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RESUMO

Esta tese apresenta uma visão geral em Álgebras de Clifford, Ál-

gebras de Cayley-Dickson e a relação com as álgebras de Lie Zn
2

graduadas. As propriedades mais importantes são discutidas e

uma classificação completa das álgebras super divisionais até a

graduação Z3
2 é apresentada.

A motivação para este trabalho é de estabelecer uma base

de referência sólida para os tópicos fundamentais que são

necessários para trabalhar com álgebras Zn
2 graduadas. Por-

tanto, uma base matemática simples e clara está sendo desen-

volvida.

Para trabalhos futuros, estamos estudando a não associativi-

dade com modelos físicos e desenvolvendo o que é chamado

de (super)álgebra graduada de Malcev. Artigos com modelos

físicos usando uma (super)algebra Z3
2 estão sendo escritos e a

classificação das super álgebras divisionais logo sera submetida

para publicação.

Palavras chave: Álgebras de Clifford; Álgebras de Cayley-

Dickson; Álgebras graduadas; Super álgebras divisionais; Álge-

bras graduadas de Malcev
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ABSTRACT

This thesis presents an overview on Clifford algebras, Cayley-

Dickson algebras and the relation of them with the Zn
2 graded

Lie algebras. The main properties are thoroughly discussed and

a complete classification of the super division algebras up to the

Z3
2 grading is presented.

The motivation for this work is to establish a solid reference

base for the fundamental topics that are necessary to work with

Zn
2 algebras. Therefore, a simple and clear mathematical frame-

work is being developed.

For future work we are studying non-associativity, with physics

models and developing what we call a graded Malcev (su-

per)algebra. Papers with physics models using a Z3
2 (su-

per)algebra are already being written and the classification of

the super division algebras will be soon submitted for publica-

tion.

Keywords: Clifford algebras; Cayley-Dickson algebras; Zn
2

Graded algebras; Super division algebras; Graded Malcev alge-

bras
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Chapter 1

Introduction

This thesis presents an introduction on the important topics necessary to study grad-

ed algebras and super division algebras. This thesis and I. P. de Freitas master’s degree thesis

[1] are complementary and present the work done by the group, which also includes R. G.

Rana.

The Cayley-Dickson algebras, as a doubling iteration of a field, were introduced by

Arthur Cayley and Leonard Dickson [[2],[3]]. Of these algebras, the one that is getting more

attention in recent years is the octonions, see [[4],[2]]. As a non-associative algebra, its ap-

plication in physics are still obscure. However, it is known that the octonions are responsible

for the generation of the exceptional Jordan algebras and exceptional Lie algebras, both of

which are believed to play a important role in physics, see [[4], [3], [5]].

A number of authors have attempted to use the octonions to generalize the standard

model of particle physics, see [[6], [7], [8]] and references within. Others have attempted

to use octonions in a Clifford algebra framework, see [[9],[10]] and references therein. Ref-

erences on Clifford algebras include [[11], [12],[13],[14],[15]]. This thesis presents a matrix

realization for the octonions, also discussed in [[16],[17]], which can potentially be applied

in this area.

The Zn
2 graded (super)algebras were introduced in 1978 by Rittenberg-Wyler in two

papers [[18],[19]], see also [20]. They were a generalization of [[21],[22]]. Since then, they

have been studied mostly by mathematicians, [[23],[24],[25],[26],[27],[28]]. Some early at-

tempts to find physical applications were made by [[29],[30],[31]], but in the recent years

this area grew rapidly.

In [[32],[33]], it is shown that theZ2×Z2 graded (super)algebras describe symmetries

of Lévi-Leblond equations. After that, it was discussed in the literature, invariant world-line

models [34], 2-dimensional sigma models [[35],[36],[37]], quantum mechanics [[38],[39]],

superconformal quantum mechanics [40] and superspace [[41],[36],[42]]. The extension

and bosonization of double graded supersymmetric quantum mechanics are analyzed in

[[43],[44], [45]]. The Z3
2 graded (super)algebras started to be analyzed in physics very re-

3



CHAPTER 1. INTRODUCTION 4

cently. In [46], the authors analyze a Z3
2 graded superconformal quantum mechanics con-

structed using a relation with Clifford algebras.

The theories discussed above are a generalization of ordinary supersymmetric and

superconformal quantum mechanics. For that and root multiplets, that appears in this type

of models, see [[47],[48], [49],[50]] and [[51],[52],[53]].

Zn
2 graded (super)algebras have been shown to have a relationship with parastatis-

tics. This relationship has been explored in references [[54],[55],[56]] and references within.

While most papers focus only on superalgebras, Z2 ×Z2 graded algebras with parabosons

have been studied and classified in [36]. Moreover, the theoretical detectability of parafermi-

ons was analyzed in [54] and the extension to parabosons in [57].

Another important area of study is the grading of division algebras. A super division

algebra represents a Zn
2 graded (super)algebra in which all homogeneous elements admits

inverse. The Z2 super division algebras in addition to the three associative division algebras

form what is known as the Tenfold way, see references [[58],[59]]. The Tenfold way is ap-

pearing to be essential to the understanding of the "periodic table of topological insulators

and superconductors". In this topic, see [60] for the physical significance of the periodic

table, [[61],[62]] for the relation of Cartan’s classification of symmetric spaces with random-

matrix theory and [63] for the classification of generic Hamiltonians. For a more mathemat-

ical study analyzing implementations of the Tenfold way see [64].

While the Tenfold way is formed by the Z2 graded super division algebras, an exten-

sion to it exists when considering a Z2 ×Z2 graded structure, as analyzed in [65]. In this last

reference, the authors use what is called the alphabetic (re)presentation of Clifford algebras,

first introduced in [66], to classify the Z2
2 graded super division algebras. It consists in as-

signing a letter to the 2x2 invertible real matrices that generate all matrix representations of

Clifford algebras. Therefore, the generators will be represented by words with equal length

in a four letter alphabet and the tensor product symbol is skipped.

Studying real super division algebras highlights the importance of considering other

types of graded (super)algebras beyond the Lie ones. One important example are the graded

Malcev (super)algebras which are already being defined by mathematicians [[67], [68], [69],

[70]]. This thesis presents an idea for a mapping for the Z3
2 graded Malcev (super)algebras

that works only for the octonions and split-octonions.

The scheme of the thesis is the following. Chapter 2 present the definition of Clif-

ford algebras and their classification following Okubo [[13],[14]]. Chapter 3 introduces the

definition of the Cayley-Dickson algebras and their relation to Clifford algebras. Chapter

4 fully discusses the alphabetic (re)presentation using the algebras presented in chapters

2 and 3. The last section of chapter 4 presents the Octonionic M-algebra, see references

[[71],[72],[73]]. The purpose is to show the application of the alphabetic (re)presentation

and the matrix representations for octonions presented in sections before.
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Chapter 5 is the main core of the thesis, it presents theZn
2 graded (super)algebras and

the super division algebras. The last sections of the chapter presents a possible guide to study

non-associative graded (super)algebras, focusing on the graded Malcev (super)algebras. The

conclusion summarizes the main results of the thesis and discusses ongoing and future re-

search. Appendix A presents the structure constants for the octonions and split-octonions.

Appendix B shows the new matrix representation for the octonions found by I. P. de Freitas

and M. M. Balbino. Appendix C shows how to use the left and right action to find the matrix

representation of the Clifford algebras, which are related to the (split)octonions. Appendix

D gives the Octonionic M-algebra matrices in the usual 4x4 octonionic representation. For

last the Appendix E gives all possible table of brackets for the study of the Z3
2 graded Malcev

(super)algebras.



Chapter 2

Clifford algebras

2.1 Definition

There are more then one way to define Clifford algebras, in [12] the authors define

them as a quotient algebra from a tensor algebra with a two sided ideal, see also [11]. The

other way is to define them as the enveloping algebra of a quadratic vector space, see [11]

and the classification by Okubo [13].

Definition: A universal Clifford algebra (A ,γ) is generated by a quadratic vector space (V , g )

with γ(v) ∈A for v ∈ V , the generators obey the following relation:

γ(v)γ(u)+γ(u)γ(v) = 2η(u, v)1 (2.1)

Where 1 is the identity. The dimension of a universal Clifford algebra is:

di m(A ) = 2n , where n = di m(V ) (2.2)

Every universal Clifford algebra is an associative algebra with the multiplication be-

ing the geometric product or Clifford product. In a matrix representation the product be-

comes the standard matrix multiplication. This means that the matrix multiplication is the

analog of the Clifford multiplication acting on the matrix representation of the algebra.

A quadratic vector space V of a real Clifford algebra will be the reals, of a complex

Clifford algebra it will the complex with a p, q signature, where p is the number of generators

which are space-like and q which are time-like. In this thesis, the Clifford algebras will be

denoted by C l(p,q); some authors use the notation C l (p, q), [13] and [15], but the algebra is

the same, therefore, it won’t generate any confusion.

For every Clifford algebra, there is a minimal dimension matrix representation. Min-

imal and non-minimal representations have different properties, this is why Okubo’s paper

only use the minimal representation for the classification.

6
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2.2 Fundamental Clifford algebra and doubling process

The fundamental Clifford algebra that generates every other one is C l(1,0). With a

particular Clifford algebra, there are two ways to create a new one. These two algorithms

are called the doubling process, the algorithm assures that the generating matrices anti-

commute, see [15]. Doubling C l(1,0) generates C l(2,1), the minimal matrix representation for

the generators of C l(2,1) plus the scalar identity is given by:

C l(2,1) γ(v) : I =
(

1 0

0 1

)
, Z =

(
1 0

0 −1

)
, X =

(
0 1

1 0

)
, A =

(
0 1

−1 0

)
(2.3)

Therefore, the general algorithm is given by:

1st : C l(p,q) → C l(p+1,q+1):

Γi =
(

0d γi

γi 0d

)
, Γn+1 =

(
0d 1d

−1d 0d

)
, Γn+2 =

(
1d 0d

0d −1d

)
, d = di m(γi ) (2.4)

2nd : C l(p,q) → C l(q+2,p):

Γi =
(

0d γi

−γi 0d

)
, Γn+1 =

(
0d 1d

1d 0d

)
, Γn+2 =

(
1d 0d

0d −1d

)
, d = di m(γi ) (2.5)

where γi are the matrices that generates C l(p,q) and n = p +q

Both algorithm comes from 2.3, from the doubling of C l(1,0) to C l(2,1), see figure 2.1.

There are two ways of doubling it given by both algorithms.

The first relativistic quantum mechanics theory was created by P. Dirac, see [74] for a

review. The famous Dirac matrices were produced by him using the algorithms above. Dirac

used the Pauli matrices, which are generators of C l(3,0), to create the Clifford algebra C l(1,3),

by excluding one generator of C l(2,3).

The maximal Clifford algebras are presented in the figure 2.1 below. A maximal Clif-

ford algebra is odd dimensional, hence n = p +q is odd. The non-maximal are obtained by

excluding generators from the maximal ones. However, when a matrix representation for a

Clifford algebra is found by excluding generators, it can be non-minimal in dimension. For

example, in figure 2.1, one can see that C l(4,3) is represented by 8x8 real matrices. By exclud-

ing the four space-like elements, it then becomes a 8x8 matrix representation for C l(0,3). But,

as one can see, there is also a 4x4 real representation for C l(0,3); this is the minimal represen-

tation.

Later, it will be shown the matrix representation of the Clifford algebras and therefore

it will be clear why these are the maximal ones.
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Figure 2.1: Maximal Clifford algebras

2.3 Classification

A Clifford algebra can be normal, almost complex or quaternionic regarding their

minimal matrix representation, according to Okubo in [13] and [14]. Assume that there is a

real matrix B that commutes with all the generators of the Clifford algebras:

[B ,γµ] = 0, where µ= p +q (2.6)

• In a normal Clifford algebra, the most general matrix B will be given by:

B = a1 (2.7)

where a is a real constant and 1 is the matrix of the identity element.

• In a almost complex Clifford algebra, the most general matrix B will be given by:

B = a1+b J (2.8)

where a and b are real constants and J satisfies the following properties:

J 2 =−1 and [J ,γµ] = 0 (2.9)

• In a quaternionic Clifford algebra, the most general matrix B will be given by:

B = a01+
3∑

j=1
a j E j (2.10)
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where a0 and a j are real constants and E j satisfies the following properties:

[E j ,γµ] = 0 (2.11)

E j Ek =−δ j k 1+
3∑

r=1
ε j kr Er (2.12)

where ε is the Levi-Civita symbol.

• Normal Clifford algebra: p −q(mod8) = 0,1,2

• Almost complex Clifford algebra: p −q(mod8) = 3,7

• Quaternionic Clifford algebra: p −q(mod8) = 4,5,6

where mod8 means that it is taken modulo 8.

Hence, on figure 2.1, we have the following. C l(1,0),C l(0,7),C l(0,15) and so on along

with every Clifford algebra generated by them are normal Clifford algebras. C l(0,3),C l(0,11)

and so on along with every Clifford algebra generated by them are quaternionic Clifford al-

gebras. This is only true for the minimal representation, the irreducible one.

Instead of talking about the minimal matrix representation of the Clifford algebras,

first let’s introduce the Cayley-Dickson algebras because they are directly related to them.

Therefore, they are important to the understanding and presentation of the minimal repre-

sentations.



Chapter 3

Cayley-Dickson algebras

A Cayley-Dickson construction is a doubling of an algebra with itself. The funda-

mental algebra is the reals R and all Cayley-Dickson algebras constructed through this pro-

cess will double the dimension of the algebra, see references [[2],[3]] for introduction on the

subject.

Let A be a Cayley-Dickson algebra over the reals, then A2 will be defined by the fol-

lowing relations:

1. Multiplication: (x, y) · (z, w) = (xz +ϵw∗y, w x + y z∗).

2. Conjugation: (x, y)∗ = (x∗,−y).

3. “Norm”: N (x, y) =N (x)−ϵN (y).

Definitions 1-3 generates the following properties:

Multplication by a real number: a(x, y) = (ax, ay), a ∈R.

Conjugation of multiplication: [(x, y) · (z, w)]∗ = (z, w)∗ · (x, y)∗

where x, y, z and w ∈A. If A is a division algebra, then ϵ=−1 creates a division algebra and

ϵ= 1 creates a split-division algebra.

A division algebra is an algebra that obeys the following relation:

If ab = 0 then a or b = 0 (3.1)

A Cayley-Dickson algebra can be commutative, associative and alternative. Consider

x, y and z ∈A, then it is:

Commutative if x y − y x = 0 (3.2)

Associative if (x y)z −x(y z) = 0 (3.3)

Alternative if x(x y) = x2 y and (y x)x = y x2 (3.4)

10
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Here is a list of the important division algebras for further use:

• R: Commutative, associative and alternative.

• C: Commutative, associative and alternative.

• H: Non-commutative, associative and alternative.

• O: Non-commutative, non-associative and alternative.

The split-division algebras will be denoted by a tilde above the division algebra sym-

bols, for example, C̃ is the split-complex numbers.

• Another important property of Cayley-Dickson algebras is that every one of them ex-

cept the fundamental, which is the reals, contain as a sub-algebra another Cayley-

Dickson division algebra. For example, the octonions and split-octonions have as

a sub-algebra the quaternions. The quaternions together with the split-quaternions

have the complex numbers as a sub-algebra. This is important for the study of the

topic of graded algebras

The important Cayley-Dickson algebras above are the only division algebras. There-

fore, beyond the octonions, the term split doesn’t make sense anymore because both dou-

bling values for ϵ will generate non-division algebras. However, it will continue to be used.

The split algebras will denote the Cayley-Dickson algebras which has space-like vectors. The

first Cayley-Dickson algebra which is not a division algebra is the sedenions. They are gen-

erated by the doubling of the octonions.

• S: Non-commutative, non-associative and non-alternative.

3.1 Complex and Split-complex numbers

A complex number can be written in form of a Cayley-Dickson doubling in the fol-

lowing way:

z = xe0 + ye1 = x(1,0)+ y(0,1) x, y ∈R (3.5)

Where e0 is the identity and e1 is the imaginary, e2
1 =−e0. By forcing a 2x2 matrix rep-

resentation, the obvious matrix for e0 is the identity matrix. Using the square equals minus

the identity relation, one can define a condition for the imaginary matrix. One particular

choice for it is the anti-symmetric matrix "A" in 2.3. Hence a general complex number is

given by:

z =
(

x y

−y x

)
, x, y ∈R (3.6)
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The split-complex numbers are the same but with the relation e2
1 = e0, doing the same

procedure will give for ẽ1 matrix "X " in 2.3. Therefore, a split-complex number is given by:

z̃ =
(

x y

y x

)
, x, y ∈R (3.7)

3.2 Quaternions and Split-quaternions

A general quaternion is given by:

z = ae0 +be1 + ce2 +de3 = a(1,0)+b(i ,0)+ c(0,1)+d(0, i )

a,b,c,d ∈R, 1, i ∈C (3.8)

where e0 is always the identity and the vectors obey the following properties:

e2
1 = e2

2 = e2
3 =−e0

e1e2 = e3

e3e1 = e2

e2e3 = e1

ei e j =−e j ei (3.9)

Using these relations one can find a matrix representation for the quaternions:

z = a

(
1 0

0 1

)
+b

(
i 0

0 −i

)
+ c

(
0 1

−1 0

)
+d

(
0 i

i 0

)

z =
(

a + i b c + i d

−c + i d a − i b

)
=

(
x y

−y∗ x∗

)
, x, y ∈C (3.10)

The quaternionic multiplication can be written in the following form:

ei e j =−δi j 1+εi j kδ
kl el where ε123 = 1 (3.11)

epsilon is the Levi-Civita totally anti-symmetric tensor and the sum convention is adopted

here unless told otherwise.

For split-quaternions there are different relations:

e2
0 = e0 ẽ1ẽ2 = ẽ3

ẽ2
1 =−e0 ẽ3ẽ1 = ẽ2

ẽ2
2 = e0 ẽ2ẽ3 =−ẽ1

ẽ2
3 = e0 ẽ2ẽ1 =−ẽ3

ẽ3ẽ2 = ẽ1 ẽ1ẽ3 =−ẽ2

ẽi ẽ j =−ẽ j ẽi (3.12)
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Using these relations a split-quaternion is given by:

z = a

(
1 0

0 1

)
+b

(
i 0

0 −i

)
+ c

(
0 1

1 0

)
+d

(
0 i

−i 0

)

z =
(

a + i b c + i d

c − i d a − i b

)
=

(
x y

y∗ x∗

)
, x, y ∈C (3.13)

The split-quaternionic multiplication can be written in the following form, defining

the metric:

η̃i j = η̃i j →


−1 0 0

0 1 0

0 0 1

 (3.14)

ẽi ẽ j = η̃i j 1+εi j k η̃
kl ẽl (3.15)

3.13 is the complex representation of the split-quaternions. They have a real 2x2

matrix representation given by 2.3. There is also a 4x4 real matrix representation for both

quaternions and split-quaternions, more on them later.

There is a way to unify the quaternions and split-quaternions results using the ϵ from

the Cayley-Dickson doubling, defining:

ηi j = ηi j =


−1 0 0

0 ϵ 0

0 0 ϵ

 (3.16)

Where ϵ=−1 for a division algebra and ϵ= 1 for a split-division algebra, the multipli-

cation becomes:

ei e j = ηi j 1+ϵεi j kη
kl el (3.17)

The general matrix representation is given by:

z = (x, y) ≡
(

x y

ϵy∗ x∗

)
(3.18)

The 4x4 real matrix representation can be created in two ways. One is to use 3.18 and

instead of x and y , substitute for the complex numbers 2x2 matrices, "I " and "A". The other

way is described in [[6],[75],[76]]. It is the relation that the left multiplication for the octo-

nions produces the matrices generators of C l(0,7). F. Toppan’s, Z. Kuznetsova and N. Aizawa

called that quasi-nonassociativity, here it will be the same. A left multiplication on a general

quaternion or split-quaternion can be written in matrix form and C l(0,3) and C l(2,1) will ap-

pear. However, they are isomorphic to the quaternions and split-quaternions so they are a

4x4 real matrix representation.
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Left multiplication is the action of a vector of the algebra on a general element of the

algebra with the vector being on the left. Right multiplication is the dual of the left and is

also possible, but the common convention in the literature is the left multiplication.

Here is the result via the second way using the generalized structure constants, it is

derived using 3.17:

ei x⃗ = ei x0 + (ηi j 1+ϵεi j kη
kl el )x j = ηi j x j + (x0δ

l
i +ϵεi j kη

kl x j )el

It can be put in matrix form:

x⃗ ′
i = γL

i x⃗ with (γL
i )M N =

(
0 ηi j

δl
i ϵεi j kη

kl

)
M N

(3.19)

Where M = 0, l and N = 0, j with l ,m = 1,2,3 and γL
i represents the matrices found by

left multiplication. The matrices produced by right multiplication will only change the sign

of the vector multiplication:

(γR
i )M N =

(
0 ηi j

δl
i −ϵεi j kη

kl

)
M N

(3.20)

It can be shown that the right multiplication matrices are related to the ones pro-

duced by left multiplication via a similarity transformation. Confirming that right multipli-

cation does not add any information. Matrices 3.19 for the quaternions are given by:

e1 =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 , e2 =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 , e3 =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 (3.21)

And for the split-quaternions by:

ẽ1 =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 , ẽ2 =


0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

 , ẽ3 =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 (3.22)

3.3 Octonions and Split-octonions

A general octonion will be the same than the quaternions:

e0 = (1,0), e1 = (i ,0), e2 = ( j ,0), e3 = (k,0), e4 = (0,1), e5 = (0, i ), e6 = (0, j ), e7 = (0,k)

(3.23)

where i , j ,k ∈H
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The only relation that will change is the multiplication which is now non-associative:

ei e j =−δi j +Ci j kδ
kr er (3.24)

Where Ci j k is the structure constant of the octonions, it is a completely anti-symmetric

tensor. There are 480 possible conventions for this structure constant. The one that will be

used in this thesis is the following:

C123 =C145 =C176 =C246 =C257 =C347 =C365 = 1 (3.25)

Another important convention is the inverse of the above:

C123 =C145 =C176 =C246 =C257 =C347 =C365 =−1 (3.26)

For the split-octonion,s the metric becomes η̃i j = di ag (−1,−1,−1,1,1,1,1) and the

multiplication is given by:

ẽi ẽ j = η̃i j 1+ C̃ i j
k ẽr = η̃i j 1+ C̃i j k η̃

kr ẽr (3.27)

the structure constant of the split-octonions C̃i j k is completely anti-symmetric, more on

them in the appendix A. The structure constant is:

C̃132 = C̃145 = C̃176 = C̃246 = C̃257 = C̃347 = C̃365 = 1 (3.28)

Everything that was done for the quaternions and split-quaternions can be replicated

for octonions and split-octonions, the only difference is the matrix representation for the

vector elements. Here is only the results. Defining the metric:

ηi j = ηi j →



−1 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 −1 0 0 0 0

0 0 0 ϵ 0 0 0

0 0 0 0 ϵ 0 0

0 0 0 0 0 ϵ 0

0 0 0 0 0 0 ϵ


(3.29)

The multiplication is given by:

ei e j = ηi j +Ci j kη
kl el (3.30)

it is implied that, in the split-octonionic case, there is a tilde on every element of the formula.

The matrices that generates C l(0,7) and C l(4,3) are given by:
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(γL
i )M N =

(
0 ηi j

δl
i Ci j kη

kl

)
M N

(γR
i )M N =

(
0 ηi j

δl
i −Ci j kη

kl

)
M N

(3.31)

Now a matrix representation, with the standard matrix multiplication, is not possible

for the octonions because the standard product is always associative. Max Zorn [77] cre-

ated a 2x2 vector-matrix representation mixing real numbers and vectors in R3. However, in

[[16],[17]], it is presented 2x2 matrices for the vector basis of Cayley-Dickson algebras using

the doubling construction, defining a new matrix multiplication. Together with I.P. de Fre-

itas it was found the same result, but we studied also representations of bigger dimension

than 2. The Cayley-Dickson doubling already gives us the correct matrix representation for

every Cayley-Dickson algebra. If we look at 3.18, we can try to rewrite the Cayley-Dickson

multiplication in matrix form:

(x, y)(z, w) =
(

x y

ϵy∗ x∗

)(
z w

ϵw∗ z∗

)
=

(
xz +ϵy w∗ xw + y z∗

ϵx∗w∗+ϵy∗z x∗z∗+ϵy∗w

)
(3.32)

But from the defined multiplication:

(x, y)(z, w) = (xz +ϵw∗y, w x + y z∗) (3.33)

If you put it on matrix form 3.18:

(x, y)(z, w) =
(

xz +ϵw∗y w x + y z∗

ϵ(w x + y z∗)∗ (xz +ϵw∗y)∗

)
=

(
xz +ϵw∗y w x + y z∗

ϵx∗w∗+ϵz y∗ z∗x∗+ϵy∗w

)
(3.34)

Comparing 3.32 and 3.34 show us that it is not the same, there is a subtle difference

that changes everything. This means that the definition for the multiplication is not just the

usual one. We are going to follow [17] with the sign for the generalized multiplication.

Multiplication of the matrix representation of the Cayley-Dickson doubling:

(x, y)◦ (z, w) ≡
(

x y

ϵy∗ x∗

)(
z w

ϵw∗ z∗

)
+

(
ϵ[w∗, y] [w, x]

ϵ[z, y∗] [z∗, x∗]

)
(3.35)

Being [,] the commutator, 3.35 consists of the usual matrix multiplication plus a cor-

rection term. This term is zero up to the quaternions and split-quaternions. From the octo-

nions and split-octonions this term won’t be always zero because the quaternions and split-

quaternions are anti-commutative, therefore the commutators can be non-zero. Using this

multiplication and defining norm and conjugation we can create a matrix realization for ev-

ery Cayley-Dickson algebra.

In resume, for the octonions and split-octonions there are matrix realizations, 2x2

quaternionic, 4x4 complex or even 8x8 real representation, more on them later.
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3.4 Important algebras

This section is dedicated to the relation between Clifford algebras and division alge-

bras. But first it is important to talk about the matrix representation for universal Clifford

algebras because it relates with division algebras, for this section see references [[11],[12]].

Clifford algebras matrix representation

Let’s come back to the Clifford algebras and their representation. The figures below

are 4.1 and 4.2 of [11], in pages 101 and 102. Considering that M (N ,K) is the complete group

of all N xN real matrices with entries that belong to theK algebra. Also n = p +q :

Figure 3.1: Real Clifford algebras

And now the complex Clifford algebras or the tensor product of the complex with the

real Clifford algebras:

Figure 3.2: Complex Clifford algebras

By looking at figure 3.1, it is clear why the maximal Clifford algebras are the ones

with odd dimension n, see 2.1. They are the algebras in which p −q(mod8) = 1,3,5,7. Their

matrix representation are the most general ones.

For the sake of clarity and for further use here is a list of important Clifford algebras

in both conventions:

C l(0,0) ≃R C l(1,1) ≃C l(2,0) ≃ H̃≃M (2,R)

C l(0,1) ≃C C l(0,3) ≃H⊕H
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C l(1,0) ≃ C̃ C l(2,1) ≃M (2,R⊕R)

C l(0,2) ≃H C l(0,7) ≃C l(4,3) ≃M (8,R⊕R) (3.36)

The relation between division algebras and Clifford algebras is given. Regarding the

classification of Clifford algebras, the complex numbers are a normal Clifford algebra and

the quaternions are a quaternionic Clifford algebra. The octonions are not isomorphic to

the Clifford algebra C l(0,7), however, they have a relation through the left and right actions.

Curiously, once it is lost the direct relation between Cayley-Dickson algebras and Clifford

algebras, in octonions and split-octonions, one can see that the Clifford algebras with the

same signature than the Cayley-Dickson algebras becomes isomorphic, they are all normal

Clifford algebras. There is the following:

C l(0,1) ̸=C l(1,0)

C l(0,7) ≃C l(4,3)

C l(0,31) ≃C l(16,15)

C l(0,3) ̸=C l(2,1)

C l(0,15) ≃C l(8,7)

C l(0,63) ≃C l(32,31)

(3.37)

C l(0,1) is not isomorphic to C l(1,0) because there is only one generator, each with dif-

ferent signature. C l(0,3) is not isomorphic to C l(2,1) because one is a quaternionic Clifford

algebra and the other is a normal Clifford algebra. The rest of the relations of isomorphism

are true because all are normal Clifford algebras, figure 2.1 helps to visualize this.

3.5 Non-associative algebras

From the Octonions and split-octonions all Cayley-Dickson algebras are non asso-

ciative [7]. Therefore, a direct isomorphism is not possible, but there is a relation. To see

that, one needs to understand multiplication, however, the order of a multiplication is now

important. The usual convention in literature is to use the left multiplication, which means

the following.

Let w ∈A be a general vector of a division or split-division algebra, then the left mul-

tiplication of a vector ei ∈A on w is given by:

left multiplication: ei w (3.38)

This was already discussed in section 3.2. Another important definition is the left

multiplication chain:
←−−ei e j w = ei (e j w) (3.39)

C.Furey showed in [7] the properties of this definition, section 6.3. She showed that

a left multiplication in the bi-octonions can be expressed as a sum of right multiplication

chains, concluding that no information is lost when one uses only one type of multiplication.

The relation between the Octonions and split-octonions with C l(0,7) and C l(4,3) is

given by[[6],[75],[76]]:
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• A left or right multiplication of a Octonionic or split-octonionic vector on a general

element of the respective algebra will generate the matrices that represents Clifford

algebras C l(0,7) and C l(4,3) respectively, 3.31.

To see that, one needs to separate the equation in a multiplication of two matrices.

One will be a matrix with the octonionic vectors and the other will be a 8x8 matrix with the

signs of the multiplication.

Another very important property is that the sum of all multiplication chains forms

an associative algebra, which can be showed to be isomorphic to a certain Clifford algebra.

C. furey in [7] talks about the bi-quaternions and bi-octonions, but to every Cayley-Dickson

algebra up to the octonions and split-octonions this is true. C. Furey denotes this sum of

chains with the left arrow above the Cayley-Dickson symbol.

Before showing some examples of algebras generated by sum of multiplication chains,

there is a relation called the Hodge duality that is important here. What it states is that the

product of n−r = p+q−r orthogonal elements of a Clifford algebra is equivalent to the prod-

uct of elements of rank r. For example, the case of C l(0,7), the multiplication of 4 elements

will be equivalent than of 3 elements and so on because 7−3 = 4.

Associative Cayley-Dickson algebras will always generate itself with multiplication

chains, so it is redundant to put here. C. Furey used the bi-quaternions in [7], their left mul-

tiplication chain gives C⊗←−
H ≃ C l(0,3) ≃ Cl2, but with octonions and split-octonions there is

the following:

←−
O ≃C l0,6 ≃C l3,3

C⊗←−
O ≃Cl6

C̃⊗←−
O ≃C l0,7 ≃C l4,3

←−̃
O ≃C l3,3 ≃C l0,6

C⊗←−̃
O ≃Cl6

C̃⊗←−̃
O ≃C l4,3 ≃C l0,7

(3.40)

C. Furey also showed why the first relation is not isomorphic to C l(0,7) instead of

C l(0,6). There is an additional relation that connects every multiplication chain. One can say

that one multiplication chain is linear dependent of all the other ones. Additionally, because

of the Hodge duality it can only create an algebra with 64 elements, 1+7+21+35 = 64.



Chapter 4

Alphabetic (Re)presentation

The alphabetic (Re)presentation comes from the properties of the tensor product be-

tween matrices. Named by F. Toppan and P. Vierbeek [66], the idea is to assign words in a

letter alphabet to represent the matrices and then analyze their properties faster and with

less difficulties. It is defined as follows:

• First, define a set of fundamental matrices that will generate every other matrix.

• Second, assign letters of one’s preference to each of the fundamental matrices, there

can be no repetition of letters.

• All matrices one can create with the tensor product between the fundamental ones

have a unique alphabetic (Re)presentation.

• To create words in the alphabet one only need to hide the tensor product symbol be-

tween letters; it is understood that between letters that form a word there is a tensor

product.

A set of fundamental matrices of great interest is the vector space of real 2x2 matrices

with null trace plus the identity, denoted here by M (2,R):

M (2,R) : I =
(

1 0

0 1

)
, Z =

(
1 0

0 −1

)
, X =

(
0 1

1 0

)
, A =

(
0 1

−1 0

)
(4.1)

Below there is a list of the properties of the alphabetic (re)presentation that makes it

so useful:

1st : If a matrix possesses an even number of letters A, then it is space-like or sym-

metric, if it possesses an odd number it is time-like or anti-symmetric.

2nd : The number of letters in a word gives the dimension of the matrix, if a matrix

have "n" letters than it is 2nx2n in size.

20
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3r d : The first letter of the word, that represents a matrix, gives if the matrix is block-

diagonal or block-anti-diagonal, being I and Z diagonal, X and A anti-diagonal.

4th : Allow us to see if two matrices commute or anti-commute without having to

multiply them. One just need to see if letters in the same position from both words com-

mute or anti-commute. If there is an even number of anti-commutations then the matrices

commute, if there is an odd number of anti-commutations then they anti-commute.

5th : Matrix multiplication can be done by multiplying letters in the same position,

using the multiplication table 4.1.

6th : The algorithm of creation of new bases can be put in an alphabetic form.

On 5th the table is the multiplication of the matrices in 4.1:

— I Z X A

I I Z X A
Z Z I A X
X X −A I −Z
A A −X Z −I

Table 4.1: Multiplication of the 2x2 real matrices

4.1 Quaternions and Split-quaternions

Using as an example the matrices 3.21 and 3.22, their alphabetic (re)presentation is

given by:

e1 =−I ⊗ A =−I A, e2 =−A⊗Z =−AZ , e3 =−A⊗X =−AX (4.2)

ẽ1 =−I ⊗ A =−I A, ẽ2 = X ⊗Z = X Z , ẽ3 = X ⊗X = X X (4.3)

By looking at their alphabetic (re)presentation it is explicit properties 1, 2 and 3 of the

last section. If one wants to check for anti-commutation, just follow property 4. Example,

AZ and AX anti-commute because A commutes with itself and Z anti-commutes with X

leaving an odd number of anti-commutations. However, AZ commutes with X X because A

and Z anti-commute with X , hence there are two anti-commutations.

Property 5 is the same, e1e2 = e3, so −I A ∗−AZ , the minus signs cancel each other,

I ∗A = A and A∗Z =−X , the result is −I A∗−AZ =−AX which gives exactly e3. It will always

work because this is a property of the tensor product between matrices.

4.2 Covariant and Contravariant

The algebra that they create have a metric, in the case of split algebras this metric

is non-trivial. It makes sense to define then covariant and contravariant elements, Matrices
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3.21 and 3.22 represents covariant vectors, with the metric given by 3.16, one can construct

the contravariant vectors:

e i = ηi j e j and γi = ηi jγi (4.4)

e1 = I A, e2 = AZ , e3 = AX (4.5)

ẽ1 = I A, ẽ2 = X Z , ẽ3 = X X (4.6)

4.3 Clifford doubling

The algorithm for the Clifford doubling discussed in section 2.2, 2.4 and 2.5, can be

put in alphabetic form. It is pretty simple, the matrices in 2.4 can be written in the following

form, Γi = X ⊗γi , Γn+1 = A ⊗1d and Γn+2 = Z ⊗1d . In the same way, the matrices in 2.5 can

be written in the following form, Γi = A⊗γi , Γn+1 = X ⊗1d and Γn+2 = Z ⊗1d . Therefore, the

two algorithms become:

1st : C l(p,q) → C l(p+1,q+1):

Γi = Xγi , Γn+1 = AI m , Γn+2 = Z I m , n = p +q, m = log2[di m(γi )] (4.7)

2nd : C l(p,q) → C l(q+2,p):

Γi = Aγi , Γn+1 = X I m , Γn+2 = Z I m , n = p +q, m = log2[di m(γi )] (4.8)

It becomes easy to create a new Clifford algebra basis with this algorithm. For exam-

ple, the Clifford algebra C l(1,3) was used in Dirac’s theory, to create it, one can just use the

first algorithm with the quaternions 4.5; using C l(0,3) to create C l(1,4):

C l(1,4) : e1 = X I A, e2 = X AZ , e3 = X AX , e4 = AI I , e5 = Z I I (4.9)

Excluding e4 generates the real 8x8 representation of C l(1,3). If one wants the exact

Dirac matrices, the 4x4 complex representation, one can take the imaginary number of the

second Pauli matrix and an alphabetic (re)presentation is possible, nothing changes:

Pauli Matrices : σx = X , σy =−i A, σz = Z (4.10)

where between "i" and "A" there is the usual multiplication of a number with a matrix. Treat-

ing "i" like a minus sign leave all six properties of the alphabetic (re)presentation unchanged.

To reach C l(1,3) from C l(3,0) the second algorithm needs to be used:

C l(2,3) : e1 = AX , e2 =−i A A, e3 = AZ , e4 = X I , e5 = Z I (4.11)

These 5 matrices are the Dirac matrices, e4 is the fermion operator. There is a pos-

sibility to use e5 as a fermion operator instead; then the Clifford algebra C l(1,3) becomes a

Weyl Clifford algebra, meaning that every generator is represented by a block anti-diagonal

matrix.
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4.4 Cayley-Dickson doubling

The algorithm for the Cayley-Dickson doubling discussed in chapter 3 can be put

in alphabetic form. Here is the general matrix representation saw in 3.18, it is the same

definition of the references [[16],[17]]:

(x, y) ≡
(

x y

ϵy∗ x∗

)
(4.12)

The identity always remain the same. When x = 1 then x∗ = x, hence the identity ma-

trix won’t change signs. Forgetting about the epsilon for a moment, when x is an imaginary

vector, then x∗ =−x, one can see that the structure of the matrix Z appears here just as it did

in the Clifford doubling. When y = 1 then y∗ = y , that structure is from the matrix X . When

y is an imaginary then y∗ =−y , then the structure of the matrix A appear. One can see that

it is easy to put the doubling in an alphabetic form:

Consider a Cayley-Dickson algebraA, with dimension d/2 and an "i" number of vec-

tor elements "ei ". Using the doubling process to create a new algebra A2, with dimension

d . The matrix realization of the elements of the new algebra, "Eµ", can be found via the

following algorithms:

Division algebra:

E0 = I ⊗e0, Ei = Z ⊗ei , Ed/2 = A⊗e0 and Ei+d/2 = X ⊗ei with 1 ≤ i < d/2 (4.13)

Split-division algebra:

E0 = I ⊗e0, Ei = Z ⊗ei , Ed/2 = X ⊗e0 and Ei+d/2 = A⊗ei with 1 ≤ i < d/2 (4.14)

Considering that x and y are isomorphic to the matrices X and Y:

(x, y) ≡
(

X Y

ϵY∗ X∗

)
(4.15)

Matrices 4.13 and 4.14 obey the relations:

1st Multiplication:

(x, y)(z, w) ≡
(

X Y

ϵY∗ X∗

)(
Z W

ϵW∗ Z∗

)
+

(
ϵ[W∗,Y] [W,X]

ϵ[Z,Y∗] [Z∗,X∗]

)
(4.16)

2nd Conjugation:

(x, y)∗ ≡
(

X∗ −Y

−ϵY∗ X

)
(4.17)
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3r d Norm:

N (x, y) ≡ 1

d
Tr

[(
X∗ −Y

−ϵY∗ X

)(
X Y

ϵY∗ X∗

)
+

(
−ϵ[Y∗,Y] [Y,X∗]

−ϵ[X,Y∗] [X∗,X∗]

)]
(4.18)

therefore, the construction of the division and split-division algebras can be done easily:

Complex and split-complex numbers:

The complex numbers are generated via the reals, the element is only e0 = 1; there

are no vectors. Using 4.13 and 4.14 the matrices 3.6 and 3.7 appear:

Complex number: E0 = I , E1 = A Split-Complex number: E0 = I , E1 = X

Quaternions and split-quaternions:

Quaternions and split-quaternions are created from the complex numbers. Doing

the same procedure, one can create the 2x2 complex representation by setting e0 = 1 and

e1 = i or the 4x4 real representation by setting e0 = I and e1 = A:

Quaternions: E0 = I I , E1 = Z A, E2 = AI e E3 = X A

Split-Quaternions: Ẽ0 = I I , Ẽ1 = Z A, Ẽ2 = X I e Ẽ3 = A A

these matrices form a different representation for the quaternions and split-quaternions.

4.5 Octonions and Split-octonions

References for this section are [[2],[4]]. The octonions and split-octonions are cre-

ated from the quaternions, therefore there are three vectors. The one dimensional represen-

tation of the quaternions generates, using 4.13 and 4.14, a 2x2 quaternionic representation

isomorphic to the (split)octonionic algebra. The 2x2 complex representation in 3.10 for the

quaternions generates the 4x4 complex representation. However, the most interesting is to

use the 4x4 real representation, of the last section, to generate the 8x8 real representation

isomorphic to the (split)octonions:

Octonions: E0 = I I I , E1 = Z Z A, E2 = Z AI , E3 = Z X A, E4 = AI I , E5 = X Z A, E6 = X AI ,

E7 = X X A

Split-octonions: Ẽ0 = I I I , Ẽ1 = Z Z A, Ẽ2 = Z AI , Ẽ3 = Z X A, Ẽ4 = X I I , Ẽ5 = AZ A,

Ẽ6 = A AI , Ẽ7 = AX A

Check the appendix C for more information on these matrices. It is important to

show that these matrices are not the matrices that generates C l(0,7), below is the two groups

for comparison:
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C l(0,7): Octonions:

Z Z A

Z AI

Z X A

AI I

X I A

X AZ

X AX

Z Z A

Z AI

Z X A

AI I

X Z A

X AI

X X A

(4.19)

Important notes:

• One can check, using the fourth process explained in chapter 6 that, every matrix in

C l(0,7) anti-commutes, but it is not true for the octonionic ones, for example, Z Z A and

X AI commute.

• The octonionic matrices must anti-commute because the octonionic vectors anti -

commute. What is happening is that the octonionic matrices obey the multiplication

rule 4.16 with the correction term. Even both groups being very similar, the multipli-

cation is different for each.

• The fact that the octonions anti-commute, but regarding to a non-associative multipli-

cation separates them to the properties of Clifford algebras. In the literature it is called

the octonionic Clifford algebra.

• Another important property is that the multiplication of the C l(0,7) generators is not

closed, but with the octonionic ones it must be closed. Also, on C l(0,7), there is no com-

plex conjugation, but in the octonionic matrices, even though they are real matrices,

relation 4.17 allow us to define complex conjugation and transpose conjugation.

• The commutator of the C l(0,7) matrices generates the Lorentz group. For the octo-

nionic ones their commutator does not generate a Lie algebra, instead the coset

SO(p, q)/G2, where G2 is the 14 dimensional exceptional Lie group of automorphisms

of the octonions and p is the number of space-like generators, q is the number of

temporal-like generators.

To prove that the multiplication works here is an example, E1 ∗E7 = E6 according to

our convention, to continue notice that:

Z Z A = Z ⊗Z A =
(

Z A 0

0 −Z A

)
(4.20)

where zero is the 4x4 null matrix, so using the multiplication rule 4.16:

Z Z A×X X A =−A AI +
(

O [X A, Z A]

O O

)
with X A∗Z A = AI (4.21)
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Therefore:

Z Z A×X X A =
(

O −AI

AI O

)
+

(
O 2AI

O O

)
=

(
O AI

AI O

)
= X AI (4.22)

Exactly the right answer, now the opposite multiplication:

X X A×Z Z A =−A AI +
(

O O

−[Z A,−X A] O

)
(4.23)

where the conjugation of X A was done using 4.17, remember that X A represents the quater-

nionic vector e3.

Therefore:

X X A×Z Z A =
(

O −AI

AI O

)
+

(
O O

−2AI O

)
=

(
O −AI

−AI O

)
=−X AI (4.24)

Exactly the right answer, showing that in regard to the multiplication rule 4.16, the

matrices Z Z A and X X A anti-commute.

Sedenions:

The same process works for the sedenions and beyond, but it is important to know

that one must be careful when using the multiplication rule 4.16. On the sedenions case,

the correction matrix is going to feature commutation of the octonions instead of a normal

commutator, it is the commutator according to the octonionic multiplication. Instead of

using 4.16 one can just look at the structure constants of the octonions to help calculate.

4.6 Alphabetic (re)presentation of octonions

Why does the Alphabetic (re)presentation appears in all those algebras? The answer

is that it doesn’t have to appear. The matrices that can be written in alphabetic form are spe-

cial because they can be generated via tensor product of the fundamental matrices. How-

ever, this doesn’t happen all the time, actually, only if one works with a particular set of

structure constant conventions the alphabetic (re)presentation will appear for the Clifford

algebras C l(0,7) and C l(4,3) via right action 3.31.

The division algebras have an alphabetic (re)presentation because on the demon-

stration of the general matrix representation for the Cayley-Dickson algebras, it was used the

fundamental matrices that form the alphabet as a representation for the complex numbers,

split-complex numbers, quaternions and split-quaternions.

It is a choice to use the alphabetic (re)presentation because it helps a lot. Studying

properties of the octonionic M-algebra without a program is only possible in the alphabetic
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form. Therefore, it is a recommendation to adopt the structure constant convention that

produces the alphabetic represented matrices for Clifford algebras like we showed. However,

there 480 structure constant conventions for the octonions, which ones produces alphabetic

(re)presented matrices?

It is clear that the following convention that is being used generates alphabetic (re)-

presented matrices with right action:

C123 =C145 =C176 =C246 =C257 =C347 =C365 = 1 (4.25)

The alphabetic (re)presented matrices of C l(0,7) generated by it are given by:

Rep. 0:

Z Z A

Z AI

Z X A

AI I

X I A

X AZ

X AX

(4.26)

To answer that question one needs to see how the structure constant can be changed.

By changing the sign of the generators of the basis, different structure constants will appear

from 4.25. There is just one change of sign, two changes and so on.

Possible transformations:

1st : Just one:

(
7

1

)
= 7 2nd : Two transf. :

(
7

2

)
= 21

3r d : Three transf. :

(
7

3

)
= 35 4th : Four transf. :

(
7

4

)
= 35

1st Case

The seven possibilities break the alphabetic (re)presentation because the first col-

umn and line won’t change signs. Here is an example, let’s transform e4, e ′
4 = −e4 then 145

becomes 154, 246 becomes 264 and 347 becomes 374 in 4.25:
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ΓR
1 =



0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0


→ ΓR

1 =



0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0


One can see that the alphabetic (re)presentation is lost because the constant struc-

ture 123 and 176 does not change, but 145 changes to 154. This will happen in all 7 possibil-

ities.

2nd Case

Of the 21 possibilities, 7 are the possible transformations, each can be obtained by three

different ways. Surprisingly, all these 7 possibilities generates a representation that can be

alphabetically (re)presented. The parenthesis with two elements below represents the ele-

ments that is going to be transformed via sign inversion.

1st Rep.: (e2,e3) = (e4,e5) = (e3,e6) 2nd Rep.: (e1,e3) = (e4,e6) = (e5,e7)

3r d Rep.: (e1,e2) = (e4,e7) = (e5,e6) 4th Rep.: (e1,e5) = (e2,e6) = (e3,e7)

5th Rep.: (e1,e4) = (e2,e7) = (e3,e6) 6th Rep.: (e1,e7) = (e2,e4) = (e3,e5)

7th Rep.: (e1,e6) = (e2,e5) = (e3,e4)

Rep. 0 : C123 =C145 =C176 =C246 =C257 =C347 =C365 = 1 (4.27)

Rep. 1 : C123 =C145 =C176 =C264 =C275 =C374 =C356 = 1 (4.28)

Rep. 2 : C123 =C154 =C167 =C246 =C257 =C374 =C356 = 1 (4.29)

Rep. 3 : C123 =C154 =C167 =C264 =C275 =C347 =C365 = 1 (4.30)

Rep. 4 : C132 =C145 =C167 =C246 =C275 =C347 =C356 = 1 (4.31)

Rep. 5 : C132 =C145 =C167 =C264 =C257 =C374 =C365 = 1 (4.32)

Rep. 6 : C132 =C154 =C176 =C246 =C275 =C374 =C365 = 1 (4.33)

Rep. 7 : C132 =C154 =C176 =C264 =C257 =C347 =C356 = 1 (4.34)
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Rep. 0 Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Rep. 6 Rep. 7

Z Z A

Z AI

Z X A

AI I

X I A

X AZ

X AX

Z Z A

I AI

I X A

AZ I

X Z A

AX Z

AX X

I Z A

Z AI

I X A

AI Z

AI X

X AI

A A A

I Z A

I AI

Z X A

AZ Z

AZ X

AX I

X X A

Z I A

Z AZ

Z AX

AI I

X Z A

X AI

X X A

Z I A

I AZ

I AX

AZ I

X I A

AX I

A A A

I I A

Z AZ

I AX

AI Z

AZ X

X AZ

AX X

I I A

I AZ

Z AX

AZ Z

AI X

AX Z

X AX

A property that holds here is that every convention differs from the others in 4 con-

stants from the structure constant.

3r d Case

There are 7 transformations that totally invert the convention 4.27, which are given by the

structure constants:

Inverse convention:

(e1,e3,e2) = (e1,e5,e4) = (e1,e6,e7) = (e2,e6,e4) = (e2,e7,e5) = (e3,e7,e4) = (e3,e5,e6)

C132 =C154 =C167 =C264 =C275 =C374 =C356 = 1 (4.35)

This convention has an alphabetic (re)presentation, but with left action, not right

action.

All the other 28 possibilities will break the alphabetic (re)presentation because it will

be like the first case. For example, let’s invert 247:

By inverting 2 and 4 one gets Rep. 6. However, if one inverts 2 and 7 one gets Rep. 5. In

both cases, when the last transformation is made, it will break the alphabetic (re)presentation

in the same way that was showed in case one.

4th Case

If one gets the 7 seven transformations that inverts convention 4.27 and apply one

more transformation, there are 7∗ 4 = 28 ways to do it; all will end up in one of the seven

other conventions that are alphabetically written.

The other 7 possibilities are transformations that do not alter the convention, each

possibility is given by the structure constant with 4 indices:

Convention 0: 6Ci j kl = εi j kl mnpCmnp where ε1234567 = 1

therefore: C4576 =C2376 =C2345 =C1375 =C1364 =C1265 =C1247 = 1
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therefore (e4,e5,e7,e6), (e2,e3,e7,e6), (e2,e3,e4,e5), (e1,e3,e6,e4), (e1,e2,e6,e5), (e1,e2,e4,e7)

bring Rep. 0 to itself.

Beyond four transformations is redundant to do because it comes back to the other

cases. The conclusion is that, there are 8, among 480 different structure constant conven-

tions for the octonions, that generates a representation of Clifford algebra C l(0,7) via right

action that can be alphabetically written. Curiously the same number of the dimension of

the octonions and its matrix representation.

4.7 Octonionic M-algebra

E. Witten proposed in 1995 a framework to unify all consistent versions of superstring

theory and supergravity in 11 dimensions, it is called today the M-theory. The dimension

of the space-time is 11 and the spinors are real majorana spinors, that is why the Clifford

algebra is the normal C l(10,1) Clifford algebra.

The octonionic M-algebra is generated from two Clifford doublings of the octonions,

see appendix D for their representation and also references [[71],[72],[73],[15]]. This means

that there are two multiplications to account for, the usual matrix multiplication from the

Clifford doubling and the octonionic multiplication from the vectors inside the matrices.

This is possible by the fact that the octonions form the octonionic Clifford algebra in terms

of the definition with relation 2.1, the notation will be C l0(0,7). To create the Clifford algebra

used in M-theory, C l0(10,1), one needs to use both algorithms of section 4.3, first the second

algorithm 4.8 to create C l0(9,0):

C l0(9,0):

AZ Z A, AZ AI , AZ X A,

A AI I , AX Z A, AX AI ,

AX X A, X I I I , Z I I I

(4.36)

The first letter for each word multiplies according to the usual matrix multiplication

using the table in chapter 4, the last three letters represents the octonions and must multiply

using 4.16:

AZ Z A∗ AX X A =−I X AI (4.37)

C l0(10,1) is generated by using the first algorithm 4.7 on C l0(9,0):

C l0(10,1) : X AZ Z A, X AZ AI , X AZ X A, X A AI I , X AX Z A,

X AX AI , X AX X A, X X I I I , X Z I I I , AI I I I , Z I I I I
(4.38)

Now the two first letters of each word multiply with the usual matrix multiplication,

the last three represents the octonions hence multiplies with rule 4.16. To certify that this
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32x32 real representation of the octonionic M-algebra is indeed correct, a definition of the Â,

B and C matrices according to Kugo-Townsend [78] must be possible, another good reference

is by F. Toppan and M.A. de Andrade [79]. The definition of a conjugation 4.17 allows us to

properly define these matrices, let’s compare the octonionic M-algebra with C l(10,1):

C l(10,1): C l0(10,1):

X AZ Z A

X AZ AI

X AZ X A

X A AI I

X AX I A

X AX AZ

X AX AX

X X I I I

X Z I I I

AI I I I

Z I I I I

X AZ Z A

X AZ AI

X AZ X A

X A AI I

X AX Z A

X AX AI

X AX X A

X X I I I

X Z I I I

AI I I I

Z I I I I

(4.39)

They are very similar but extremely different in its properties. The matrices from

the octonionic M-algebra only anti-commutes with the multiplication being the mix of the

matrix and the octonionic one. On the Clifford algebra the multiplication is:

X AZ Z A∗X AX AZ = I I AX X

however the octonionic multiplication is:

X AZ Z A∗X AX AI = I I X X A

Let’s calculate the Kugo-Townsend matrices Â, B and C, here the matrix Â has a cir-

cumflex to differentiate it from the alphabetic represented anti-symmetric matrix A. The def-

initions of the Kugo-Townsend matrices are the following:

Ât = Γp+1Γp+2...Γq , Âsp = Γ1,Γ2...Γp , Cs =
∏

i
Γs

i , Ca =∏
j
Γa

j , B T =C Â−1 (4.40)

where "t" is temporal, "sp" is spacial, "s" is symmetric and "a" is anti-symmetric. Of all

possible combinations to create B , there will be just two different B ′s, where the following

relation holds:

B T = ϵB and B∗B = 1ϵ (4.41)

For basis of even dimension the definitions will generate different matrices, on the

other hand, for basis of odd dimension the matrices will merge leaving just one of each, the

matrices Â, B and C.
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Matrix Â is easy to calculate because the base is odd dimension, meaning that one

can choose the multiplication of time-like elements, which in this case is just one:

Â = AIe0 = AI I I I (4.42)

The matrix C can be the multiplication of the symmetric elements. The order of the

multiplication will be changed to give a positive sign because it is irrelevant:

X Z e0 ∗X X e0 = I Ae0 → I Ae0 ∗Z Ie0 = Z Ae0

Therefore:

C = Z Ae0 = Z AI I I (4.43)

Using the definition of B gives us:

B = Z Ae0 ∗ Ai e0 = X Ae0 = X AI I I (4.44)

Let’s apply these matrices in a linearity transformation and see the results:

AIe0 ∗X Aei ∗ (−AIe0) =−X Aei

AIe0 ∗X X e0 ∗ (−AIe0) =−X X e0

AIe0 ∗ AIe0 ∗ (−AIe0) = AIe0

Z Ae0 ∗X Aei ∗ (−Z Ae0) =−X Aei

Z Ae0 ∗X X e0 ∗ (−Z Ae0) = X X e0

Z Ae0 ∗ AIe0 ∗ (−Z Ae0) =−AIe0

X Ae0 ∗X Aei ∗ (−X Ae0) = X Aei

X Ae0 ∗X X e0 ∗ (−X Ae0) =−X X e0

X Ae0 ∗ AIe0 ∗ (−X Ae0) =−AIe0

Synthesizing the results:

ÂΓµ Â−1 =−Γ†
µ, CΓµC−1 = ΓT

µ , BΓµB−1 =−Γ∗µ (4.45)

Because of the definition of a conjugation, matrix Â related to transpose conjugate, C

related with transpose and B related with complex conjugate can be properly defined for ev-

ery representation of the octonionic M-algebra. This is incredible because, without the def-

initions 4.16-4.18, it wouldn’t be possible to define the Kugo-Townsend matrices, this shows
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that there are 32x32 real spinors related with this representation. With these matrices one

can define the following spinors for C l0(10,1):

Conjugate spinor: Defined as:

Ψ̄=Ψ† Â (4.46)

Charge conjugate spinor: Defined as:

Ψc = B †Ψ∗ (4.47)



Chapter 5

Graded structures

5.1 Graded Lie (super)algebras

Generalized Lie (super)algebras were introduced in the late 70’s, here it will be used

the definitions according to Rittenberg-Wyler and Scheunert [18], [19] and [20]. A grading is

a separation of a vector space in two, four and so on vector spaces with defined properties.

If one grades a particular algebra, but one of the following properties does not hold, it is not

a graded Lie algebra.

Let’s consider a vector space G over R or C and α⃗ an n-dimensional vector, called

grading vector, that is also over the R or C, if G is given by:

G =⊕
α⃗

Gα⃗ (5.1)

where Gα⃗ are the graded subspaces, then one can define the generalized product between

operators of this vector space:

(Aα⃗,B
β⃗

) = AB − (−1)(α⃗,β⃗)B A (5.2)

where A,B ∈G , α⃗= deg (A) and β⃗= deg (B) are the grading of the operators and deg ((Aα⃗,B
β⃗

))

= α⃗+ β⃗. (α⃗, β⃗) is the bilinear mapping between the grading vectors. Introducing another op-

erator C , with grading vector γ⃗, the generalization of the Jacobi identity is given by:

(−1)(γ,α)(A, (B ,C ))+ (−1)(α,β)(B , (C , A))+ (−1)(β,γ)(C , (A,B)) = 0 (5.3)

The parenthesis represents a possible commutation or anti-commutation, depend-

ing on the bilinear mapping between the grading vectors. This means that, conditions must

be defined on the bilinear mapping, they are called the Leibniz rules and come from 5.2 and

the fact that the graded vector space is associative, see reference [80].

34
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Leibniz Rules:

(α,β)+ (β,α) = 2r (5.4)

(α,β+γ) = (α,β)+ (α,γ)+2s (5.5)

(α+γ,β) = (α,β)+ (γ,β)+2s (5.6)

where r and s are arbitrary integers. If the product of the grading vectors, also called the

mapping, is symmetric (α,β) = (β,α), then the space is called quadratic; if the mapping is

anti-symmetric (α,β) = −(β,α), then the space is called symplectic. The grading vectors

values will always be 0 or 1. The sum of the elements of grading vectors will be taken modulo

2, this gives graded algebras a relation with binary language and logic portals, more on this

later. Let’s see then the most generalZn
2 graded structures, they don’t need to obey the graded

Jacobi identity 5.3, when it does, it is called a graded Lie structure.

Z2 graded (super)algebras

A Z2 graded (super)algebra is a graded space that is a sum of two subspaces, one is

the bosonic and the other fermionic grading subspaces:

G =G0 ⊕G1 (5.7)

The even grading "0" is the bosonic one and the odd "1" is the fermionic one. The

Leibniz rules defines the mappings of the grading vectors, in this case there are only two

mappings that obeys them:

1 : (α,β) = 0 (5.8)

2 : (α,β) =αβ (5.9)

The first is the null mapping and it gives the Lie algebras, the second gives the Z2

graded superalgebra. The table of brackets (A,B) is very important in graded algebras, here

is for the two cases above:

A/B 0 1
0 [,] [,]
1 [,] [,]

Table 5.1: Lie algebra

A/B 0 1
0 [,] [,]
1 [,] {,}

Table 5.2: Z2 graded superalgebra

When a anti-commutation appears in the diagonal of the brackets table, then the

algebra is called a graded superalgebra, if there is not a anti-commutator in the diagonal,

then it is called a graded algebra. It will be very useful to put this table of brackets in one’s

and zero’s instead of anti-commutators and commutators, this will help classify all graded

algebras in next sections. Below are the same tables above:
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A/B 0 1
0 0 0
1 0 0

Table 5.3: Lie algebra

A/B 0 1
0 0 0
1 0 1

Table 5.4: Z2 graded superalgebra

The operators of the grading vectors must multiply with the following rules:

• The multiplication of operators from the bosonic sector 0 must give an operator from

the same grading 0.

• The multiplication of operators from the fermionic grading 1 must give an operator of

the bosonic sector 0.

If a Z2 graded superalgebra does not multiply obeying the above rules, then it is not

a graded Lie superalgebra. On the next section it will be discussed about the classification of

the Zn
2 graded algebras.

Z2
2 graded (super)algebras

A Z2
2 graded (super)algebra is a graded space that is a sum of four subspaces:

G =G00 ⊕G10 ⊕G01 ⊕G11 (5.10)

The even grading 00 is the bosonic one, the others depends on the graded algebra.

Doing the same from the Z2 case, the Leibniz rules, applied to the table of brackets, gives us

four mappings. The grading vectors are now two dimensional:

1 : (α,β) = 0 (5.11)

2 : (α,β) =α2β2 (5.12)

3 : (α,β) =α1β1 +α2β2 (5.13)

4 : (α,β) =α1β2 −α2β1 (5.14)

The first is the null mapping and it gives the Lie algebras. The second could have

also been α1β1 and gives the Z2
2 graded superalgebra. The third gives the Z2

2 graded color

superalgebra and the fourth gives the Z2
2 graded color algebra. The table of brackets are:
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A/B 00 10 01 11
00 0 0 0 0
10 0 0 0 0
01 0 0 0 0
11 0 0 0 0

Table 5.5: Mapping 5.11

A/B 00 10 01 11
00 0 0 0 0
10 0 0 0 0
01 0 0 1 1
11 0 0 1 1

Table 5.6: Mapping 5.12

A/B 00 10 01 11
00 0 0 0 0
10 0 1 0 1
01 0 0 1 1
11 0 1 1 0

Table 5.7: Mapping 5.13

A/B 00 10 01 11
00 0 0 0 0
10 0 0 1 1
01 0 1 0 1
11 0 1 1 0

Table 5.8: Mapping 5.14

There is another rule that is added here and remains to the rest of the Zn
2 graded

algebras:

• The multiplication of operators from a grading sector with operators from a different

grading, both not being in the bosonic grading, must give an operator from a grading

which is not the three gradings mentioned before.

Hence, for example, the multiplication of a operator from grading 10 with one from

01 will give a operator from 11. Because of the definition 5.2, on the fourth case, the grading

sectors 10, 01 and 11 are on equal footing, their grading assignment can be permuted under

the S3 group of permutations without changing the anti-commutators. On the second and

third cases, the grading sectors 01, 11 and 10, 01, respectively, can be permuted under the S2

group of permutations.

Another important property is that a Zn
2 graded (super)algebra must have as subal-

gebras a corresponding Zn−1
2 until a Z2.

Z3
2 graded (super)algebras

A Z3
2 graded (super)algebra is a graded space that is a sum of eight subspaces:

G =G000 ⊕G001 ⊕G011 ⊕G010 ⊕G100 ⊕G101 ⊕G111 ⊕G110 (5.15)

The demonstration that there are only 5 mappings, using the Leibniz rules on the

brackets table, is going to be published in the future along with other ideas by F. Toppan, I.

P. de Freitas, M. M. Balbino and R. G. Rana. The table of brackets are bigger now, hence the

first case is trivial and will be omitted:
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1 : (α,β) = 0 (5.16)

2 : (α,β) =α1β1 (5.17)

3 : (α,β) =α1β1 +α2β2 (5.18)

4 : (α,β) =α1β2 −α2β1 (5.19)

5 : (α,β) =α1β1 +α2β2 +α3β3 (5.20)

A/B 000 001 011 010 100 101 111 110
000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
011 0 0 0 0 0 0 0 0
010 0 0 0 0 0 0 0 0
100 0 0 0 0 1 1 1 1
101 0 0 0 0 1 1 1 1
111 0 0 0 0 1 1 1 1
110 0 0 0 0 1 1 1 1

Table 5.9: Mapping 5.17

A/B 000 001 011 010 100 101 111 110
000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
011 0 0 1 1 0 0 1 1
010 0 0 1 1 0 0 1 1
100 0 0 0 0 1 1 1 1
101 0 0 0 0 1 1 1 1
111 0 0 1 1 1 1 0 0
110 0 0 1 1 1 1 0 0

Table 5.10: Mapping 5.18

A/B 000 001 011 010 100 101 111 110
000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
011 0 0 0 0 1 1 1 1
010 0 0 0 0 1 1 1 1
100 0 0 1 1 0 0 1 1
101 0 0 1 1 0 0 1 1
111 0 0 1 1 1 1 0 0
110 0 0 1 1 1 1 0 0

Table 5.11: Mapping 5.19
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A/B 000 001 011 010 100 101 111 110
000 0 0 0 0 0 0 0 0
001 0 1 1 0 0 1 1 0
011 0 1 0 1 0 1 0 1
010 0 0 1 1 0 0 1 1
100 0 0 0 0 1 1 1 1
101 0 1 1 0 1 0 0 1
111 0 1 0 1 1 0 1 0
110 0 0 1 1 1 1 0 0

Table 5.12: Mapping 5.20

With the increase of n in Zn
2 it becomes harder to analyze, to help differentiate non-

equivalent tables of brackets easily, let’s define the following variables:

N = (Number of lines with all elements zero) (5.21)

D1 = (Number of "1’s" on the diagonal) (5.22)

T 1 = (Total number of "1’s") (5.23)

where D1 can be only equal to zero or 2n−1 because of the property that it must contain as

subalgebras smaller graded algebras and:

T 1 = (2n −N )∗2n−1 (5.24)

Here are the cases up to Z4
2:

Z2- Graded

Mappings:

1 : (α,β) = 0 e 2 : (α,β) =αβ (5.25)

Properties:

1: N=2, D1=0 e T1=0

2: N=1, D1=1 e T1=1

Z2
2- Graded

Mappings:

1 : (α,β) = 0 2 : (α,β) =αβ 3 : (α,β) =α1β1 +α2β2 4 : (α,β) =α1β2 −α2β1 (5.26)

Properties:

1: N=4, D1=0 e T1=0



CHAPTER 5. GRADED STRUCTURES 40

2: N=2, D1=2 e T1=4

3: N=1, D1=2 e T1=6

4: N=1, D1=0 e T1=6

Z3
2- Graded

Mappings:

1 : (α,β) = 0 2 : (α,β) =αβ 3 : (α,β) =α1β1 +α2β2 4 : (α,β) =α1β2 −α2β1

5 : (α,β) =α1β1 +α2β2 +α3β3

(5.27)

Properties:

1: N=8, D1=0 e T1=0

2: N=4, D1=4 e T1=16

3: N=2, D1=4 e T1=24

4: N=2, D1=0 e T1=24

5: N=1, D1=4 e T1=28

Z4
2- Graded

Mappings:

1 : (α,β) = 0 2 : (α,β) =αβ 3 : (α,β) =α1β1 +α2β2 4 : (α,β) =α1β2 −α2β1

5 : (α,β) =α1β1 +α2β2 +α3β3 6 : (α,β) =α1β2 −α2β1 +α3β4 −α4β3

7 : (α,β) =α1β1 +α2β2 +α3β3 +α4β4

(5.28)

Properties:

1: N=16, D1=0 e T1=0

2: N=8, D1=8 e T1=64

3: N=4, D1=8 e T1=96

4: N=4, D1=0 e T1=96

5: N=2, D1=8 e T1=112

6: N=1, D1=0 e T1=120

7: N=1, D1=8 e T1=120

XOR/AND logic portals

Zn
2 graded algebras has a direct relation with logic portals, this was indicated and

studied by R. G. Rana. For example, the second table of brackets in the Z2 case is related to
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the logic portal AND:

α β (α,β)
0 0 0
0 1 0
1 0 0
1 1 1

Table 5.13: Mapping 5.9

Therefore, α and β are the entries on the portal AND and the output is (α,β). In the

Z2
2 case, there are two logic portals AND from which the outputs goes into a logic portal XOR,

the output of that is the mapping. In the color superalgebra case the entries of the portals

AND are from the same number, α1 and β1 for example, in the color algebra case the entries

are with different number, therefore α1 and β2.

This direct relation really helps to check if a table of brackets produces a valid map-

ping in terms of the Leibniz rules; there are sites in the internet that gives the Karnaugh

map, like for example, "http://www.32x8.com/index.html". Hence, one can put the table of

brackets and it will generate the combination of logic portals for that multiplication. With a

program, like mathematica, the result can be translated in terms of the mapping language

and then the particular mapping, that generates that table of brackets, is found. this is very

useful to help study graded algebras, more on this later.

5.2 Matrix representation

On the appendix of [36], F. Toppan and Z. Kuznetsova describe how to create the

matrix representation of the Z2 and Z2
2 graded (super)algebras; on the appendix of [65] they

use the alphabetic (re)presentation to create the matrix representation for Z2
2. Therefore,

here it will be put only the main results.

The creation of a matrix representation for graded (super)algebras comes from the

realization that a matrix can be seen as it is made of sectors, see [81]. In a 2x2 matrix it is

simple, one can check that the multiplication between diagonal and anti-diagonal matrices

are exactly the multiplication rules of the Z2 graded (super)algebras.

For Zn
2 graded (super)algebras there are not just one possible way to grade a ma-

trix. Each possibility will work, but the (super)algebra changes depending on the choice,

see [[81],[57]]. A complete study on the possible gradings for Zn
2 and their effect on the (su-

per)algebras is still not done. The general matrix representation forZ2 graded (super)algebras

is given by.

M0 =
(

d1 0

0 d2

)
, M1 =

(
0 a1

a2 0

)
(5.29)
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where di and ai belongs to the R or C. On the next section, it will be discussed about how to

find the values of di and ai depending on the superalgebra.

The convention that will be used in this thesis of the grading of 4x4 matrices is the

following.

M00 =


m1 0 0 0

0 m2 0 0

0 0 m3 0

0 0 0 m4

 , M11 =


0 m5 0 0

m6 0 0 0

0 0 0 m7

0 0 m8 0

 ,

M10 =


0 0 m9 0

0 0 0 m10

m11 0 0 0

0 m12 0 0

 , M01 =


0 0 0 m13

0 0 m14 0

0 m15 0 0

m16 0 0 0

 (5.30)

Here the matrix representation is created thinking of the graded (super)algebras 5.13

and 5.14 because for the color superalgebra case, the sector 11 represents the exotic bosons.

Therefore, the matrix representation is chosen to be block diagonal. See reference [57] for

other possible gradings. For the algebra case it doesn’t matter, but if we are studying the

superalgebra case 5.12, then the sector 11 is now fermionic, this means that the matrix rep-

resentation for it will be the same from the above with the change between sectors 11 and

10.

To create a matrix representation for the Z3
2 case one can just look at the octonionic

matrices in the appendix B.3 and change the 1’s with mi . In this case there are 64 variables

to solve, but as it will be mentioned later, there are more equations than variables in most of

the cases.

Grading of Clifford algebras

There are nuances that one must not forget when studying graded (super)algebras.

The matrix representation not only can change, but there are also different conventions on

what is a graded (super)algebra, see [[64],[82]]. In [64], the authors use that the grading of a

Clifford algebra is made by, the even sector being the field R and the odd sector are given by

all the generators of the Clifford algebra.

Let’s use the example given in [64]. The Clifford algebras C l(1,1) ≃C l(2,0):

C l(1,1) : e0 =
(

1 0

0 1

)
, e1 =

(
0 1

1 0

)
, e2 =

(
0 1

−1 0

)
, e12 =

(
1 0

0 −1

)
(5.31)

C l(2,0) : e0 =
(

1 0

0 1

)
, e1 =

(
1 0

0 −1

)
, e2 =

(
0 1

1 0

)
, e12 =

(
0 1

−1 0

)
(5.32)
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According to the convention of reference [64], the Clifford algebra C l(1,1) has a Z2

grading, but C l(2,0) doesn’t because of the diagonal matrix in the generators. The grading

is represented by C l0 : e0,e12 and C l1 : e1,e2. Therefore, e1 in the Clifford algebra C l(2,0) is

represented by the matrix Z , which is diagonal and cannot be put in C l1 in this convention.

In [82] it is analyzed all possible choices of the grading of a Clifford algebra. They also

showed that, if one use the grading of a Clifford algebra that is defined by the mxm matrices

as generators, as showed in chapter 2, like in 5.29 and 5.30, then it does not preserve the

multivector structure of the Grassmann algebra. This is not a problem but one needs to

know that this is the case.

Therefore, according to [82], the Clifford algebra C l(2,0) in the minimal matrix rep-

resentation above can be graded. Using the arbitrary grading, C l0 : e0,e1 and C l1 : e2e12.

This is the convention that will be used further in the super division algebras. The Clifford

algebras C l(1,1) and C l(2,0) are isomorphic to the split-quaternions. A Z2 grading of the split-

quaternions will be G0 : e0,e1 and G1 : e2,e3. Although a Z2 grading is possible for the matrix

representation of the Clifford algebras above; a Z2 ⊗Z2 grading is not possible for both be-

cause the minimal representation does not have four grading sectors. Hence, the 4x4 repre-

sentation must be used.

5.3 Classification

To classify all possible graded (super)algebras, the multiplication between the op-

erators must be used; the algebra must obey the fundamental properties discussed in the

introduction. Let’s use the convention that, a operator from the bosonic grading is repre-

sented by the letter H , operators from the fermionic gradings will be represented by Qi and

from the bosonic ones by Z j , following reference [36]. Hence for theZ2 graded superalgebra,

the most general algebra is given by:

[H ,Q] = rQ, {Q,Q} = 2sH (5.33)

where r and s are integers that are constrained by the Jacobi identity, using it gives us the

condition:

r s = 0 (5.34)

This condition generates 3 superalgebras:

SZ2
1 : [H ,Q] = {Q,Q} = 0 (5.35)

SZ2
2 : [H ,Q] = 0, {Q,Q} = 2H (5.36)

SZ2
3 : [H ,Q] =Q, {Q,Q} = 0 (5.37)

The first is called theZ2 graded "abelian" superalgebra and enters the simplest exam-

ple of superspace, see [83]. The second is called the N = 1 one-dimensional supersymmetry
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algebra, it is the simplest superalgebra related to the one dimensional supersymmetry quan-

tum mechanics, see [84]. The last one is called the Z2 graded Lie superalgebra with a Grass-

mann generator and relates to the topological quantum mechanics, see [85]. Their matrix

representation is given by:

SZ2
1 : H =

(
λ 0

0 λ

)
, Q =

(
0 p

0 0

)
(5.38)

SZ2
2 : H =

(
λ 0

0 λ

)
, Q =

(
0 p
λ
p 0

)
(5.39)

SZ2
3 : H =

(
λ 0

0 λ−1

)
, Q =

(
0 p

0 0

)
(5.40)

The Z2
2 case is completely done for the color graded (super)algebras on paper [36].

Hence, it will be presented the beginning of the classification of the Z3
2 case for the mapping

5.20. The table of brackets for this mapping is:

A/B H Q1 Z1 Q2 Q3 Z2 Q4 Z3

H 0 0 0 0 0 0 0 0
Q1 0 1 1 0 0 1 1 0
Z1 0 1 0 1 0 1 0 1
Q2 0 0 1 1 0 0 1 1
Q3 0 0 0 0 1 1 1 1
Z2 0 1 1 0 1 0 0 1
Q4 0 1 0 1 1 0 1 0
Z3 0 0 1 1 1 1 0 0

Table 5.14: Z3
2 graded superalgebra 5.20

The most general superalgebra that obeys the multiplication relations for this map-

ping is given by:

[H ,Qi ] = ai Qi , [H , Zi ] = bi Zi , {Qi ,Qi } =αi H

[Q1,Q2] = c Z1, [Q1,Q3] = d Z2, [Q3,Q2] = e Z3,

{Qi ,Q j } =βi |ε j k |Zk , j k =

∣∣∣∣∣∣∣∣
43 se i = 1

42 se i = 2

41 se i = 3

∣∣∣∣∣∣∣∣
{Zi ,Q j } = γi |ε j k |Qk , j k =

∣∣∣∣∣∣∣∣
12 se i = 1

13 se i = 2

23 se i = 3

∣∣∣∣∣∣∣∣
{Zi ,Q j } = γ̄i |ε j k |Qk , j k =

∣∣∣∣∣∣∣∣
21 se i = 1

31 se i = 2

32 se i = 3

∣∣∣∣∣∣∣∣ (5.41)
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[Zi ,Q j ] = θi |ε j k |Qk , j k =
∣∣∣∣∣ 24 se i = 2

14 se i = 3

∣∣∣∣∣
[Zi ,Q j ] = θ̄i |ε j k |Qk , j k =

∣∣∣∣∣ 42 se i = 2

41 se i = 3

∣∣∣∣∣
[Q3, Z1] = θ1Q4, [Q4, Z1] = θ̄1Q3

{Zi , Z j } =σi |ε j k |Zk , j k =

∣∣∣∣∣∣∣∣
23 se i = 1

31 se i = 2

12 se i = 3

∣∣∣∣∣∣∣∣
the sum over k is understood and ε j k is normalized to 1.

There are approximately one hundred constraints given by the Jacobi graded identity.

Therefore, to do a complete classification, one needs to use all these constraints, plus the

fact that the four fermionic sectors are interchangeable and the three bosonic ones are also

interchangeable. It is a lot of calculation to do, to find every matrix representation of all

those superalgebras is even worse. However, there is a way to find a superalgebra that obeys

all the constraints and solve it. Here it begins the discussion of the relation between graded

algebras and Cayley-Dickson and Clifford algebras.

In the Z3
2 case, the graded (super)algebras has at least 8 operators, one from each

sector, for now that’s the only case that will be considered. The Cayley-Dickson algebras

that has 8 vectors are the bi-quaternions, the tri-complex(C⊗C⊗C), the octonions, etc. The

octonions and split-octonions are nonassociative, hence, they won’t be of use here, but the

bi-quaternions and the tri-complex will be.

The N = 1 one-dimensional supersymmetry algebra 5.36 has the complex and split-

complex numbers as subcases. If one setλ=−1 and p = 1 and make the transformation H ′ =
−H it will give the complex numbers matrix representation. This show us that the Cayley-

Dickson algebras can also be graded, more on that on the next section. The tri-complex is

given byC⊗C⊗C, if one makes the tensor product of that superalgebra with itself, SZ2
2 ⊗SZ2

2 ⊗
SZ2

2 , the resulting superalgebra will englobe the tri-complex:

H =



µλχ 0 0 0 0 0 0 0

0 µλχ 0 0 0 0 0 0

0 0 µλχ 0 0 0 0 0

0 0 0 µλχ 0 0 0 0

0 0 0 0 µλχ 0 0 0

0 0 0 0 0 µλχ 0 0

0 0 0 0 0 0 µλχ 0

0 0 0 0 0 0 0 µλχ
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Z1 =



0 qλχ 0 0 0 0 0 0
µλχ

q 0 0 0 0 0 0 0

0 0 0 qλχ 0 0 0 0

0 0 µλχ
q 0 0 0 0 0

0 0 0 0 0 qλχ 0 0

0 0 0 0 µλχ
q 0 0 0

0 0 0 0 0 0 0 qλχ

0 0 0 0 0 0 µλχ
q 0



Z2 =



0 0 pµχ 0 0 0 0 0

0 0 0 pµχ 0 0 0 0
µλχ

p 0 0 0 0 0 0 0

0 µλχ
p 0 0 0 0 0 0

0 0 0 0 0 0 pµχ 0

0 0 0 0 0 0 0 pµχ

0 0 0 0 µλχ
p 0 0 0

0 0 0 0 0 µλχ
p 0 0



Z3 =



0 0 0 pqχ 0 0 0 0

0 0 pµχ
q 0 0 0 0 0

0 qλχ
p 0 0 0 0 0 0

µλχ
pq 0 0 0 0 0 0 0

0 0 0 0 0 0 0 pqχ

0 0 0 0 0 0 pµχ
q 0

0 0 0 0 0 qλχ
p 0 0

0 0 0 0 µλχ
pq 0 0 0



Q1 =



0 0 0 0 rµλ 0 0 0

0 0 0 0 0 rµλ 0 0

0 0 0 0 0 0 rµλ 0

0 0 0 0 0 0 0 rµλ
µλχ

r 0 0 0 0 0 0 0

0 µλχ
r 0 0 0 0 0 0

0 0 µλχ
r 0 0 0 0 0

0 0 0 µλχ
r 0 0 0 0
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Q2 =



0 0 0 0 0 qrλ 0 0

0 0 0 0 rµλ
q 0 0 0

0 0 0 0 0 0 0 qrλ

0 0 0 0 0 0 rµλ
q 0

0 qλχ
r 0 0 0 0 0 0

µλχ
qr 0 0 0 0 0 0 0

0 0 0 qλχ
r 0 0 0 0

0 0 µλχ
qr 0 0 0 0 0



Q3 =



0 0 0 0 0 0 prµ 0

0 0 0 0 0 0 0 prµ

0 0 0 0 rµλ
p 0 0 0

0 0 0 0 0 rµλ
p 0 0

0 0 pµχ
r 0 0 0 0 0

0 0 0 pµχ
r 0 0 0 0

µλχ
pr 0 0 0 0 0 0 0

0 µλχ
pr 0 0 0 0 0 0



Q4 =



0 0 0 0 0 0 0 pqr

0 0 0 0 0 0 prµ
q 0

0 0 0 0 0 qrλ
p 0 0

0 0 0 0 rµλ
pq 0 0 0

0 0 0 pqχ
r 0 0 0 0

0 0 pµχ
qr 0 0 0 0 0

0 qλχ
pr 0 0 0 0 0 0

µλχ
pqr 0 0 0 0 0 0 0


(5.42)

where each matrix representation for the tensor product has a different letter for the matrices

values, to make the most general representation, this superalgebra is given by:

[H ,Qi ] = 0, [H , Zi ] = 0, {Q1,Q1} = 2µλH , {Q2,Q2} = 2λH

{Q3,Q3} = 2µH , {Q4,Q4} = 2H , [Q1,Q2] = 0, [Q1,Q3] = 0

[Q3,Q2] = 0, {Q1,Q4} = 2µλZ3, {Q2,Q4} = 2λZ2, {Q3,Q4} = 2µZ1

{Z1,Q1} = 2µλχQ2, {Z2,Q1} = 2µλχQ3, {Z3,Q2} = 2λχQ3

{Z1,Q2} = 2λχQ1, {Z2,Q3} = 2µχQ1, {Z3,Q3} = 2µχQ2 (5.43)

[Q3, Z1] = 0, [Z2,Q2] = 0, [Z3,Q1] = 0

[Q4, Z1] = 0, [Z2,Q4] = 0, [Z3,Q4] = 0

{Z1, Z2} = 2µλχZ3, {Z3, Z1} = 2λχZ2, {Z2, Z3} = 2µχZ1
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Using the graded Jacobi identity confirms that this is indeed a Lie superalgebra. This

superalgebra paves the way to an even more general superalgebra representation; by looking

at 5.43, one can see the correct signs that obeys the graded Jacobi identities. Hence in this

case:

α1 = 1, α2 = 1, α3 = 1, α4 = 1, β1 = 1, β2 = 1, β3 = 1, γ1 = 1

γ2 = 1, γ3 = 1, γ̄1 = 1, γ̄2 = 1, γ̄3 = 1, σ1 = 1, σ2 = 1, σ3 = 1 (5.44)

or other combination depending on the values of the constants. With these constants one

can start with the superalgebra, use the general matrix representation with the mi as values

and find the matrix representation of it, just like in the paper of F. Toppan and Z. Kuznetsova.

In the bi-quaternions case, use 5.39 and the matrix representation of the color superalgebra

named S10ε in [36], that englobes the quaternions and split-quaternions.

However, there is an even more simple way. The matrix representation of the tri-

complex, bi-quaternions, etc, can be used to discover the superalgebras related with them,

only using matrices with one’s and zero’s. In [36], it is mentioned that the quaternions and

split-quaternions obey the color graded algebra A7 and color graded superalgebra S10ε.

They are also a especial case of one of the superalgebras from the second mapping 5.12,

that was not done in the paper [36]. This will happen for Z3
2 too. Hence, the bi-quaternions

and tri-complex, for example, will produce correct (super)algebras.

With a particular superalgebra one can study physics with it. See the references that

were mentioned in the introduction [[34]-[40],[43]-[54],[57]] for how to use them.

5.4 Super division algebras

On the last section, it was showed that a Cayley-Dickson algebra can be graded, they

are subcases of particular graded algebras. In this section, it will be introduced the super di-

vision algebras, which has the same properties of all graded algebras, however, the operators

that compose each sector must form a division algebra. In other way, the sum between op-

erators from the same grading sector must be invertible. The split algebras are not a division

algebra because when one sum the elements (ei ,0) with the elements (0,ei ), the resulting

matrix is singular and does not have an inverse. When we grade the Cayley-Dickson algebras

and separate these elements it becomes a super division algebra.

The Z2 graded super division algebras form what is called the tenfold way, a good

reference is by J. Baez [59]. The Z2
2 graded super division algebras form the thirteen fold way,

in [65], F. Toppan and Z. Kuznetsova use the alphabetic (re)presentation to find the thirteen

super division algebras. They create a classification of the super division algebras that will be

used here. However, instead of using the alphabetic (re)presentation, here it will be used the

tensor product between Cayley-Dickson algebras because it is easier to analyze and classify.
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5.5 Classification

On [65], it was introduced important concepts to classify all super division algebras,

but first let’s start with the conventions. To designate a particular Zn
2 graded (super)algebra

it will be used the notationD[p]
K,i , whereK is the field of the (super)algebra, i is the number of

the (super)algebra and p is the Zp
2 grading.

Regarding the field K, if a super division algebra is real, then it must have only one

operator for each sector, if it is complex, then it must have two operators for each sector and

so on. A quaternionic super division algebra cannot be made of a tensor product finishing

in the complex field, for example, H⊗C because the bosonic grading won’t be made of the

quaternions. Another thing, a quaternionic super division algebra can be C⊗O because,

as it was said in the Cayley-Dickson algebras chapter, they have as a sub-algebra a smaller

division algebra, in this case the quaternions.

In both references cited here, it is only discussed the associative super division alge-

bras, here it will be presented a complete classification with the nonassociative ones. Also

the term super division algebras will be abbreviated to SDA.

Projection and inequivalent super division algebras

In the same way that the signature of a Clifford algebra represents that particular

algebra, in the Cayley-Dickson algebras and super division algebras it will be the same. The

classification of the Z2 graded algebras will be given by the different types of signatures, the

signatures give the inequivalent super division algebras.

In the Zn
2 case, with n > 1, the inequivalent SDA’s will be given by the projection de-

fined in paper [65], let’s define it with an example, the octonions:

O= I I I , Z Z A, Z AI , Z X A, AI I , X Z A, X AI , X X A (5.45)

In a Z3
2 grading each element will be in one sector, hence the Z2 graded subalgebras

are I I I with Z Z A, I I I with Z AI and so on. Therefore, all the subalgebras are the Z2 grading

of the complex numbers, this gives a unique projection for this super division algebra. Other

Z3
2 graded super division algebras will have as a projection a mix between the Z2 grading of

the complex and split-complex numbers, this show us that two SDA’s are non-equivalent.

In the last example, what about the Z2
2 subalgebra? It has only one, I I I , Z Z A, Z AI ,

Z X A, the quaternions. I I I , X Z A, X AI , X X A is not a subalgebra because it does not obey

the multiplication rule. The multiplication of X Z A and X AI gives Z X A which is not in the

subalgebra, hence the multiplication is not closed.

The only projection that matters is theZ2 grading because, as it will be clear, by look-

ing at it one can see the Z2
2 projection and the Z3

2 and so on, it is the more fundamental one.
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The other projections are important and need to be discovered too, as it will be explained

later, but the visualization will come from the Z2 grading projection.

The convention for the projections will be to use a parenthesis with the number of

the respective subalgebra. Using the example above, it will be shown that there are two real

Z2 graded super division algebras, the grading of the complex and the split-complex num-

bers. The representation of them will be given by D[1]
R,1 and D[1]

R,2, respectively. Therefore, the

projection of the realZ3
2 graded super division algebra, given by the grading of the octonions,

will be, as it was mentioned before, the grading of the complex numbers seven times. Hence,

the projection will be:

(D[1]
R,1,D[1]

R,1,D[1]
R,1;D[1]

R,1,D[1]
R,1,D[1]

R,1,D[1]
R,1) (5.46)

Instead of using this notation, it will be easier to analyze if one uses just the number of

the SDA. The number is given by "i" inD[1]
K,i . Therefore the projection above can be simplified

to:

(1,1,1;1,1,1,1) (5.47)

This means that all subalgebras are theZ2 grading of the complex numbers. The dot-

comma is a aesthetic tool to help us visualize and analyze the projections. It marks, in the

example above, theZ2
2 graded subalgebra, meaning that the first threeZ2 subalgebras (1,1,1)

gives the Z2
2 graded subalgebra, which in this case is the Z2

2 grading of the quaternions.

Important notes:

An important concept that needs to be discussed here is the rearrangements of the

terms. For example, instead of AI I from the octonions being in the grading 100, one could

change it with X Z A in grading 101. But the problem is that the multiplication rules will

be broken, in the sense that the multiplication of the grading is already fixed by the map-

ping. Hence, to rearrange terms, one needs to respect the multiplication rule, the correct

rearrangements will be shown later.

The second note is that there are two ways of doing a tensor product, here the bi-

quaternions will be used as an example:

C : I e A, H : I I , I A, AZ e AX

one can make the matrix representation of the bi-quaternions in two ways:

1: III, IIA, IAZ, IAX, AII, AIA, AAZ, AAX

2: III, AII, IAZ, AAZ, IIA, AIA, IAX, AAX

The second way is equivalent to H⊗C, but it won’t create a new SDA, as it will be

discussed later, hence it will be used the rearrangement. To maintain a convention, here it

will be used only the first way to do a tensor product. When the second way derive another

inequivalent SDA it will be marked with a comment after the classification.
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5.6 Z2 Super division algebras

RealZ2 SDA

1: D[1]
R,1 is a Z2 grading of C

2: D[1]
R,2 is a Z2 grading of C̃

ComplexZ2 SDA

1: D[1]
C;1 is a Z2 grading of the quaternionsH.

2: D[1]
C;2 is a Z2 grading of the split-quaternions H̃.

3: D[1]
C;3 is a Z2 grading of C⊗C.

where the inequivalent SDA’s are given by the signature of the odd sector:

D
[1]
C;1 : − − (5.48)

D
[1]
C;2 : + + (5.49)

D
[1]
C;3 : − + (5.50)

there is a equivalence of signature between:

C̃⊗C≃C⊗C (5.51)

The ≃ symbol will be used throughout this classification to represent when two SDA’s are

equivalent in terms of the rearrangements, it does not represent an isomorphism. The sig-

nature of C̃⊗C is given by + −, this is equivalent to the signature of D[1]
C;3.

QuaternionicZ2 SDA

1: D[1]
H;1 is a Z2 grading of C⊗H.

2: D[1]
H;2 is a Z2 grading of C̃⊗H.

3: D[1]
H;3 is a Z2 grading of the OctonionsO.

4: D[1]
H;4 is a Z2 grading of the Split-octonions Õ.

with signatures:

D
[1]
H;1 : − + + + (5.52)

D
[1]
H;2 : + − − − (5.53)

D
[1]
H;3 : − − − − (5.54)

D
[1]
H;4 : + + + + (5.55)
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OctonionicZ2 SDA

1: D[1]
O;1 is a Z2 grading of C⊗O.

2: D[1]
O;2 is a Z2 grading of C̃⊗O.

3: D[1]
O;3 is a Z2 grading of S.

4: D[1]
O;4 is a Z2 grading of S̃.

with signatures:

D
[1]
O;1 : − + + + + + + + (5.56)

D
[1]
O;2 : + − − − − − − − (5.57)

D
[1]
O;3 : − − − − − − − − (5.58)

D
[1]
O;4 : + + + + + + + + (5.59)

where S and S̃ are the sedenions and split-sedenions, the name split-sedenions doesn’t

make sense anymore because the sedenions are not a division algebra. The split will con-

tinue to be used to represent the sedenions that has space-like vectors.

5.7 Z2
2 Super division algebras

RealZ2
2 SDA

Now the inequivalent SDA’s will be given by the projection. Hence, the number inside

the parenthesis is the number of the subalgebra, as explained before. In the real case there

are only two subalgebras, therefore it will be number 1 and 2. In the complex case it will be

three subalgebras and so on.

Z2: 1: 0+ , 2: 1+

where 1: is the grading of the complex numbers and 2: of the split-complex numbers. 1+

means that there is one space like element in the odd sector and 0+ means that there is not

a space like element.

1: D[2]
R;1 is a Z2

2 grading ofH.

2: D[2]
R;2 is a Z2

2 grading of H̃.

3: D[2]
R;3 is a Z2

2 grading of C⊗C.

4: D[2]
R;4 is a Z2

2 grading of C̃⊗ C̃.

1: (1,1,1) 2: (1,2,2) 3: (1,1,2) 4: (2,2,2)

the projections show that they are not equivalent. One can check that there is also an exten-
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sion of equivalence 5.51:

C̃⊗C≃C⊗ C̃≃C⊗C (5.60)

ComplexZ2
2 SDA

Z2: 1: 0+ , 2: 2+ , 3: 1+

1: D[2]
C;1 is a Z2

2 grading of C̃⊗H
2: D[2]

C;2 is a Z2
2 grading of C⊗H

3: D[2]
C;3 is a Z2

2 grading of C̃⊗ H̃
4: D[2]

C;4 is a Z2
2 grading of C⊗H

5: D[2]
C;5 is a Z2

2 grading of C⊗C⊗C
6: D[2]

C;6 is a Z2
2 grading ofO.

7: D[2]
C;7 is a Z2

2 grading of Õ.

1: (1,3,1) 2: (1,3,2) 3: (2,3,2) 4: (3,3,3) 5: (3,3,3) 6: (1,1,1) 7: (1,2,2)

where the non-equivalence between 4 and 5 is given by the fact that, all matrices from the

odd sector commute with each other in 5 and anti-commute with each other in 4. Also 4 is

the rearrangement of 2. H⊗C won’t work because the matrices in the grading sectors will

commute, therefore, it is equivalent to 5.

There are also the following equivalences:

C⊗ H̃≃C⊗H (5.61)

C̃⊗ C̃⊗C≃ C̃⊗C⊗C≃C⊗C⊗C (5.62)

QuaternionicZ2
2 SDA

Z2: 1: 3+ , 2: 1+ , 3: 0+ , 4: 4+

1: D[2]
H;1 is a Z2

2 grading ofH⊗H.

2: D[2]
H;2 is a Z2

2 grading of C⊗C⊗H.

3: D[2]
H;3 is a Z2

2 grading of H̃⊗H.

4: D[2]
H;4 is a Z2

2 grading of C̃⊗ C̃⊗H.

5: D[2]
H;5 is a Z2

2 grading of C⊗O.

6: D[2]
H;6 is a Z2

2 grading of C̃⊗O.

7: D[2]
H;7 is a Z2

2 grading of C̃⊗ Õ.

8: D[2]
H;8 is a Z2

2 grading of S.
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9: D[2]
H;9 is a Z2

2 grading of S̃.

1: (1,1,1) 2: (1,1,2) 3: (1,2,2) 4: (2,2,2) 5: (3,1,4) 6: (3,2,3) 7: (4,2,4) 8: (3,3,3) 9: (3,4,4)

Equivalence 5.60 remains here and there is also:

C⊗ Õ≃C⊗O (5.63)

OctonionicZ2
2 SDA

Z2: 1: 7+ , 2: 1+ , 3: 0+ , 4: 8+

1: D[2]
O;1 is a Z2

2 grading ofH⊗O.

2: D[2]
O;2 is a Z2

2 grading of C⊗C⊗O.

3: D[2]
O;3 is a Z2

2 grading of H̃⊗O.

4: D[2]
O;4 is a Z2

2 grading of C̃⊗ C̃⊗O.

5: D[2]
O;5 is a Z2

2 grading of C⊗S.

6: D[2]
O;6 is a Z2

2 grading of C̃⊗S.

7: D[2]
O;7 is a Z2

2 grading of C̃⊗ S̃.

8: D[2]
O;8 is a Z2

2 grading of TR.

9: D[2]
O;9 is a Z2

2 grading of T̃R.

1: (1,1,1) 2: (1,1,2) 3: (1,2,2) 4: (2,2,2) 5: (3,1,4) 6: (3,2,3) 7: (4,2,4) 8: (3,3,3) 9: (3,4,4)

where TR and T̃R are the trigentaduonions and the split-trigentaduonions.

There are also 5.60 and the following equivalence:

C⊗ S̃≃C⊗S (5.64)

5.8 Z3
2 Super division algebras

RealZ3
2 SDA

Here one has to consider that Z3
2 SDA’s has a Z2

2 graded subalgebra while having also

Z2 graded subalgebras. Therefore, now it is necessary to see every possible Z2
2 graded subal-

gebra inside the projection, based on the rearrangements. It can be done by looking at the

Z2 graded projection and knowing the possible rearrangements that will be discussed below.

The parenthesis will give the Z2 graded subalgebras. However, the dot-comma will

mark the Z2
2 graded subalgebras, reminding that the bosonic grading is not in the parenthe-

sis.

Z2: 1: 0+ , 2: 1+
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1: D[3]
R;1 is a Z3

2 grading of C⊗H.

2: D[3]
R;2 is a Z3

2 grading of C̃⊗H.

3: D[3]
R;3 is a Z3

2 grading of C̃⊗ H̃.

4: D[3]
R;4 is a Z3

2 grading of C⊗C⊗C.

5: D[3]
R;5 is a Z3

2 grading of C̃⊗ C̃⊗ C̃.

6: D[3]
R;6 is a Z3

2 grading ofO.

7: D[3]
R;7 is a Z3

2 grading of Õ.

1: (1,1,1;1,2,2,2) 2: (1,1,1;2,1,1,1) 3: (1,2,2;2,1,2,2) 4: (1,1,2;1,2,2,1)

5: (2,2,2;2,2,2,2) 6: (1,1,1;1,1,1,1) 7: (1,1,1;2,2,2,2)

equivalences 5.61 and 5.62 continue here. In 5.62 there is the addition of all possible com-

binations of tensor product of the complex and split-complex numbers. There is not the

rearrangement of 1 because it won’t change anything.

Rearrangements

Now it is the time to talk about the possible rearrangements that can be done without

changing the multiplication rule. Here it will be only about the Z3
2 case, but this can be

extended to further cases. Let’s see then why 1 and 4 are not equivalent.

There are three rearrangements that does not break the multiplication rule. The first

is of two adjacent elements. In the example below, the dot-commas marks the group of two

that can be exchanged. The first number cannot be changed in this type of rearrangement

because of the bosonic grading.

(1;1,1;1,2;2,2)

therefore, in this example, the rearrangements of this type that changes the subalgebra are

given by.

1: (1;1,2;1,1;2,2) or (1;2,2;1,2;1,1)

The second possibility is of one element, with the following conditions:

(1;1,1;1,2;2,2) (1;1,1;1,2;2,2)

One can change the last element from the group of two elements inside the dot-

commas. However, when one trades two elements, the other two must be trade either.

Therefore, in this example, the only rearrangement of this type that changes the subalgebra

is given by.

1: (2;1,2;1,1;2,1)
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This is why a rearrangement of the elements that are the first in the group of two,

delimited by the dot-commas, cannot be changed; otherwise one would have to change the

bosonic sector that contains the identity.

The last type of rearrangement consists in a trade of the elements inside the dot-

commas. The only condition is that, one can only change two groups of two, not all three.

There are three possibilities, below are two of them:

(1;1,1;1,2;2,2) (1;1,1;1,2;2,2)

This show us that it is necessary to check all the possible combinations of rearrange-

ments and see the complete set of subalgebras. For example, in 1, one rearrangement gives

the same Z2
2 graded subalgebra then 4, but what matters is the complete set of rearrange-

ments:

1: (1,1,1;1,2,2,2) 4: (1,1,2;1,2,2,1)

1: (1,1,2;1,1,2,2) 4: (2,2,2;1,1,1,1)

1: (1,2,2;1,2,1,1)

In the second parenthesis of 4 there is a mix of two rearrangements. The commuta-

tion and anti-commutation relations between operators also matters for the subalgebra to

be correct. The Z2
2 graded subalgebras of them are given by:

1: Z2
2: H or H̃ or C⊗C

4: Z2
2: C⊗C or C̃⊗ C̃

ComplexZ3
2 SDA

Z2: 1: 0+ , 2: 2+ , 3: 1+

1: D[3]
C;1 is a Z3

2 grading ofH⊗H.

2: D[3]
C;2 is a Z3

2 grading of H̃⊗H.

3: D[3]
C;3 is a Z3

2 grading of C⊗C⊗H.

4: D[3]
C;4 is a Z3

2 grading of C̃⊗ C̃⊗H.

5: D[3]
C;5 is a Z3

2 grading of C̃⊗ C̃⊗ H̃.

6: D[3]
C;6 is a Z3

2 grading of C⊗C⊗C⊗C.

7: D[3]
C;7 is a Z3

2 grading of C⊗O.

8: D[3]
C;8 is a Z3

2 grading of C⊗O.

9: D[3]
C;9 is a Z3

2 grading of C̃⊗O.

10: D[3]
C;10 is a Z3

2 grading of C̃⊗ Õ.
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11: D[3]
C;11 is a Z3

2 grading of S.

12: D[3]
C;12 is a Z3

2 grading of S̃.

1: (1,3,2;3,2,3,2) 2: (1,3,2;3,1,3,1) 3: (1,3,2;3,2,3,1) 4: (1,3,1;3,1,3,1) 5: (2,3,2;3,2,3,2)

6: (3,3,3;3,3,3,3) 7: (1,1,1;3,2,2,2) 8: (3,3,3;3,3,3,3) 9: (1,1,1;3,1,1,1)

10: (1,2,2;3,1,2,2) 11: (1,1,1;1,1,1,1) 12: (1,1,1;2,2,2,2)

The non-equivalence between 9 and 11 is because one is associative and the other is

non-associative, also the elements from the sectors commute in 9 and anti-commute in 11.

Equivalence 5.60 continue and there are also:

H⊗ H̃≃ H̃⊗H (5.65)

H̃⊗ H̃≃H⊗H (5.66)

C⊗C⊗ H̃≃C⊗C⊗H (5.67)

C̃⊗C⊗C⊗C≃ ... ≃C⊗C⊗C⊗C (5.68)

where in the last one above it is all possible combinations of tensor products.

The equivalence 5.63 continues here, to see it, just change the position of the last four

bi-octonionic elements with the elements 4-8.

QuaternionicZ3
2 SDA

Z2: 1: 3+ , 2: 1+ , 3: 0+ , 4: 4+

1: D[3]
H;1 is a Z3

2 grading of C⊗H⊗H.

2: D[3]
H;2 is a Z3

2 grading of C̃⊗H⊗H.

3: D[3]
H;3 is a Z3

2 grading of C̃⊗ H̃⊗H.

4: D[3]
H;4 is a Z3

2 grading of C⊗C⊗C⊗H.

5: D[3]
H;5 is a Z3

2 grading of C̃⊗ C̃⊗ C̃⊗H.

6: D[3]
H;6 is a Z3

2 grading ofH⊗O.

7: D[3]
H;7 is a Z3

2 grading ofH⊗O.

8: D[3]
H;8 is a Z3

2 grading of H̃⊗O.

9: D[3]
H;9 is a Z3

2 grading ofH⊗ Õ.

10: D[3]
H;10 is a Z3

2 grading ofH⊗ Õ.

11: D[3]
H;11 is a Z3

2 grading of H̃⊗ Õ.

12: D[3]
H;12 is a Z3

2 grading of C⊗C⊗O.

13: D[3]
H;13 is a Z3

2 grading of C̃⊗ C̃⊗O.
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14: D[3]
H;14 is a Z3

2 grading of C̃⊗ C̃⊗ Õ.

15: D[3]
H;15 is a Z3

2 grading of C⊗S.

16: D[3]
H;16 is a Z3

2 grading of C̃⊗S.

17: D[3]
H;17 is a Z3

2 grading of C̃⊗ S̃.

18: D[3]
H;18 is a Z3

2 grading of TR.

19: D[3]
H;19 is a Z3

2 grading of T̃R.

1: (1,1,1;1,2,2,2) 2: (1,1,1;2,1,1,1) 3: (1,2,2;2,1,2,2) 4: (1,1,2;1,2,2,1) 5: (2,2,2;2,2,2,2)

6: (3,1,4;1,4,1,4) 7: (1,1,1;1,1,1,1) 8: (3,1,4;2,3,2,3) 9: (4,1,3;1,3,1,3) 10: (1,1,1;2,2,2,2)

11: (4,1,3;2,4,2,4) 12: (3,1,4;1,4,2,3) 13: (3,2,3;2,3,2,3) 14: (4,2,4;2,4,2,4) 15: (3,3,3;1,4,4,4)

16: (3,3,3;2,3,3,3) 17: (3,4,4;2,3,4,4) 18: (3,3,3;3,3,3,3) 19: (3,3,3;4,4,4,4)

Now it appears the rearrangement of H⊗O and H⊗ Õ, it works in the same way then

the bi-quaternions and others. In this case it can beO⊗H and Õ⊗H.

OctonionicZ3
2 SDA

Z2: 1: 7+ , 2: 1+ , 3: 0+ , 4: 8+

1: D[3]
O;1 is a Z3

2 grading of C⊗H⊗O.

2: D[3]
O;2 is a Z3

2 grading of C̃⊗H⊗O.

3: D[3]
O;3 is a Z3

2 grading of C̃⊗ H̃⊗O.

4: D[3]
O;4 is a Z3

2 grading of C⊗C⊗C⊗O.

5: D[3]
O;5 is a Z3

2 grading of C̃⊗ C̃⊗ C̃⊗O.

6: D[3]
O;6 is a Z3

2 grading ofO⊗O.

7: D[3]
O;7 is a Z3

2 grading of Õ⊗O.

8: D[3]
O;8 is a Z3

2 grading ofH⊗S.

9: D[3]
O;9 is a Z3

2 grading of H̃⊗S.

10: D[3]
O;10 is a Z3

2 grading ofH⊗ S̃.

11: D[3]
O;11 is a Z3

2 grading of H̃⊗ S̃.

12: D[3]
O;12 is a Z3

2 grading of C⊗C⊗S.

13: D[3]
O;13 is a Z3

2 grading of C̃⊗ C̃⊗S.

14: D[3]
O;14 is a Z3

2 grading of C̃⊗ C̃⊗ S̃.

15: D[3]
O;15 is a Z3

2 grading of C⊗TR.

16: D[3]
O;16 is a Z3

2 grading of C̃⊗TR.
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17: D[3]
O;17 is a Z3

2 grading of C̃⊗ T̃R.

18: D[3]
O;18 is a Z3

2 grading of SE.

19: D[3]
O;19 is a Z3

2 grading of S̃E.

1: (1,1,1;1,2,2,2) 2: (1,1,1;2,1,1,1) 3: (1,2,2;2,1,2,2) 4: (1,1,2;1,2,2,1) 5: (2,2,2;2,2,2,2)

6: (1,1,1;1,1,1,1) 7: (1,1,1;2,2,2,2) 8: (3,1,4;1,4,1,4) 9: (3,1,4;2,3,2,3) 10: (4,1,3;1,3,1,3)

11: (4,1,3;2,4,2,4) 12: (3,1,4;1,4,2,3) 13: (3,2,3;2,3,2,3) 14: (4,2,4;2,4,2,4) 15: (3,3,3;1,4,4,4)

16: (3,3,3;2,3,3,3) 17: (3,4,4;2,3,4,4) 18: (3,3,3;3,3,3,3) 19: (3,3,3;4,4,4,4)

WhereSE is the Cayley-Dickson algebra that has a dimension of 64. S̃E is the Cayley-

Dickson algebra of dimension 64 that has space-like elements. There is also the additional

equivalence:

C⊗ T̃R≃C⊗TR (5.69)

5.9 Z4
2 Super division algebras

RealZ4
2 SDA

A Z4
2 graded SDA has a Z3

2 graded subalgebra, together with a Z2
2 and Z2 graded sub-

algebras. Therefore, the projection now has a combination of three subalgebras.

Z2: 1: 0+ , 2: 1+

1: D[4]
R;1 is a Z4

2 grading ofH⊗H.

2: D[4]
R;2 is a Z4

2 grading of H̃⊗H.

3: D[4]
R;3 is a Z4

2 grading of C⊗C⊗H.

4: D[4]
R;4 is a Z4

2 grading of C̃⊗ C̃⊗H.

5: D[4]
R;5 is a Z4

2 grading of C̃⊗ C̃⊗ H̃.

6: D[4]
R;6 is a Z4

2 grading of C⊗C⊗C⊗C.

7: D[4]
R;7 is a Z4

2 grading of C̃⊗ C̃⊗ C̃⊗ C̃.

8: D[4]
R;8 is a Z4

2 grading of C⊗O.

9: D[4]
R;9 is a Z4

2grading of C̃⊗O.

10: D[4]
R;10 is a Z4

2 grading of C̃⊗ Õ.

11: D[4]
R;11 is a Z4

2 grading of S.

12: D[4]
R;12 is a Z4

2 grading of S̃.

1: (1,1,1;1,2,2,2;1,2,2,2;1,2,2,2) 2: (1,1,1;1,2,2,2;2,1,1,1;2,1,1,1) 3: (1,1,1;1,2,2,2;1,2,2,2;2,1,1,1)

4: (1,1,1;2,1,1,1;2,1,1,1;2,1,1,1) 5: (1,2,2;2,1,2,2;2,1,2,2;2,1,2,2) 6: (1,1,2;1,2,2,1;1,2,2,1;2,1,1,2)
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7: (2,2,2;2,2,2,2;2,2,2,2;2,2,2,2) 8: (1,1,1;1,1,1,1;1,2,2,2;2,2,2,2) 9: (1,1,1;1,1,1,1;2,1,1,1;1,1,1,1)

10: (1,1,1;2,2,2,2;2,1,1,1;2,2,2,2) 11: (1,1,1;1,1,1,1;1,1,1,1;1,1,1,1) 12: (1,1,1;1,1,1,1;2,2,2,2;2,2,2,2)

Equivalences 5.63 and 5.65-5.68 continues here. One can check, see the next section,

that by making the rearrangements on 3 and 6, the Z3
2 subalgebras are given by:

3: Z3
2: C⊗H or C̃⊗H or C̃⊗ H̃

6: Z3
2: C⊗C⊗C or C̃⊗ C̃⊗ C̃

Looking at theZ3
2 graded subalgebras is enough to see the inequivalence of the SDA’s.

The way to check for the equivalence is to see if, by using the possible rearrangements, the

complete projection becomes exactly like the other one that is being compared to.

Rearrangements

The rearrangements in theZ3
2 case will transfer toZ4

2, case but with more possibilities.

The rearrangement of the group of two in the Z3
2 case becomes here a rearrangement of

the group of four, marked by the dot-commas. Hence, in this case, the first three numbers

cannot be changed.

The rearrangements of one number, with a condition in the Z3
2 case, becomes here a

rearrangement of a group of two, with the same condition. Therefore, the last two numbers

of the group of four, delimited by the dot-commas, can be changed. By changing two, the

other two needs to be changed either. In this case the first two numbers of each group cannot

be changed because of the bosonic sector.

(1,1,1;1,2,2,2;1,2,2,2;1,2,2,2) (1,1,1;1,2,2,2;1,2,2,2;1,2,2,2)

The rearrangement of the group of two in theZ3
2 case, becomes here a rearrangement

of two numbers inside the group of four. The condition remains, one must change two of the

three groups of four delimited by the dot-commas. there are three possibilities, below is one

of them.

(1,1,1;1,2,2,2;1,2,2,2;1,2,2,2)

The new rearrangements that can be done are of one number. By dividing the group of four

into groups of two, this type of rearrangement obeys the following conditions:

(1;1,1;1,2;2,2;1,2;2,2;1,2;2,2) (1;1,1;1,2;2,2;1,2;2,2;1,2;2,2)

(1;1,1;1,2;2,2;1,2;2,2;1,2;2,2)
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The condition is the same than the second type of rearrangement. By changing two

numbers, one must change the other two to respect the multiplication rules.

And the last type of rearrangement is the trade of the elements of the group of two.

There are now two conditions. The first three numbers cannot be changed and one must

change four groups; there are 6 in total. Below is an example:

(1,1,1;1,2;2,2;1,2;2,2;1,2;2,2)

All these possibilities doesn’t brake the multiplication rules. One can use a mix of the five

types of rearrangements and it won’t brake the multiplication rules either.

ComplexZ4
2 SDA

Z2: 1: 0+ , 2: 2+ , 3: 1+

1: D[4]
C;1 is a Z4

2 grading of C⊗H⊗H.

2: D[4]
C;2 is a Z4

2 grading of C̃⊗H⊗H.

3: D[4]
C;3 is a Z4

2 grading of C̃⊗ H̃⊗H.

4: D[4]
C;4 is a Z4

2 grading of C⊗C⊗C⊗H.

5 D[4]
C;5 is a Z4

2 grading of C̃⊗ C̃⊗ C̃⊗H.

6: D[4]
C;6 is a Z4

2 grading of C̃⊗ C̃⊗ C̃⊗ H̃.

7: D[4]
C;7 is a Z4

2 grading of C⊗C⊗C⊗C⊗C.

8: D[4]
C;8 is a Z4

2 grading ofH⊗O.

9: D[4]
C;9 is a Z4

2 grading of H̃⊗O.

10: D[4]
C;10 is a Z4

2 grading ofH⊗ Õ.

11: D[4]
C;11 is a Z4

2 grading of H̃⊗ Õ.

12: D[4]
C;12 is a Z4

2 grading of C⊗C⊗O.

13: D[4]
C;13 is a Z4

2 grading of C̃⊗ C̃⊗O.

14: D[4]
C;14 is a Z4

2 grading of C̃⊗ C̃⊗ Õ.

15: D[4]
C;15 is a Z4

2 grading of C⊗S.

16: D[4]
C;16 is a Z4

2 grading of C⊗S.

17: D[4]
C;17 is a Z4

2 grading of C̃⊗S.

18: D[4]
C;18 is a Z4

2 grading of C̃⊗ S̃.

19: D[4]
C;19 is a Z4

2 grading of TR.

20: D[4]
C;20 is a Z4

2 grading of T̃R.
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1: (1,3,2;3,2,3,2;3,2,3,1;3,1,3,1) 2: (1,3,2;3,2,3,2;3,1,3,2;3,2,3,2) 3: (1,3,2;3,1,3,1;3,1,3,2;3,1,3,1)

4: (1,3,2;3,2,3,1;3,2,3,1;3,1,3,2) 5: (1,3,1;3,1,3,1;3,1,3,1;3,1,3,1) 6: (2,3,2;3,2,3,2;3,2,3,2;3,2,3,2)

7: (3,3,3;3,3,3,3;3,3,3,3;3,3,3,3) 8: (1,1,1;3,2,2,2;3,2,2,2;3,2,2,2) 9: (1,1,1;3,2,2,2;3,1,1,1;3,1,1,1)

10: (1,2,2;3,2,1,1;3,2,1,1;3,2,1,1) 11: (1,2,2;3,2,1,1;3,1,2,2;3,1,2,2) 12: (1,1,1;3,2,2,2;3,2,2,2;3,1,1,1)

13: (1,1,1;3,1,1,1;3,1,1,1;3,1,1,1) 14: (1,2,2;3,1,2,2;3,1,2,2;3,1,2,2) 15: (1,1,1;1,1,1,1;3,2,2,2;2,2,2,2)

16: (3,3,3;3,3,3,3;3,3,3,3;3,3,3,3) 17: (1,1,1;1,1,1,1;3,1,1,1;1,1,1,1) 18: (1,1,1;2,2,2,2;3,1,1,1;2,2,2,2)

19: (1,1,1;1,1,1,1;1,1,1,1;1,1,1,1) 20: (1,1,1;1,1,1,1;2,2,2,2;2,2,2,2)

One can check that, by making the rearrangements on 1 and 4, the Z3
2 subalgebras

are given by:

1: Z3
2: H⊗H or H̃⊗H or C⊗C⊗H

4: Z3
2: C⊗C⊗H or C̃⊗ C̃⊗H or C̃⊗ C̃⊗ H̃

QuaternionicZ4
2 SDA

Z2: 1: 3+ , 2: 1+ , 3: 0+ , 4: 4+

1: D[4]
H;1 is a Z4

2 grading ofH⊗H⊗H.

2: D[4]
H;2 is a Z4

2 grading of H̃⊗H⊗H.

3: D[4]
H;3 is a Z4

2 grading of C⊗C⊗H⊗H.

4: D[4]
H;4 is a Z4

2 grading of C̃⊗ C̃⊗H⊗H.

5: D[4]
H;5 is a Z4

2 grading of C̃⊗ C̃⊗ H̃⊗H.

6: D[4]
H;6 is a Z4

2 grading of C⊗C⊗C⊗C⊗H.

7: D[4]
H;7 is a Z4

2 grading of C̃⊗ C̃⊗ C̃⊗ C̃⊗H.

8: D[4]
H;8 is a Z4

2 grading of C⊗H⊗O.

9: D[4]
H;9 is a Z4

2 grading of C̃⊗H⊗O.

10: D[4]
H;10 is a Z4

2 grading of C̃⊗ H̃⊗O.

11: D[4]
H;11 is a Z4

2 grading of C̃⊗H⊗ Õ.

12: D[4]
H;12 is a Z4

2 grading of C̃⊗ H̃⊗ Õ.

13: D[4]
H;13 is a Z4

2 grading of C⊗C⊗C⊗O.

14: D[4]
H;14 is a Z4

2 grading of C̃⊗ C̃⊗ C̃⊗O.

15: D[4]
H;15 is a Z4

2 grading of C̃⊗ C̃⊗ C̃⊗ Õ.

16: D[4]
H;16 is a Z4

2 grading ofO⊗O.

17: D[4]
H;17 is a Z4

2 grading of Õ⊗O.
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18: D[4]
H;18 is a Z4

2 grading ofO⊗ Õ.

19: D[4]
H;19 is a Z4

2 grading of Õ⊗ Õ.

20: D[4]
H;20 is a Z4

2 grading ofH⊗S.

21: D[4]
H;21 is a Z4

2 grading ofH⊗S.

22: D[4]
H;22 is a Z4

2 grading of H̃⊗S.

23: D[4]
H;23 is a Z4

2 grading ofH⊗ S̃.

24: D[4]
H;24 is a Z4

2 grading ofH⊗ S̃.

25: D[4]
H;25 is a Z4

2 grading of H̃⊗ S̃.

26: D[4]
H;26 is a Z4

2 grading of C⊗C⊗S.

27: D[4]
H;27 is a Z4

2 grading of C̃⊗ C̃⊗S.

28: D[4]
H;28 is a Z4

2 grading of C̃⊗ C̃⊗ S̃.

29: D[4]
H;29 is a Z4

2 grading of C⊗TR.

30: D[4]
H;30 is a Z4

2 grading of C̃⊗TR.

31: D[4]
H;31 is a Z4

2 grading of C̃⊗ T̃R.

32: D[4]
H;32 is a Z4

2 grading of SE.

33: D[4]
H;33 is a Z4

2 grading of S̃E.

1: (1,1,1;1,2,2,2;1,2,2,2;1,2,2,2) 2: (1,1,1;1,2,2,2;2,1,1,1;2,1,1,1) 3: (1,1,1;1,2,2,2;1,2,2,2;2,1,1,1)

4: (1,1,1;2,1,1,1;2,1,1,1;2,1,1,1) 5: (1,2,2;2,1,2,2;2,1,2,2;2,1,2,2) 6: (1,1,2;1,2,2,1;1,2,2,1;2,1,1,2)

7: (2,2,2;2,2,2,2;2,2,2,2;2,2,2,2) 8: (3,1,4;1,4,1,4;1,4,2,3;2,3,2,3) 9: (3,1,4;1,4,1,4;2,3,1,4;1,4,1,4)

10: (3,1,4;2,3,2,3;2,3,1,4;2,3,2,3) 11: (4,1,3;1,3,1,3;2,4,1,3;1,3,1,3) 12: (4,1,3;2,4,2,4;2,4,1,3;2,4,2,4)

13: (3,1,4;1,4,2,3;1,4,2,3;2,3,1,4) 14: (3,2,3;2,3,2,3;2,3,2,3;2,3,2,3) 15: (4,2,4;2,4,2,4;2,4,2,4;2,4,2,4)

16: (3,1,4;1,4,1,4;1,4,1,4;1,4,1,4) 17: (3,1,4;1,4,1,4;2,3,2,3;2,3,2,3) 18: (4,1,3;1,3,1,3;1,3,1,3;1,3,1,3)

19: (4,1,3;1,3,1,3;2,4,2,4;2,4,2,4) 20: (3,3,3;1,4,4,4;1,4,4,4;1,4,4,4) 21: (1,1,1;1,1,1,1;1,1,1,1;1,1,1,1)

22: (3,3,3;1,4,4,4;2,3,3,3;2,3,3,3) 23: (3,4,4;1,4,3,3;1,4,3,3;1,4,3,3) 24: (1,1,1;1,1,1,1;2,2,2,2;2,2,2,2)

25: (3,4,4;1,4,3,3;2,3,4,4;2,3,4,4) 26: (3,3,3;1,4,4,4;1,4,4,4;2,3,3,3) 27: (3,3,3;2,3,3,3;2,3,3,3;2,3,3,3)

28: (3,4,4;2,3,4,4;2,3,4,4;2,3,4,4) 29: (3,3,3;3,3,3,3;1,4,4,4;4,4,4,4) 30: (3,3,3;3,3,3,3;2,3,3,3;3,3,3,3)

31: (3,3,3;4,4,4,4;2,3,3,3;4,4,4,4) 32: (3,3,3;3,3,3,3;3,3,3,3;3,3,3,3) 33: (3,3,3;3,3,3,3;4,4,4,4;4,4,4,4)

It was showed in the real case that 3 and 6 have different subalgebras. Here will be

the same.
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OctonionicZ4
2 SDA

Z2: 1: 7+ , 2: 1+ , 3: 0+ , 4: 8+

1: D[4]
O;1 is a Z4

2 grading ofH⊗H⊗O.

2: D[4]
O;2 is a Z4

2 grading of H̃⊗H⊗O.

3: D[4]
O;3 is a Z4

2 grading of C⊗C⊗H⊗O.

4: D[4]
O;4 is a Z4

2 grading of C̃⊗ C̃⊗H⊗O.

5: D[4]
O;5 is a Z4

2 grading of C̃⊗ C̃⊗ H̃⊗O.

6: D[4]
O;6 is a Z4

2 grading of C⊗C⊗C⊗C⊗O.

7: D[4]
O;7 is a Z4

2 grading of C̃⊗ C̃⊗ C̃⊗ C̃⊗O.

8: D[4]
O;8 is a Z4

2 grading of C⊗O⊗O.

9: D[4]
O;9 is a Z4

2 grading of C̃⊗O⊗O.

10: D[4]
O;10 is a Z4

2 grading of C̃⊗ Õ⊗O.

11: D[4]
O;11 is a Z4

2 grading of C⊗H⊗S.

12: D[4]
O;12 is a Z4

2 grading of C̃⊗H⊗S.

13: D[4]
O;13 is a Z4

2 grading of C̃⊗ H̃⊗S.

14: D[4]
O;14 is a Z4

2 grading of C̃⊗H⊗ S̃.

15: D[4]
O;15 is a Z4

2 grading of C̃⊗ H̃⊗ S̃.

16: D[4]
O;16 is a Z4

2 grading of C⊗C⊗C⊗S.

17: D[4]
O;17 is a Z4

2 grading of C̃⊗ C̃⊗ C̃⊗S.

18: D[4]
O;18 is a Z4

2 grading of C̃⊗ C̃⊗ C̃⊗ S̃.

19: D[4]
O;19 is a Z4

2 grading ofO⊗S.

20: D[4]
O;20 is a Z4

2 grading ofO⊗S.

21: D[4]
O;21 is a Z4

2 grading of Õ⊗S.

22: D[4]
O;22 is a Z4

2 grading ofO⊗ S̃.

23: D[4]
O;23 is a Z4

2 grading ofO⊗ S̃.

24: D[4]
O;24 is a Z4

2 grading of Õ⊗ S̃.

25: D[4]
O;25 is a Z4

2 grading ofH⊗TR.

26: D[4]
O;26 is a Z4

2 grading of H̃⊗TR.

27: D[4]
O;27 is a Z4

2 grading ofH⊗ T̃R.

28: D[4]
O;28 is a Z4

2 grading of H̃⊗ T̃R.
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29: D[4]
O;29 is a Z4

2 grading of C⊗C⊗TR.

30: D[4]
O;30 is a Z4

2 grading of C̃⊗ C̃⊗TR.

31: D[4]
O;31 is a Z4

2 grading of C̃⊗ C̃⊗ T̃R.

32: D[4]
O;32 is a Z4

2 grading of C⊗SE.

33: D[4]
O;33 is a Z4

2 grading of C̃⊗SE.

34: D[4]
O;34 is a Z4

2 grading of C̃⊗ S̃E.

35: D[4]
O;35 is a Z4

2 grading of CE.

36: D[4]
O;36 is a Z4

2 grading of C̃E.

1: (1,1,1;1,2,2,2;1,2,2,2;1,2,2,2) 2: (1,1,1;1,2,2,2;2,1,1,1;2,1,1,1) 3: (1,1,1;1,2,2,2;1,2,2,2;2,1,1,1)

4: (1,1,1;2,1,1,1;2,1,1,1;2,1,1,1) 5: (1,2,2;2,1,2,2;2,1,2,2;2,1,2,2) 6: (1,1,2;1,2,2,1;1,2,2,1;2,1,1,2)

7: (2,2,2;2,2,2,2;2,2,2,2;2,2,2,2) 8: (1,1,1;1,1,1,1;1,2,2,2;2,2,2,2) 9: (1,1,1;1,1,1,1;2,1,1,1;1,1,1,1)

10: (1,1,1;2,2,2,2;2,1,1,1;2,2,2,2) 11: (3,1,4;1,4,1,4;1,4,2,3;2,3,2,3) 12: (3,1,4;1,4,1,4;2,3,1,4;1,4,1,4)

13: (3,1,4;2,3,2,3;2,3,1,4;2,3,2,3) 14: (4,1,3;1,3,1,3;2,4,1,3;1,3,1,3) 15: (4,1,3;2,4,2,4;2,4,1,3;2,4,2,4)

16: (3,1,4;1,4,2,3;1,4,2,3;2,3,1,4) 17: (3,2,3;2,3,2,3;2,3,2,3;2,3,2,3) 18: (4,2,4;2,4,2,4;2,4,2,4;2,4,2,4)

19: (3,1,4;1,4,1,4;1,4,1,4;1,4,1,4) 20:(1,1,1;1,1,1,1;1,1,1,1;1,1,1,1) 21: (3,1,4;1,4,1,4;2,3,2,3;2,3,2,3)

22: (4,1,3;1,3,1,3;1,3,1,3;1,3,1,3) 23: (1,1,1;1,1,1,1;2,2,2,2;2,2,2,2) 24: (4,1,3;1,3,1,3;2,4,2,4;2,4,2,4)

25: (3,3,3;1,4,4,4;1,4,4,4;1,4,4,4) 26: (3,3,3;1,4,4,4;2,3,3,3;2,3,3,3) 27: (3,4,4;1,4,3,3;1,4,3,3;1,4,3,3)

28: (3,4,4;1,4,3,3;2,3,4,4;2,3,4,4) 29: (3,3,3;1,4,4,4;1,4,4,4;2,3,3,3) 30: (3,3,3;2,3,3,3;2,3,3,3;2,3,3,3)

31: (3,4,4;2,3,4,4;2,3,4,4;2,3,4,4) 32: (3,3,3;3,3,3,3;1,4,4,4;4,4,4,4) 33: (3,3,3;3,3,3,3;2,3,3,3;3,3,3,3)

34: (3,3,3;4,4,4,4;2,3,3,3;4,4,4,4) 35: (3,3,3;3,3,3,3;3,3,3,3;3,3,3,3) 36: (3,3,3;3,3,3,3;4,4,4,4;4,4,4,4)

WhereCE is the Cayley-Dickson algebra that has a dimension of 128. C̃E is the Cayley-

Dickson algebra of dimension 128 that has space-like elements. There are the following new

equivalences:

C⊗C⊗ T̃R≃C⊗C⊗TR (5.70)

C⊗ S̃E≃C⊗SE (5.71)

It was already discussed that 3 and 6 are non-equivalent. However, here 3, 6 and 8 are

a non-associative SDA. In the real case, 8 was non-associative while 3 and 6 were associative.

Therefore let’s do the subalgebras of the three.

3: Z3
2: C⊗H⊗O or C̃⊗H⊗O or C̃⊗ H̃⊗O

6: Z3
2: C⊗C⊗C⊗O or C̃⊗ C̃⊗ C̃⊗O

8: Z3
2: C⊗H⊗O or O⊗O or Õ⊗O
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One can check that 1 and 10 are non-equivalent, 11 and 17 either.

Table with the SDA’s

To sum up the results let’s present the tables with all the super division algebras:

R C H O

Z2 2 3 4 4
Z2

2 4 7 9 9
Z3

2 7 12 19 19
Z4

2 12 20 33 36

Table 5.15: Total SDA’s.

R C H O

Z2 2 3 2 -
Z2

2 4 5 4 -
Z3

2 5 6 5 -
Z4

2 7 7 7 -

Table 5.16: Associative.

R C H O

Z2 0 0 2 4
Z2

2 0 2 5 9
Z3

2 2 6 14 19
Z4

2 5 13 26 36

Table 5.17: N-associative.

A very curious property that one can see is that, the number of inequivalent real as-

sociative SDA’s is exactly the number of mappings for the Zn
2 graded Lie (super)algebras.

Tenfold way and the thirteen fold way

The tenfold way and the thirteen fold way that are defined in the papers of [59] and

[65] are in the classification. The tenfold way is given by the associative Z2 super division

algebras, hence 2+3+2 = 7, plus the associative division algebras 7+3 = 10. The thirteen

fold way is given by the associative Z2
2 super division algebras, so 4+5+4 = 13.

5.10 Inequivalent SDA’s and mappings

It was discussed in the last sections that the inequivalent SDA’s are determined base

on their signatures. The signature could also relate to the mappings of graded algebras. This

idea was created by finding the commutation and anti-commutation relations of the Zn
2 real

super division algebras. However, this is not possible formally speaking; there is not a de-

fined multiplication between a division algebra vector with a split-division vector. Neither

there is a definition of a multiplication of a vector, from the quaternions for example, with

one from the bi-complex. If one tries to create a algebra that is the sum of the division and

the correspondent split-division there will be problems in the metric and in the multiplica-

tion.

Therefore, what is presented here is a curiosity, a game that may be explained later

with future works. The only solid base for this game up until now is the fact that one can
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commute the generators of the SDA’s, one cannot commute elements from two different

SDA’s. Therefore, instead of using the super division algebra generators to commute, one

can use its matrix representation to commute.

The idea is to use a Clifford algebra framework and extract from this Clifford algebra,

the elements whose matrix representation is equal to the matrix representation of the SDA’s;

commuting them it will appear the table of brackets. Here in this section it will be used a

parenthesis with the number of space-like generators from each SDA’s odd sector. Which

represent the signature of the matrices.

Let’s use the Clifford algebras that have as a representation M (2[n/2],R)⊕M (2[n/2],R).

In this way there are matrices to represent the SDA’s elements inside the Clifford algebra.

Clifford algebra C l(2,1):

C l(2,1) : e0 ≃ I , e1 ≃ Z , e2 ≃ X , e3 ≃ A, e12 ≃ A, e13 ≃ X , e23 ≃−Z , e123 ≃−I ,

(5.72)

The properties are:

ei e j =−e j ei , e2
0 = e2

1 = e2
2 =−e2

3 = e0 (5.73)

Clifford algebra C l(3,2):

C l(3,2) : e0 ≃ I I , e1 ≃ X Z , e2 ≃ X X , e3 ≃ X A, e4 ≃ AI , e5 ≃ Z I , e12 ≃ I A, e13 ≃ I X ,

e14 ≃−Z Z , e15 ≃−AZ , e23 ≃−I Z , e24 ≃−Z X , e25 ≃−AX , e34 ≃−Z A, e35 ≃−A A,

e45 ≃−X I , e123 ≃−X I , e124 ≃ A A, e125 ≃ Z A, e134 ≃ AX , e135 ≃ Z X , e145 ≃−I Z ,

e234 ≃−AZ , e235 ≃−Z Z , e245 ≃−I X , e345 ≃−I A, e1234 ≃ Z I , e1235 ≃ AI ,

e1245 ≃−X A, e1345 ≃−X X , e2345 ≃ X Z , e12345 ≃ I I (5.74)

The properties are:

ei e j =−e j ei , e2
0 = e2

1 = e2
2 = e2

3 =−e2
4 =−e2

5 = e0 (5.75)

Clifford algebra C l(0,7) will be used too, but it is too big. Therefore, to help, the 7

generators will be given by the matrices in 4.19.

RealZ2 graded algebras

There are only two SDA’s, the complex and the split-complex numbers. Therefore, the

matrices that one could use are I , A, X or Z . The commutation of the matrices I and A with

themselves, or the commutation of I and X with themselves, represents the commutation of

signatures with the same number of space-like elements, in this case zero or one.
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The commutation of I and A with I and X is the commutation of a signature with zero

space-like elements with one that has one space-like element. Every time that the signatures

doesn’t have the same number of space-like elements, it will give a superalgebra. Using then

C l(2,1):

A/B e123 e12

e0 [,] [,]
e3 [,] [,]

Table 5.18: (0;0) and (1;1)

A/B e123 e13

e0 [,] [,]
e3 [,] {,}

Table 5.19: (0;1)

the parenthesis only represents the element in the odd sector. Hence (0;0) represents that

it is a commutation of elements which has a temporal element in the odd sector. The first

minus sign comes from e0 and e3, the second from e123 and e12. The second parenthesis (1;1)

is the commutation of e0 and e2 with e123 and e13, which generates the same table of brackets.

If, instead of using e13 in this last example, one use e1, it won’t generate the bracket table of

the lie algebra, but instead the superalgebra case. Therefore, the matrix chosen must be the

one related with the SDA’s matrix representation, otherwise it can lead to different table of

brackets.

It would be stronger if one could define the sum between the division algebras and

split-division algebras. However, the matrix representation show us that the different signa-

tures might have a relation with the mappings of graded algebras.

RealZ2
2 graded algebras

Using C l(3,2) one can find the commutations using the 4 SDA’s as guiding:

e12345 e345 e234 e134

e0 0 0 0 0
e12 0 0 1 1
e15 0 1 0 1
e25 0 1 1 0

Table 5.20: (0;0) and (2;2)

e12345 e1 e2 e345

e0 0 0 0 0
e15 0 1 0 1
e25 0 0 1 1
e12 0 1 1 0

Table 5.21: (0;2),(1;3) and (0;3)

e12345 e345 e1235 e124

e0 0 0 0 0
e12 0 0 0 0
e4 0 0 0 0
e35 0 0 0 0

Table 5.22: (1;1) and (3;3)

e12345 e345 e4 e35

e0 0 0 0 0
e12 0 0 0 0
e15 0 0 1 1
e25 0 0 1 1

Table 5.23: (0;1), (2;1) and (2;3)

the tables above are the example of the first parenthesis that generates the table of brackets;

the others will generate the same result, but with different elements. When the difference
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of space-like elements is zero, it generates a graded algebra, when it is different than zero it

generates a graded superalgebra.

Important note: If one changes the matrix representation of the quaternions or other

SDA, it will change the table of brackets, however, if one respect the commutations and anti-

commutations, for example, the split-quaternions guided to the choice of e12345, e1, e2 and

e345. The last three all anti-commute, the first one commute with everyone. If this relation

of the SDA and the signature is respected, it will generate a table of brackets related to a

mapping. If one changes the matrix representation of the split-quaternions it will generate a

different table of brackets, but inside all possible mappings for the Z2
2 case. This will be true

for the next case too.

RealZ3
2 graded algebras

Because the bi-quaternions and the tri-complex have 3 spacelike-elements, the tri-

complex will have a ∗ on the parenthesis. Therefore, using the Clifford algebra C l(0,7).

C⊗H: 3, C̃⊗H: 1, C̃⊗ H̃: 5, C⊗C⊗C: 3*, C̃⊗ C̃⊗ C̃: 7, O: 0, Õ: 4

(3;3), (1;1) and (5;5):

e1234567 e12345 e12347 e12346 e123567 e1235 e1237 e1236

e0 0 0 0 0 0 0 0 0
e67 0 0 1 1 0 0 1 1
e56 0 1 0 1 0 1 0 1
e57 0 1 1 0 0 1 1 0
e4 0 0 0 0 0 0 0 0

e467 0 0 1 1 0 0 1 1
e456 0 1 0 1 0 1 0 1
e457 0 1 1 0 0 1 1 0

Table 5.24: Mapping 5.19

(3*;3*) and (7;7):

e1234567 e12345 e24567 e1367 e123567 e1235 e2567 e13467

e0 0 0 0 0 0 0 0 0
e67 0 0 0 0 0 0 0 0
e13 0 0 0 0 0 0 0 0
e245 0 0 0 0 0 0 0 0
e4 0 0 0 0 0 0 0 0

e467 0 0 0 0 0 0 0 0
e134 0 0 0 0 0 0 0 0
e25 0 0 0 0 0 0 0 0

Table 5.25: Mapping 5.16
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(3*;7), (3;5), (1;5), (3;1), (3;7), (1;3*):

e1234567 e247 e345 e146 e567 e137 e125 e236

e0 0 0 0 0 0 0 0 0
e67 0 1 0 1 0 1 0 1
e13 0 0 1 1 0 0 1 1
e245 0 1 1 0 0 1 1 0
e4 0 0 0 0 1 1 1 1

e467 0 1 0 1 1 0 1 0
e134 0 0 1 1 1 1 0 0
e25 0 1 1 0 1 0 0 1

Table 5.26: Mapping 5.20

(3;3*) and (5;7):

e1234567 e12345 e13 e245 e123567 e1235 e134 e25

e0 0 0 0 0 0 0 0 0
e57 0 1 0 1 0 1 0 1
e67 0 0 0 0 0 0 0 0
e56 0 1 0 1 0 1 0 1
e4 0 0 0 0 0 0 0 0

e457 0 1 0 1 0 1 0 1
e467 0 0 0 0 0 0 0 0
e456 0 1 0 1 0 1 0 1

Table 5.27: Mapping 5.17

(1;7) and (5;3*):

e1234567 e247 e345 e146 e1234 e137 e125 e236

e0 0 0 0 0 0 0 0 0
e67 0 1 0 1 0 1 0 1
e56 0 0 1 1 0 0 1 1
e57 0 1 1 0 0 1 1 0
e567 0 0 0 0 0 0 0 0
e5 0 1 0 1 0 1 0 1
e7 0 0 1 1 0 0 1 1
e6 0 1 1 0 0 1 1 0

Table 5.28: Mapping 5.18

These tables of brackets are not exactly the same from the mappings. However, they

have the same classification according to the number of one’s showed in the final part of the

first section. The remaining signatures will be different because they are related with the

octonions and split-octonions. They are non-associative, hence it will be treated separately.
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5.11 Graded Malcev algebras

Malcev algebras

The Malcev algebras, first defined by A. Malcev [86], are well described in reference

[87], the fundamental relations of Malcev algebras are the following:

X 2 = 0 where X ·X = [X , X ] (5.76)

(X Y )(X Z ) = ((X Y )Z )X + ((Y Z )X )X + ((Z X )X )Y or (5.77)

J (X ,Y , Z )X = J (X ,Y , X Z ) where J (X ,Y , Z ) = (X Y )Z + (Y Z )X + (Z X )Y

where the product is anti-commutative. The octonions are a Malcev algebra, therefore, to

study the non-associative super division algebras, one will need to study the Malcev alge-

bras. The sedenions and beyond does not obey the Malcev identity, therefore this section

will be only about the real Z3
2 graded algebras.

Sagle Identity

A Malcev algebra over a field of characteristic different than 2 can be given by the

Sagle identity:

(X Y )(Z W ) = ((X Z )Y )W + ((W X )Z )Y + ((Y W )X )Z + ((Z Y )W )X (5.78)

Let’s remember then the properties of the Lie (super)algebras.

Lie (super)algebra

A Lie Superalgebra is given by:

(A,B) =−(−1)(α,β)(B , A) (5.79)

(−1)(γ,α)(A, (B ,C ))+ (−1)(α,β)(B , (C , A))+ (−1)(β,γ)(C , (A,B)) = 0 (5.80)

The graded vectors are known to obey the Leibniz Rules, see [80]:

(α,β)+ (β,α) = 2r (5.81)

(α,β+γ) = (α,β)+ (α,γ)+2s (5.82)

(α+γ,β) = (α,β)+ (γ,β)+2s (5.83)

Malcev (super)algebras

To define a Malcev (super)algebra, it will be the same from the Lie (super)algebras de-

fined in the introduction, good references on the subject are [[67], [68], [69], [70]]. A Malcev
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(super)algebra can be defined by the following relations:

(A,B) = AB − (−1)(α,β)B A (5.84)

J̄ (A,B , AC ) = J̄ (A,B ,C )A (5.85)

J̄ (A,B ,C ) = (−1)(γ,α)(A, (B ,C ))+ (−1)(α,β)(B , (C , A))+ (−1)(β,γ)(C , (A,B)) (5.86)

Malcev Superalgebra via Sagle identity

The Malcev (super)algebra is given by:

(−1)(γ,β)(A,B)(C ,D) = (((A,C ),B),D)+ (−1)(α,β+γ+σ)(((C ,B),D), A)+
+(−1)(α+γ,β+σ)(((B ,D), A),C )+ (−1)(σ,α+β+γ)(((D, A),C ),B) (5.87)

Leibniz rules for Malcev (super)algebras

It was shown that all possible brackets are given by the Leibniz rules on the Lie (su-

per)algebra case. In the last section, it was shown that, with the super division algebras, one

can find the table of brackets using the Clifford algebras to mimic the SDA’s and it’s signature.

Let’s try then to use that to define the Leibniz rules.

There are two non-associative real Z3
2 super division algebras, the octonions and the

split-octonions. Hence, there must be two brackets associated with them, (0,0) or (4,4) and

the bracket from (0,4). The first one gives a graded algebra and the second one a graded

superalgebra. Using the C l(0,7) Clifford algebra.

Non-associativeZ3
2 graded algebra

(0;0) and (4;4):

e1234567 e123567 e234567 e123467 e123457 e134567 e123456 e124567

e0 0 0 0 0 0 0 0 0
e4 0 0 1 1 1 1 1 1
e1 0 1 0 1 1 1 1 1
e5 0 1 1 0 1 1 1 1
e6 0 1 1 1 0 1 1 1
e2 0 1 1 1 1 0 1 1
e7 0 1 1 1 1 1 0 1
e3 0 1 1 1 1 1 1 0

Table 5.29: Table of brackets for the (split)octonionic Z3
2 graded algebra
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Non-associativeZ3
2 graded superalgebra

(0;4):

e1234567 e567 e234567 e467 e457 e134567 e456 e124567

e0 0 0 0 0 0 0 0 0
e4 0 1 1 0 0 1 0 1
e1 0 1 0 1 1 1 1 1
e5 0 0 1 1 0 1 0 1
e6 0 0 1 0 1 1 0 1
e2 0 1 1 1 1 0 1 1
e7 0 0 1 0 0 1 1 1
e3 0 1 1 1 1 1 1 0

Table 5.30: Table of brackets for the (split)octonionic Z3
2 graded superalgebra

Here the elements were not chosen to mimic the matrices in the appendix B. Instead, they

were chosen based on the anti-commutation relations, hence the generators of C l(0,7) and

C l(4,3).

The first table is more easy to accept because it is the generalization of the quater-

nionic table of brackets, the graded color algebra. If one commutes the octonions with them-

selves the same table of brackets will appear. Regarding the second table of brackets, there

is the need to verify its properties, to see if it is a viable option for the superalgebra case.

Finding the map

Both tables above must represent some mapping, as it is on the Lie (super)algebra

case, the difference is that it is not known if they obey the Leibniz Rules and if they are gen-

erated by the Graded Malcev identity. The correct approach is to use the graded Malcev or

Sagle identity to try and demonstrate the generalized Leibniz rules, or use non-associative

monoids to derive it. However, it is very difficult to analyze the graded Sagle identity. Hence,

together with R. G. Rana, this approach was taken. Due to the relation of the mappings to

logic portals, as it was explained later, the idea is to put the table of brackets above in a pro-

gram, like the one that was mentioned in the logic portal section and use the result to get to

the mapping. This is basically a reverse process, it is not a demonstration, it is a very precise

guess.

The first Leibniz rule 5.81 remains the same because it comes from 5.79. However,

5.82 and 5.83 must be generalized to something that relates to the associative case. Hence,

one can use a site that converts the results of the brackets to a computer language:

http://www.32x8.com/var6.html
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Putting both tables on the site will give the corresponding equations that generates

them. Therefore, one can use a program like mathematica to translate it to a map language

and the result is:

Non-associativeZ3
2 Graded algebra map

The mapping that generates the first table of brackets is given by:

(α,β)Z3
2
= (α1β2 +α2β1)+ (α1β3 +α3β1)+ (α2β3 +α3β2)+α1α2β3 +α3α1β2+

+α2α3β1 +α1β2β3 +α3β1β2 +α2β3β1 (5.88)

The name non-associative here is because of the relation of the table of brackets with

the octonions and split-octonions. Also possibly because of the graded Malcev identity, not

because the multiplication is non-associative.

Non-associativeZ3
2 Graded Superalgebra map

The mapping that generates the second table of brackets is given by:

(α,β)Z3
2
= (α1β1 +α2β2 +α3β3)+α1α2β3 +α3α1β2 +α2α3β1 +α1β2β3 +α3β1β2 +α2β3β1

(5.89)

One can see that there is a structure in both cases. Let’s define then the following

parameter:

S3 =α1α2β3 +α3α1β2 +α2α3β1 +α1β2β3 +α3β1β2 +α2β3β1 (5.90)

The mapping is given by the sum of the real associative Z3
2 graded mapping, with a

term that is the cyclic permutation of the multiplication of three elements. Do not confuse

with the S3 permutation group, this parameter was named after it. In the algebra case it is

actually the sum of the associative mapping of the color algebra three times, going through

all possibilities.

It is easy to realize that the Leibniz rules are the same for both cases. One can also

notice that the two common products appear here, the inter and outer product. Let’s empha-

size then the results. Using both mappings, it is easy to calculate (α,β+γ)Z3
2
. The parameter

S3 will change the Leibniz rules, the other terms already obey them.

5.12 Generalized Leibniz Rules

Therefore, what we found from "reverse deduction" is that the generalized Leibniz

rules are given by the following relations.
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Generalized Leibniz Rules:

(α,β)Z3
2
+ (β,α)Z3

2
= 2r (5.91)

(α,β+γ)Z3
2
= (α,β)Z3

2
+ (α,γ)Z3

2
+ ∑

per m.
αiβ jγk +2s where i , j ,k = 1,2,3 (5.92)

(α+γ,β)Z3
2
= (α,β)Z3

2
+ (γ,β)Z3

2
+ ∑

per m.
αiβ jγk +2s where i , j ,k = 1,2,3 (5.93)

there is a sum of all possible permutations of 123 on the tri-linear term.

The assumption that these generalized Leibniz rules comes from non-associative

monoids, or from the graded Malcev or Sagle identity needs to be proved. However, this

idea gives a guide to where it may go when one tries to prove it by using the fundamental

identities 5.84-5.87. One thing to look for, that is not done, is if the generalized Leibniz rules

above are separate from the associative ones, or if one can find a way to vanish the extra

term. Another thing that can also be discussed is in regard to the classification of the Mal-

cev (super)algebras. This is a work in progress and the idea of this section is to increase the

readers curiosity towards non-associative algebras and super division algebras.

5.13 Complete Classification

Let’s classify all the mappings that obeys the generalized Leibniz rules. The first six

mappings will be the associative ones, plus S3, that obeys the usual Leibniz rules. To be able

to classify them the following variables must be defined:

N = (Number of lines with all elements zero) (5.94)

D1 = (Number of "1’s" on the diagonal) (5.95)

T 1 = (Total number of "1’s") (5.96)

Ni = (Number of lines with i "1’s") (5.97)

T 1 =∑
i ∗Ni (5.98)

Below, the mappings will be written using the 5 associative ones. For example, 4+S3

means the color algebra mapping plus the parameter S3, doesn’t matter if it isα1β2+α2β1 or

α1β3 +α3β1 or the other case.

Z3
2- Graded Mappings:

1 : (α,β) = 0 2 : (α,β) =αβ 3 : (α,β) =α1β1 +α2β2 4 : (α,β) =α1β2 +α2β1

5 : (α,β) =α1β1 +α2β2 +α3β3 6 : S3 7 : 4+4+4+S3 8 : 5+S3

9 : 2+S3 10 : 3+S3 11 : 4+S3 12 : 4+4+S3

(5.99)

Classification:
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1: N=8, N4=0, D1=0 e T1=0

2: N=4, N4=4, D1=4 e T1=16

3: N=2, N4=6, D1=4 e T1=24

4: N=2, N4=6, D1=0 e T1=24

5: N=1, N4=7, D1=4 e T1=28

6: N=1, N2=6, N7=1, D1=1 e T1=19

7: N=1, N6=7, D1=0 e T1=42

8: N=1, N4=4, N6=3, D1=4 e T1=34

9: N=1, N2=3, N4=3, N6=1, D1=3 e T1=24

10: N=1, N2=1, N3=1, N4=4, N6=1, D1=6 e T1=27

11: N=1, N2=5, N3=1, N6=1, D1=2 e T1=21

12: N=1, N2=3, N3=2, N5=1, N6=1, D1=1 e T1=23

These are the nonequivalent mappings that obeys the generalized Leibniz rules, ex-

cept for the first 6. The other possibilities, that were not mentioned before, are the commu-

tation of the signatures of the associative SDA’s with the non-associative ones. Using the idea

mentioned in the last section it can be done. See the appendix E for the table of brackets:

(0;3): N=2, N4=6, D1=3 e T1=24

(0;1): N=4, N4=4, D1=1 e T1=16

(0;5): N=2, N4=6, D1=5 e T1=24

(0;3*): N=2, N4=6, D1=3 e T1=24

(0;7): N=1, N4=7, D1=7 e T1=28

(4;3): N=4, N4=4, D1=1 e T1=28

(4;1): N=2, N4=6, D1=3 e T1=24

(4;5): N=2, N4=6, D1=3 e T1=24

(4;3*): N=2, N4=6, D1=3 e T1=24

(4;7): N=2, N4=6, D1=3 e T1=24

It can be seen that they are not related to any of the mappings that obeys the Leibniz

rules, which was expected. A complete analysis of the mappings are still in progress. The

last thing to see is if the multiplication tables for the SDA’s produce a bracket, that can be

associated with one of the 12 brackets, which obey the Leibniz rules. The main interest,

however, was to see if it helps visualize the difference from an associative multiplication to a

non-associative one. It’s two brackets for each multiplication table, one with all the positive
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elements being 1 and - being 0. The other one the inverse, +=0 and -=1. Here are only the

results, the table of brackets are in appendix E:

O1 : N=0, N4=7, N8=1, D1=1 e T1=36

O2 : N=1, N4=7, D1=7 e T1=28

Õ1 : N=0, N2=1, N4=3, N6=3, N8=1, D1=5 e T1=40

Õ2 : N=1, N2=3, N4=3, N6=1, D1=3 e T1=24

(C⊗H)1: N=0, N4=7, N8=1, D1=4 e T1=36

(C⊗H)2: N=1, N4=7, D1=4 e T1=28

(C̃⊗H)1: N=0, N4=6, N8=2, D1=2 e T1=40

(C̃⊗H)2: N=2, N4=6, D1=6 e T1=24

(C̃⊗ H̃)1: N=0, N4=4, N8=4, D1=6 e T1=48

(C̃⊗ H̃)2: N=4, N4=4, D1=2 e T1=16

(C⊗C⊗C)1: N=0, N4=7, N8=1, D1=4 e T1=36

(C⊗C⊗C)2: N=1, N4=7, D1=4 e T1=28

(C̃⊗ C̃⊗ C̃)1: N=0, N8=8, D1=8 e T1=64

(C̃⊗ C̃⊗ C̃)2: N=8, D1=0 e T1=0

One can see that the bi-quaternions are equal to the tri-complex; the difference is the

position of the elements on the gradings, both second brackets gives the mapping 5, which

is the associative superalgebra. Another association is that the second bracket of the split-

octonions gives 9 and the second bracket of the octonions are related to (0;7).

Everything that was done here was with the intention to find if there is a relation of

non-associativity and associativity with the mappings and the table of brackets. For now

there is not an apparent relation and the work is still in progress. The main thing to pursue

is which are the properties of Malcev (super)algebras, which are the mappings and how they

are related with Lie (super)algebras.



Chapter 6

Conclusions

In this thesis we presented a classification of the super division algebras up to a Z4
2

grading and the table of brackets up to a Z3
2 grading. We also used the alphabetic (re)presen-

tation [66] because of their power and practicality in analyzing and performing calculations

with large algebras and matrices.

Physical applications of Z3
2 and Zn

2 graded Lie (super)algebras have just started to be

analyzed [[43],[44],[46]]. On the other hand, Z2 ⊗Z2 graded (super)algebras have been ex-

tensively studied in recent years[[29]-[42],[45],[54]-[57]]. The difference in terms of work and

possibilities to analyze between Z3
2 graded (super)algebras and Z2

2 graded (super)algebras

is enormous. For example, the complete classification of Lie (super)algebras for the table

of brackets, given by the mapping 5.20, involves solving approximately one hundred equa-

tions given by the Jacobi graded identity. After that, the matrix representation of all the non-

equivalent (super)algebras must be found. This is just for one table of brackets; there are 5

in total. Therefore, a clear and precise review on the fundamental topics was needed.

In the first three chapters, we briefly discussed the fundamental algebras that relate

to graded (super)algebras, focusing on the applications for chapter 5. In chapter 5, we used

an idea to relate the mappings of graded (super)algebras with logic portals. This was used

to propose a possible generalization of the Leibniz rules. It is known that graded Lie (su-

per)algebras are associative and therefore, the mapping obeys three conditions called the

Leibniz rules, see [[18],[20]].

The generalization of the Leibniz rules comes from the fact that we can grade a non-

associative Cayley-Dickson algebra. Therefore, the graded Jacobi identity and Leibniz rules

must be changed. For the octonions and split-octonions, we know that they obey the Malcev

identity [87]. Graded Malcev (super)algebras have already been defined in the literature, see

[[67],[68],[69], [70]]. However, these references only discuss the Z2 grading of the Malcev

identity. In contrast, we focused on a possible mapping and table of brackets for the Z3
2

grading.

Our approach involved the realization that the commutation of the real super divi-

78
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sion algebras generators gives all possible table of brackets for Zn
2 graded Lie algebras, this

does not apply to Lie superalgebras. The reason is that one cannot commute a generator

from a particular super division algebra with one from a different SDA. Therefore, to include

theZn
2 graded Lie superalgebras, we used Clifford algebras as a framework to extract the ma-

trices that represent the super division algebras and commute them. In this way, we have a

defined multiplication that allow us to check the commutation of matrices that represents

generators from different super division algebras. However, our findings can be explicitly

applied only to the (split)octonions, not to Malcev (super)algebras in general.

The super division algebras appear in the periodic table of topological insulators and

superconductors [[63],[60]]. There are five different classes of topological insulators, within

these classes the phases are characterized by a topological invariant. These topological in-

variant belong to one of the super division algebras that forms the tenfold way. It can be

argued that more general Zn
2 graded super division algebras can be applicable to physics in-

volving parastatistics, which is the statistics of Z2 ⊗Z2 para-particles that obey the trilinear

relation by Green [88]. Therefore, a complete classification of them is necessary.

In the last section of chapter 5, several tables of brackets were presented and briefly

commented on. They are helping on the classification of the Z3
2 graded Malcev (super)alge-

bras, which is a work in progress.

Another important idea reviewed in the thesis, chapter 3 and 4, was the matrix re-

alization of the Cayley-Dickson doubling, see appendix B. Many possible applications are

envisaged. The main one is if this realization adds something to the understanding of the

octonionic M-algebra and M-theory. Concerning a possible application to the SU(2) group,

it will be discussed in the master thesis that will be presented by I. P. de Freitas [1].

Finally, there are two papers that are currently under finalization. The first one con-

cerning the inequivalentZn
2 graded Lie brackets and applications, the second concerning the

classification of theZ3
2 graded super division algebras, both associative and non-associative.



Appendix A

Structure constants of octonions and

split-octonions

To construct the octonions and split-octonions structure constants, I.P. de Freitas

used the convention for the quaternion structure constant εi j k = 1 and used the Cayley-

Dickson doubling process in chapter 3, see [2], to perform every calculation and form a table.

Here is the results:

Table A.1: Octonions structure constants

C123 = 1 C213 =−1 C312 = 1
C132 =−1 C231 = 1 C321 =−1
C145 = 1 C246 = 1 C347 = 1

C154 =−1 C257 = 1 C356 =−1
C167 =−1 C264 =−1 C365 = 1
C176 = 1 C275 =−1 C374 =−1

C415 =−1 C514 = 1 C617 = 1 C716 =−1
C426 =−1 C527 =−1 C624 = 1 C725 = 1
C437 =−1 C536 = 1 C635 =−1 C734 = 1
C451 = 1 C541 =−1 C642 =−1 C743 =−1
C462 = 1 C563 =−1 C653 = 1 C752 =−1
C473 = 1 C572 = 1 C671 =−1 C761 = 1
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Table A.2: Split-octonions structure constants

C̃ 12
3 = 1 C̃ 21

3 =−1 C̃ 31
2 = 1

C̃ 13
2 =−1 C̃ 23

1 = 1 C̃ 32
1 =−1

C̃ 14
5 = 1 C̃ 24

6 = 1 C̃ 34
7 = 1

C̃ 15
4 =−1 C̃ 25

7 = 1 C̃ 35
6 =−1

C̃ 16
7 =−1 C̃ 26

4 =−1 C̃ 36
5 = 1

C̃ 17
6 = 1 C̃ 27

5 =−1 C̃ 37
4 =−1

C̃ 41
5 =−1 C̃ 51

4 = 1 C̃ 61
7 = 1 C̃ 71

6 =−1
C̃ 42

6 =−1 C̃ 52
7 =−1 C̃ 62

4 = 1 C̃ 72
5 = 1

C̃ 43
7 =−1 C̃ 53

6 = 1 C̃ 63
5 =−1 C̃ 73

4 = 1
C̃ 45

1 =−1 C̃ 54
1 = 1 C̃ 64

2 = 1 C̃ 74
3 = 1

C̃ 46
2 =−1 C̃ 56

3 = 1 C̃ 65
3 =−1 C̃ 75

2 = 1
C̃ 47

3 =−1 C̃ 57
2 =−1 C̃ 67

1 = 1 C̃ 76
1 =−1

there is another way to put these results that is more common in the literature:

Table A.3: Octonions multiplication

ei e j e1 e2 e3 e4 e5 e6 e7

e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 −e5 −e6 −e7 −1 e1 e2 e3

e5 e4 −e7 e6 −e1 −1 −e3 e2

e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 −e6 e5 e4 −e3 −e2 e1 −1

Table A.4: Split-octonions multiplication

ẽi ẽ j ẽ1 ẽ2 ẽ3 ẽ4 ẽ5 ẽ6 ẽ7

ẽ1 −1 ẽ3 −ẽ2 ẽ5 −ẽ4 −ẽ7 ẽ6

ẽ2 −ẽ3 −1 ẽ1 ẽ6 ẽ7 −ẽ4 −ẽ5

ẽ3 ẽ2 −ẽ1 −1 ẽ7 −ẽ6 ẽ5 −ẽ4

ẽ4 −ẽ5 −ẽ6 −ẽ7 1 −ẽ1 −ẽ2 −ẽ3

ẽ5 ẽ4 −ẽ7 ẽ6 ẽ1 1 ẽ3 −ẽ2

ẽ6 ẽ7 ẽ4 −ẽ5 ẽ2 −ẽ3 1 ẽ1

ẽ7 −ẽ6 ẽ5 ẽ4 ẽ3 ẽ2 −ẽ1 1

to check if the structure constants are correct, the table of multiplication for both algebras

must be anti-symmetric.
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There is a property that maintains to every Cayley-Dickson algebra, the table of mul-

tiplication of the split algebra is always the division one, but with a complete change of signs

of the multiplication between space-like vectors. Another interesting property, only for di-

vision algebras, is that the C l (0,7) matrices appear considering a change of sign on the first

column, below ei e j .

C̃ i j
k is not totally anti-symmetric like Ci j k is but C̃i j k = C̃ i j

l η̃kl is totally anti-symmetric:

Table A.5: Split-octonions structure constants

C̃123 =−1 C̃213 = 1 C̃312 =−1
C̃132 = 1 C̃231 =−1 C̃321 = 1
C̃145 = 1 C̃246 = 1 C̃347 = 1

C̃154 =−1 C̃257 = 1 C̃356 =−1
C̃167 =−1 C̃264 =−1 C̃365 = 1
C̃176 = 1 C̃275 =−1 C̃374 =−1

C̃415 =−1 C̃514 = 1 C̃617 = 1 C̃716 =−1
C̃426 =−1 C̃527 =−1 C̃624 = 1 C̃725 = 1
C̃437 =−1 C̃536 = 1 C̃635 =−1 C̃734 = 1
C̃451 = 1 C̃541 =−1 C̃642 =−1 C̃743 =−1
C̃462 = 1 C̃563 =−1 C̃653 = 1 C̃752 =−1
C̃473 = 1 C̃572 = 1 C̃671 =−1 C̃761 = 1

The structure constant for the octonions is:

C123 =C145 =C176 =C246 =C257 =C347 =C365 = 1 (A.1)

and for the split-octonions is:

C̃132 = C̃145 = C̃176 = C̃246 = C̃257 = C̃347 = C̃365 = 1 (A.2)
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Matrix realization of the octonions

In sections 3.3 and 4.5, it was developed the matrix realization for the Cayley-Dickson

algebras, but only showed the octonionic matrices in the alphabetic form. Therefore, here is

the matrices that obeys rules 4.16-4.18. They all come from the general matrix of the Cayley-

Dickson doubling 3.18:

E0 ≡
(

1 0

0 1

)
, E1 ≡

(
e1 0

0 e∗
1

)
, E2 ≡

(
e2 0

0 e∗
2

)
, E3 ≡

(
e3 0

0 e∗
3

)
,

E4 ≡
(

0 1

−1 0

)
, E5 ≡

(
0 e1

−e∗
1 0

)
, E6 ≡

(
0 e2

−e∗
2 0

)
, E7 ≡

(
0 e3

−e∗
3 0

)
. (B.1)

where ei are the three quaternionic vectors. One might check that the multiplication rule in

4.16 works for B.1. Now the 4x4 complex matrices:

E0 ≡


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 E1 =


i 0 0 0

0 −i 0 0

0 0 −i 0

0 0 0 i

 E2 =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0



E3 =


0 i 0 0

i 0 0 0

0 0 0 −i

0 0 −i 0

 E4 =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 E5 =


0 0 i 0

0 0 0 −i

i 0 0 0

0 −i 0 0



E6 =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 E7 =


0 0 0 i

0 0 i 0

0 i 0 0

i 0 0 0

 (B.2)
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The 8x8 real matrices:

E0 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


E1 =



0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0



E2 =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0


E3 =



0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0



E4 =



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0


E5 =



0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0



E6 =



0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0


E7 =



0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0


(B.3)

Important to stress the fact, that all these matrices were found using the structure

constant convention A.1. If one changes the convention, it needs to be done by changing
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the number of the vectors in 3.23, or changing the signs of the vectors and using the Cayley-

Dickson multiplication to create new tables of multiplication. The matrices will change very

little but the properties 4.16-4.18 will continue being correct.



Appendix C

Left and right action

Using any representation of the octonions, one can perform the left and right action

on a general element to see the relation between the octonions and C l(0,7), see [76]. The left

action is: 

e1x = x0e1 −x1 +x2e3 −x3e2 +x4e5 −x5e4 +x6e7 +x7e6

e2x = x0e2 −x1e3 −x2 +x3e1 +x4e6 +x5e7 −x6e4 −x7e5

e3x = x0e3 +x1e2 −x2e1 −x3 +x4e7 −x5e6 +x6e5 −x7e4

e4x = x0e4 −x1e5 −x2e6 −x3e7 −x4 +x5e1 +x6e2 +x7e3

e5x = x0e5 +x1e4 −x2e7 +x3e6 −x4e1 −x5 −x6e3 +x7e2

e6x = x0e6 +x1e7 +x2e4 −x3e5 −x4e2 +x5e3 −x6 −x7e1

e7x = x0e7 −x1e6 +x2e5 +x3e4 −x4e3 −x5e2 +x6e1 −x7

(C.1)

putting in matrix form we find:

ΓL
1 =



0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0


, ΓL

2 =



0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0



ΓL
3 =



0 0 0 −1 0 0 0 0

0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0


, ΓL

4 =



0 0 0 0 −1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0
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ΓL
5 =



0 0 0 0 0 −1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0


, ΓL

6 =



0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

0 0 0 0 −1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0



ΓL
7 =



0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 0 0 0 0 −1 0 0

0 0 0 0 −1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0


(C.2)

These matrices form the Clifford algebra C l(0,7). However, they can’t be written in

an alphabetic form because they are not made of tensor products between the fundamental

ones. With right action the signs will change, as already said in section 3.3:

xe1 = x0e1 −x1 −x2e3 +x3e2 −x4e5 +x5e4 +x6e7 −x7e6

xe2 = x0e2 +x1e3 −x2 −x3e1 −x4e6 −x5e7 +x6e4 +x7e5

xe3 = x0e3 −x1e2 +x2e1 −x3 −x4e7 +x5e6 −x6e5 +x7e4

xe4 = x0e4 +x1e5 +x2e6 +x3e7 −x4 −x5e1 −x6e2 −x7e3

xe5 = x0e5 −x1e4 +x2e7 −x3e6 +x4e1 −x5 +x6e3 −x7e2

xe6 = x0e6 −x1e7 −x2e4 +x3e5 +x4e2 −x5e3 −x6 +x7e1

xe7 = x0e7 +x1e6 −x2e5 −x3e4 +x4e3 +x5e2 −x6e1 −x7

(C.3)

the matrices are:

ΓR
1 =



0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0


, ΓR

2 =



0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0





APPENDIX C. LEFT AND RIGHT ACTION 88

ΓR
3 =



0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0


, ΓR

4 =



0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0



ΓR
5 =



0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0


, ΓR

6 =



0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0



ΓR
7 =



0 0 0 0 0 0 0 −1

0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 −1 0 0 0 0

0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0


(C.4)

These matrices also form C l(0,7), but they can be put in alphabetic form:

ΓR
1 =−Z Z A, ΓR

2 =−Z AI , ΓR
3 =−Z X A, ΓR

4 =−AI I , ΓR
5 =−X I A, ΓR

6 =−X AZ , ΓR
7 =−X AX

(C.5)

These matrices C.5 and B.3 are the matrices in 4.19. To consider only left action, but

maintaining the alphabetic (re)presentation, then the structure constant convention must

change, but to a very specific one, the inverse:

C123 =C145 =C176 =C246 =C257 =C347 =C365 =−1 (C.6)

Inverse conventions:

There are 480 different conventions, 240 with one sign and the other 240 the inverse

of them. What the inverse does is change the left action with the right action, meaning that a

left action, with a convention, is the same of a right action with the inverse of this convention,

they are dual.
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There are 7 ways to derive the inverse convention, just change the sign of three spe-

cific elements:

ē1 =−e1 ē2 =−e2 ē3 =−e3 (C.7)

the other six choices are to change the signs of the elements according to the structure con-

stant, in this case, elements 1,4 and 5 or 1,7 and 6 and so on.



Appendix D

Octonionic M-algebra matrices

On section 5.7, the octonionic M-algebra matrices were showed in an alphabetic

form. To help visualize these matrices, let’s see the usual 4x4 octonionic representation of

it. See references [[71],[72],[73],[15]].

C l0(10,1) : Γi ≡


0 0 0 ei

0 0 −ei 0

0 ei 0 0

−ei 0 0 0

 ,

Γ8 ≡


0 0 0 e0

0 0 e0 0

0 e0 0 0

e0 0 0 0

 , Γ9 ≡


0 0 e0 0

0 0 0 −e0

e0 0 0 0

0 −e0 0 0

 ,

Γ10 ≡


0 0 e0 0

0 0 0 e0

−e0 0 0 0

0 −e0 0 0

 , Γ11 ≡


e0 0 0 0

0 e0 0 0

0 0 −e0 0

0 0 0 −e0

 . (D.1)

where i = 1,2, ...,7

The matrices 4.38 are generated when one substitute the octonionic vectors e0 and

ei with their 8x8 real representation B.3. One can see that it generates the 32x32 real matrix

representation, which in an alphabetic form is much easier to perform calculations with:

C l0(10,1) :

X Aei

X X e0

X Z e0

AIe0

Z Ie0

90
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The representation above is valid for any representation of the octonionic M-algebra,

just change the vector elements for the representations on the appendix B. Let’s perform a

calculation e1 ∗e7 = e6:

X Ae1 ∗X Ae7 =−I Ie6

It is easy to find the generators of the spin group with the alphabetic (re)presentation:

[X Aei , X Ae j ] =−2I ICi j kδ
kr er , [X Aei , X X e0] = 2I Z ei , [X Aei , X Z e0] =−2I X ei ,

[X Aei , AIe0] =−2Z Aei , [X Aei , Z Ie0] =−2A Aei , [X X e0, X Z e0] =−2I Ae0,

[X X e0, AIe0] =−2Z X e0, [X X e0, Z Ie0] =−2AX e0, [X Z e0, AIe0] =−2Z Z e0,

[X Z e0, Z Ie0] =−2AZ e0, [AIe0, Z Ie0] =−2X Ie0. (D.2)

Where j > i . To be more clear, here is two examples of commutators:

[X Aei , X Ae j ] =−2I ICi j kδ
kr er =−2Ci j

k


er 0 0 0

0 er 0 0

0 0 er 0

0 0 0 er


Second example:

[X X e0, Z Ie0] =−2AX e0 =−2


0 0 0 −e0

0 0 −e0 0

0 e0 0 0

e0 0 0 0





Appendix E

Table of Brackets

Here is all possible table of brackets, produced in different ways, studied in chapter 5

and classified in section 5.12.

Table E.1: (3+S3):

000 001 011 010 100 101 111 110
000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 1 1
011 0 0 1 1 1 0 0 1
010 0 0 1 1 0 1 0 1
100 0 0 1 0 1 1 0 1
101 0 0 0 1 1 1 0 1
111 0 1 1 1 1 1 1 0
110 0 1 0 0 0 0 1 1

Table E.2: (2+S3):

000 001 011 010 100 101 111 110
000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 1 1
011 0 0 0 0 1 0 1 0
010 0 0 0 0 0 1 1 0
100 0 0 1 0 1 1 0 1
101 0 0 0 1 1 1 0 1
111 0 1 1 1 1 1 1 0
110 0 1 1 1 0 0 1 0
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Table E.3: (3+3+3+S3=S3):

000 001 011 010 100 101 111 110
000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 1 1
011 0 0 0 0 1 0 1 0
010 0 0 0 0 0 1 1 0
100 0 0 1 0 0 0 1 0
101 0 0 0 1 0 0 1 0
111 0 1 1 1 1 1 1 1
110 0 1 0 0 0 0 1 0

Table E.4: (4+S3):

000 001 011 010 100 101 111 110
000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 1 1
011 0 0 0 0 0 1 0 1
010 0 0 0 0 1 0 0 1
100 0 0 0 1 0 0 0 1
101 0 0 1 0 0 0 0 1
111 0 1 0 0 0 0 1 1
110 0 1 1 1 1 1 0 1

Table E.5: (4+4+S3):

000 001 011 010 100 101 111 110
000 0 0 0 0 0 0 0 0
001 0 0 0 0 1 1 0 0
011 0 0 0 0 1 0 1 0
010 0 0 0 0 1 0 0 1
100 0 1 1 1 0 1 1 1
101 0 1 0 0 1 0 1 0
111 0 0 1 0 1 1 1 1
110 0 0 0 1 1 0 1 0
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Table E.6: (0,3):

e1234567 e23 e13 e12 e123567 e234 e134 e124

e0 0 0 0 0 0 0 0 0
e1 0 0 1 1 1 1 0 0
e2 0 1 0 1 1 0 1 0
e3 0 1 1 0 1 0 0 1
e4 0 0 0 0 0 0 0 0
e5 0 0 0 0 1 1 1 1
e6 0 0 0 0 1 1 1 1
e7 0 0 0 0 1 1 1 1

Table E.7: (0,1):

e1234567 e23 e13 e12 e567 e14 e24 e34

e0 0 0 0 0 0 0 0 0
e1 0 0 1 1 1 1 0 0
e2 0 1 0 1 1 0 1 0
e3 0 1 1 0 1 0 0 1
e4 0 0 0 0 1 1 1 1
e5 0 0 0 0 0 0 0 0
e6 0 0 0 0 0 0 0 0
e7 0 0 0 0 0 0 0 0

Table E.8: (0,5):

e1234567 e346 e13 e146 e567 e126 e24 e236

e0 0 0 0 0 0 0 0 0
e1 0 1 1 0 1 0 0 1
e2 0 1 0 1 1 0 1 0
e3 0 0 1 1 1 1 0 0
e4 0 0 0 0 1 1 1 1
e5 0 1 0 1 0 1 0 1
e6 0 0 0 0 0 0 0 0
e7 0 1 0 1 0 1 0 1
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Table E.9: (0,3*):

e1234567 e123567 e67 e467 e134 e13 e25 e245

e0 0 0 0 0 0 0 0 0
e4 0 0 0 0 0 0 0 0
e1 0 1 0 1 0 1 0 1
e5 0 1 0 1 0 1 0 1
e6 0 1 1 0 1 0 0 1
e2 0 1 0 1 1 0 1 0
e7 0 1 1 0 1 0 0 1
e3 0 1 0 1 0 1 0 1

Table E.10: (0,7):

e1234567 e567 e247 e137 e125 e345 e236 e146

e0 0 0 0 0 0 0 0 0
e4 0 1 0 1 1 0 1 0
e1 0 1 1 0 0 1 1 0
e5 0 0 1 1 0 0 1 1
e6 0 0 1 1 1 1 0 0
e2 0 1 0 1 0 1 0 1
e7 0 0 0 0 1 1 1 1
e3 0 1 1 0 1 0 0 1

Table E.11: (4,3):

e1234567 e23 e13 e12 e4 e234 e134 e124

e0 0 0 0 0 0 0 0 0
e1 0 0 1 1 1 1 0 0
e2 0 1 0 1 1 0 1 0
e3 0 1 1 0 1 0 0 1

e567 0 0 0 0 1 1 1 1
e467 0 0 0 0 0 0 0 0
e457 0 0 0 0 0 0 0 0
e456 0 0 0 0 0 0 0 0
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Table E.12: (4,1):

e1234567 e23 e13 e12 e1234 e14 e24 e34

e0 0 0 0 0 0 0 0 0
e1 0 0 1 1 1 1 0 0
e2 0 1 0 1 1 0 1 0
e3 0 1 1 0 1 0 0 1

e567 0 0 0 0 0 0 0 0
e467 0 0 0 0 1 1 1 1
e457 0 0 0 0 1 1 1 1
e456 0 0 0 0 1 1 1 1

Table E.13: (4,5):

e1234567 e346 e13 e146 e1234 e126 e24 e236

e0 0 0 0 0 0 0 0 0
e1 0 1 1 0 1 0 0 1
e2 0 1 0 1 1 0 1 0
e3 0 0 1 1 1 1 0 0

e567 0 0 0 0 0 0 0 0
e467 0 1 0 1 1 0 1 0
e457 0 0 0 0 1 1 1 1
e456 0 1 0 1 1 0 1 0

Table E.14: (4,3*):

e1234567 e123567 e67 e1235 e134 e13 e25 e245

e0 0 0 0 0 0 0 0 0
e567 0 1 0 1 1 0 1 0
e1 0 1 0 1 0 1 0 1

e467 0 0 0 0 0 0 0 0
e457 0 0 1 1 0 0 1 1
e2 0 1 0 1 1 0 1 0

e456 0 0 1 1 0 0 1 1
e3 0 1 0 1 0 1 0 1
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Table E.15: (4,7):

e1234567 e1234 e247 e137 e125 e345 e236 e146

e0 0 0 0 0 0 0 0 0
e567 0 0 0 0 0 0 0 0
e1 0 1 1 0 0 1 1 0

e467 0 1 1 0 1 0 0 1
e457 0 1 1 0 0 1 1 0
e2 0 1 0 1 0 1 0 1

e456 0 1 0 1 0 1 0 1
e3 0 1 1 0 1 0 0 1

Table E.16: Octonions multiplication

ei e j e1 e2 e3 e4 e5 e6 e7

e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 −e5 −e6 −e7 −1 e1 e2 e3

e5 e4 −e7 e6 −e1 −1 −e3 e2

e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 −e6 e5 e4 −e3 −e2 e1 −1

Table E.17: Split-octonions multiplication

ei e j e1 e2 e3 e4 e5 e6 e7

e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 −e5 −e6 −e7 1 −e1 −e2 −e3

e5 e4 −e7 e6 e1 1 e3 −e2

e6 e7 e4 −e5 e2 −e3 1 e1

e7 −e6 e5 e4 e3 e2 −e1 1

Table E.18: Bi-quaternions multiplication

ei e j e1 e2 e3 e4 e5 e6 e7

e1 −1 e3 −e2 e5 −e4 e7 −e6

e2 −e3 −1 e1 e6 −e7 −e4 e5

e3 e2 −e1 −1 e7 e6 −e5 −e4

e4 e5 e6 e7 −1 −e1 −e2 −e3

e5 −e4 e7 −e6 −e1 1 −e3 e2

e6 −e7 −e4 e5 −e2 e3 1 −e1

e7 e6 −e5 −e4 −e3 −e2 e1 1
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Table E.19: Tri-complex multiplication

ei e j e1 e2 e3 e4 e5 e6 e7

e1 −1 e3 −e2 e5 −e4 e7 −e6

e2 e3 −1 −e1 e6 e7 −e4 −e5

e3 −e2 −e1 1 e7 −e6 −e5 e4

e4 e5 e6 e7 −1 −e1 −e2 −e3

e5 −e4 e7 −e6 −e1 1 −e3 e2

e6 e7 −e4 −e5 −e2 −e3 1 e1

e7 −e6 −e5 e4 −e3 e2 e1 −1

Table E.20: Split-bi-quaternions multiplication

ei e j e1 e2 e3 e4 e5 e6 e7

e1 −1 e3 −e2 e5 −e4 e7 −e6

e2 −e3 −1 e1 e6 −e7 −e4 e5

e3 e2 −e1 −1 e7 e6 −e5 −e4

e4 e5 e6 e7 1 e1 e2 e3

e5 −e4 e7 −e6 e1 −1 e3 −e2

e6 −e7 −e4 e5 e2 −e3 −1 e1

e7 e6 −e5 −e4 e3 e2 −e1 −1

Table E.21: Split-bi-split-quaternions multiplication

ei e j e1 e2 e3 e4 e5 e6 e7

e1 1 e3 e2 e5 e4 e7 e6

e2 −e3 −1 e1 e6 −e7 −e4 e5

e3 −e2 −e1 1 e7 −e6 −e5 e4

e4 e5 e6 e7 1 e1 e2 e3

e5 e4 e7 e6 e1 1 e3 e2

e6 −e7 −e4 e5 e2 −e3 −1 e1

e7 −e6 −e5 e4 e3 −e2 −e1 1

Table E.22: Split-tri-complex multiplication

ei e j e1 e2 e3 e4 e5 e6 e7

e1 1 e3 e2 e5 e4 e7 e6

e2 e3 1 e1 e6 e7 e4 e5

e3 e2 e1 1 e7 e6 e5 e4

e4 e5 e6 e7 1 e1 e2 e3

e5 e4 e7 e6 e1 1 e3 e2

e6 e7 e4 e5 e2 e3 1 e1

e7 e6 e5 e4 e3 e2 e1 1
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Table E.23: E.16 -1=0 and 1=1

ei e j 000 001 011 010 100 101 111 110
000 1 1 1 1 1 1 1 1
001 1 0 1 0 1 0 0 1
011 1 0 0 1 1 1 0 0
010 1 1 0 0 1 0 1 0
100 1 0 0 0 0 1 1 1
101 1 1 0 1 0 0 0 1
111 1 1 1 0 0 1 0 0
110 1 0 1 1 0 0 1 0

Table E.24: E.16: -1=1 and 1=0

ei e j 000 001 011 010 100 101 111 110
000 0 0 0 0 0 0 0 0
001 0 1 0 1 0 1 1 0
011 0 1 1 0 0 0 1 1
010 0 0 1 1 0 1 0 1
100 0 1 1 1 1 0 0 0
101 0 0 1 0 1 1 1 0
111 0 0 0 1 1 0 1 1
110 0 1 0 0 1 1 0 1

Table E.25: E.17 -1=0 and 1=1

ei e j 000 001 011 010 100 101 111 110
000 1 1 1 1 1 1 1 1
001 1 0 1 0 1 0 0 1
011 1 0 0 1 1 1 0 0
010 1 1 0 0 1 0 1 0
100 1 0 0 0 1 0 0 0
101 1 1 0 1 1 1 1 0
111 1 1 1 0 1 0 1 1
110 1 0 1 1 1 1 0 1
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Table E.26: E.17: -1=1 and 1=0

ei e j 000 001 011 010 100 101 111 110
000 0 0 0 0 0 0 0 0
001 0 1 0 1 0 1 1 0
011 0 1 1 0 0 0 1 1
010 0 0 1 1 0 1 0 1
100 0 1 1 1 0 1 1 1
101 0 0 1 0 0 0 0 1
111 0 0 0 1 0 1 0 0
110 0 1 0 0 0 0 1 0

Table E.27: E.18: -1=0 and 1=1

ei e j 000 001 011 010 100 101 111 110
000 1 1 1 1 1 1 1 1
001 1 0 1 0 1 0 1 0
011 1 0 0 1 1 0 0 1
010 1 1 0 0 1 1 0 0
100 1 1 1 1 0 0 0 0
101 1 0 1 0 0 1 0 1
111 1 0 0 1 0 1 1 0
110 1 1 0 0 0 0 1 1

Table E.28: E.18: -1=1 and 1=0

ei e j 000 001 011 010 100 101 111 110
000 0 0 0 0 0 0 0 0
001 0 1 0 1 0 1 0 1
011 0 1 1 0 0 1 1 0
010 0 0 1 1 0 0 1 1
100 0 0 0 0 1 1 1 1
101 0 1 0 1 1 0 1 0
111 0 1 1 0 1 0 0 1
110 0 0 1 1 1 1 0 0
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Table E.29: E.19: -1=0 and 1=1

ei e j 000 001 011 010 100 101 111 110
000 1 1 1 1 1 1 1 1
001 1 0 1 0 1 0 1 0
011 1 1 0 0 1 1 0 0
010 1 0 0 1 1 0 0 1
100 1 1 1 1 0 0 0 0
101 1 0 1 0 0 1 0 1
111 1 1 0 0 0 0 1 1
110 1 0 0 1 0 1 1 0

Table E.30: E.19 -1=1 and 1=0

ei e j 000 001 011 010 100 101 111 110
000 0 0 0 0 0 0 0 0
001 0 1 0 1 0 1 0 1
011 0 0 1 1 0 0 1 1
010 0 1 1 0 0 1 1 0
100 0 0 0 0 1 1 1 1
101 0 1 0 1 1 0 1 0
111 0 0 1 1 1 1 0 0
110 0 1 1 0 1 0 0 1

Table E.31: E.20: -1=0 and 1=1

ei e j 000 001 011 010 100 101 111 110
000 1 1 1 1 1 1 1 1
001 1 0 1 0 1 0 1 0
011 1 0 0 1 1 0 0 1
010 1 1 0 0 1 1 0 0
100 1 1 1 1 1 1 1 1
101 1 0 1 0 1 0 1 0
111 1 0 0 1 1 0 0 1
110 1 1 0 0 1 1 0 0
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Table E.32: E.20: -1=1 and 1=0

ei e j 000 001 011 010 100 101 111 110
000 0 0 0 0 0 0 0 0
001 0 1 0 1 0 1 0 1
011 0 1 1 0 0 1 1 0
010 0 0 1 1 0 0 1 1
100 0 0 0 0 0 0 0 0
101 0 1 0 1 0 1 0 1
111 0 1 1 0 0 1 1 0
110 0 0 1 1 0 0 1 1

Table E.33: E.21: -1=0 and 1=1

ei e j 000 001 011 010 100 101 111 110
000 1 1 1 1 1 1 1 1
001 1 1 1 1 1 1 1 1
011 1 0 0 1 1 0 0 1
010 1 0 0 1 1 0 0 1
100 1 1 1 1 1 1 1 1
101 1 1 1 1 1 1 1 1
111 1 0 0 1 1 0 0 1
110 1 0 0 1 1 0 0 1

Table E.34: E.21: -1=1 and 1=0

ei e j 000 001 011 010 100 101 111 110
000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
011 0 1 1 0 0 1 1 0
010 0 1 1 0 0 1 1 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
111 0 1 1 0 0 1 1 0
110 0 1 1 0 0 1 1 0
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Table E.35: E.22: -1=0 and 1=1

ei e j 000 001 011 010 100 101 111 110
000 1 1 1 1 1 1 1 1
001 1 1 1 1 1 1 1 1
011 1 1 1 1 1 1 1 1
010 1 1 1 1 1 1 1 1
100 1 1 1 1 1 1 1 1
101 1 1 1 1 1 1 1 1
111 1 1 1 1 1 1 1 1
110 1 1 1 1 1 1 1 1

Table E.36: E.22: -1=1 and 1=0

ei e j 000 001 011 010 100 101 111 110
000 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0
011 0 0 0 0 0 0 0 0
010 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0
101 0 0 0 0 0 0 0 0
111 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
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