:

Si j k =−2δi j Ek −2δ j k Ei +2δi k E j (1.51)

and

{Ei ,E j ,Ek } = −2δi j Ek −2δ j k Ei +2δi k E j −2Ci j k E0

= −2(δi jδk
n +δ j kδi

n −δi kδ j n)En −2Ci j k E0

1

2
{Ei ,E j ,Ek } = Hi j knEn −Ci j k E0 (1.52)

where

Hi j kn =−δi jδkn −δ j kδi n +δi kδ j n (1.53)

According to second line in (1.52) and (1.46),

−δi j Ek −δ j k Ei −2Ci j k E0 + (Ci j lClkn −C j kmCmi n)En =
−2(δi jδkn +δ j kδi n −δi kδ j n)En −2Ci j k E0

(−δi jδkn −δ j kδi n +Ci j lClkn −C j kmCmi n)En =
−2(δi jδkn +δ j kδi n −δi kδ j n)En

Therefore:

Ci j lClkn −C j kmCmi n =−δi jδkn −δ j kδi n +δi kδ j n (1.54)
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1.6 Cayley-Dickson sedenions

Cayley-Dickson Sedenions are not a division algebra. It is a non-alternative algebra

wich can be construct, by doubling octonions, as the same process done in the last alge-

bras and using Cayley-dickson parameter ϵ = −1. If we double octonions using ϵ = 1, then

we will get conic sedenions [12], [22], [23]. In this work let’s focus only on Cayley-Dickson

sedenions, since it is enough to understand how non-alternative arises in Cayley-Dickson

doubling construction.

Therefore, elements of Cayley-Dickson sedenionic basis can be represented as:

S0 = (E0,1), S1 = (E1,0), S2 = (E2,0), S3 = (E3,0),S4 = (E4,0)

S5 = (E5,0), S6 = (E6,0), S7 = (E7,0)

S8 = (0,E0), S9 = (0,E1), S10 = (0,E2), S11 = (0,E3), S12 = (0,E4)

S13 = (0,E5), S14 = (0,E6), S15 = (0,E7) (1.55)

Then, the multiplication between two elements of the sedenion base are:

Si S j =−δi j S0 +Ki j k Sk (1.56)

where Ki j k sedenion structure constant, and it is a anti-symmetric symbol. The values of

Ki j k are given in the following table: There is an important property about the basis of sede-

K123 = 1 K2,8,10 = 1 K347 = 1
K145 = 1 K246 = 1 K356 =−1

K167 =−1 K257 = 1 K3,8,11 = 1
K189 = 1 K2,9,11 = 1 K3,9,10 =−1

K1,10,11 = 1 K2,12,14 =−1 K3,12,15 =−1
K1,12,13 =−1 K2,13,15 =−1 K3,14,13 =−1
K1,14,15 = 1 K5,8,13 = 1 K6,8,14 = 1
K4,8,12 = 1 K5,9,12 =−1 K6,9,15 =−1
K4,9,13 = 1 K5,10,15 = 1 K6,10,12 =−1
K4,10,14 = 1 K5,11,14 =−1 K6,11,13 = 1
K4,11,15 = 1 K7,8,15 = 1 K7,9,14 = 1

K7,10,13 =−1 K7,11,12 =−1

Table 1.2: Structure constant of Cayley-Dickson sedenions

nions and non-alternativity. Choosing any three elements of (1.55) we get:

[Si ,S j ,Sk ] =−δi j Sk +δ j k Si + (Ki j l Klkn +K j kmKmi n)Sn (1.57)

Let’s suppose now i = j , or i = k, or j = k. These choices mean that we are analyzing the

alternativity of the sedenions basis elements. But even knowing that the sedenions are non-
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alternative, it is possible to notice that this result will be null. So, unlike the algebras pre-

sented so far, in which the characteristic degree of freedom of each one was already ob-

served in multiplication between the elements of its basis, multiplication between elements

of sedenions basis does not carry the main characteristic of this algebra.

Elements of the sedenionic basis are ordered pairs of the type (0,∗) or (∗,0). We can

obtain non-alternativity by doing a multiplication between ordered pairs with both non-zero

components (∗,∗). Then, let’s take the following three sedenions x = (Ei ,E j ), y = (Ek ,El ) and

z = (Em ,En):

[x, y, z] = (x y)z −x(y z) (1.58)

where

(x y)z = ((Ei ,E j )(Ek ,El ))(Em ,En)

= (Ei Ek +El E j ,El Ei −E j Ek )(Em ,En)

= ((Ei Ek )Em + (El E j )Em +En(El Ei )−En(E j Ek ),

En(Ei Ek )−En(El E j )− (El Ei )Em + (E j Ek )Em) (1.59)

and

x(y z) = (Ei ,E j )((Ek ,El )(Em ,En))

= (Ei ,E j )((Ek Em +EnEl ,EnEk −El Em))

= (Ei (Ek Em)+Ei (EnEl )− (Ek En)E j + (EmEl )E j ,

(EnEk )Ei − (El Em)Ei +E j (EmEk )+E j (El En)) (1.60)

We can now substitute (1.59) and (1.60) into (1.58), and we get the following result:

[x, y, z] = ([Ei ,Ek ,Em]− {Em ,El ,E j }+ {En ,El ,Ei }− [En ,Ek ,E j ],

[Ei ,El ,Em]− {En ,Ek ,Ei }− {En ,El ,E j }+ {E j ,Ek ,Em}) (1.61)

Let’s now set i = k and j = l :

[x, x, z] = ([Ei ,Ei ,Em]− {Em ,E j ,E j }− {En ,E j ,Ei }− [En ,Ei ,E j ],

[Ei ,E j ,Em]− {En ,Ei ,Ei }− {En ,E j ,E j }+ {E j ,Ei ,Em})

= (−2Em − {En ,E j ,Ei }− [En ,Ei ,E j ],

[Ei ,E j ,Em]+ {E j ,Ei ,Em}−4En) (1.62)

Thus, we were able to verify that the non-alternative nature of sedenions originates

from the non-associative of elements of the octonion basis, which are used to form sedenion

numbers that do not contain any null term in the ordered pair.
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We can also prove how sedenions are a non-division algebra by using elements x =
(Ei ,E j ) and y = (Ek ,El ). By choosing i = 1, j = 6, k = 2 and l = 5, then:

x · y = (E1,E6)(E2,E5)

= (E3 −E3,E4 −E4) = 0

1.7 Split-complex numbers

In the presentation of the Cayley-Dickson construction, it was reported that choosing

the parameter ϵ = 1 will result in the construction of a split-division algebra. For example,

starting from the reals, we can obtain the complex numbers (C) by choosing ϵ = −1, or the

split-complex numbers (C̃) for ϵ= 1. The different choices will result in different properties

for the multiplication and “norm”.

For split-complex numbers, one can define the following elements of basis:

1 ≡ (1,0), j ≡ (0,1) (1.63)

Then, a split-complex number z̃ ∈ C̃ can be defined as:

z̃ = a +b j , a,b ∈R, (1.64)

where

j 2 = 1 (1.65)

and

N (z̃) = z̃∗z̃ = a2 −b2 (1.66)

It is important to note that, for a complex number z, its norm N (z) ∈R+; while for a

split-complex number z̃, its “norm” N (z̃) ∈R.

The main property of a split-division algebra is the possibility of division of zero. Let

a,b ∈A+, a split-division algebra. Even if both a and b are nonzero, the result of multiplying

them can be zero.

Let’s suppose a,b ∈ C̃, for a = (x, y) and b = (z, w), where x, y, z, w ∈R∗. Therefore,

a ·b = (x, y) · (z, w) = (xz +w y, w x + y z) = 0 (1.67)

From (1.67), we get the following system of equations:{
xz =−w y

w x =−y z
(1.68)
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The solution for (1.68) goes through

z =±w or x =±y (1.69)

The results (1.69) will be revisited later, in approach of matrix representation of Cayley-

Dickson doubling construction.

1.8 Split-quaternions

It is possible to construct a 2N -dimensional split-division algebra in two different

ways: by doubling a N -dimension split-division algebra or doubling a N -dimension division

algebra with ϵ= 1. In this work, the second way will be more useful for future results. So, let’s

construct split-quaternions (H̃) by doubling complex numbers (C) and choosing ϵ= 1.

Analogous to the construction process of quaternions, the split-quaternion basis is

formed by the following elements:

e0 = (1,0), ẽ1 = (i ,0), ẽ2 = (0,1), ẽ3 = (0, i ) (1.70)

Quaternion and split-quaternion basis elements are represented by the same ordered

pairs, but its operations are not the same. For example, multiplication between two elements

of (1.70) has the following result:

ẽi ẽ j =−ηi j e0 + ε̃i j
k ẽk (1.71)

where ηi j is the i j -component of split-quaternionic metric, that is:

ηi j →η=


1 0 0

0 −1 0

0 0 −1

 (1.72)

ε̃i j
k is the “split-Levi-Civita” pseudotensor, and it is not totally anti-symmetric, but

if we lower the last index it becomes totally anti-symmetric. To do so, we must multiply ε̃i j
k

by split-quaternionic metric:

ε̃i j k = ε̃i j
lηlk (1.73)

where:

ε̃12
3 = 1, ε̃21

3 =−1

ε̃31
2 = 1, ε̃13

2 =−1

ε̃23
1 = −1, ε̃32

1 = 1 (1.74)
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and

ε̃123 = −1, ε̃213 = 1

ε̃312 = −1, ε̃132 = 1

ε̃231 = −1, ε̃321 = 1 (1.75)

It is important to say that split-quaternions are a non-commutative algebra, as quater-

nions. Except for the norm, the mains properties of a division algebra also exists in the split

form of this algebra.

1.9 Split-octonions

The split-octonions’ elements basis are:

E0 = (e0,0), Ẽ1 = (e1,0), Ẽ2 = (e2,0), Ẽ3 = (e3,0)

Ẽ4 = (0,e0), Ẽ5 = (0,e1), Ẽ6 = (0,e2), Ẽ7 = (0,e3) (1.76)

The multiplication between two elements of (1.76) is:

Ẽi Ẽ j =−µi j E0 + C̃ i j
k Ẽk (1.77)

where µi j is the i j -component of split-octonionic metric,

µ̃i j →µ=



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 −1


(1.78)

and C̃i j k the structure constant of the split-octonions. The table of structure constant of

split-octonions is:

It is easy to see that C̃ i j
k is not totally anti-symmetric. But, by doing:

C̃i j k = C̃ i j
l µ̃lk (1.79)

we get the representation C̃i j k that is totally anti-symmetric.
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C̃123 = 1 C̃ 21
3 =−1 C̃ 31

2 = 1
C̃ 13

2 =−1 C̃ 23
1 = 1 C̃ 32

1 =−1
C̃ 14

5 = 1 C̃ 24
6 = 1 C̃ 34

7 = 1
C̃ 15

4 =−1 C̃ 25
7 = 1 C̃ 35

6 =−1
C̃ 16

7 =−1 C̃ 26
4 =−1 C̃ 36

5 = 1
C̃ 17

6 = 1 C̃ 27
5 =−1 C̃ 37

4 =−1

C̃ 41
5 =−1 C̃ 51

4 = 1 C̃ 61
7 = 1 C̃ 71

6 =−1
C̃ 42

6 =−1 C̃ 52
7 =−1 C̃ 62

4 = 1 C̃ 72
5 = 1

C̃ 43
7 =−1 C̃ 53

6 = 1 C̃ 63
5 =−1 C̃ 73

4 = 1
C̃ 45

1 =−1 C̃ 54
1 = 1 C̃ 64

2 = 1 C̃ 74
3 = 1

C̃ 46
2 =−1 C̃ 56

3 = 1 C̃ 65
3 =−1 C̃ 75

2 = 1
C̃ 47

3 =−1 C̃ 57
2 =−1 C̃ 67

1 = 1 C̃ 76
1 =−1

Table 1.3: Structure constant of split-octoionios

C̃123 = 1 C̃213 =−1 C̃312 = 1
C̃132 =−1 C̃231 = 1 C̃321 =−1
C̃145 =−1 C̃246 =−1 C̃347 =−1
C̃154 = 1 C̃257 =−1 C̃356 = 1
C̃167 = 1 C̃264 = 1 C̃365 =−1

C̃176 =−1 C̃275 = 1 C̃374 = 1

C̃415 = 1 C̃514 =−1 C̃617 =−1 C̃716 = 1
C̃426 = 1 C̃527 = 1 C̃624 =−1 C̃725 =−1
C̃437 = 1 C̃536 =−1 C̃635 = 1 C̃734 =−1

C̃451 =−1 C̃541 = 1 C̃642 = 1 C̃743 = 1
C̃462 =−1 C̃563 = 1 C̃653 =−1 C̃752 = 1
C̃473 =−1 C̃572 =−1 C̃671 = 1 C̃761 =−1

Table 1.4: Totally anti-symmetric split-octonion’s structure constants





Chapter 2

Matrix representation for (split-)division

algebras

In addition to the vector representation, (split-)divisional algebras can also be com-

patible with the matrix representation. Initially, we will focus on the matrix representation

of (split-)complex numbers and (split-)quaternions. Although (split-)octonions are non-

associative, it is possible to describe them as matrices too, which obey a particular multi-

plication rule. However, this topic will be covered at the end of this section in detail. From

this, we will finally be able to elaborate a matrix representation for the construction of the

Cayley-Dickson algebras, having the doubling technique as background.

2.1 Matrix representation for (split-)complex numbers

As said before, a complex number z can be presented as the following vector:

z = x(1,0)+ y(0,1), x, y ∈R (2.1)

where (1,0) and (0,1) are vector representations of real unit 1 and imaginary unit i , respec-

tively. Now, let’s construct two matrices that match the algebric properties of (1,0) and (0,1).

From start, we can associate vector (1,0) to unitary matrix 12×2:

(1,0) ≡
(

1 0

0 1

)
(2.2)

For (0,1), we have:

(0,1) ≡
(

A B

C D

)
(2.3)

where A,B ,C ,D ∈R. As we know:

(0,1) · (0,1) =−(1,0) (2.4)

23
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Therefore: (
A2 +C B AC +C D

B A+DB BC +D2

)
=−

(
1 0

0 1

)
(2.5)

Then, we get the following system of equations:

A2 +C B = −1

C (A+D) = 0

B(A+D) = 0

BC +D2 = −1 (2.6)

To solve the set of equations (2.6) can be solved by imposing C = B = 0. But this

choice will result in A,D ̸∈ R. That is, the only possible solution is to assume that A = −D ,

reducing the system to an equation:

A2 +C B = −1 (2.7)

Equation (2.7) explains freedom for the definition of the matrices associated with the

vector (0,1). A convenient choice is A = 0, B =−1 and C = 1. Thus,

(0,1) ≡
(

0 1

−1 0

)
(2.8)

Therefore, a complex number z = (x, y), x, y ∈ R can be represented by the following

matrix:

z = (x, y) ≡
(

x y

−y x

)
(2.9)

For split-complex numbers, the analogous procedure can be carried out. Matrices of

1 = (1,0) and j = (0,1) are:

(1,0) ≡
(

1 0

0 1

)
, j = (0,1) ≡

(
0 1

1 0

)
(2.10)

So that z̃ ∈ C̃will be represented by the following matrix:

z̃ = (x, y) ≡
(

x y

y x

)
, x, y ∈R (2.11)

2.2 Matrix representation for (split-)quaternions

Now let’s try to define the quaternions in terms of a matrix 2×2 of complex entries.

Then, for a quaternion number z:

z = (x, y) = ae0 +be1 + ce2 +de3 ≡ aM0 +bM1 + cM2 +d M3 (2.12)
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where:

x = a + i b,

y = c + i d (2.13)

As we know, coeficients a,b,c and d are real numbers. Element e0 = (1,0) is the real

unit and therefore:

M0 =
(

1 0

0 1

)
(2.14)

For the other matrices, we have the following properties:

M 2
1 =−12×2 M1M2 = M3

M 2
2 =−12×2 M3M1 = M2

M 2
3 =−12×2 M2M3 = M1 (2.15)

Relations (2.15) are just a consequence of multiplication between basis elements of

quaternions, such that:

Mi M j =−δi j M0 +εi j k Mk (2.16)

Informations just above are sufficient to determine matrices M , sendo:

M =
(

A B

C D

)
, A,B ,C ,D ∈C (2.17)

If M 2 =−1, then

M 2 =
(

A2 +BC AB +BD

C A+DC C B +D2

)
=

(
−1 0

0 −1

)
(2.18)

It is possible to verify that A =±D . We then have two possibilities for choosing A, so

that:

1) By choosing A = D :

M 2 =
(

A2 +BC 2AB

2AC C B + A2

)
=

(
−1 0

0 −1

)
(2.19)


A2 +BC = −1

AB = 0

AC = 0
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1.1) We can impose B =C = 0. Then:

A =±i =⇒ M =±i

(
1 0

0 1

)
(2.20)

So this option is useless because M = ±i 12×2 and 12×2 is already related to the vector

(1,0).

1.2) If A = D = 0, we have:

C =− 1

B
(2.21)

Therefore, when choosing A = D , we will have the following matrix M :

M =
(

0 B

−1/B 0

)
(2.22)

2) By choosing A =−D ,

M 2 =
(

A2 +BC 0

0 BC + A2

)
=

(
−1 0

0 −1

)
(2.23)

We get the following result for A:

A = i (1+BC )1/2 (2.24)

Then,

M =
(

i (1+BC )1/2 B

C −i (1+BC )1/2

)
(2.25)

Finally, we define the two possible matrices:

M =
(

0 X

−1/X 0

)
, M ′ =

(
i (1+BC )1/2 B

C −i (1+BC )1/2

)
(2.26)

The produts between M and M ′ are:

M M ′ =
(

XC −i X (1+BC )1/2

− i
X (1+BC )1/2 − B

X

)
(2.27)

M ′M =
(

− B
X i X (1+BC )1/2

i
X (1+BC )1/2 C X

)
(2.28)

M M ′ =−M ′M =⇒C = B

X 2
(2.29)

such that:

M =
(

0 X

−1/X 0

)
, M ′ =

 i
(
1+ B 2

X 2

)1/2
B

B
X 2 −i

(
1+ B 2

X 2

)1/2

 (2.30)
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Now it will be necessary to determine the third matrix M ′′, which is defined by the

product M M ′. According to (2.30) and the value of C = B/X 2, M ′′ will be:

M ′′ =
 B

X i X
(
1+ B 2

X 2

)
− i

X

(
1+ B 2

X 2

)
− B

X

 (2.31)

A plausible choice for defining the three matrices is to impose X = 1 and B = i . Thus,

we get the following matrices:

M =
(

0 1

−1 0

)
, M ′ =

(
0 i

i 0

)
, M ′′ =

(
i 0

0 −i

)
(2.32)

So let’s consider the following choices:

M ′′ → M1 ≡ e1 = (i ,0)

M → M2 ≡ e2 = (0,1)

M ′ → M3 ≡ e3 = (0, i )

We see that a quaternion z in (2.12) can be represented by the following matrix:

z ≡ a

(
1 0

0 1

)
+b

(
i 0

0 −i

)
+ c

(
0 1

−1 0

)
+d

(
0 i

i 0

)

z ≡
(

a + i b c + i d

−c + i d a − i b

)
(2.33)

Generally, a quaternion z = (x, y) can be represented by the following matrix:

q = (x, y) ≡
(

x y

−y∗ x∗

)
, x, y ∈C (2.34)

For split-quaternions the same procedure can be done and the matrices of basis ele-

ments are:

e0 = (1,0) ≡
(

1 0

0 1

)
, ẽ1 = (i ,0) ≡

(
i 0

0 −i

)
, ẽ2 = (0,1) ≡

(
0 1

1 0

)
,

ẽ3 = (0, i ) ≡
(

0 i

−i 0

)
(2.35)

According to (2.35) a split-quaternion number z̃ = (x, y) has the following matrix rep-

resentation:

z̃ = (x, y) ≡
(

x y

y∗ x

)
, x, y ∈C (2.36)
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Next, we will see that (split-)quaternions can also be represented by matrices 4× 4

of real inputs. This process can be performed using an algorithm based on a formula that

generalizes the matrix representation of the Cayley-Dickson algebras. This formula can be

realised by look backing for results (2.9), (2.11), (2.34) and (2.36). In principle, this general

formula can not be used to represent octonions, since they are a non-associative algebra.

But lately we will see how it would be possible to use this generalization for represent any

Cayley-Dickson algebra, preserving all its degree of freedom.

2.3 General formula for matrix representation

Previously it has been shown that:

• For any given z ∈C,

z =
(

x y

−y x

)
, x, y ∈R (2.37)

• For any given z̃ ∈ C̃,

z̃ =
(

x y

y x

)
, x, y ∈R (2.38)

• For any given w ∈H,

w =
(

x y

−y∗ x∗

)
, x, y ∈C (2.39)

• For any given w̃ ∈ H̃,

w̃ =
(

x y

y∗ x∗

)
, x, y ∈C (2.40)

By induction, you can make the following hypothesis: Two elements of a divisional

algebra x, yi nA, the vector resulting from doubling (x, y) ∈ A2
ϵ can be presented by the fol-

lowing matrix:

(x, y) ≡
(

x y

ϵy∗ x∗

)
(2.41)

where ϵ=−1 for a division algebra and ϵ=+1 for a split-division algebra.

However, this representation is incompatible with Cayley-Dickson multiplication for

algebras whose inputs of ordered pairs are non-commutative elements.

Let’s make it clear. We must remember that Cayley-Dickson multiplication for two

vectors (x, y) and (z, w) of any algebra is

(x, y) · (z, w) = (xz +ϵw∗y, w x + y z∗) (2.42)
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So, if (x, y) and (z, w) can be represented as a 2×2 matrices, it would must be possible

a matrix representation for the result (xz +ϵw∗y, w x + y z∗). Then, according to (2.41):

(x, y)(z, w) ≡
(

xz +ϵw∗y w x + y z∗

ϵ(w x + y z∗)∗ (xz +ϵw∗y)∗

)

≡
(

xz +ϵw∗y w x + y z∗

ϵx∗w∗+ϵz y∗ z∗x∗+ϵy∗w

)
(2.43)

But the usual multiplication between matrices of (x, y) and (z, w) has the following

result:

(x, y)(z, w) ≡
(

x y

ϵy∗ x∗

)(
z w

ϵw∗ z∗

)

≡
(

xz +ϵw∗y w x + y z∗

ϵx∗w∗+ϵy∗z x∗z∗+ϵy∗w

)
(2.44)

The results (2.43) and (2.44) will only be equivalent for algebras in which x, y, z, w are

numbers of a commutative algebra. If x, y, z, w are, for example, quaternions, so product for

matrix representation needs to be defined as follows:

(x, y)(z, w) ≡
(

x y

ϵy∗ x∗

)(
z w

ϵw∗ z∗

)
+

(
ϵ[w∗, y] [w, x]

ϵ[z, y∗] [z∗, x∗]

)
(2.45)

Definition (2.45) makes octonions and split-octonions compatible with the matrix

representation and preserve its non-associative. Zorn has already demonstrated a matrix

representation for octonions and split-octonions [11]. But the purpose of this work goes

beyond demonstrating an alternative representation of Zorn’s work. From (2.41) and (2.45),

we will also demonstrate how an N -dimensional Cayley-Dickson algebra can be represented

by an N ×N matrix of real inputs and from this, we will explore its possible applications.

2.4 2×2 Matrix representation for (split-)octonions

According to (1.24) and (2.41), octonionic basis can be represented by following 2×2

with quaternions inputs:

E0 ≡
(

1 0

0 1

)
, E1 ≡

(
e1 0

0 −e1

)
, E2 ≡

(
e2 0

0 −e2

)
, E3 ≡

(
e3 0

0 −e3

)
,

E4 ≡
(

0 1

−1 0

)
, E5 ≡

(
0 e1

e1 0

)
, E6 ≡

(
0 e2

e2 0

)
, E7 ≡

(
0 e3

e3 0

)
. (2.46)

So, any octonion z = aE0+bE1+cE2+dE3+ f E4+g E5+hE6+mE7, where a,b,c,d , f , g ,h,m ∈
R, is equivalent to the matrix bellow:

u ≡
(

a +be1 + ce2 +de3 f + g e1 +he2 +me3

− f + g e1 +he2 +me3 a −be1 − ce2 −de3

)
, (2.47)
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We can use some matrices in (2.46) to proof of how multiplication (2.45) are valid for

octonions. Is just needed to remember the rules of multiplication between quaternions ei .

A few examples:

E1E3 ≡
(

e1 0

0 −e1

)(
e3 0

0 −e3

)
+

(
0 0

0 [e3,e1]

)

≡ −
(

e2 0

0 −e2

)
=−E2 (2.48)

E1E4 ≡
(

e1 0

0 −e1

)(
0 1

−1 0

)
+

(
0 [1,e1]

0 0

)

≡ −
(

0 e1

e1 0

)
= E5 (2.49)

E3E5 ≡
(

e3 0

0 −e3

)(
0 e1

e1 0

)
+

(
0 [e1,e3]

0 0

)

≡ −
(

0 e2

e2 0

)
=−E6 (2.50)

Matrices in (2.46) are just one of the three possibles representations for octonions in

relation of matrix dimension. Let’s remember that:

C ≡ R2

H ≡ C2 ≡R4

O ≡ H2 ≡C4 ≡R8 (2.51)

According to (2.51), we can see that complex numbers C has only one dimensional

matrix representation: 2× 2 matrices with real numbers inputs. For quaternions there are

two possibilities: 2×2 with complex numbers inputs and 4×4 matrices with real numbers

inputs. Finally, for octonions exist three possibilities: 2×2 matrices with quaternion inputs,

4×4 with complex numbers inputs and 8×8 with real inputs. In the following sections, it will

be shown how to creat all these representations.

2.5 4×4 Matrix representation for (split-)quaternions

As already seen, an element (x, y) ∈A2
ϵ can be associated with the following matrix:

(x, y)2×2 ≡
(

x y

ϵy∗ x∗

)
; x, y ∈A (2.52)
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where ϵ is the Cayley-Dickson parameter.

But the matrix entries can also be a vector element of a doubled algebra, that is, x =
(a,b) and y = (c,d), so the doubling (x, y) becomes a matrix 4×4:

(x, y)4×4 ≡
(

(a,b)2×2 (c,d)2×2

ϵ(c,d)∗2×2 (a,b)∗2×2

)
=

(
(a,b)2×2 (c,d)2×2

ϵ(c∗,−d)2×2 (a∗,−b)2×2

)
(2.53)

Therefore, matrix (2.53) is:

(x, y)4×4 ≡


(

a b

ϵ̄b∗ a∗

) (
c d

ϵ̄d∗ c∗

)

ϵ

(
c∗ −d

−ϵ̄d∗ c

) (
a∗ −b

−ϵ̄b∗ a

)
 (2.54)

where ϵ̄ is the Cayley-Dickson parameter of algebraA.

One can use a informal representation to define matrix (2.54). If x = (a,b) and y =
(c,d), then:

(x, y)4×4 = ((a,b), (c,d)) ≡ (a,b,c,d) ≡


(

a b

ϵ̄b∗ a∗

) (
c d

ϵ̄d∗ c∗

)

ϵ

(
c∗ −d

−ϵ̄d∗ c

) (
a∗ −b

−ϵ̄b∗ a

)
 (2.55)

If we use complex numbers to construct quaternions, then ϵ= ϵ̄=−1. So, let’s rewrite

quaternions e0,e1,e2 and e3 as a vector (a,b,c,d):

e0 = (1,0) ≡ (1,0,0,0), e1 = (i ,0) ≡ (0,1,0,0)

e2 = (0,1) ≡ (0,0,1,0), e3 = (0, i ) ≡ (0,0,0,1) (2.56)

According to (2.55) and (2.56), one can construct following matrices:

e0 ≡


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , e1 =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0



e2 =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 , e3 =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 (2.57)

It is also possible to construct split-quaternions matrices in 4×4 form by doubling

complex numbers. In this case for matrix (2.55) ϵ= 1 and ϵ̄=−1. Split-quaternion basis can
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be represented in the form (a,b,c,d) as follows:

e0 = (1,0) ≡ (1,0,0,0), ẽ1 = (i ,0) ≡ (0,1,0,0)

ẽ2 = (0,1) ≡ (0,0,1,0) ẽ3 = (0, i ) ≡ (0,0,0,1) (2.58)

And matrices of elements (2.58) are:

e0 ≡


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , ẽ1 ≡


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0



ẽ2 ≡


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , ẽ3 ≡


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 (2.59)

2.6 4×4 and 8×8 Matrix representation for (split-)octonions

We have already seen the 2×2 matrices of octonion basis. Now, we can use the algo-

ritm presented in last section to construct matrices 4×4 and 8×8 for Ei .

First, for octonion basis matrices in 4×4 form, it is just needed to look back (2.55).

We also can represent elements Ei as a vector (a,b,c,d). Then,

E0 = (e0,0) ≡ (1,0,0,0), E1 = (e1,0) ≡ (i ,0,0,0), E2 = (e2,0) ≡ (0,1,0,0),

E3 = (e3,0) ≡ (0, i ,0,0), E4 = (0,e0) ≡ (0,0,1,0), E5 = (0,e1) ≡ (0,0, i ,0),

E6 = (0,e2) ≡ (0,0,0,1), E7 = (0,e3) ≡ (0,0,0, i ) (2.60)

and the matrices of (2.60) are:

E0 ≡


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 E1 =


i 0 0 0

0 −i 0 0

0 0 −i 0

0 0 0 i

 E2 =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0



E3 =


0 i 0 0

i 0 0 0

0 0 0 −i

0 0 −i 0

 E4 =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 E5 =


0 0 i 0

0 0 0 −i

i 0 0 0

0 −i 0 0



E6 =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 E7 =


0 0 0 i

0 0 i 0

0 i 0 0

i 0 0 0

 (2.61)
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To multiply matrices in (2.61), we must use the rule of multiplication presented in

(2.45). For multiplication between any matrices of a Cayley-Dickson algebra let us use the

symbol ×, that is what we will call from now on by matrix Cayley-Dickson multiplication.

So, for two 4×4 matrices of a given algebraA2, one can have:(
(a,b)2×2 (c,d)2×2

ϵ(c,d)∗2×2 (a,b)∗2×2

)
×

(
(e, f )2×2 (g ,h)2×2

ϵ(g ,h)∗2×2 (e, f )∗2×2

)
=

(
(a,b)2×2 (c,d)2×2

ϵ(c,d)∗2×2 (a,b)∗2×2

)(
(e, f )2×2 (g ,h)2×2

ϵ(g ,h)∗2×2 (e, f )∗2×2

)
+

(
ϵ[(g ,h)∗2×2, (c,d)2×2] [(g ,h)2×2, (a,b)2×2]

ϵ[(e, f )2×2, (c,d)∗2×2] [(e, f )∗2×2, (a,b)∗2×2]

)
(2.62)

We can use two matrices in (2.61) as an example of (2.62):

E1E7 =


i 0 0 0

0 −i 0 0

0 0 −i 0

0 0 0 i




0 0 0 i

0 0 i 0

0 i 0 0

i 0 0 0

+

 O

[(
0 i

i 0

)
,

(
i 0

0 −i

)]
O O



=


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

+

 O

(
0 2

−2 0

)
O O



=


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

= E6 (2.63)

As said before, we can also construct 8 × 8 matrices for octonion basis. In matrix

(2.55), it is possible to see that a,b,c and d can be rewrite also as ordered pair and therefore

as 2×2 matrix. For praticality, we will consider that (x, y), (a,b) and (c,d) are elements of a

division algebra. So, if:

a = (α,β), b = (γ,λ), c = (ξ,σ), d = (κ,η),

a∗ = (α,−β), b∗ = (γ,−λ), c∗ = (ξ,−σ), d∗ = (κ,−η), (2.64)

and

a =
(

α β

−β α

)
, a∗ =

(
α −β
β α

)
b =

(
γ λ

−λ γ

)
,b∗ =

(
γ −λ
λ γ

)

c =
(

ξ σ

−σ ξ

)
,c∗ =

(
ξ −σ
σ ξ

)
d =

(
κ η

−η κ

)
,d∗ =

(
κ −η
η κ

)
(2.65)

Then,

(a,b,c,d) = ((α,β), (γ,λ), (ξ,σ), (κ,η)) ≡ (α,β,γ,λ,ξ,σ,κ,η) (2.66)
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and, according to (2.55), the 8×8 matrix is:

(x, y))8×8 ≡ (α,β,γ,λ,ξ,σ,κ,η) =



α β γ λ ξ σ κ η

−β α −λ γ −σ ξ −η κ

−γ λ α −β −κ η ξ −σ
−λ −γ β α −η −κ σ ξ

−ξ σ κ η α −β −γ −λ
−σ −ξ −η κ β α λ −γ
−κ η −ξ −σ γ −λ α β

−η −κ σ −ξ λ γ −β α


(2.67)

Matrix (2.67) can be divided into 4 blocks. The top left block is the 4×4 matrix repre-

sentation for (a,b); the top right block is the 4×4 matrix representation for (c,d); the bottom

left block is 4×4 matrix representation for −(c,d)∗ and the bottom right block is 4×4 matrix

representation for (a,b)∗. This point of view will be important soon, when multiplication

between octonion 8×8 matrices basis will be presented.

Therefore, let us also rewrite elements (2.60) as the follows:

E0 = (1,0,0,0,0,0,0,0), E1 = (0,1,0,0,0,0,0,0), E2 = (0,0,1,0,0,0,0,0),

E3 = (0,0,0,1,0,0,0,0), E4 = (0,0,0,0,1,0,0,0), E5 = (0,0,0,0,0,1,0,0),

E6 = (0,0,0,0,0,0,1,0), E7 = (0,0,0,0,0,0,0,1). (2.68)
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and according to (2.67) and (2.68), 8×8 matrices for octonion basis are:

E0 ≡



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


, E1 ≡



0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0


,

E2 ≡



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0


, E3 ≡



0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0


,

E4 =



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0


, E5 ≡



0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0


,

E6 ≡



0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0


, E7 ≡



0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0


(2.69)

Multiplication between matrices (2.69) can be realized analogously to (2.62). But
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now, we have:

(
(a,b)4×4 (c,d)4×4

ϵ(c,d)∗4×4 (a,b)∗4×4

)
×

(
(e, f )4×4 (g ,h)4×4

ϵ(g ,h)∗4×4 (e, f )∗4×4

)
=

(
(a,b)4×4 (c,d)4×4

ϵ(c,d)∗4×4 (a,b)∗4×4

)(
(e, f )4×4 (g ,h)4×4

ϵ(g ,h)∗4×4 (e, f )∗4×4

)
+

(
ϵ[(g ,h)∗4×4, (c,d)4×4] [(g ,h)4×4, (a,b)4×4]

ϵ[(e, f )4×4, (c,d)∗4×4] [(e, f )∗4×4, (a,b)∗4×4]

)
(2.70)

For split-octonions the same procedure can be done considering ϵ= 1 and ϵ̄=−1 in

formula (2.54). Then, matrices for split-octonions basis are:

E0 ≡


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 Ẽ1 =


i 0 0 0

0 −i 0 0

0 0 −i 0

0 0 0 i

 Ẽ2 =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0



Ẽ3 =


0 i 0 0

i 0 0 0

0 0 0 −i

0 0 −i 0

 Ẽ4 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 Ẽ5 =


0 0 i 0

0 0 0 −i

−i 0 0 0

0 i 0 0



Ẽ6 =


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 Ẽ7 =


0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0

 (2.71)
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and for 8×8 representation, we have:

E0 ≡



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


, Ẽ1 ≡



0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0


,

Ẽ2 ≡



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0


, Ẽ3 ≡



0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0


,

Ẽ4 =



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0


, Ẽ5 ≡



0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0


,

Ẽ6 ≡



0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0


, Ẽ7 ≡



0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0


(2.72)
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For example:

E6E3 =



0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0





0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0


+

+



O O


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 ,


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0



 O



=



0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0


+



O O
0 −2 0 0

2 0 0 0

0 0 0 2

0 0 −2 0

 O



= −



0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0


=−E5 (2.73)

Matrix representation for octonions can be useful in Malcev’s algebras and superal-

gebras [24],[25] because these matrices have graded structures. An other utility maybe to

construct a non-associative gauge theory [26] by using octonions.

It is also possible to introduce this representation to rewrite matrices of Clifford Al-
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gebras C lO(10,1), used in Octonionic M-Theory [13]:

Γi ≡


0 0 0 Ei

0 0 −Ei 0

0 Ei 0 0

−Ei 0 0 0

 , i = 1, ...,7

Γ8 ≡


0 0 0 E0

0 0 E0 0

0 E0 0 0

E0 0 0 0

 , Γ9 ≡


0 0 E0 0

0 0 0 −E0

E0 0 0 0

0 −E0 0 0

 ,

Γ10 ≡


0 0 E0 0

0 0 0 E0

−E0 0 0 0

0 −E0 0 0

 , Γ11 ≡


E0 0 0 0

0 E0 0 0

0 0 −E0 0

0 0 0 −E0

 . (2.74)

Matrices (2.74) can be rewrite in 32×32 with real inputs and algebra C lO(10,1) will

be kept by using Cayley-Dickson matrix multiplication.

Lately, it will be shown how octonionic matrix representation can mimic Dirac’s ma-

trix algebra.

2.7 Matrix representation for Cayley-Dickson doubling

construction

Now, we can write the main operations of Cayley-Dickson Doubling Construction

suitable for matrix representation. As mentioned in section 1.1, the are five main operations

that characterizes that construction: multiplication, conjugation, “norm”, multiplication by

a real number and conjugation of multiplication. As the last two operations are just a conse-

quence of the first three, for simplicity, we will focus only on these three.

In order to understand formalism of matrix representation we can see (2.41), (2.45),

(2.53), (2.54) and (2.62). From this formulas, one can make following conclusion: Let x, y ∈A,

a Cayley-Dickson algebra, represented by:

x ≡ Xd/2, y ≡ Yd/2 (2.75)

where Xd/2 and Yd/2 are
d

2
×d

2
matrices, with d = 2,4,8,16, ...,2n , .... Thus, doubling (x, y) ∈A2

is represented by the d ×d matrix as follows:

(x, y) ≡
(

Xd/2 Yd/2

ϵY∗
d/2 X∗

d/2

)
d

(2.76)

and it must obey following operations:
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• i) Multiplication:

(x, y)(z, w) ≡
(

Xd/2 Yd/2

ϵY∗
d/2 X∗

d/2

)(
Zd/2 Wd/2

ϵW∗
d/2 Z∗

d/2

)
d

+
(
ϵ[W∗,Y]d/2 [W,X]d/2

ϵ[Z,Y∗]d/2 [Z∗,X∗]d/2

)
d

(2.77)

• ii) Conjugation:

(x, y)∗ ≡
(

X∗
d/2 −Yd/2

−ϵY∗
d/2 Xd/2

)
d

(2.78)

• iii) Norm:

N (x, y) ≡ 1

d
Tr

[(
X∗

d/2 −Yd/2

−ϵY∗
d/2 Xd/2

)
d

(
Xd/2 Yd/2

ϵY∗
d/2 X∗

d/2

)
d

+
(

O [Y,X∗]d/2

−ϵ[X,Y∗]d/2 O

)
d

]
(2.79)

For norm, just needed to remember that:

N (x, y) = (x, y)∗(x, y) (2.80)



Chapter 3

Quaternions, octonions and SU (2) group

3.1 Quaternions and SU (2) Pauli matrices

A simple connection between quaternions and physics lies in its relation with matri-

ces of SU (2). The SU (2) group is the group of complex unitary matrices and of determinant

1. Its generators can be the Pauli matrices:

σ1 =
(

1 0

0 −1

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
0 1

1 0

)
(3.1)

where

[σ j ,σk ] =−2iε j kmσm (3.2)

According to (2.33) ,

e j = iσ j (3.3)

and one can have:

[e j ,ek ] = 2ε j kmem . (3.4)

It’s easy to see that (3.2) and (3.4) are equivalents algebras. Therefore, it’s possible to

use quaternions to represent SU (2) and the physics grounded in it.

Quaternions can be represented by 4×4 matrices and this can spontaneously induce

a four-dimensional representation of SU(2). According to (2.57) and (3.3), Pauli matrices in

4×4 representation are:

σ1 =


0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0

 , σ2 =


0 0 −i 0

0 0 0 −i

i 0 0 0

0 i 0 0

 , σ3 =


0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0

 . (3.5)

Matrices in (3.5) are not a minimal representation of Pauli matrices since all inputs

are complex numbers. There is a minimal representation with 4× 4 real matrices [27] and

41
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it can be obtained by writing matrices of 1 and i , defined in (2.2) and (2.8), inside matrices

(3.1).

It is known that isospin operators I+,I− and I act on quark spins up |u〉 and down |d〉
as follows [28]:

I+|u〉 = 0, I−|u〉 = 1

2
|d〉, I|u〉 = 1

2
|u〉,

I+|d〉 = 1

2
|u〉, I−|d〉 = 0, I|d〉 =−1

2
|d〉. (3.6)

where:

|u〉 =
(

1

0

)
, |d〉 =

(
0

1

)
(3.7)

By using (3.1), (3.3) and (3.7), one can see that following definitions of I+, I− and I

satisfy the equations in (3.6):

I+ = e2 − i e3

4
, I− =−e2 + i e3

4
, I =−i

e1

2
(3.8)

But if we use the 4×4 representation of the quaternion matrices, we can build a four-

dimensional representation of spins up |u〉 and down |d〉, as follows:

|u〉 = 1

2


−i

1

i

1

 , |d〉 = 1

2


i

1

i

−1

 . (3.9)

3.2 Quaternionic Dirac Lagrangian

Kugo and Townsend shows how to represent spinors in terms of elements ofR,C,H,O,

to relation supersymmetry and algebras [29]. But here, we will use their idea of representa-

tion spinors to construct Dirac’s lagragian from quaternionic matrices.

Lagrangian density for two spins
1

2
a and b, with no interaction, is:

L = i [ψ̄aγ
µ∂µψa + ψ̄bγ

µ∂µψb]−m[ψ̄aψa + ψ̄bψb] (3.10)

where γµ are the Dirac matrices, ψ̄a,b are the adjoint representation of ψa,b and m is the

mass of particle. Adjoint representation of spins are defined as follows:

ψ̄a,b =ψ†
a,bγ

0 (3.11)

where

γ0 =
(

1 0

0 −1

)
(3.12)
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and spinor ψ are often written as column matrix, such that:

ψ=
(
ψa

ψb

)
=⇒ ψ̄= (

ψ̄a ψ̄b
)

. (3.13)

To SU (2) we can construct a quaternion spinor [29], such that

ψ=ψ0e0 +
∑

j
ψ j e j , j = 1,2,3 (3.14)

and

ψ† =ψ0e0 −
∑

j
ψ j e j . (3.15)

Components ψ j are spinors in Real (R), so that

ψ = ψ0(1,0)+ψ1(i ,0)+ψ2(0,1)+ψ3(0, i )

= (ψ0 + iψ1,ψ2 + iψ3) (3.16)

According to matrix representation of division algebras, it is possible to establish

a representation for ψ different from (3.13) and based on (3.15). So, according to Cayley-

Dickson representation of quaternion as ordered pairs we can define consistently

ψa =ψ0 + iψ1,ψb =ψ2 + iψ3. (3.17)

Therefore, the result (3.16) can be written as the following matrix:

ψ=
(

ψ0 + iψ1 ψ2 + iψ3

−ψ2 + iψ3 ψ0 − iψ1

)
=

(
ψa ψb

−ψ∗
b ψ∗

a

)
. (3.18)

For ψ̄, we have

ψ̄ = ψ†γ0 = (ψ0e0 −ψ1e1 −ψ2e2 −ψ3e3)γ0. (3.19)

For ψ̄, we have

ψ̄ = ψ†γ0 = (ψ0e0 −ψ1e1 −ψ2e2 −ψ3e3)γ0. (3.20)

By matrix representation of e j , it is easy to see that [e j ,γ0] = 0. Therefore,

ψ̄ = ψ̄0e0 − ψ̄1e1 − ψ̄2e2 − ψ̄3

= (ψ̄0 − i ψ̄1,−ψ̄2 − ψ̄3). (3.21)

Using (3.11) and (3.17), it’s easy to see that:

ψ̄a = ψ̄0 − i ψ̄1, ψ̄∗
b = ψ̄2 + i ψ̄3 (3.22)
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then,

ψ̄= (ψ̄a ,−ψ̄∗
b ) =

(
ψ̄a −ψ̄∗

b

ψ̄b ψ̄∗
a

)
. (3.23)

By matrix representation of product ψ̄ψ, we get:

ψ̄ψ=
(
ψ̄aψa + ψ̄∗

bψ
∗
b ψ̄aψb − ψ̄∗

bψ
∗
a

ψ̄bψa − ψ̄∗
aψ

∗
b ψ̄bψb + ψ̄∗

aψ
∗
a

)
. (3.24)

It’s easy to prove that ψ̄∗
aψ

∗
a = ψ̄aψa and ψ̄∗

bψ
∗
b = ψ̄bψb ; so that,

1

2
Tr(ψ̄ψ) = ψ̄aψa + ψ̄bψb . (3.25)

By the same way, one can prove that

1

2
Tr(ψ̄γµ∂µψ) = 1

2
Tr

[(
ψ̄a −ψ̄∗

b

ψ̄b ψ̄∗
a

)
γµ

(
∂µψa ∂µψb

−∂µψ∗
b ∂µψ

∗
a

)]
= ψ̄aγ

µ∂µψa + ψ̄bγ
µ∂µψb . (3.26)

Then, the quaternionic formulation for Lagrangian (3.10) can be written as

LH = 1

2
Tr[ψ̄γµ∂µψ−mψ̄ψ]. (3.27)

3.3 Quaternionic SU (2) symmetries

For a global symmetry, let’s suppose that a quaternion spinor transforms by the fol-

lowing way

ψ′ = Mψ. (3.28)

If ψ ∈ SU (2), M necessarily is a unitary tranformation, independent of space-time, if

(3.28) is a symmetric transformation that preserves invariance of the Dirac Lagrangian. So

that, M transformation can be defined as:

M = exp{i θ̂} (3.29)

where θ̂ ∈ SU (2) matrix, such that

θ̂ = θ01+θ jσ j (3.30)

According to (3.3), we can see that θ̂ can be described as a quaternion

θ̂ 7−→ θ̂ = θ0e0 + iθ j e j . (3.31)

By (3.31) is easy to see that θ̂† = θ̂. Replacing (3.31) in (3.29) we get

M = exp{iθ0e0}exp{−iθ j e j }. (3.32)
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The term exp{iθ0e0} indicates a gauge transformation U (1), so, we can just make

ψ′ = exp{−θ j e j }ψ. (3.33)

So, (3.33) indicates a non-Abelian SU (2) transformation. To adjoint spinor ψ̄, we get

ψ̄′ = ψ′†γ0

= ψ† exp{θ j e j }γ0. (3.34)

By expanding exp{θ j e j } in MacLaurin series and knowing following results

e2n
j = (−1)n , [ei ,γ0] = 0 (3.35)

we get

ψ̄′ = ψ̄exp{θe j }. (3.36)

Applying this transformation to Lagrangian (3.10), we get

ψ̄′ψ′ = ψ̄ψ (3.37)

and, to preserve lagrangian invariance,

exp{θ j e j }γµexp{−θ j e j } = γµ. (3.38)

Other consequence of (3.38) is the non-invariance of quadri-current jµ defined as

jµ = ψ̄γµψ. (3.39)

One can easily prove that

j t’′µ = ψ̄′γµψ′ = jµ. (3.40)

For a gauge transformation [30]:

δL = 0. (3.41)

As we know, SU (2) Lagrangian is a function L (ψ,ψ̄,∂µψ), then

δL = ∂L

∂ψ
δψ+ ∂L

∂ψ̄
δψ̄+ ∂L

∂(∂µψ)
δ(∂µψ) = 0 (3.42)

If we use Euler-Lagrange equation, we get

∂L

∂ψ
= ∂µ

(
∂L

∂(∂µψ)

)
,

∂L

∂ψ̄
= 0. (3.43)
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Therefore,

δL = ∂µ

(
∂L

∂(∂µψ)

)
δψ+ ∂L

∂(∂µψ)
∂(δψ)

= ∂µ

(
∂L

∂(∂µψ)
δψ

)
= 0. (3.44)

In quanternionic representation,

δLH = 1

2
Tr[δL ] (3.45)

where

L = ψ̄γµ∂µψ−mψ̄ψ. (3.46)

Therefore,

δLH = ∂µ
[

1

2
Tr

(
∂L

∂(∂µψ)
δψ

)]
= 0. (3.47)

Considering infinitesimal transformation

ψ′ = ψ+δψ
exp{−θ j e j }ψ = ψ+δψ

.·.

δψ ≈ −θ j e jψ (3.48)

then,

∂µ

(
1

2
Tr[ψ̄γµe jψ]

)
= 0. (3.49)

According to (3.49) we can define the quaternionic gauge current, that is conserved

by a global gauge transformation

jµj = 1

2
Tr[ψ̄γµe jψ]. (3.50)

For a local symmetry SU (2), we must consider the generalization of phase rotation,

where the parameter is spacetime dependent. First, we start with a Dirac doublet as

Ψ=
(
ψ1(x)

ψ2(x)

)
(3.51)

which transforms as

Ψ=V (x)Ψ= e iαi (x)eiΨ (3.52)

where αi (x) are the parameters on the field transformations that depends of spacetime co-

ordinates. In order to define the covariant derivative, we have to define a comparator [31]

which hold the folowing relation



3.3. QUATERNIONIC SU (2) SYMMETRIES 47

U (y, x) →V (y)U (y, x)V †(x) (3.53)

where we set U (y, y) = 1. Now, we are able to define a infitesimal expression for the com-

parator above, leaning on the fact that near U = 1, we can expand in terms of the Hermitian

quaternionic generators.

U (x +ϵn, x) = 1+ i gϵnµAi
µei +O (ϵ2) (3.54)

where ϵ is the infinetesimal increment, g is a convenient constant and nµ is a vector used to

define a covariant derivative. The definition is

nµDµΨ= lim
ϵ→0

1

ϵ
[Ψ(x +ϵn)−U (x +ϵn)Ψ] . (3.55)

Using the expression for the comparator given in equation (3.54), we have

Dµ = ∂µ− i g Ai
µei . (3.56)

We notice that this covariant derivative requires one vector field to each generator of

the group, that is, the quaternionic generators.

Now, we focus on the gauge transformation law of the connection Ai
µ by substituting

the expansion of the comparator (3.54) into the transformation law given in (3.53)

1+ i gϵnµAi
µei →V (x +ϵn)(1+ i gϵnµAi

µei )V †(x). (3.57)

Using the following identity

V (x +ϵn)V †(x) = 1+ϵnµV (x)

(
− ∂

∂xµ
V †(x)

)
+O (ϵ2) (3.58)

we find by comparison with (3.57),

Ai
µei →V (x)

(
Ai
µ(x)ei + i

g
∂µ

)
V †(x). (3.59)

For infinitesimal transformations, we can expand V (x) to first order in α,

Ai
µei → Ai

µei + 1

g
(∂µα

i )ei + i
[
αi ei ,α j e j

]
+ ... (3.60)

where the last term arises from the noncommutativity of the local transformations. Consid-

ering the transformation of the fermion and the last transformation, we have
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DµΨ→ (1+ iαi ei )DµΨ. (3.61)

To write a complete lagrangian, we must consider gauge-invariant terms that de-

pends only on Ai
µ. We write the transformation of the commutator considering the trans-

formation of the covariant derivatives as

[Dµ,Dν]Ψ(x) →V (x)[Dµ,Dν]Ψ (3.62)

and we find

[Dµ,Dν] =−i g F i
µνei (3.63)

where

F i
µνei = ∂µAi

νei −∂νAi
µei − i g [Ai

µei , A j
νe j ]. (3.64)

We can use the quaternionic commutations relations given by

[ei ,e j ] = 2εi j k ek (3.65)

and then

F i
µν = ∂µAi

ν−∂νAi
µ−2i gε j ki A j

µAk
ν. (3.66)

The transformation of the F i
µν follows from above definitions and transformations

laws and we write as

F i
µνei →V (x)F j

µνe j V †(x) (3.67)

where the infinitesimal transformation is

F i
µνei → F i

µνei + [iαi ei ,F j
µνe j ]. (3.68)

We can see explicitly that the tensor above is no longer gauge-invariant. However,

we can construct gauge-invariant theories using combinations of this tensor field. Now, we

construct a theory of interacting fermions.

LH = 1

2
Tr

[
Ψ̄(i /D)Ψ− 1

4
(F i
µν)2 −mΨ̄Ψ

]
(3.69)
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where this is the quaternionic Yang-Mills lagrangian density. Using the variation of this la-

grangian we reach to

∂µF i
µν+2gεi j k A jµF k

µν =−g
1

2
Tr

[
ΨγνeiΨ

]
(3.70)

where this result is the classical equations of motion of the gauge theory for the vector field.

3.4 Octonions and Dirac matrices’ algebra

Before we start the investigation of the relation between octonions and SU (2), let’s

keep in mind these two important relations that lies in SU (2)

[σi ,σ j ] =−2εi j k iσk (3.71)

and for quantum electrodynamic’s algebra

[γi ,γ j ] = 2εi j k i

(
σk 0

0 σk

)
= 2εi j k iσk ⊗1,

{γi ,γ j } = δi j . (3.72)

The Dirac γi matrices are defined as

γi =
(

0 σi

−σi 0

)
. (3.73)

Octonion basis can be separated in two parts: Ei is the associative part if i = 1,2,3

and the non-associative part if i = 4,5,6,7. Resorting to (3.3), to the associative part, we can

do

Ei =
(

iσi 0

0 −iσi

)
= iΣi , i = 1,2,3. (3.74)

To the non-associative sector, we have

E4 =
(

0 1

−1 0

)
, Ei+4 =

(
0 iσi

iσi 0

)
, i = 1,2,3. (3.75)

If we define Γi as the following matrix:

Γi =
(

0 σi

σi 0

)
(3.76)

then,

Ei+4 = iΓi , i = 1,2,3. (3.77)
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If we use the Cayley-Dickson multiplication for [Σi ,Σ j ] we have

[Σi ,Σ j ] =Σi ×Σ j −Σ j ×Σi =−2εi j k iΣk . (3.78)

Result (3.78) is pretty consistent with the commutator of the associative elements of

the basis [Ei ,E j ]

[Ei ,E j ] = Ei ×E j −E j ×Ei = 2Ci j k Ek (3.79)

In table 1.1, we can see that Ci j k = εi j k if i , j ,k = 1,2,3. By comparing (3.71) and

(3.78), we can suppose that the associative sector of octonions basis behaves as a “mimicry”

of SU (2) algebras to Pauli matrices σi .

As we know,

[Ei+4,E j+4] = 2Ci+4, j+4,k Ek , i , j ,k = 1,2,3. (3.80)

Carefully analyzing Table 1.1, one can see that:

Ci+4, j+4,k =−εi j k . (3.81)

Therefore,

[Γi ,Γ j ] = 2εi j k iΣk (3.82)

and also,

{Γi ,Γ j } = 2δi j . (3.83)

In brief:

SU (2) and QED Octonions

σ j Σ j

[σ j ,σk ] =−2ε j kmiσm [Σ j ,Σk ] =−2ε j kmiΣm

γ j Γ j

[γ j ,γk ] = 2ε j kmiσm ⊗1 [Γ j ,Γk ] = 2ε j kmiΣm

{γi ,γ j } = 2δi j {Γi ,Γ j } = 2δi j

Table 3.1: Comparison between the algebras of elements of SU (2) and Quantum Electrody-
namics (on the left) and the algebra of elements of the octonionic basis (on the right).

Some works are intended to use octonions related to supersymmetry [32], [33] and

Quantum Chromodynamics [34], [14], but our intention here is to use octonionsΣi and Γi to
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construct algebraic basis for a non-associative quantum electrodynamics theory for future

works. We can consider construction dyonic QED a possible application, since octonions

already been used to construct electromagnetism of dyons [8]. Therefore, by considering a

octonionic spinor ψ, given by:

ψ=ψ0E0 +
7∑

j=1
ψ j E j (3.84)

By redoing same procedure of section 3.2 it is expected that octonionic version of

Lagrangian (3.10) is:

LO = 1

2
Tr[(ψ̄Γµ)∂µψ−mψ̄ψ] (3.85)

where:

Γ0 =
(

0 e0

−e0 0

)
, Γi =

(
0 σi

σi 0

)
(3.86)





Chapter 4

Graded Lie Algebras

A graded Lie algebra is a vector space that can be decomposed into subspaces indi-

cated by gradings. A Lie algebra is defined by the Lie bracket (•,•), so for a graded Lie algebra,

this operation will be defined according to the gradings of the elements that participate in

the operation [5], [35]. Specifically, for Aα and Aβ in a graded Lie algebra, the Lie bracket is

given by

(Aα, Aβ) = AαAβ− (−1)<α,β>AβAα, (4.1)

where α and β are the gradings of Aα and Aβ, respectively. One can write α = deg(Aα) and

β= deg(Aβ). <α,β> Is the mapping onto the gradings of the algebra in question. For phys-

ical theories, the mapping <α,β> will indicates how particles in the systems will interact.

For a Lie algebra, it is required that <α,β>= 0 for any A and B , so that the Lie bracket

reduces to the commutation operation on A and B ; that is, (Aα, Aβ) = [Aα, Aβ]

More precisely, a vector space G overC is a graded Lie algebra if it can be decomposed

into homogeneous subspaces. That is:

G = ⊕
α≥0

Gα (4.2)

where Gα are the subspaces that make up G , and

[Gα,Gβ] ⊆Gα+β (4.3)

A graded Lie superalgebra corresponds to nothing more than a generalization of op-

eration (4.1), in the sense that it can play the role of either a commutator or an anticommu-

tator depending on the values of the mapping <α,β>. The general Jacobi identity is:

(−1)<γ,α>(Aα, (Aβ, Aγ))+ (−1)<α,β>(Aβ, (Aγ, Aα))+ (−1)<β,γ>(Aγ, (Aα, Aβ)) = 0 (4.4)

where α = deg(Aα), β = deg(Aβ) and γ = deg(Aγ). The definitions of mappings cannot be

53
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arbitrary. There are constraints that must be followed, which are known as the Leibniz rules:

<α,β>+<β,α>= 2r (4.5)

<α,β+γ>=<α,β>+<α,γ>+2s (4.6)

<α+γ,β>=<α,β>+< γ,β>+2s (4.7)

Values of r and s are arbitrary integers.

It is important to mention that, for a standard graded Lie superalgebra, (A,B) cannot

assume both roles, of [A,B ] or {A,B}, for the same pair of elements A and B . However, in the

last section of this chapter, it is demonstrate how (•,•) can be simultaneously [•,•] and {•,•}

by introducing a perturbation on the mapping <α,β>.

Graded Lie algebras play a very important role in the context of mathematical physics.

They are important tools for describing symmetries in physical systems, as well as for gen-

eralizing symmetries that involve fermionic degrees of freedom [36]. In string theory, the

superconformal algebra is a graded super Lie algebra that describes the conformal and su-

persymmetric symmetries in supersymmetric string theories [37]. Graded Lie algebras are

also used to describe symmetries in quantum field theories. For example, the superalgebra

of supersymmetry is a graded super Lie algebra that describes supersymmetric symmetry in

supersymmetric field theories [38], [39].

In this work, we will not focus on a fundamental mathematical approach to these

(super)algebras. The main purpose of this section is to demonstrate and explain the main

aspects of the approaches developed by our study group in the context of the Zn
2 algebras,

with a focus on their relations to Cayley-Dickson algebras and their application to theories

involving fermions, parafermions, bosons, and parabosons. The last two sections of this

chapter consist of presenting a different way to create matrix representations for Zn
2 and

how we can obtain a Volichenko [15] algebra from a graded Lie algebra.

4.1 Z2 (Super)Algebras

A (super)algebra Z2 is a graded Lie algebra whose grading values are α= 0,1. Thus, a

(super)algebra Z2 is a vector space G that can be divided as follows:

G =G0 ⊕G1 (4.8)

The grading 0 is defined as even sector and 1 as odd sector [4], [5]. Commonly, for

physical particles theories, grading 0 is the bosonic one and grading 1 is the fermionic [4],

[7], [40], [41]. Rittenberg and Wyler [5] and [42], according to Leibniz rules, shows that there
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are two possible definitions for the mapping of a Z2 (super)algebra:

<α,β> = 0 (4.9)

<α,β> = αβ (4.10)

The definition (4.9) gives a Z2 algebra and (4.10) gives a Z2 superalgebra.

It is important to mention that a (super)algebraZn
2 has a total of 2n generators. There-

fore, there are two generators for (super)algebras Z2, Aα and Aβ, which commute or anti-

commute according to the following rules:

Z2 Algebra : (Aα, Aβ) = AαAβ− (−1)0 AβAα = [Aα, Aβ] (4.11)

and

Z2 Superalgebra : (Aα, Aβ) = AαAβ− (−1)αβAβAα (4.12)

The gradings α = deg(Aα) and β = deg(Aβ) can take on values of 0 or 1. Therefore,

there is only one superalgebra Z2 and the commutation and anticommutation rule works as

follows:

A0 A1

A0 [•,•] [•,•]
A1 [•,•] {•,•}

Table 4.1: Superalgebra <α,β>=αβ.

4.2 Z2
2 (Super)Algebras

A graded Lie (super)algebraZ2
2 is a vector space G whose gradingsα can be classified

as following pairs α= 00,01,10,11. Vector space G is a divided into four subspaces:

G =G00 ⊕G01 ⊕G10 ⊕G11 (4.13)

The grading 00 is even and it is commonly agreed to be the bosonic sector of particle

physical theories. The other sectors are classified as even or odd according to the choosing

(super)algebra.

The generators forZ3
2 will be represented by: A00, A01,A10 and A11. For (super)algebras

Z2
2 vectors grandings α and β are two dimensional:

α= (α1,α2), β= (β1,β2) (4.14)
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where αi and βi are 0 or 1.

According to Leibniz rules, there are one possible algebraZ2
2 and three superalgebras

Z2
2:

<α,β> = 0 (4.15)

<α,β> = α1β1 (4.16)

<α,β> = α1β1 +α2β2 (4.17)

<α,β> = α1β2 −α2β1 (4.18)

Below we have tables that indicate the commutation and anticommutation rules for

Z2
2 algebras and superalgebras:

A00 A01 A10 A11

A00 [•,•] [•,•] [•,•] [•,•]
A01 [•,•] [•,•] [•,•] [•,•]
A10 [•,•] [•,•] [•,•] [•,•]
A11 [•,•] [•,•] [•,•] [•,•]

Table 4.2: Algebra <α,β>= 0

A00 A01 A10 A11

A00 [•,•] [•,•] [•,•] [•,•]
A01 [•,•] [•,•] [•,•] [•,•]
A10 [•,•] [•,•] {•,•} {•,•}
A11 [•,•] [•,•] {•,•} {•,•}

Table 4.3: Superalgebra <α,β>=α1β1

A00 A01 A10 A11

A00 [•,•] [•,•] [•,•] [•,•]
A01 [•,•] {•,•} [•,•] {•,•}
A10 [•,•] [•,•] {•,•} {•,•}
A11 [•,•] {•,•} {•,•} [•,•]

Table 4.4: Superalgebra <α,β>=α1β1 +α2β2

A00 A01 A10 A11

A00 [•,•] [•,•] [•,•] [•,•]
A01 [•,•] [•,•] {•,•} {•,•}
A10 [•,•] {•,•} [•,•] {•,•}
A11 [•,•] {•,•} {•,•} [•,•]

Table 4.5: Superalgebra <α,β>=α1β2 −α2β1

The product of operators belonging to distinct grading sectors, neither of which is in

the bosonic grading, should result in an operator belonging to a grading different from the

three previously mentioned gradings. For instead, if an operator from grading sector 10 is

multiplied by one from 01, the result will be an operator from 11. According to definition

presented in (4.1), in the fourth case, the grading sectors 10, 01, and 11 are equivalent, and

their grading assignments can be rearranged without changing the anticommutators under

the S3 permutation group. In the second and third cases, the grading sectors 01, 11 and 10,

01 respectively, can be rearranged under the S2 permutation group.

4.3 Z3
2 (Super)Algebras

A Z3
2 (super)algebra is a vector space G that can be divided in 8 subspaces as follows:

G =G000 ⊕G001 ⊕G010 ⊕G011 ⊕G100 ⊕G101 ⊕G110 ⊕G111 (4.19)
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The generators for Z3
2 will be represented by: A000, A001, A010, A011, A100, A101, A110,

and A111. The gradings vectors of a Z3
2 (super)algebra are three-dimensional, such that α =

(α1,α2,α3) and αi is 0 or 1.

Mapping <α,β> has five possible definitions and generate a algebra and four super-

algebra. According to [42], possible five mappings of Z3
2 are:

<α,β> = 0 (4.20)

<α,β> = α1β1 (4.21)

<α,β> = α1β1 +α2β2 (4.22)

<α,β> = α1β2 −α2β1 (4.23)

<α,β> = α1β1 +α2β2 +α3β3 (4.24)

where (4.20) is a Z3
2 algebra and all the others are mapping of superalgebras. The mapping

(4.21) makes it explicit that a Z3
2 superalgebra has a Z2 superalgebra as a subalgebra. The

same applies to (4.22) and (4.23), which show how theZ2
2 superalgebras are also subalgebras

of Z3
2.

The tables below contain the commutation and anticommutation rules for the gen-

erators of the Z3
2 (super)algebras.

A000 A001 A010 A011 A100 A101 A110 A111

A000 [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•]
A001 [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•]
A010 [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•]
A011 [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•]
A100 [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•]
A101 [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•]
A110 [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•]
A111 [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•]

Table 4.6: Algebra <α,β>= 0

A000 A001 A010 A011 A100 A101 A110 A111

A000 [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•]
A001 [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•]
A010 [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•]
A011 [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•]
A100 [•,•] [•,•] [•,•] [•,•] {•,•} {•,•} {•,•} {•,•}
A101 [•,•] [•,•] [•,•] [•,•] {•,•} {•,•} {•,•} {•,•}
A110 [•,•] [•,•] [•,•] [•,•] {•,•} {•,•} {•,•} {•,•}
A111 [•,•] [•,•] [•,•] [•,•] {•,•} {•,•} {•,•} {•,•}

Table 4.7: Superalgebra <α,β>=α1β1
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A000 A001 A010 A011 A100 A101 A110 A111

A000 [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•]
A001 [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•]
A010 [•,•] [•,•] {•,•} {•,•} [•,•] [•,•] {•,•} {•,•}
A011 [•,•] [•,•] {•,•} {•,•} [•,•] [•,•] {•,•} {•,•}
A100 [•,•] [•,•] [•,•] [•,•] {•,•} {•,•} {•,•} {•,•}
A101 [•,•] [•,•] [•,•] [•,•] {•,•} {•,•} {•,•} {•,•}
A110 [•,•] [•,•] {•,•} {•,•} {•,•} {•,•} [•,•] [•,•]
A111 [•,•] [•,•] {•,•} {•,•} {•,•} {•,•} [•,•] [•,•]

Table 4.8: Superalgebra <α,β>=α1β1 +α2β2

A000 A001 A010 A011 A100 A101 A110 A111

A000 [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•]
A001 [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•]
A010 [•,•] [•,•] [•,•] [•,•] {•,•} {•,•} {•,•} {•,•}
A011 [•,•] [•,•] [•,•] [•,•] {•,•} {•,•} {•,•} {•,•}
A100 [•,•] [•,•] {•,•} {•,•} [•,•] [•,•] {•,•} {•,•}
A101 [•,•] [•,•] {•,•} {•,•} [•,•] [•,•] {•,•} {•,•}
A110 [•,•] [•,•] {•,•} {•,•} {•,•} {•,•} [•,•] [•,•]
A111 [•,•] [•,•] {•,•} {•,•} {•,•} {•,•} [•,•] [•,•]

Table 4.9: Superalgebra <α,β>=α1β2 −α2β1

A000 A001 A010 A011 A100 A101 A110 A111

A000 [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•] [•,•]
A001 [•,•] {•,•} [•,•] {•,•} [•,•] {•,•} [•,•] {•,•}
A010 [•,•] [•,•] {•,•} {•,•} [•,•] [•,•] {•,•} {•,•}
A011 [•,•] {•,•} {•,•} [•,•] [•,•] {•,•} {•,•} [•,•]
A100 [•,•] [•,•] [•,•] [•,•] {•,•} {•,•} {•,•} {•,•}
A101 [•,•] {•,•} [•,•] {•,•} {•,•} [•,•] {•,•} [•,•]
A110 [•,•] [•,•] {•,•} {•,•} {•,•} {•,•} [•,•] [•,•]
A111 [•,•] {•,•} {•,•} [•,•] {•,•} [•,•] [•,•] {•,•}

Table 4.10: Superalgebra <α,β>=α1β1 +α2β2 +α3β3

As the dimension n of Zn
2 increases, it becomes increasingly difficult to analyze. To

simplify the process of distinguishing between non-equivalent tables of Lie brackets, we can

define the following variables: C for the total number of lines that have only commutators

[•,•]; D for the total number of anticommutators {•,•} on diagonal and, finally, A for total

number of {•,•} on table. Therefore, it is possible to see that these variables are related as

follows:

A =
(

D

2
−C

)
D (4.25)

For a graded (super)algebra Zn
2 , the value of D is restricted to either zero or 2n−1 due

to the requirement that it contains smaller graded algebras as subalgebras. The fact that Zn
2
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contains Zn−1
2 as a subalgebra is a crucial property for understanding the reasoning in the

next chapter. This property enables us to obtain graded (super)algebras of dimension n by

doubling algebras with dimensions smaller than n.

4.4 Doubling construction forZn
2 (super)algebras

The (super)algebras Zn
2 have very characteristic matrix representations that relate to

the classifications of the gradings of their elements as belonging to even or odd sectors [43],

[44]. Therefore, in this chapter, we will adopt the following block representations for Zn
2

matrices, based on the classification of gradings as even or odd:

Even sector:

(
∗ 0

0 ∗

)
, (4.26)

Odd sector:

(
0 ∗
∗ 0

)
. (4.27)

Let’s now try to create a specific type of Zn
2 algebras whose 2n generators can be ob-

tained by doing n −1 successive doublings, such that Zn−1
2 , Zn−2

2 , ..., Z2 are subalgebras of

Zn
2 .

Figure 4.1: Illustrative diagram of the doubling of graded Lie (super)algebras. One can con-
sider a Zn

2 having Zn−1
2 , ..., Z2 as subalgebras. In the table on the right, the gradings also

follow the logic of doubling.

A doubling in graded algebras means regrouping all generators of Zn−1
2 in the even

and odd sectors of the algebra Zn
2 . That is, if we consider n = 2, we can obtain an algebra Z2

2

by means of an algebra Z2, which has the generators f0 and f1 , in the following way:

Even sector: g0 =
(

f0 0

0 f0

)
, g1 =

(
f1 0

0 f1

)
(4.28)

Odd sector: g2 =
(

0 f0

− f0 0

)
, g3 =

(
0 f1

− f1 0

)
(4.29)
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where g0, g1, g2 e g3 generators of algebra Z2
2. For this we can think in the following repre-

sentation:

f0 → 0 g0 → 00 (4.30)

f1 → 1 g1 → 01

g2 → 10

g3 → 11

Therefore, from the generators of Z2
2 above one can construct an algebra Z3

2 as fol-

lows:

Even sector : G0 =
(

g0 0

0 g0

)
, G1 =

(
g1 0

0 g1

)
, G2 =

(
g2 0

0 g2

)
, G3 =

(
g3 0

0 g3

)
(4.31)

Odd sector : G4 =
(

0 g0

−g0 0

)
,G5 =

(
0 g1

−g1 0

)
,G6 =

(
0 g2

−g2 0

)
,G7 =

(
0 g3

−g3 0

)
,

(4.32)

which G0, ...,G7 are generators of a Zn
2 .

For instance, let us take supersymmetry SZ2
2 generators [45]:

H =
(
∂t 0

0 ∂t

)
, Q =

(
0 1

∂t 0

)
(4.33)

where H is the hamiltonian, Q is the supercharge operator and ∂t is the time derivative. One

can have:

[H ,Q] = 0, {Q,Q} = 2H (4.34)

and

HQ =QH = ∂tQ,

Q2 = H ,

H 2 = ∂t H (4.35)

Wherever one can define f0 = H and f1 =Q, such that:

f0 f0 = c00

2
f0

f0 f1 = c01

2
f1

f1 f0 = c10

2
f1

f1 f1 = c11

2
f0 (4.36)
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The coefficients ci j are:

c00 = c01 = c10 = 2∂t , c11 = 2. (4.37)

From SZ2
2 , we can construct a Z2

2 algebra by doubling as follows:

g0 =
(

f0 0

0 f0

)
, g1 =

(
f1 0

0 f1

)
, g2 =

(
0 f0

− f0 0

)
, g3 =

(
0 f1

− f1 0

)
(4.38)

where

g0 → 00

g1 → 01

g2 → 10

g3 → 11 (4.39)

The multiplication between generators g0, ..., g3 has the following results:

g0gi = b0i

2
gi , gi g0 = bi 0

2
gi (4.40)

and

gi g j =
ai j

2
δi j g0 +

bi j

2
εi j k gk (4.41)

where coefficients ai j , a00, bi j and b00 are:

a00 = 2∂t b01 = 2∂t b10 = 2λ b20 = 2∂t b30 = 2∂t

a11 = 2 b02 = 2∂t b12 = 2∂t b21 =−2∂t b31 =−2
a22 =−2∂t b03 = 2∂t b13 =−2 b23 =−2∂t b32 = 2∂t

a33 =−2

Table 4.11: List of coefficients of Z2
2 constructed by doubling SZ2

2 .

The matrices of this Z2
2 algebra are, more explicitly:

g0 =


∂t 0 0 0

0 ∂t 0 0

0 0 ∂t 0

0 0 0 ∂t

 , g1 =


0 1 0 0

∂t 0 0 0

0 0 0 1

0 0 ∂t 0



g2 =


0 0 ∂t 0

0 0 0 ∂t

−∂t 0 0 0

0 −∂t 0 0

 , g3 =


0 0 0 1

0 0 ∂t 0

0 −1 0 0

−∂t 0 0 0

 (4.42)
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Therefore, to construct an algebra Z3
2, we will do:

G0 =
(

g0 0

0 g0

)
, G1 =

(
g1 0

0 g1

)
, G2 =

(
g2 0

0 g2

)
, G3 =

(
g3 0

0 g3

)

G4 =
(

0 g0

−g0 0

)
, G5 =

(
0 g1

−g1 0

)
, G6 =

(
0 g2

−g2 0

)
, G7 =

(
0 g3

−g3 0

)
(4.43)

From G0 to G3, we have the even sector of Z3
2, while from G4 to G7 we have the odd

sector. The multiplication formula of generators given in (4.43) is:

Gi G j =
Ai j

2
δi j G0 +

Bi j

2
Ci j kGk (4.44)

where Ai j and Bi j are coeficients of multiplication.

It is important to mention that Ci j k in (4.44) is the structure constant of octonions.

Despite that, algebraZn
2 cannot be a non-associative algebra. So, equation (4.44) explicit the

property of quasi-non-associativity for a kind of Z3
2 algebras. Wherever, by imposing:

[Gi ,G j ,Gk ] = 0, (4.45)

the condition for quasi-non-associative is given by the following relations:

Bi j Al kCi j lδlk = B j k Ai mC j kmδi m

Bi j Blk

4
Ci j lClkm − Ai j

2
δi jδkn = B j k Bi m

4
C j kmCi mn + A j k

2
δ j kδi n (4.46)

The matrices in (4.43) can also be write, more explicitly, in 8×8 form using the 4×4

matrices in (4.42).

G0 =



∂t 0 0 0 0 0 0 0

0 ∂t 0 0 0 0 0 0

0 0 ∂t 0 0 0 0 0

0 0 0 ∂t 0 0 0 0

0 0 0 0 ∂t 0 0 0

0 0 0 0 0 ∂t 0 0

0 0 0 0 0 0 ∂t 0

0 0 0 0 0 0 0 ∂t


, G1 =



0 1 0 0 0 0 0 0

∂t 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 ∂t 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 ∂t 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 ∂t 0



G2 =



0 0 ∂t 0 0 0 0 0

0 0 0 ∂t 0 0 0 0

−∂t 0 0 0 0 0 0 0

0 −∂t 0 0 0 0 0 0

0 0 0 0 0 0 ∂t 0

0 0 0 0 0 0 0 ∂t

0 0 0 0 −∂t 0 0 0

0 0 0 0 0 −∂t 0 0


, G3 =



0 0 0 1 0 0 0 0

0 0 ∂t 0 0 0 0 0

0 −1 0 0 0 0 0 0

−∂t 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 ∂t 0

0 0 0 0 0 −1 0 0

0 0 0 0 −∂t 0 0 0


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G4 =



0 0 0 0 ∂t 0 0 0

0 0 0 0 0 ∂t 0 0

0 0 0 0 0 0 ∂t 0

0 0 0 0 0 0 0 ∂t

−∂t 0 0 0 0 0 0 0

0 −∂t 0 0 0 0 0 0

0 0 −∂t 0 0 0 0 0

0 0 0 −∂t 0 0 0 0


, G5 =



0 0 0 0 0 1 0 0

0 0 0 0 ∂t 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 ∂t 0

0 −1 0 0 0 0 0 0

−∂t 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 −∂t 0 0 0 0 0



G6 =



0 0 0 0 0 0 ∂t 0

0 0 0 0 0 0 0 ∂t

0 0 0 0 −∂t 0 0 0

0 0 0 0 0 −∂t 0 0

0 0 −∂t 0 0 0 0 0

0 0 0 −∂t 0 0 0 0

∂t 0 0 0 0 0 0 0

0 ∂t 0 0 0 0 0 0


,G7 =



0 0 0 0 0 0 0 1

0 0 0 0 0 0 ∂t 0

0 0 0 0 0 −1 0 0

0 0 0 0 −∂t 0 0 0

0 0 0 −1 0 0 0 0

0 0 −∂t 0 0 0 0 0

0 1 0 0 0 0 0 0

∂t 0 0 0 0 0 0 0


(4.47)

Let’s take now the definition of two matrices:

12n×2n =
(
1n×n 0

0 1n×n

)
, I2n×2n =

(
0 1n×n

−1n×n 0

)
(4.48)

Matrices 12n×2n and I2n×2n are useful to understand the method of doubling by a

point of view of tensor products. Taking a Zn−1
2 algebra, one can construct the even sector of

a Zn
2 algebra by doing the tensor product of all generators of Zn−1

2 with 1(2n−1)×(2n−1). For the

odd sector of Zn
2 , one will use the matrices I(2n−1)×(2n−1) for tensor product.

Let’s use g0, g1, g2 and g3 of (4.42) as an example. We can reach to this matrices by

doing:

Even sector: g0 = f0 ⊗ 12×2, g1 = f1 ⊗ 12×2 (4.49)

Odd sector: g2 = f0 ⊗ I2×2, g3 = f1 ⊗ I2×2 (4.50)

We can do the same for Z 3
2 matrices exposed in (4.16). Nonetheless, by using (4.21),

it is not more necessary starting from matrices g0, g1, g2 and g3. We can start from f0 and

f1 and multiplying then by 14×4 or 12×2 and I4×4 or I2×2 to construct even and odd sectors,

respectively. That is:

Even sector: G0 = f0 ⊗ 14×4, G1 = f1 ⊗ 14×4, G2 = f0 ⊗ I2×2 ⊗ 12×2, G3 = f1 ⊗ I2×2 ⊗ 12×2

(4.51)
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Odd sector: G4 = f0⊗I4×4, G5 = f1⊗12×2⊗I2×2, G6 = f0⊗I2×2⊗I2×2, G7 = f1⊗I2×2⊗I2×2

(4.52)

The algebra SZ2
2 has the structure of complex numbers (C). This characteristic is evi-

dent in the commutation and anti-commutation relations exposed in (4.34). When we dou-

ble this algebra, we obtain a Z2
2 algebra with quaternionic structure, a fact that is exposed in

equation (4.42). Doubling once again, we obtain a representation for Z3
2 that has the struc-

ture constants of octonions. These mentioned relations are not mere coincidences when we

compare the logic of doubling for Zn
2 (super)algebras and the Cayley-Dickson matrix repre-

sentation. The procedures are very similar and both can be performed using the matrices

(2.76).

The complex number matrices are:

12×2 ≡
(

1 0

0 1

)
, i ≡

(
0 1

−1 0

)
(4.53)

Therefore, the quaternions matrices can be constructed as follows:

Commutative sector: e0 = 12×2 ⊗ 12×2, e1 = i ⊗ 12×2 (4.54)

Non-commutative sector: e2 = I2×2 ⊗ 12×2, e3 = i ⊗ I2×2 (4.55)

And the octonions matrices are constructed as:

Associative sector: E0 = 12×2 ⊗ 14×4, E1 = i ⊗ 14×4, E2 = 12×2 ⊗ I2×2 ⊗ 12×2,

E3 = i ⊗ I2×2 ⊗ 12×2 (4.56)

Non-associative sector: E4 = I4×4 ⊗ 12×2, E5 = i ⊗ 12×2 ⊗ I2×2, E6 = 12×2 ⊗ I2×2 ⊗ I2×2,

E7 = i ⊗ I2×2 ⊗ I2×2 (4.57)

But for Cayley-Dickson algebras, the multiplication for matrices should follow the

rule (2.77).

4.5 Perturbation in gradedZn
2 algebra systems

Before starting the main calculus of this section, is important to present an operator

T , here called by permutation operator, that act in a product generators of a graded algebra

Zn
2 represented by A, B and C as follows:

T (γ) −→ T (γ)(AB) = e iπγB A (4.58)

For simplicity, we can define T (γ) ≡ Tγ. And let’s impose some important properties

concerning operator Tγ:



4.5. PERTURBATION IN GRADED Zn
2 ALGEBRA SYSTEMS 65

• Tγ1 = e iπγ1

• TγA = e iπγA

• Tγ(AB) = e iπγB A

• Tγ(ABC ) = e iπγC B A

• Tγ′Tγ(AB) = e iπ(γ′+γ) AB

Now, let’s consider a physical system with (super)algebra Zn
2 . Generators of Zn

2 will

be represented by A and B . (Anti-)commutating rule is given by:

(A,B) = AB − (−1)<α,β>B A (4.59)

where <α,β> is the mapping. Considering n −mod :

<α,β>= γ=⇒
{

0

1
(4.60)

But now, let’s introduce a perturbation in the system acting on the mapping, since it

is this operation that indicates how the particles in the system will interact:

<α,β>= γ+ϵθγ
π

(4.61)

For now, only minor perturbation - that is ϵ << 1 - are considering. Term θγ is a

operator that will act on A and B . Therefore:

(A,B) = AB − (e iπ)

(
γ+ϵ θγπ

)
B A

= AB −e iπγe iϵθγB A

= AB −e iπγ(1+ iϵθγ)B A

= AB −e iπγB A− iϵe iπγθγ(B A) (4.62)

Operator θγ in terms of Tγ is defined as follows:

θγ = i (1+Tγ) (4.63)

Then, equation (4.62) becomes:

(A,B) = AB −e iπγB A+ϵe iπγ(B A+Tγ(B A)) (4.64)

Choosing e iπγ = 1,

(A,B) = AB −B A+ϵ(T (1)(B A)+B A)

= [A,B ]+ϵ(T (1)(B A)+B A)

= [A,B ]+ϵ{A,B} (4.65)
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But if we choose e iπγ =−1:

(A,B) = AB +B A−ϵ(T (−1)(B A)+B A)

= {A,B}−ϵ(T (−1)(B A)+B A)

= {A,B}+ϵ[A,B ] (4.66)

In this section, an expansion of the term e iϵθγ up to first order was considered. Now,

we will consider perturbations beyond this order, in order to obtain an analytical result for

any degree of perturbation.

Expansion up to second order

Considering now a expansion up to second order:

e iϵθγ ≈ 1+ iϵθγ− ϵ2

2
θ2
γ (4.67)

and

θ2
γ =−(1+Tγ)2 =−(1+2Tγ+T 2

γ ) (4.68)

According to (4.62), (4.67) and (4.68),

(A,B) = AB −e iπγ
(
B A+−ϵ(1+Tγ)B A+ ϵ2

2
(1+2Tγ+T 2

γ )B A

)
= AB −e iπγ

(
B A−ϵ(B A+e iπγAB )+ ϵ2

2
(B A+2e iπγAB +e2iπγB A)

)
(4.69)

For e iπγ = 1,

(A,B) = AB −B A+ϵ(B A+ AB)− ϵ2

2
(B A+2AB +B A)

= [A,B ]+ (ϵ−ϵ2){A,B} (4.70)

And for e iπγ =−1,

(A,B) = AB + (B A−ϵ(B A− AB))+ ϵ2

2
(B A−2AB +B A)

= {A,B}+ (ϵ−ϵ2)[A,B ] (4.71)

Expansion up to third order

For this procedure we must do:

e iϵθγ ≈ 1+ iϵθγ− ϵ2

2
θ2
γ−

ϵ3

3!
θ3
γ (4.72)

where

θ3
γ =−i (1+3Tγ+3T 2

γ +T 3
γ ) (4.73)
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Then,

(A,B) =O (ϵ2)+e iπγ ϵ

3!
(B A+3e iπγAB +3e2iπγB A+e3iπγAB) (4.74)

By using e iπγ = 1, one get:

(A,B) = [A,B ]+
(
ϵ− 2

2!
ϵ2

)
{A,B}+ ϵ3

3!
(B A+3AB +3B A+ AB)

= [A,B ]+
(
ϵ− 2

2!
ϵ2 + 4

3!
ϵ3

)
{A,B} (4.75)

And e iπγ =−1:

(A,B) = {A,B}+
(
ϵ− 2

2!
ϵ2

)
[A,B ]+ ϵ3

3!
(B A−3AB +3B A− AB)

= {A,B}+
(
ϵ− 2

2!
ϵ2 + 4

3!
ϵ3

)
[A,B ] (4.76)

Expansion up to fourth order

By expanding e iϵθγ up to ϵ4, we will get:

e iϵθγ ≈ 1+ iϵθγ− ϵ2

2
θ2
γ−

iϵ3

3!
θ3
γ+

ϵ4

4!
θ4
γ (4.77)

and

θ4
γ = 1+4Tγ+6T 2

γ +4T 3
γ +T 4

γ (4.78)

Therefore,

(A,B) = O (ϵ3)−e iπγ ϵ
4

4!
(1+4Tγ+6T 2

γ +4T 3
γ +T 4

γ )B A

= O (ϵ3)−e iπγ ϵ
4

4!
(B A+4e iπγAB +6e2iπγB A+4e3iπγAB +e iπγB A) (4.79)

For e iπγ = 1,

(A,B) = [A,B ]+
(
ϵ− 2

2!
ϵ2 + 4

3!
ϵ3

)
{A,B}− ϵ4

4!
(B A+4AB +6B A+4AB +B A)

= [A,B ]+
(
ϵ− 2

2!
ϵ2 + 4

3!
ϵ3 − 8

4!
ϵ4

)
{A,B} (4.80)

For e iπγ =−1,

(A,B) = {A,B}+
(
ϵ− 2

2!
ϵ2 + 4

3!
ϵ3

)
[A,B ]+ ϵ4

4!
(B A−4AB +6B A−4AB +B A)

= {A,B}+
(
ϵ− 2

2!
ϵ2 + 4

3!
ϵ3 − 8

4!
ϵ4

)
[A,B ] (4.81)
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General result

According to results obtained until now, we can induce a general result for any order

of perturbation. For any algebra characterized by:

(A,B) = AB − (−1)<α,β>B A (4.82)

By introducing a perturbation

<α,β>= γ+ ϵ

π
θγ, (1−mod)

where

θγ = i (1+Tγ) (4.83)

and Tγ(AB) = e iπγB A.

Wherefore,

• For e iπγ = 1,

(A,B) = [A,B ]+
( ∞∑

n=1

(−2)n−1

n!
ϵn

)
{A,B} (4.84)

• For e iπγ =−1,

(A,B) = {A,B}+
( ∞∑

n=1

(−2)n−1

n!
ϵn

)
[A,B ] (4.85)

Results (4.84) e (4.85) can be rewritten as, respectively:

(A,B) = [A,B ]+
(

e−2ϵ

2
− 1

2

)
{A,B} (4.86)

and

(A,B) = {A,B}+
(

e−2ϵ

2
− 1

2

)
[A,B ] (4.87)

This approach is expected to be particularly useful in systems of graded Lie (su-

per)algebras that exhibit broken symmetries or dynamics involving perturbations. The tech-

nique allows for a more precise and flexible description of these systems, as it takes into

account the interaction between the generators of the algebra, which may have different be-

haviors before and after the perturbation. In addition, the approach allows for the construc-

tion of new algebras from already known algebras. A very similar formalism was demon-

strated by Mohapatra and Greenberg [46], [47].

Results (4.86) and (4.87) are very similar to a Volichenko Algebra [15]. It is expected

that this result can also be applied to systems of particles under a perturbation - maybe a

external field - for example, in the phenomena of electron fractionalization [48].



Chapter 5

Conclusions

In this master’s thesis, new tools and formalisms were presented in Cayley-Dickson

and Graded Lie (Super)Algebras, as well as their potential applications in topics such as

particle physics, classical electromagnetism and dyons, and M-theory. Regarding Cayley-

Dickson Algebras, the intention was to briefly present the constructions of complex numbers

C, quaternions H, octonions O, and Cayley-Dickson sedenions S, focusing on exploring the

emergence of new properties through constructions and operations such as commutator,

associator, and anti-associator.

Using the Cayley-Dickson construction, we double the real numbers to obtain (split-

)complex numbers, complex numbers to obtain (split-)quaternions, quaternions to obtain

(split-)octonions, and octonions to obtain Cayley-Dickson sedenions. Thus, we see that the

non-commutativity of the quaternion algebra is the direct cause of the non-associativity of

the octonion algebra, just as quaternions do not commute because the conjugation oper-

ation of a complex number generates a different number. Similarly, the non-associativity

of octonions is responsible for the non-alternativity of sedenions. These findings were only

possible to verify by applying commutation and association operations to quaternions and

octonions. However, if we use the associator on two elements of the sedenionic basis, we find

that the result is zero for any two elements. This is an intriguing result, as the zero value of

this operation is characteristic of alternative algebras. However, if we use sedenionic num-

bers that are a linear combination of the elements (Ei ,0) and (0,E j ) of the basis, then the

non-alternativity will be verified.

After this, the matrix representation of complex and quaternion numbers was pre-

sented. The matrices of the bases ofC andHwere formed through simple calculations, using

only the algebraic properties characteristic of each one. Thus, a pattern of 2×2 matrix repre-

sentation for quaternionic complex numbers was verified, whose entries were the elements

of the ordered pairs that form these numbers (see 2.41). From this pattern, we induced a

69
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matrix representation for any ordered pair in the Cayley-Dickson algebras, by expanding the

definition of matrix multiplication to make it compatible with non-associative algebras, as

shows equation (2.45).

Another possibility that the matrix representation 2.41 offers is that its entries can

be rewritten as blocks, since these are also Cayley Dickson algebras and can be rewritten as

other matrices. Thus, we see that the Cayley-Dickson algebras have a number of possible

matrix representations that is equal to the number of doublings required to create these al-

gebras from the reals. Therefore, we create quaternionic matrices in 2×2 and 4×4 forms, and

octonionic matrices in 2×2, 4×4, and 8×8 forms. Using the Cayley-Dickson matrix multipli-

cation, we have seen that the octonionic matrices obey the octonions algebra presented in

the first chapter, such that the multiplication between matrices corresponding to the basis

elements is compatible with the octonions structure constant. These octonionic matrices

can be used to rewrite the matrices of the octonionic M-theory algebra (the Clifford algebra

C l0(10,1)) presented in (2.74), so that they are represented only with real entries. Finally, the

matrix representation of the Cayley-Dickson Doubling Construction was presented.

After the presentation of the formalism and mathematical techniques in Cayley- Dick-

son algebras, some possible applications were demonstrated. Initially, the already known

relationship between the elements of the SU (2) algebra, the Pauli matrices, and quaternions

was explored. Using the quaternionic matrix representation of size 4×4 and the definition

of isospins in terms of the quaternionic basis (see (3.8)), it was possible to demonstrate a

representation of spin-up and spin-down in the form of column matrices with four com-

plex numbers entries. After this, following the ideas of Kugo and Townsend [29], the quater-

nionic spin was constructed for the construction of the quaternionic Dirac Lagrangian and

presented global and local SU (2) symmetries. These approaches were only a motivation to

verify how the complete basis of octonions can simulate an SU (2) algebra and Dirac matri-

ces, as summarized in 3.1. According these results we construct the octonionic Lagrangian

of dyons, following ideas of Chanyal et al [8].

For the topic of graded Lie algebras and superalgebras, the thesis provides a brief

introduction to the subject, explaining the general rules and possible mappings of Z2, Z2
2,

and Z3
2. However, the main focus of this chapter was not on the detailed presentation of

these algebras, but rather on techniques for creating possible algebras and the formalism of

systems of graded (super)algebras subject to perturbations.

The procedure named by Doubling Construction for Zn
2 (Super)algebras was an idea

very similar to Cayley-Dickson doubling construction to create a Zn from a Zn−1
2 . This a-

mounts to projecting the generators ofZn−1
2 onto the even and odd sectors of aZn

2 . However,

when using the matrices defined in 4.48, we see that it is possible to obtain a Zn
2 from a Z2

without worrying about intermediate doublings. From this procedure we could use a Z2

supersymmetry superalgebra (S
Z2

2
2 ) to construct a Z3

2 superalgebra for supersymmetry N =
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2.

In the end, the construction of a formalism was presented in which it is assumed

that graded (super)algebra systems Zn
2 are subject to a perturbation. In this case, the na-

ture of the perturbation was not thoroughly discussed, as the intention is for this topic to

have a more general application. However, initially, we can think of this perturbation as, for

example, an external field being applied to systems of bosons, fermions, para-bosons, and

para-fermions that will change the interaction between these particles. This perturbation

are indicates by operator θγ, defined in 4.63 in terms of permutation operator Tγ. The first

result found was considering the minor perturbation regime, as shown by formulas 4.65 and

4.66. Just like in the first case, for higher-order perturbations, the results always indicated

that the Lie bracket would always be a result that contained one part as being from the com-

mutator and another as being from the anticommutator. In summary, the results were as

follows: if the mapping determines that the Lie bracket should be a commutator, the pertur-

bation will add an anticommutator to the result and vice versa. The results followed a certain

pattern so that they could be written as a Taylor series of the perturbation parameter, which

corresponds to an expansion of an exponential, as shown in results 4.86 and 4.87. It is im-

portant to note that the obtained formulas resemble a Volichenko algebra. This is because

this formalism was initially conceived as an attempt to obtain a Volichenko algebra through

a Lie (super)algebra.
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