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Abstract

We investigate the low-temperature behavior of a system in a spontaneously broken sym-

metry phase, described by an Euclidean quantum ϕ4
d�1 model with quenched disorder.

We study the effects of the disorder linearly coupled to the scalar field, using a series

representation for the moments of the partition function. The result of the one-loop ap-

proximation for the Euclidean quantum ϕ4
d�1 model with quenched disorder, obtained

using the distributional zeta-function, was extended to the two-loop approximation.

We begin by discussing some aspects of quantum field theory at finite temperature

for a clean system in the spontaneously broken symmetry phase at low temperatures.

We also introduce a discussion about disordered systems, random fields and the average

over realizations of the disorder for extensive quantities. The distributional zeta-function,

an alternative method to the replica trick, is presented to demonstrate the contributions

to the renormalized squared mass given by both one-loop and two-loop diagrams in this

approach.

Keywords: disorder, quenched, euclidean, fields
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Resumo

Nós investigamos o comportamento em baixas temperaturas de um sistema em uma

fase de simetria quebrada espontaneamente, descrito por um modelo quântico euclidiano

ϕ4
d�1 com desordem quenched. Estudamos os efeitos da desordem acoplada linearmente

ao campo escalar, utilizando uma representação em série para os momentos da função de

partição. O resultado da aproximação de um laço para o modelo quântico euclidiano ϕ4
d�1

com desordem quenched, obtido usando a função zeta distribucional, foi estendido para a

aproximação de dois laços.

Começamos discutindo alguns aspectos da teoria quântica de campos em temper-

atura finita para um sistema limpo na fase de quebra espontânea de simetria em baixas

temperaturas. Também introduzimos uma discussão sobre sistemas desordenados, cam-

pos aleatórios e a média sobre realizações da desordem para quantidades extensivas. A

função zeta distribucional, um método alternativo ao truque do replica, é apresentada para

demonstrar as contribuições para a massa quadrada renormalizada dadas por diagramas

de um e dois laços nessa abordagem.

Palavras-chave: desordem, quenched, euclideano, campos

iii



Contents

1 Introduction 1

2 The λϕ4 Euclidean quantum field theory 3

2.1 Generating functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Multi-loop expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 The Euclidean propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Spontaneously broken symmetry . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Evaluation of one-loop diagram . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Two-loops diagram evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.1 Double-Tadpole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.2 Double Scoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.3 Sunset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Disordered systems 17

3.1 Types of disorder in physical systems . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Annealed disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.2 Quenched disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Average over the disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Spin glass model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Edwards-Anderson model . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Sherrington-Kirkpatrick model . . . . . . . . . . . . . . . . . . . . . 23

3.4 Random field model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 Random Field Ising Model . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.2 Random field in the scalar Landau-Ginzburg model . . . . . . . . . 25

3.5 The Replica Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.1 A brief discussion about the method . . . . . . . . . . . . . . . . . 26

iv



3.5.2 The average free energy in the replica approach . . . . . . . . . . . 27

3.6 The Distributional Zeta-function method . . . . . . . . . . . . . . . . . . . 29

4 The λϕ4 Euclidean quantum field theory with quenched disorder 33

4.1 The effective action functional for the quenched disorder system . . . . . . 33

4.2 One-loop Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Two loop evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Double-Tadpole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.2 Double Scoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.3 Sunset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Conclusion 47

Bibliography 49

v



Chapter 1

Introduction

Disorder or randomness in a physical system can emerge from many different sources,

and as a consequence, disordered systems have been extensively investigated for decades.

Disorder systems have posed quite a challenge in both theoretical and experimental con-

texts. For example, in statistical mechanics [1, 2, 3, 4] and condensed matter physics [5].

The key point is to extend the understanding of criticality of clean systems to systems with

inhomogeneities or impurities [6]. In statistical field theory, there are two types of dis-

order systems: annealed and quenched. Here, we are specifically interested in discussing

quenched disorder systems. This type of disorder appears in many condensed matter sys-

tems, such as disordered metals, impure semiconductors, and classical or quantum spin

systems [2, 3, 7, 8]. Unlike annealed disorder, treating quenched disorder requires evalu-

ating the average of the logarithm of the partition function [9]. To address this problem,

Edwards and Anderson proposed the replica trick [10]. Although the replica trick has

been used in the literature for decades, a lack of mathematical rigor and the problem of

interpreting the results from a physical standpoint have been persistent issues with this

approach. As a result, alternative methods have been proposed [11, 12]. In this thesis, we

employ an alternative method for averaging the disorder, proposed by Svaiter and Svaiter

[13], known as the distributional zeta-function.

The aim of this work is to study the effects of quenched disorder on systems in the

spontaneously symmetry-broken phase at low temperatures. Specifically, we investigate

these effects on the two-loop contributions to the renormalized squared mass. Recent ex-

perimental and theoretical advances have generated increased interest in low-temperature
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physics and quantum phase transitions [14, 15, 16, 17, 18]. The intersection of these two

research areas, quenched disorder and low temperatures [19, 20, 21, 22, 23], leads us to

several questions, such as how models at ordered phase in low temperatures are affected

by randomness.

Using the distributional zeta-function, we assume some probability distribution on

the space of realizations of the disorder to discuss the effect of the disorder field in a

Euclidean quantum scalar λϕ4
d�1 model at low temperatures in the broken symmetry

phase. Criticality in these systems is induced by quantum and disorder fluctuations.

In this case, the ground states of systems change in some fundamental way tuned by

non-thermal control parameters [24, 25, 26, 27].

To discuss the effect of quantum fluctuations in a system with disorder in the symmetry-

broken phase at low temperatures, we will use the imaginary-time formalism [28, 29, 30].

In this context, since the disorder is strongly correlated in imaginary time, the equiva-

lence between a disorder Euclidean quantum λϕ4
d�1 model and a classical model defined

on R
d � S1 will be used. For a pure system with this topology of space, the topological

generation of mass has been discussed in the literature [31, 32, 33, 34, 35, 36, 37]. The

study of the modified dynamics induced by the disorder, in this context, was made by

Heymans et. al [38].

The structure of this work is as follows. In chapter 2, we start with a brief dis-

cussion about how to obtain the Euclidean propagator and the multi-loop expansion in

the quantum field theory at finite temperature context. This is followed by the analytic

regularization technique to evaluate the loop expansion. In sections 2.5 and 2.6, the renor-

malized thermal mass in the one-loop and two-loop approximation for the pure system in

the broken symmetry phase is discussed. In chapter 3, we discuss the disorder systems and

the averaging over the disorder realizations, followed by the distributional zeta-function

method. In chapter 4, the effect of disorder on the renormalized squared mass in the

one-loop and two-loop approximation, in the symmetry-broken phase, is discussed. The

conclusions are given in chapter 5. We use the units ℏ � c � kB � 1.
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Chapter 2

The λϕ4 Euclidean quantum field

theory

In this chapter, we will discuss some aspects of a scalar field at finite temperature in the

imaginary time formalism [39]. In the first part, we will discuss the generating functionals

and pertubative expansion of the two-point functions. Then, will be presented how to

define the Euclidean propagators for a scalar field with a λϕ4 potential, incorporating the

Matsubara frequencies. We will then proceed with the demonstration and evaluation of

the loop contributions of the two-point Green functions within the context of the λϕ4

self-interaction with finite temperature.

2.1 Generating functional

In this section will be presented the discussion of generating functionals of Euclidean

field theory. We begin with the functional representation of the Euclidean scalar field

theory, defined in the Euclidean space R d�1, in the presence of a scalar source J given by

ZrJs �
»
rdϕs exp

�
�
�
Spϕq �

»
dd�1x Jpxqϕpxq


�
. (2.1)

The n-point correlation function will be given by

⟨ϕpxq1q � � �ϕpxnq⟩J � ZrJs�1
n¹

i�1

δn

δJpxiqZrJs. (2.2)
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2.1. GENERATING FUNCTIONAL

When J Ñ 0 and in the symmetric phase, only correlations involving an even number of

points do not vanish. They are translational invariant, and we will denote them by [40]

⟨ϕpx1q � � �ϕpxnq⟩ � ZrJs�1
n¹

i�1

δn

δJpxiqZrJs
�����
J�0

�
» n¹

1

�
dd�1pk

p2πqd e
�pk�xk



p2πqd�1δ

�¸
pk

	
Gnpp1, � � � , pnq.

(2.3)

WhereGn is the n-point Green function. The momentum conservation distribution δ p° pq
has been extracted, so that in momentum space Gn is defined on the linear manifold°
p � 0. The free energy, W � lnZrJs, is the generating functional for the connected

correlation functions, Gpnq
c ptxnuq. In the zero source limit,

Gpnq
c ptxnuq � ⟨ϕpx1q � � �ϕpxnq⟩c �

n¹
i�1

δn

δJpxiqW rJs
�����
J�0

. (2.4)

The meaning of this terminology comes from the fact that only connected diagrams ap-

pear in the perturbation expansion. From W rJs its possible to obtain the generating

Figure 2.1: These are examples for the a) connected and b) disconnected diagrams. The

connected one share a point with the line that represents the 2-points Green function (or the

propagator) and the disconnected one do not share any point [40, 41, 42].

functional of one particle irreducible (1PI) Green functions, called in the literature as

vertex functions, noted by Γ rϕs, by applying a Legendre transformation. In the pertur-

bation theory, the contributing diagrams cannot be disconnected by cutting an internal

line, and propagators corresponding to the external lines are omitted. This is the origin

of the qualification 1PI1. The quantity Γ rϕs is defined through

Γ rϕs �
»

dd�1x Jpxqϕpxq �W rJs. (2.5)

1For a detailed discussion on one particle irreducible see [42].
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2.2. MULTI-LOOP EXPANSION

Through the above expression, we can show that

δΓ rϕs
δϕpxq � Jpxq (2.6)

and
δW rJs
δJpxq � ϕpxq � ⟨ϕpxq⟩J . (2.7)

When J tends to be uniform, the free energy appears as the integral of a constant density.

The same is true for Γ rϕs when ϕ is uniforms, and we write in this case

Γ rϕs �
»

dd�1x V pϕq. (2.8)

The effective potential V pϕq, which takes into account the fluctuations, is a generalization

of the corresponding term in the Lagrangian of the system.

Returning to the general case, the vertex functions are obtained by expanding Γ rϕs in

increasing powers of ϕ, as one does with W rJs to get the connected functions. Through

this procedure, it is possible to demonstrate that the second derivative of the vertex

function is the functional inverse of the connected 2-point Green function [40, 42] and will

be given as follows
B2Γ rϕs
Bϕ2 � G�1

c ppq, (2.9)

where Gcppq is the Fourier transform of Gp2q
c px1, x2q.

2.2 Multi-loop expansion

Here we will present the expansion to obtain the one- and two-loops. Considering the

Euclidean λϕ4 theory, we began by expanding the generating functional ZrJs around the

bare coupling constant λ as

ZrJs �
»
rdϕs exp

�
�
�
S �

»
dd�1x Jϕ


�

�
8̧

n�0

�»
dd�1x V

�
δ

δJ



n

Z0rJs,
(2.10)

where S is the action functional and Z0rJs is the Gaussian generation with an arbitrary

source J. The last term of the above expression can be written as

Z0rJs � N0 exp
�

1
2

»
dd�1x

»
dd�1y JpxqG0px� yqJpyq

�
(2.11)
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2.2. MULTI-LOOP EXPANSION

where N0 is the normalization factor, defined by N0 � det1{2G0px � yq, and G0 is the

free propagator. The unrenormalized perturbative series is obtained by expanding the

first exponential and by performing, term by term, the differentiation operations. These

implicitly contain Wick’s theorem in the form

⟨ϕpx1 � � � x2n⟩0 �
2n¹
i�1

δ2n

δJpxiq
1

2nn!pZ0rJsqn
�����
J�0

�
¸

distinct terms
G0pxa1 � xa2q � � �G0pxa2n�1 � xa2nq.

(2.12)

It is convenient to express the perturbative rules directly in momentum space for the

vertex functions. To each term of the expansion of ZrJs is associated a representative

diagram combining vertices and lines. Only the irreducible diagram are considered in the

calculation of Γn. For the ϕ4 interaction, each vertex is associated with a factor �λ and a

momentum conservation δ-function, p2πqd�1δpΣpq, for the sum Σp of internal and external

momenta entering the vertex. In this thesis we will restrict the case for the 2-point vertex

functions. The first terms of the vertex function will the terms associated to Opλ0q, Opλ1q
and Opλ2q. The terms associated to order 1 and 2 of λ are called in the literature one-

and two-loops, their diagram representation can be see in fig. 2.2.

Figure 2.2: The first diagram, (a), represents the 1-loop diagram and is commonly referred

to as the tadpole diagram. The remaining three diagrams correspond to the 2-loop diagrams.

The first 2-loop diagram, (b), is a 1PR (one-particle reducible) diagram, while the other two,

(c) and (d), are 1PI (one-particle irreducible) diagrams. These last two diagrams are known as

the double scoop and sunset diagrams, respectively.
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2.2. MULTI-LOOP EXPANSION

In the following we will present the one- and two-loops contributions of the vertex

function.

The one-loop contribution is the tadpole diagram represented by Figure 2.2-a and given

by

T1 � �λ2
» dd�1k

p2πqd�1∆ pkq , (2.13)

where ∆ppq is the propagator.

The two-loop diagrams consist of three different diagrams. The first one, represented

by Figure 2.2-b, will be called the double tadpole diagram. The double tadpole diagram

is a one-particle reducible (1PR) diagram. Therefore, we can split this diagram into two

parts, each with an f -factor, as follows

T2 �fT2pλq
» dd�1k

p2πqd�1∆ pkq , (2.14)

T3 �fT3pλq
» dd�1l

p2πqd�1∆ plq . (2.15)

This diagram can be treated as a one-loop diagram.

The next two-loop contribution is called the double scoop diagram, represented by

Figure 2.2-c. This diagram is one-particle irreducible (1PI), so we cannot split it like the

double tadpole. The diagram is given by

D � fDpλq
» dd�1k

p2πqd�1

» dd�1l

p2πqd�1∆ pkq r∆ plqs2. (2.16)

This diagram can also be written as D � f T1pB{Bm2
0qT1.

The last two-loop contribution is a non-trivial diagram known as the sunset diagram,

represented by Figure 2.2-d. Similar to the previous diagram, this is a 1PI diagram. As

we can see in the representation, the third momentum can be written as the external

momentum, P, minus the other momenta. Therefore, the sunset diagram is given by

Σ � fΣpλq
» dd�1k

p2πqd�1

» dd�1l

p2πqd�1
∆ pkq∆ plq

r∆ pP � k � lqs�1 (2.17)

In further sections we will consider the thermal versions of these diagrams. The

differences between the non-thermal and thermal will presented in the next sections.
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2.3. THE EUCLIDEAN PROPAGATOR

2.3 The Euclidean propagator

We begin with the action functional for a Euclidean quantum scalar field at finite

temperature, defined in the space Rd � S1, given by

Sβpϕq �
» β

0
dτ
»

ddx

�
ϕpτ,xq

�
� B2

Bτ 2 �∆� µ2
0



ϕpτ,xq � V pϕq

�
, (2.18)

where ∆ is the Laplacian in R
d, ϕpτ,xq is a real field, µ0 is a parameter with mass

dimension, and the self-interaction is contained in V pϕq. The generating functional of

correlation functions is defined as

ZβrJs � Nβ

»
C
rdϕs exp

�
�
�
Sβpϕq �

» β

0
dτ
»

ddx Jpτ,xqϕpτ,xq

�

, (2.19)

where rdϕs represents a functional measure, given by rdϕs �±
τ,x dϕpτ,xq, and C denotes

the path defined by the periodic condition ϕpx, τq � ϕpx, τ�βq, and Nβ is a normalization

factor. From now on, the subscript β, on the functional and action, will be omitted for

simplification purpose. The n-point correlation functions of the model are given by

⟨ϕpτ1,x1q � � �ϕpτn,xnq⟩ � 1
Z

»
rdϕs

n¹
i�1

ϕpτi,xiq exp r�Spϕqs . (2.20)

where Z is the partition function for a non-interacting scalar field with source J � 0. From

the generating functional of correlation functions (2.19), we can define the generating

functional of connected functions W rJs. By applying the periodic condition on Spϕq, we

can rewrite (2.19) as

ZrJs � Ne
�⟨V p δ

δJ q⟩β exp
�

1
2 ⟨Jpτx,xq∆βpτx � τy,x � yqJpτy,yq⟩β

�
, (2.21)

where ⟨� � �⟩β means the integration over x and τ in the imaginary-time interval r0, βs. The

Euclidean propagator, ∆βpτ,xq, satisfies the following expression�
� B2

Bτ 2 �∆� µ2
0



∆βpτx � τy,x � yq � δpτx � τyqδdpx� yq. (2.22)

Let us write the Fourier transform in the space coordinate of ∆β as

∆βpτx � τy,x � yq �
» ddk

p2πqd e
ik�px�yq∆βpτx � τy,kq, (2.23)

if we apply (2.23) to (2.22), it is possible to verify that ∆βpτx � τy,kq satisfies the differ-

ential equation �
� B2

Bτ 2 � k2 �m2
0



∆βpτx � τy, kq � δpτx � τyq. (2.24)
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2.4. SPONTANEOUSLY BROKEN SYMMETRY

To write the Fourier transform of the Euclidean propagator, we need to write the

Fourier transform in imaginary time as, with τ P r0, βs,

∆βpτ,xq � 1
β

¸
nPZ

e�iωnτ∆βpωn,kq, (2.25)

and the inverse transform defined as

∆βpωn,kq �
» β

0
dτeiωnτ∆βpτ,xq. (2.26)

Substituting (2.25) in (2.23) we have that

∆βpτx � τy,x � yq � 1
β

¸
nPZ

» d3k

p2πq3 e
�ipωnτ�k�xq∆βpωn,kq, (2.27)

then, the Fourier transform of the Euclidean propagator is given by

∆βpωn,kq � 1
ω2

n � ω2
k

. (2.28)

The ωk is the natural frequency, defined by ω2
k � k2 � µ2

0, and ωn are the Matsubara

frequencies. For the scalar field, ωn � 2πn
β

, and for Dirac fields, ωn � πp2n�1q
β

.

2.4 Spontaneously broken symmetry

In this section, we discuss the spontaneously broken symmetry phase of the λϕ4 theory.

We will examine the contributions to the renormalized squared mass in this scenario. Let

us begin by writing the action functional, where we replace µ2 with �µ2 to account for

the spontaneous symmetry breaking,

Spϕq �
» β

0
dτ
»

ddx

�
ϕpτ,xq

�
� B2

Bτ 2 �∆� µ2
0



ϕpτ,xq � λ

4!ϕ
4pτ,xq

�
(2.29)

This action possesses the discrete symmetry ϕ Ñ ϕ1 � �ϕ. However, when µ2 ¡ 0, this

symmetry is spontaneously broken by the vacuum, leading to the development of a non-

zero expectation value for ϕ. We denote this expectation value as ⟨0|ϕ |0⟩ � v, where v

is

v �
�
µ2

λ


 1
2

. (2.30)

Perturbing around this vacuum, we can define a shifted field

ϕ1 � ϕ� v. (2.31)

9



2.5. EVALUATION OF ONE-LOOP DIAGRAM

In terms of this field, we have the following potential

V pϕq � µ2ϕ2 � λvϕ3 � λ

4ϕ
4 (2.32)

In this new theory, the effective mass squared will be given by

m2
0 � 3λv2 � µ2. (2.33)

This new theory leads us to rewrite the correction to the squared mass in the one-loop

approximation

m2
R � �µ2 � δµ2 �∆m2pβq (2.34)

as

m2
Rpβ, µq � m2

0 � δm2
0 � f1∆m

2
1pβ, µq � f2∆m2pβ, µq. (2.35)

In the above expression, δm2
0 represents the counterterm arising from the renormalization

procedure. The factors f1 and f2 are the symmetry factors associated with the mass

contributions. The terms∆m correspond to the contributions from the one-loop diagrams.

In this case, due to the shift from the spontaneously broken symmetry, the one-loop

contributions arise from the tadpole and the bubble diagram (fig. 2.3).

Figure 2.3: The first diagram is the Tadpole diagram, and the second diagram is the self-energy

diagram, often referred to as the Bubble diagram. The Bubble diagram arises from the shift in

the spontaneously broken symmetry scenario.

2.5 Evaluation of one-loop diagram

In this section, we will discuss the analytic regularization of the one-loop approx-

imation and present its contribution to the renormalized squared mass. We start by

considering the mass correction defined by the following expression

∆m2
spβ, µq �

F pλ, µ, sq
β

¸
nPZ

» ddp

p2πqd
1

pp2 �m2
0 � ω2

nqs
, (2.36)
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2.5. EVALUATION OF ONE-LOOP DIAGRAM

where ωn � 2πn
β

and F pλ, µ, sq represents an arbitrary coupling constant associated with

each correction. The equation can be rearranged as follows

∆m2
spβ, µq �

F pλ, µ, sqβ
2d�1π

d
2�1Γ

�
d
2

� » 8

0
dp pd�1

¸
nPZ

�
πn2 � β2

4π
�
p2 �m2

0
�
�s

(2.37)

and this function is defined in the region where the above integral converges, specifically

for Repsq ¡ s0. To further analyze this expression, we can perform a Mellin transform

[43, 44], which is defined by

1
pP 2 � αqs �

1
Γ psq

» 8

0
dt ts�1 exp

��pP 2 � αqt� , (2.38)

the mass correction can be rewritten as

∆m2
spβ, µq �

F pλ, µ, sqβ
2d�1π

d
2�1Γ

�
d
2

�
Γ psq

¸
nPZ

» 8

0
dp pd�1

» 8

0
dt ts�1 exp

�
�
�
πn2 � β2

4π
�
p2 �m2

0
�


t

�
.

(2.39)

Let us define the dimensionless quantity r2 � β2p2

4π
. After this variable change, the follow-

ing function is obtained

∆m2
spβ, µq �

F pλ, µ, sqβ1�d

2πΓ
�

d
2

�
Γ psq

¸
nPZ

» 8

0
dr rd�1

» 8

0
dt ts�1 exp

�
�
�
πn2 � r2 � β2

4πm
2
0



t

�
.

(2.40)

After performing the r integral, the result will be

∆m2
spβ, µq � Fdpλ, β, µ, sq

» 8

0
dt ts� d

2�1 exp
�
�m

2
0β

2

4π t

�
Θptq, (2.41)

with

Fdpλ, β, µ, sq � F pλ, µ, sq
2πΓ psq

�
1
β


d�1

(2.42)

and Θptq being the Jacobi Θ-function, given by

Θpνq �
¸
nPZ

exp
��πn2ν

�
. (2.43)

We can split (2.41) into two parts by considering the t-integral over the intervals r0, 1s
and r1,8s. By utilizing the symmetry of the Θ-function, we can rewrite the interval r0, 1s
as r1,8s. After these modifications, we obtain

∆m2
s,1pβ, µq �

Fdpλ, β, µ, sq
2

» 8

1
dt ts� d

2�
1
2 exp

�
�m

2
0β

2

4πt

�
Θptq (2.44)

11



2.6. TWO-LOOPS DIAGRAM EVALUATION

and

∆m2
s,2pβ, µq �

Fdpλ, β, µ, sq
2

» 8

1
dt ts� d

2�1 exp
�
�m

2
0β

2

4π t

�
Θptq. (2.45)

From the definition of the ψ-function, ψpνq � °8
n�1 exp r�πn2νs and ψpνq � 1

2pΘpνq�
1q, we can rewrite ∆m2

spβ, µq as having four contributions. Therefore, these contributions

are given by

I
p1q
d pβ, sq � 2

» 8

1
dt ts� d

2�1 exp
�
�m

2
0β

2

4π t

�
ψptq, (2.46)

I
p2q
d pβ, sq � 2

» 8

1
dt ts� d

2�
1
2 exp

�
�m

2
0β

2

4πt

�
ψptq, (2.47)

I
p3q
d pβ, sq �

» 8

1
dt ts� d

2�1 exp
�
�m

2
0β

2

4π t

�
, (2.48)

I
p4q
d pβ, sq �

» 8

1
dt ts� d

2�
1
2 exp

�
�m

2
0β

2

4πt

�
. (2.49)

With the above functions, our mass correction will be given by

∆m2
spβ, µq �

Fdpλ, β, µ, sq
2

4̧

k�1
I
pkq
d pβ, sq. (2.50)

From this function, we can obtain the result for the tadpole and bubble diagrams by

setting s � 1 and s � 2, respectively. For further discussion about these diagrams, see

[37, 38].

2.6 Two-loops diagram evaluation

In this section, we will present the thermal corrections for the two-loop approximation

in the context given in the previous section. The two-loop contributions to the renormal-

ized squared mass correction are given by

m2
Rpβ, µq � m2

0 � δm2
0 � fp2q∆m

2
p2qpβ, µq � fp3q∆m

2
p3qpβ, µq. (2.51)

where m2
0 is the bare squared mass, δm2

0 is the counterterm from the renormalization

procedure, fp2q and fp3q are the immaterial symmetry factors for the two-loop contribu-

tions, and ∆m2
p2qpβ, µq and ∆m2

p3qpβ, µq are the mass corrections from the double scoop

and sunset diagrams, respectively.
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2.6. TWO-LOOPS DIAGRAM EVALUATION

Although the double tadpole diagram is a two-loop diagram, it does not contribute to

the mass correction. However, it will have the same result as the one-loop diagram. We

will evaluate all two-loop diagrams, including the double tadpole. Let us evaluate each

two-loop diagram independently.

2.6.1 Double-Tadpole

Our first task is to evaluate the double tadpole diagram, represented by figure 2.2-b.

To do this, we will separate the diagram into two branches by cutting the external leg

between both loops. Let us perform the calculation of (2.14 - 2.21). After the Mellin

transform and momentum integration, the mass correction of this diagram will have the

following form

∆m2
p1q,p12q

pβ, µq � Fp12q
¸
nPZ

» 8

0
dt t d

2 exp
�
�m

2
0β

2t

4π

�
exp

��πn2t
�
, (2.52)

here, the second subscript represents the first and second branch of the diagram. It is

easy to see that the above function is the same as (2.41) with s � 1, as expected. For the

calculation of the F -factor for each branch, we have that [45, 46]

m2 � m2
R

�
1�

8̧

ν�1

8̧

η�1

bνηλ
η
R

pn� 4qν
�
,

λ � µ4�n

�
λR �

8̧

ν�1

8̧

η�1

aνηλ
η
R

pn� 4qν
�
.

(2.53)

As a trivial diagram, the result of this loop will be the same as discussed before, for the

one-loop. We can verify that each part of this diagram will have the result (2.50) for

s � 1,

∆m2
p1q,1pβ, µq � F1pλ, β, µq

4̧

k�1
Ik

d pβ, 1q, (2.54)

∆m2
p1q,2pβ, µq � F2pλ, β, µq

4̧

k�1
Ik

d pβ, 1q (2.55)

and the F -factor as

F1pλ, β, µq � � 3λ2
R

2p4πq3
pµ2q4�d

4� d
β1�d, (2.56)

F2pλ, β, µq � �λ
2
Rm

2
R

2p4πq3
pµ2q4�d

4� d
β1�d. (2.57)
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2.6. TWO-LOOPS DIAGRAM EVALUATION

2.6.2 Double Scoop

The next diagram to be evaluated is the double scoop. This diagram is defined as

(2.16). As we can see, the momenta in this diagram are not connected. However, we

can work on each momentum integral independently. Let us repeat it here for practical

purposes

∆m2
p2qpβ, µq �

p�λRq2pµ2q4�d

4β2

¸
n,rPZ

» ddk

p2πqd
» ddl

p2πqd∆β pωn,kq r∆β pωr, lqs2. (2.58)

Now we can begin by transforming both integrals as follows

1
β

» 8

�8

ddk

p2πqd
1

pk2 �m2
0 � ω2

nq
� β

2d�1π
d
2�1Γ

�
d
2

� » 8

0
dk kd�1

�
πn2 � β2

4π
�
k2 �m2

0
�
�1

,

(2.59)

and

1
β

» 8

�8

ddl

p2πqd
1

pk2 �m2
0 � ω2

rq
� β

2d�1π
d
2�1Γ

�
d
2

� » 8

0
dl ld�1

�
πr2 � β2

4π
�
l2 �m2

0
�
�2

.

(2.60)

Here, in both integrals, we can define dimensionless variables as K2 � β2k2

4π
and L2 � β2l2

4π
.

By repeating the Mellin transform procedure, the integrals can be rewritten as follows

k-integral � β1�d

2πΓ
�

d
2

� ¸
nPZ

» 8

0
dK Kd�1

» 8

0
dt1 exp

�
�
�
πn2 �K2 � β2

4πm
2
0



t1

�
, (2.61)

l-integral � β1�d

2πΓ
�

d
2

� ¸
rPZ

» 8

0
dL Ld�1

» 8

0
dt2 t2 exp

�
�
�
πr2 � L2 � β2

4πm
2
0



t2

�
. (2.62)

As we can see, after performing both integrations, we will obtain the same result as

(2.41) for s equal to 1 and 2, as expected. These integrals can be written as

k-integral � β1�d

2π

» 8

0
dt1t

� d
2

1 exp
�
�β

2

4πm
2
0t1

�
Θpt1q, (2.63)

l-integral � β1�d

2π

» 8

0
dt2 t

1� d
2

2 exp
�
�β

2

4πm
2
0t2

�
Θpt2q. (2.64)

The result, after all the procedures described in the previous section, will be

∆m2
p2qpβ, µq �

λ2
R

p4πq2
pµ2q4�d

pβ2qd�1

�
4̧

k�1
I
pkq
d pβ, 1q

��
4̧

l�1
I
plq
d pβ, 2q

�
(2.65)
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2.6. TWO-LOOPS DIAGRAM EVALUATION

2.6.3 Sunset

The only non-trivial diagram, and the last of the two-loop contributions to be evalu-

ated, is the sunset diagram, which was previously commented on and defined by (2.17).

This diagram is more challenging to evaluate due to the connected momenta and frequen-

cies. Let us start by writing the diagram, with the Mellin transform already performed,

as follows

∆m2
p3qpβ, µq �

λ2
Rpµ2q4�d

β2

¸
n,rPZ

» 8

0

ddk

p2πqd
» 8

0

ddl

p2πqd
» 8

0
rdXs exp

"
�x

�
β2

4π
�
k2 �m2

0
�� πn2

�

�y
�
β2

4π
�
l2 �m2

0
�� πr2

�
� z

�
β2

4π
�pp� k � lq2 �m2

0
�� πpt� n� rq2

�*
,

(2.66)

where rdXs � dxdydz. Now the momenta integrations will be performed, and after some

rearrangements, the obtained result will be

∆m2
p3qpβ, µq �

λ2
Rpµ2q4�d

4d�1β2d

¸
n,rPZ

» 8

0
rdXs c 1�d

2 exp
�
�π

�
β2

4π2m
2
0px� y � zq � β2

4π2 p2xyz

c


�

� exp
��π �n2x� r2y � pt� n� rq2z��

(2.67)

with c � xy � xz � yz. To continue the evaluation, we need to rearrange the frequency

part. To do this, a Poisson summation can be performed, and the desired form will be

achieved as

∆m2
p3qpβ, µq �

λ2
Rpµ2q4�d

p4β2qd
¸

n,rPZ

» 8

0
rdXs c� d

2 exp
�
�π

�
β2

4π2m
2
0px� y � zq � β2

4π2p
2xyz

c


�

� exp
�
�π
c

�
n2py � zq � r2px� zq � 2rnz

�� iβp0z
pny � rxq

c

�
,

(2.68)

here we perform some rearrangements by defining p � pp, p0q and t � β
2π
p0. Now we can

split the above function for n, r � 0 and n, r � 0. For the n, r � 0 we have that

∆m2
p3qpβ, µq|n,r�0 � λ2

Rpµ2q4�d

p4β2qd
» 8

0
rdXs c� d

2 exp
�
�π

�
β2

4π2m
2
0px� y � zq � β2

4π2p
2xyz

c


�
.

(2.69)
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2.6. TWO-LOOPS DIAGRAM EVALUATION

For n, r � 0 we can show that

∆m2
p3qpβ, µq|n,r�0 � λ2

Rpµ2q4�d

p4β2qd
» 8

0
rdXs c� d

2 exp
�
�π

�
β2

4π2m
2
0px� y � zq � β2

4π2p
2xyz

c


�

�
�

8̧

n,r�0
e�

π
c rn2py�zq�r2px�zq�2rnzs�iβp0z

pny�rxq
c � 1

�
,

(2.70)

As the only other possible divergence emerges from the case n � 0,r � 0 or n � 0,r � 0,

we can set r � 0 and obtain

∆m2
p3qpβ, µq|n�0,r�0 � λ2

Rpµ2q4�d

p4β2qd
» 8

0
rdXs c� d

2 exp
�
�π

�
β2

4π2m
2
0px� y � zq � β2

4π2p
2xyz

c


�

�
�
Θ

��βp0zy

2c

���y � z

c



� 1

�
,

(2.71)

The case r � 0 can be achieved by setting n � 0 in (2.70). In this case, we obtain

the same function with y Ñ x in the θ-function. The evaluation of these diagrams in

the pure system has already been done in the literature, where they are separated into

non-thermal and thermal contributions [37].
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Chapter 3

Disordered systems

Statistical mechanics has been successful in describing the macroscopic properties of

many condensed matter systems, such as phase transitions and ordered states, by assum-

ing translational invariance as idealized homogeneous systems. However, real systems

often exhibit inhomogeneities and impurities that break, for example, translational in-

variance [6].

In this section, we will discuss some generalities of the types of disorder, with a par-

ticular focus on quenched disorder. We will also introduce some aspects of glassy systems

and random fields. While we will briefly mention the replica trick, the main emphasis

will be on the discussion of the distributional zeta-function method, which is the primary

method used in this study.

3.1 Types of disorder in physical systems

Disorder or randomness in a physical system can arise from various sources, including

impurity atoms, vacancies in a crystal, dislocations, or grain boundaries in a crystal lattice,

among others. In the study of disorder systems, two types of disorder are commonly

distinguished: annealed disorder and quenched disorder.

3.1.1 Annealed disorder

In systems with annealed disorder, the fluctuations of the degrees of freedom associ-

ated with impurities occur on a timescale much smaller than the measurement time of
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3.1. TYPES OF DISORDER IN PHYSICAL SYSTEMS

the system. As a result, the disorder is in thermal equilibrium with other degrees of free-

dom in the system. This puts the disorder and non-disorder variables on equal footing.

To study such systems, it is necessary to compute the partition function by summing

over all configurations of the original components that describe the pure system and the

impurities.

To illustrate this, let us consider an example. Suppose we have a pure piece of fer-

romagnetic material that is heated to its melting temperature and then slowly cooled to

crystallize while adding some impurities. In this case, the impurities will be in thermal

equilibrium with the degrees of freedom of the original components of the pure system.

The Gibbs distribution can be used to model the impurities [47, 48]. In general, the

partition function Z of the system can be written as

Z � Trph,sqe
�βHph,sq, (3.1)

where h and s represent the impurity and system degrees of freedom, respectively. H is

the Hamiltonian of the system, and β is the inverse temperature. The disorder variables

being in thermal equilibrium with the system degrees of freedom allows us to treat them

in the same manner. This simplifies the study of annealed disorder systems significantly.

Now, the free energy can be rewritten as follows

F � � 1
βV

lnZ. (3.2)

As we can see, the thermodynamic properties of this class of systems are obtained from

the partition function, which is traced over the disorder in the same way that we trace over

the thermal variables. Although annealed disorder has considerable effects on systems in

which it appears, examples can be found in references such as [49, 50, 51, 52, 53].

3.1.2 Quenched disorder

In contrast to annealed disorder, the degrees of freedom associated with impurities

in systems with quenched disorder evolve on a different time scale compared to those

characterizing the "clean" system. Their fluctuations are much slower, giving them the

property of being fixed or "frozen" relative to the other degrees of freedom. In other

words, quenched disorder is static. Almost all disorder in condensed matter systems falls
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3.2. AVERAGE OVER THE DISORDER

into this category. In the experimental context, the time scale of the measurement is

much smaller than the dynamical time scale of the impurities, which implies that if we

take multiple samples, the corresponding disordered variables assume well-defined time-

independent vale. In this context, each realization of the disorder corresponds to a unique

realization of the random variables, while their distribution describes the fluctuations

between different realizations.

Due to the nature of quenched randomness, in contrast to annealed disorder, the

degrees of freedom associated with impurities in the system are not in thermal equilibrium

with the other degrees of freedom. This means that each disorder configuration of the

system will be unique. Since this type of disorder is static and the impurities are not

allowed to move, the network structure remains fixed and the interactions are established.

Therefore, to study the thermodynamic properties of the system, the partition function

is determined for a specific disorder realization, and only the equilibrium quantities are

averaged over different distributions of the impurities. In this context, the partition

function is given by

Zphq � Trpsqe�βHph,sq. (3.4)

The partition function will depend on all the impurity variables h, and as a result, the

calculation of thermodynamic quantities for the system becomes more challenging com-

pared to the annealed case. Since the thermal averages are not equivalent to averages over

the disorder, it is important to differentiate between the characteristics of the dynami-

cal degrees of freedom and the disordered variables when defining the thermodynamic

properties of a system. Ideally, we would like to calculate quantities that determine the

equilibrium of the system by computing averages over the Boltzmann measure. However,

due to the disorder, we can only evaluate quantities that are averaged over both the

thermal distribution and the disorder distribution.

3.2 Average over the disorder

In disorder systems, the outcomes of a sequence of experiments on a given observable

can vary from one sample to another. In these systems, certain quantities, particularly

extensive quantities like the free energy, exhibit the property of being "self-averaging"
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3.2. AVERAGE OVER THE DISORDER

in the thermodynamic limit [54]. This means that they take the same value for each

realization of the disorder that has a non-zero probability. In other words, as the volume

of the system approaches infinity, the fluctuations between different samples diminish, and

the average value coincides with the value obtained in a single realization of the system.

On the other hand, variables that are not self-averaging may exhibit fluctuations from

one realization to another, and when averaging over the disorder, configurations with zero

probability may contribute finite values to the system.

The argument for averaging extensive quantities, initially proposed by Brout [9], con-

siders a system that is very large and can be divided into numerous macroscopic sub-

systems, each characterized by a different set of disorder variables. Assuming negligible

coupling between the subsystems, the value of any normalized extensive variable for the

entire system is equal to the average of its values over the subsystems. In practice, if the

original system is sufficiently large, the number of subsystems will be large enough that

their individual averages will differ only slightly from the average over all realizations of

disorder in the complete system.

In the literature, various approaches have been explored to investigate self-averaging

properties. For a more detailed discussion and applications, you can refer to references

such as [55, 56, 57, 58, 59, 60, 61].

From now on, let us move to a discussion about an example of averaging over the

disorder. As mentioned before, the free energy is an extensive quantity, so let us use

it as an example. We can start by defining the free energy density for a given disorder

realization as follows

F phq � � 1
βV

lnZphq, (3.5)

where Zphq is the partition function given by (3.4), and h is one disorder realization. The

average over the probability distribution of the disorder is given by

F �ErF phqs

�
»

dh P phqF phq

� � 1
βV

ErlnZphqs,

(3.6)

where Er� � � s denotes the average over all the disorder realizations. In this expression, it

is necessary to compute the average of a logarithm, which is not a straightforward task
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3.3. SPIN GLASS MODEL

and is quite uncommon in statistical mechanics. This arises from the nature of quenched

disorder, which requires us to average extensive quantities like the free energy instead of

the partition function, as in the case of annealed disorder. Therefore, the above expression

is commonly referred to as the quenched average. It is important to note that we have two

distinct averages here. The first one is the thermodynamic average over the Boltzmann

measure, used to obtain F phq, followed by the average over the disorder. The order of

these averages is crucial to obtain the correct result.

Let us briefly discuss the probability distribution in this context. Since we cannot de-

termine the values of the random variables for different realizations, we need to describe

them using a probability distribution. Assuming that the degrees of freedom characteriz-

ing the disorder exhibit non-long range correlations, we can approximate the probability

distribution as a Gaussian one. Thus, the probability can be written as follows

P phq � p exp
�
� 1

2ϱ2

»
dd�1x phpxqq2

�
, (3.7)

with p being a normalization factor and ϱ2 a parameter that reflects the strength of

the disorder. In this case, we have a delta-correlated random field where the two-point

correlation function is given by

Erhpxqhpyqs � ϱ2δd�1px� yq, (3.8)

and, as a characteristic of Gaussian distributions, we have that Erhpxqs � 0. Another

option for this distribution is given by

P phq � p exp
�
�1

2

» »
dd�1xdd�1y hpxqV �1px� yqhpyq

�
, (3.9)

with the corresponding correlation function

Erhpxqhpyqs � V px� yq. (3.10)

3.3 Spin glass model

Before continuing the discussion about methods to evaluate the quenched average,

let us take some time to discuss systems with quenched disorder. Glassy systems are a

good candidate to use as an example, and we will focus on a specific one, the Spin-Glass
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model. Spin-glasses have attracted attention in both experimental and theoretical fields

as prototypical systems with quenched disorder [1, 2, 62, 63].

Spin-glass systems are magnetic alloys in which magnetic impurities are embedded

in a magnetically inert host material. The impurities occupy random positions and are

not displaced within the sample on experimental timescales. The interactions between the

magnetic moments, or spins, are in conflict with each other due to the presence of frozen-in

structural disorder. As a result, a regular long-range ordered state such as ferromagnetic

or antiferromagnetic order cannot be established. The theoretical description of spin-glass

systems began with the pioneering work of Edwards and Anderson [10].

3.3.1 Edwards-Anderson model

The mathematical model introduced by Edwards and Anderson to describe spin-glass

behavior is a generalization of the well-known Ising model [64]. The Hamiltonian of the

spin-glass model can be defined as follows

HpSi; Jijq � �
¸
ij

JijSiSj �
¸

i

hiSi. (3.11)

This Hamiltonian describes a system composed of N spins Si located at the sites i of a

regular lattice, where hi represents a magnetic field interacting locally with the spins. The

values of Jij defines the kind of interaction, ferromagnetic or anti-ferromagnetic, being

Jij ¡ 0 and Jij   0 respectively. The sum in the expression is taken over all pairs i, j of

nearest neighbors. The interaction constants Jij between spins located at positions i and

j are independent random variables defined by a Gaussian distribution

P pJijq �
c
N

2πe
� N

2π
pJijq

2
. (3.12)

This model reproduces the two inherent properties that characterize spin-glass sys-

tems, the quenched disorder, already discussed, and frustration. Once the concept of

quenched disorder is understood, it is necessary to introduce the notion of frustration.

For this, let us consider an arrangement of three spins with interactions J12, J23, and J13

between them. For practical purposes, let us assume that these interactions differ only

in their signs and have equal intensity. With this perspective, it is possible to find two

essentially different situations corresponding to the ground state. The ground state of
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this system is unique when the product of all three interactions is positive and will be

degenerate if the product is negative. When we go from spin to spin, in the degenerate

case, the orientation of one of the spins is not satisfied with respect to the interaction

with its neighbors. This implies that if we take a closed spin chain C with an arbitrary

number of couplings, not all interactions can be satisfied if the product of the spin-spin

interactions along the chain is negative, then
¹

C
J12J23 � � � Jn1   0 Ñ frustration. (3.13)

In fact, any real lattice of two or more dimensions will have a complicated network of

interpenetrating frustrated loops, making this matter a topic of current discussion.

3.3.2 Sherrington-Kirkpatrick model

The Sherrington-Kirkpatrick model is the infinite-range version of the Edwards-Anderson

model. This version describes spin-glass systems at low temperature [65]. It was proposed

as a mean-field model with all spins interacting with each other. The Hamiltonian for this

model is basically the Hamiltonian for the Edwards-Anderson model, eq. (3.11), with a

difference in the sum. The sum
°

ij runs over all distinct pairs of spins, NpN � 1q{2 of

them. Due to the fact that each spin interacts with every other spin, the spatial structure

of this model is irrelevant for its properties. Here, the space is simply the set of N sites in

which the Ising spins are placed, and all these spins could be considered as nearest neigh-

bors. In the thermodynamic limit, where N Ñ 8, this structure can be interpreted as an

infinite-dimensional lattice. This implies that by making this assumption, the mean-field

approach would be exact.

3.4 Random field model

3.4.1 Random Field Ising Model

In this section, let us discuss one of the most important and relevant models for systems

with quenched disorder, the Random Field Ising Model (RFIM).

The RFIM was initially introduced by Larkin in the early 1970s [66] and later studied

by Imry and Ma [67]. This model includes the presence of a random external magnetic
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field that opposes the ordering induced by the ferromagnetic spin-spin interaction. The

Hamiltonian of the RFIM is defined as follows

H � �
¸
pi,jq

JijSiSj �
¸

i

hiSj. (3.14)

This Hamiltonian describes a system of N spins Si located at points of a lattice, with

Jij representing the positive non-random interaction between spins. In this model, the

sum is restricted to the nearest neighbor pairs pi, jq, and the fields hi are independent

quenched random variables defined by a Gaussian distribution. The Hamiltonian can be

written as

P phiq � 1?
2πϱ2 exp

�
� h2

i

2ϱ2

�
, (3.15)

with the following two-point correlation function

Ephiq � 0 and Ephihjq � ϱ2δij. (3.16)

In both expressions, the ϱ2 represents the variance of the distribution and characterizes

the strength of the disorder. In this type of system, long-range and random ordering are

in competition, as neighboring spins tend to align parallel while the applied external field

tries to fix each spin according to the sign of the local field.

The Hamiltonian (3.14), in general, describes, in a certain way, any solid-state system

that has a transition with two degenerate ordered states and contains frozen impurities

that locally break the symmetry between these states [68]. For a pure magnetic system,

the ordering of spins results from a competition between energy interaction and entropy.

In fact, in one dimension, entropy dominates except at absolute zero temperature, and

at infinite temperature, the spins are disordered. However, this may not hold if the spin

couplings are long-ranged. On the other hand, in all dimensions greater than one, there

exists an ordered ferromagnetic phase for the case of the pure Ising model without an

external magnetic field. A second-order phase transition takes place at a given critical

temperature, below which energy dominates over entropy, and a long-range magnetic order

can be established. In most cases, thermal fluctuations easily break up the spin ordering

in lower dimensions. This leads to the notion of the lower critical dimension, which is

defined as the dimension above which an ordered phase is stable at finite temperature

[69].
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The presence of a random external magnetic field affects the ordering associated with

the ferromagnetic exchange interactions. At low temperatures, the main competition

occurs between this type of energy, which contributes to the appearance of long-range

order, and the random field, which tries to eliminate such order. Thermal fluctuations

become less relevant, so the critical behavior at a possible phase transition would be

governed by the fixed point at zero temperature. The random field energy becomes

dominant when the strength of the disorder is large compared to the coupling between

the spins, resulting in complete disorder of the system. This occurs because the spins will

be oriented according to their local field hi and thus become uncorrelated. In contrast,

for a very weak random field, the ferromagnetic ground state becomes unstable, as the

transition temperature exhibits a decreasing behavior as the disorder strength increases

[1, 3, 8].

In low enough dimensions, the presence of a weak disorder can significantly impact

the formation of a long-range ferromagnetic ordered phase. Imry and Ma provided a

strong argument on how a robust random field can destroy the ferromagnetic ordering

[67]. Further discussions on phase transitions related to the dimensionality of the system

can be found in references [70, 71, 72, 73].

3.4.2 Random field in the scalar Landau-Ginzburg model

A continuous description of the RFIM is provided by the Landau-Ginzburg model.

In this model, the spin variables are replaced by a field coupled to an external quenched

disorder field in a d-dimensional Euclidean space. The corresponding Hamiltonian for the

λϕ4 theory is defined as [3, 8]:

Hpϕ, hq �
»

dd�1x

�
1
2ϕpxq

��∆�m2
0
�
ϕpxq � λ

4! pϕpxqϕpxqq
2 � hpxqϕpxq

�
, (3.17)

where ϕpxq is the field, hpxq is the quenched random field. This can be generalized for

multiples fields. The symbol ∆ denotes the Laplacian operator in R
d. The partition

function for this case can be written as

Zphq �
»
rdϕs exp r�Hpϕ, hqs , (3.18)

we recall that dϕ represents the functional measure, as mentioned in the previous chapter.

The random variables that characterize the disorder are defined by a Gaussian distribu-

25



3.5. THE REPLICA TRICK

tion, just like in the usual random field Ising model. Therefore, we can express the

probability of the disorder as follows

P phq � exp
�
� 1

2ϱ2

»
dd�1x phpxqq2

�
, (3.19)

and we have a delta-correlated random field, where the two-point correlation function is

given by

Erhpxqhpyqs � ϱ2δd�1px� yq. (3.20)

Now, it is necessary to compute the h-dependent free energy (3.5). The ground state

configuration for the system corresponds to the values of the field that minimize the free

energy. This is typically determined by solving the saddle-point equation in the presence

of a quenched random field,

p�∆�m2
0qϕpxq �

λ

3!ϕ
3pxq � hpxq, (3.21)

where the solutions depend on particular configurations of the quenched fields.

Perturbation theory is an inappropriate procedure to be used in systems where the

disorder gives rise to a large number of local minima. To overcome this problem, we can

perform an average over the disorder for the free energy. Consequently, we have

F �
»
rdhsP phqF phq. (3.22)

In this case, we are averaging over all realizations of the random function hpxq. To perform

this average, we will consider two approaches: the Replica Trick and the Distributional

Zeta-Function Method. In the next two sections, both of them will be discussed, and the

result for the average will be derived.

3.5 The Replica Trick

3.5.1 A brief discussion about the method

The Replica trick was proposed by Edwards and Anderson to study the transition

point observed experimentally in the susceptibility of dilute magnetic alloys [10]. The

method relies on utilizing a mathematical technique involving replicas of the system and
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exploits a fundamental property of the logarithm function

lnz � lim
nÑ0

zn � 1
n

. (3.23)

This property allows us to rewrite (3.6) as

F � � 1
βV

lim
nÑ0

ErZns
n

. (3.24)

This implies that the averaging of the logarithm is reduced to the computation of the

average of the partition function. For an integer n, this approach necessitates constructing

the product of partition functions of n identical and non-interacting copies of the original

system, and evaluating the average of the disorder before taking the limit n Ñ 0. From

this procedure, the partition function can be written as

Zn � Trpspaqq exp
�
�β

ņ

a�1
H
�
h, spaq

��
, (3.25)

where the subscript paq is the replica index and goes from 1 to n. Here, the trace will be

the product of sums over each spaq.

As we can see in the above expression, a conceptual difficulty can be noted in the

method. The index paq is an integer that must be sent to zero in the replica limit to

maintain agreement with the logarithm property (3.23), where n is a real number. This is

a problematic situation resolved by explicitly writing the dependence on n of the replica

partition function in such a way that it can be regarded as a continuous parameter [10].

This procedure is not mathematically rigorous and has therefore been the source of much

debate and criticism over the years [74, 75, 76, 77]. Despite this, the results obtained

with the method are physically meaningful and it has been assumed that it appropriately

incorporates physical elements of different systems where it is used. More discussions

about the method can be found in references [61, 78, 79]. On the other hand, due to the

lack of mathematical rigor in the replica trick, alternative methods have been proposed

over the years [11, 12], including the method used in this study, the distributional zeta-

function [13].

3.5.2 The average free energy in the replica approach

Now, let us return to the computation of the quenched average for the free energy

(3.22) using the replica approach. To implement the method, we consider the product of
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partition functions of n identical and independent replicas, given by

Zn �
» n¹

i�1
rdϕis exp

�
�

ņ

j�1

»
dd�1x

�
1
2ϕjpxq

��∆�m2
0
�
ϕjpxq � λ

4!ϕ
4
jpxq � hjpxqϕjpxq


�
.

(3.26)

By integrating over the disorder distribution, we obtain the replica partition function Zn,

which is

Zn �ErZns

�
»
rdhs

n¹
i�1

rdϕis exp
�

ņ

j�1

»
dd�1x

�
� 1

2σh
2pxq � hjpxqϕjpxq


�

� exp
�
�

ņ

j�1

»
dd�1x

�
1
2ϕjpxq

��∆�m2
0
�
ϕjpxq � λ

4!ϕ
4
jpxq


�
.

(3.27)

The h-integral can indeed be evaluated as a Gaussian integration. After performing the

integration, the resulting form of the partition function becomes

Zn �
» n¹

i�1
rdϕis exp r�Heff pϕiqs , (3.28)

with the effective Hamiltonian Heff as

Heff pϕiq � 1
2

ņ

i�1

ņ

j�1

»
dd�1x

�
1
2ϕjpxq

���∆�m2
0
�
δij � σ

�
ϕjpyq



� λ

4!

ņ

j�1

»
ddxϕ4

jpxq
(3.29)

The saddle point equation for the n replicas is

��∆�m2
0
�
ϕipxq � λ

3!ϕ
3
i pxq � σ

ņ

j�1
ϕjpxq. (3.30)

If we assume all replicas to be the same, i.e., ϕipxq � ϕpxq, as would be natural to assume,

the equations (3.30) are reduced to

��∆� �m2
0 � nσ

��
ϕpxq � λ

3!ϕ
3pxq � 0, (3.31)

then, by taking the limit nÑ 0, this equation defines the ground state of a system without

disorder, which has the trivial solution ϕpxq � 0 for m2
0 ¡ 0. A non-trivial solution can

only be obtained if the replicas are not equal, in other words, replica symmetry must be

broken [79, 80].

For convenience, instead of working in coordinate space, let us consider a treatment

in momentum space. Performing a Fourier transform on the effective Hamiltonian (3.29),
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we obtain

Heff pϕiq � 1
2

ņ

i,j�1

» dd�1p

p2πqd ϕippq rG0s�1
ij ϕjp�pq � λ

4!

ņ

j�1
ϕ4

j , (3.32)

where the factor rG0s�1
ij represents the inverse of the two-point correlation function in the

three-level approximation, which is defined as

rG0s�1
ij ppq � pp2 �m2

0qδij � σ. (3.33)

To obtain the respective two-point correlation functions, we need to invert the above

expression using the projector operators pPT qij and pPLqij, which are

pPT qij � δij � 1
n

and pPLqij � 1
n
. (3.34)

The equation (3.33) can be expressed in terms of both operators as

rG0s�1
ij ppq � pp2 �m2

0q
�
δij � 1

n



� pp2 �m2

0 � nσq 1
n
. (3.35)

Now, we can invert the above expression, and the desired result can be achieved as

rG0sij ppq �
δij

p2 �m2
0
� σ

pp2 �m2
0qpp2 �m2

0 � nσq . (3.36)

The first term corresponds to the bare contribution to the connected two-point correlation

function in the absence of the random field. Meanwhile, the second term represents the

contribution to the disconnected two-point correlation function, which becomes connected

after averaging over the random variable [3].

3.6 The Distributional Zeta-function method

The authors Svaiter and Svaiter proposed an alternative procedure, called the Distri-

butional Zeta-Function method, to compute the average free energy for quenched disorder

[13]. To obtain the expression for the average free energy, we consider the Euclidean action

functional of a scalar field with the λϕ4 interaction, and the disorder degrees of freedom

linearly coupled to the field. This action functional is given by

Spϕ, hq �
»

dd�1x

�
1
2ϕpxq

��∆�m2
0
�
ϕpxq � λ

4!ϕ
4pxq � hpxqϕpxq

�
(3.37)

The generalised zeta-function is defined as

ζµ,f psq �
»

Ω

fpxq�sdµpxq, (3.38)
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for s P C such that f�s P L1pµq. In the formalism for the case f � Zphq and dµ �
rdhsP phq, the distributional zeta-function is defined as

Φpsq �
»
rdhsP phqZphq�s. (3.39)

Since the part of the action that does not involve disorder is even, then

Zphq � Zp�hq � Zphq � Zp�hq
2 , (3.40)

that is equivalent to

Zphq �
»
rdϕs cosh

�»
dd�1x hpxqϕpxq

�
exp r�Spϕqs , (3.41)

where Spϕq is the action functional for the pure system. As a consequence of the above

expression, we have that Zphq�s ¤ Zp0q�Rerss in the integrand of (3.39) for Rerss ¥ 0.

This ensures that the integral in (3.39) converges and is well-defined in the half-complex

plane. As a result, Φ is also well-defined in the same region without resorting to analytic

continuation [81].

Now taking into account that1

� d
ds Zphq

�s
��
s�0� � lnZphq, (3.42)

we can rewrite (3.2), in this approach, as

F � � d
ds Φpsq|s�0� . (3.43)

Now in order to proceed, lets us perform a Mellin transform to obtain

Zphq�s � 1
Γ psq

» 8

0
dt ts�1 exp r�Zphqts , (3.44)

for Rerss ¡ 0 and Zphq ¡ 0. By replacing (3.44) into (3.39), we obtain

Φpsq � 1
Γ psq

»
rdhsP phq

» 8

0
dt ts�1 exp r�Zphqts . (3.45)

It follows that, the average for the free energy, (3.43), will be written as

F � � d
ds

�
1

Γ psq
»
rdhsP phq

» 8

0
dt ts�1 exp r�Zphqts

�
s�0�

. (3.46)

1 df
ds

�
�
�
s�0�

stands for limsÑ0�
fpsq�fp0q

s .
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Now, to continue the evaluation, let us write Φ � Φ1�Φ2, where we split the t-integrand of

Φ into two intervals r0, as and ra,8s, with a being an arbitrary and positive real number.

This implies that we can write these as

Φ1psq � 1
Γ psq

»
rdhsP phq

» a

0
dt ts�1 exp r�Zphqts . (3.47)

and

Φ2psq � 1
Γ psq

»
rdhsP phq

» 8

a

dt ts�1 exp r�Zphqts . (3.48)

As consequence, we can rewrite (3.43) as a sum,

F � � d
ds Φ1psq|s�0� �

d
ds Φ2psq|s�0� . (3.49)

Now, we can use a series representation for the exponential in (3.47). Since the series

converges uniformly for all h, we can exchange the order of integration of the sum for the

series and the t-integral to obtain

Φ1psq �
»
rdhsP phq

�
1

Γ psq
8̧

k�0

p�1qkak�s

k!pk � sq Zphq
k

�
. (3.50)

The first term of the series has a singularity at s � 0, but it can be removed by invoking

the property Γ psqs � Γ ps� 1q. In this way, we can rewrite the above expression as

Φ1psq � as

Γ ps� 1q �
1

Γ psq
8̧

k�1

p�1qkak�s

k!pk � sq ErZ
ks, (3.51)

this is valid for Rerss ¡ 0. Now, we perform the differentiation of Φ1 and obtain

� d
ds Φ1psq|s�0� �

8̧

k�1

p�1qkak

k!k ErZks � fpaq, (3.52)

where

fpaq � �pln a� γq, (3.53)

with γ being the Euler-Mascheroni constant [82]. And now, taking the derivative of Φ2,

we have

� d
ds Φ2psq|s�0� � �

»
rdhsP phq

» 8

a

dt t�1e�Zphqt � Rpaq. (3.54)

As we can see, the contribution for the average free energy from Φ1 is written as a series

in which all the integer moments of the partition function appear. On the other hand, we
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do not have an explicit form for the contribution from Φ2. From the junction of all these

equations, we are now able to write the average free energy as

F �
8̧

k�1

p�1qk�1ak

k!k ErZks � pln a� γq �Rpaq (3.55)

where Rpaq satisfies the following condition

|Rpaq| ¤ 1
Zp0qae

�Zp0qa. (3.56)

It is important to draw attention to the fact that we cannot take the limit aÑ 8 as

the above series would become meaningless. However, the contribution of Rpaq can be

made arbitrarily small by setting a large enough. For a further comparison between this

method and the replica trick see ref. [81].
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Chapter 4

The λϕ4 Euclidean quantum field

theory with quenched disorder

In this chapter, the main focus will be the evaluation of the loops described in Chapter

2 in the presence of a quenched disorder. The first part of this chapter will provide a

description of the λϕ4 model with the disorder. Subsequent sections will present results

and discussions on the effect of this quenched disorder on the renormalized squared mass.

4.1 The effective action functional for the quenched

disorder system

Systems with quenched disorder were already discussed in the previous chapter. How-

ever, in this chapter, we will provide a more detailed discussion about the model. Our

first task is to demonstrate the effective action functional for the quenched λϕ4 model

using the distributional zeta-functions approach.

Let us start by defining the action functional with the disorder as

Spϕ, hq � Spϕq �
» β

0
dτ
»

ddx hpxqϕpτ,xq, (4.1)

where Spϕq is the action functional for a Euclidean quantum scalar field for the pure

system, given by (2.18), and hpxq represents the disorder. In a general situation, a

disordered media can be modeled by a real random field hpxq � hωpxq in R
d, where

Erhpxqs � 0 and covariance Erhpxqhpyqs , where this average is taken over the parameter
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ω. Now, let us introduce the disorder generating functional of correlation functions, for

one realization of the disorder, with an external source as

ZrJ, hs �
»
rdϕs exp

�
�Spϕ, hq �

» β

0
dτ
»

ddx Jpτ,xqϕpτ,xq
�
. (4.2)

As in the pure system, the generating functional of connected correlations functions can

be defined as W rJ, hs � lnZrJ, hs. Now, the average of W rJ, hs can be written as

ErW rJ, hss �
»
rdhsP phqW rJ, hs, (4.3)

where rdhs is a functional measure. In the distributional zeta-functions method, this

average will be represented as

ErW rJ, hss �
8̧

q�1

p�1qq�1qaq

q!q ErpZrJ, hsqqs � ln a� γ �Rpa, Jq, (4.4)

where Rpa, Jq is given by

Rpa, Jq � �
»
rdhsP phq

» 8

a

dt t�1 exp r�ZrJ, hsts . (4.5)

To proceed, we absorb a in the functional measure and we assume that the probability

distribution of the disorder is written as rdhsP phq, where

P phq � p0 exp
�
� 1

2ϱ2

»
ddx phpxqq2

�
. (4.6)

The quantity ϱ is a positive parameter that is associated with the strength of the disorder

and p0 is the normalization factor. In this case we have a delta correlated disorder, (3.20).

After integrating over the disorder, we obtain each moment of the partition function as

ErpZpJ, hqqs �
» k¹

i�1

�
dϕpkqi

�
exp

�
�Seff

�
ϕ
pqq
i , J

pqq
i

	�
. (4.7)

The imaginary-time effective action for each moment of the partition function in the

presence of a source J can be derived. The new field variables that arise are assumed to

satisfy the periodic condition given in section 2.3, i.e., ϕpτ,xq � ϕpτ � β,xq. Knowing

that the disorder field is strongly correlated in the compactified dimension. This implies

a nonuniform disorder field hpτ,xq in the pd � 1q-dimensional classical Euclidean field

theory. In this case, we have an anisotropic delta-correlated disorder field, i.e.,

Erhpτ,xqhpτ 1,xqs � ϱ2δdpx � yq. (4.8)

34



4.2. ONE-LOOP EVALUATION

In this case, we obtain a pd� 1q-dimensional Euclidean space with fields obeying periodic

boundary conditions in one spatial coordinate. An effective action will be derived for each

moment of the partition function as

Seff pϕpqqi , J
pqq
i q �1

2

» β

0
dτ
»

ddx

�
q̧

i�1

�
ϕ
pqq
i pτ,xq

�
� B2

Bτ 2 �∆�m2
0



ϕ
pqq
i

�ρ0 pϕq
i pτ,xqq3 �

λ0

2 pϕq
i pτ,xqq4


�

� 1
2

» β

0
dτ
»

ddx
q̧

r,s�1
ϕpqqr pτ,xqJq

s pz,xq

� ϱ2

2β2

» β

0
dτ
» β

0
dτ 1

»
ddx

q̧

r,s�1
ϕpqqr pτ,xqϕpqqs pτ 1,xq

(4.9)

where the field variables and sources are assumed to satisfy the previously mentioned

periodic boundary conditions. As we can see, the last term of (4.9) represents a non-local

contribution [38].

In order to define the propagator for this system, careful attention is required to

understand the consequences of randomness in a quantum system at low temperatures

in the spontaneously broken phase. However, for practical purposes, this discussion will

be omitted in this work, and only the form of the propagator will be presented. The

propagator for this system in the low-temperature case is defined as

∆βpp, ωn, σnq � 1
pp2 �m2

0 � ω2
n � σnq (4.10)

where

σn � 2π|n|
β

qϱ2 (4.11)

and ωn is the Matsubara frequency term for the scalar field, given by

ωn � 2πn
β
. (4.12)

The method to obtain this propagator is extensively discussed by Heymans [38].

4.2 One-loop Evaluation

The renormalized squared mass m2
Rpβ, q, µq in the kth moment is similar to the case

discussed in section 2.5. The renormalized mass squared is given by

m2
Rpβ, q, µq � m2

0 � δm2
0 � f1∆m

2
1pβ, q, µq � f2∆m

2
2pβ, q, µq, (4.13)
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Where fi are the symmetric factors, and the mass counterterm has been introduced.

In the context described in sec. 2.5, ∆m2
1 represents the contribution from the tadpole

diagram, as shown in fig. 2.2-a. The second term, ∆m2
2, is associated with the contribution

from the bubble diagram. The subscript indicating the dimension dependence of the

correction terms has been omitted for simplicity. Similar to sec. 2.5, let us begin by

defining the mass correction, in the first order of λ, for the disordered case as

∆m2
spβ, q, µq �

F pλ, µ, sq
β

¸
nPZ

» ddp

p2πqd
1

pp2 �m2
0 � ω2

n � σnqs , (4.14)

where F pλ, µ, sq is a coupling constant that depends on the evaluated loop. Now, we can

rewrite the above expression by performing some variable changes and rearrangement, as

∆m2
spβ, q, µq �

F pλ, µ, sqβ
2d�1π

d
2�1Γ

�
d
2

� » 8

0
dp pd�1

¸
nPZ

�
πn2 � β2

4π
�
p2 �m2

0
�� β

2 qϱ
2|n|


�s

.

(4.15)

Here, we will apply a Mellin transform and obtain

∆m2
spβ, q, µq �

F pλ, µ, sqβ
2d�1π

d
2�1Γ

�
d
2

�
Γ psq

¸
nPZ

» 8

0
dp pd�1

» 8

0
dt ts�1

� exp
�
�
�
πn2 � β2

4π
�
p2 �m2

0
�� β

2 qϱ
2|n|



t

�
.

(4.16)

Before compute the p-integral, we can define a dimensionless quantity r2 � β2p2

4π
. Then

the above equation can be rewritten as

∆m2
spβ, q, µq �

F pλ, µ, sqβ1�d

2πΓ
�

d
2

�
Γ psq

¸
nPZ

» 8

0
dr rd�1

» 8

0
dt ts�1

� exp
�
�
�
πn2 � r2 � β2

4πm
2
0 �

β

2 qϱ
2|n|



t

�
.

(4.17)

And finally, we can perform the r-integral to obtain

∆m2
spβ, q, µq �

F pλ, µ, sqβ1�d

2πΓ psq
» 8

0
dt ts� d

2�1 exp
�
�m

2
0β

2

4π t

�

�
¸
nPZ

exp
�
�
�
πn2 � β

2 qϱ
2|n|



t

�
.

(4.18)

As we can see, up until this point, we have followed the same process demonstrated in

sec. 2.5. However, we observe that the anisotropic disorder introduces a contribution

involving |n| into the correlation function. This contribution was not present in the pure

system. This implies that we need a different approach to deal with the renormalization
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4.2. ONE-LOOP EVALUATION

of the one-loop. Let us split the summation into two contributions, one for n � 0 and

another for n � 0, denoted as ∆m2
spβ, q, µq|n � 0 and ∆m2

spβ, q, µq|n � 0, respectively.

We will start with ∆m2
spβ, q, µq|n�0 by expressing this contribution as.

∆m2
spβ, q, µq|n�0 � F pλ, µ, sqβ1�d

2πΓ psq Aps, dq (4.19)

where

Aps, dq �
» 8

0
dt ts� d

2�1 exp
�
�β

2

4πm
2
0t

�
(4.20)

For certain values of d and s, this integral exhibits an infrared divergence. The integral

is defined for Rerss ¡ d
2 and can be analytically continued to Rerss ¡ d

2 � 1 for s � d
2 . To

handle this situation, we can employ the following approach [83]» 8

0
dx xλϕpxq �

» 1

0
dx xλpϕpxq � ϕp0qq �

» 8

0
dx xλϕpxq � ϕp0q

λ� 1 , (4.21)

is possible to write a renormalized Aps, dq as

ARps, dq �
» 1

0
dt ts� d

2�1
�

exp
�
�β

2

4πm
2
0t

�
� 1




�
» 8

1
dt ts� d

2�1 exp
�
�β

2

4πm
2
0t

�
� 2

2s� d
.

(4.22)

Which is valid for Rerss ¡ d
2 . For Rerss ¡ d

2�1 and s � d
2 , the right side of ARps, dq exists

and defines a regularization of the original integral. Now, let us consider the contribution

for n � 0

∆m2
spβ, q, µq �

F pλ, µ, sqβ1�d

2πΓ psq
» 8

0
dt ts� d

2�1 exp
�
�m

2
0β

2

4π t

�

�
8̧

n�1
exp

�
�
�
πn2 � β

2 qϱ
2|n|



t

�
.

(4.23)

In the series representation for the free energy with q � 1, 2, . . . , we find that moments

of the partition function corresponding to certain values of q are critical. Specifically, for

moments such that qpQq �
��

2πQ
β

	
2
ϱ

�
with Q P N, they exhibit critical behavior. Since

our focus is on critical behavior, we will concentrate on this set of critical momenta.

Now, we can rewrite (4.23) to accommodate this new definition, and by performing some

rearrangements, we obtain

∆m2
spβ, q, µq|n�0 � F pλ, µ, sqβ1�d

2πΓ psq
» 8

0
dt ts� d

2�1 exp
�
�π

�
m2

0β
2

4π2 �Q2


t

�

�
8̧

n�1
exp

��π pn�Qq2 t� (4.24)
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By choosing a specific value of Q as Q � β
2π
m0, we can determine the critical value of

qc. The interpretation of this result is that within the infinite number of moments that

define the free energy, there exists a subset of critical momenta. Within this subset, there

is a particular set characterized by specific values of Q that exhibit the tree-level behavior

[38]. With this understanding and interpretation of the specific Q values, we can rewrite

(4.24) as

∆m2
spβ, q0, µq|n�0 � F pλ, µ, sqβ1�d

2πΓ psq
» 8

0
dt ts� d

2�1
8̧

n�1
exp

��π pn�Q0q2 t
�
. (4.25)

Now, we can expand this expression to include the n � 0 term. By doing this, the term

∆m2
spβ, q, µq|n�0 can be given by.

∆m2
spβ, q0, µq|n�0 � F pλ, µ, sqβ1�d

2πΓ psq

�» 8

0
dt ts� d

2�1
8̧

n�0
e�πpn�Q0q

2t � ARps, dq
�
. (4.26)

In order to proceed, let us perform the inverse Mellin transform into the t-integral» 8

0
dt ts� d

2�1
8̧

n�0
e�πpn�Qq2t � Γ

�
s� d

2



π

d
2�s

8̧

n�0
pn�Qqd�2s . (4.27)

And now, our renormalized mass correction will be written as

∆m2
spβ, q0, µq|n�0 � F pλ, µ, sqβ1�d

2πΓ psq
�
Γ

�
s� d

2



π

d
2�s ζ p2s� d, q0q � ARps, dq

�
(4.28)

where ζpz, aq is the Hurwitz-zeta function

ζpz, aq �
8̧

n�0
pn� aq�z, (4.29)

and an important formula that must be used in the renormalization process is

lim
zÑ1

�
ζpz, aq � 1

z � 1

�
� �ψpaq, (4.30)

where ψpaq is the digamma function defined as ψpzq � d
dz
rlnΓ pzqs. For a fixed value of q0,

the renormalized squared mass will vanish for a family of temperatures. This was proven

by Heymans et. al. [38]. In the next section, we will discuss the two-loops using the

procedure described in this section.
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4.3 Two loop evaluation

As already discussed in chapter 2, we have three contributions to the renormalized

squared mass when we expand to order λ2, as shown in figure 2.2. In this scenario, the

renormalized squared mass can be written as

m2
Rpβ, q, µq � m2

0 � δm2
0 � fp2q∆m

2
p2qpβ, q, µq � fp3q∆m

2
p3qpβ, q, µq, (4.31)

where fpiq are the symmetric factor for each loop contribution. In here, all three diagrams

will be evaluated in separated subsections for simplification.

4.3.1 Double-Tadpole

The first of the two-loop diagrams that we will discuss is the double-tadpole diagram.

Although this diagram does not contribute to the renormalized squared mass, we will

examine it to demonstrate the applicability of the method to this simple two-loop case.

Since the double-tadpole diagram is a 1PR diagram, we can separate the two loops by

cutting the external leg between them and evaluate each branch separately, as shown in

figure 2.2-b. Both loops will have the same form as the tadpole diagram but with different

coupling constants. Let us start by writing the expressions for both loops, after applying

the Mellin transform and performing the momentum integrals, as follows

∆m2
p1q,p12q

pβ, q, µq � Fp12q
¸

n
p12q

PZ

» 8

0
dt t d

2 exp
�
�m

2
0β

2t

4π

�
exp

�
�
�
πn2

p1
2q
� β

2 qϱ
2
���np12q

���
 t� ,
(4.32)

where F � F pλ, β, µq is the coupling constant, and the subscript p12q indicates each loop of

the diagram. However, we can drop the distinction between the loops since both of them

have the same form and are independent of each other. Now, let us consider ∆m2
p1q,1 as

∆m2
p1qpβ, q, µq � F1

¸
nPZ

» 8

0
dt t d

2 exp
�
�m

2
0β

2t

4π

�
exp

�
�
�
πn2 � β

2 qϱ
2 |n|



t

�
. (4.33)

It is easy to see that the above expression is the same as (4.18) with s � 1. As a

consequence, the result after all the procedures will be the same as the one obtained

for the one-loop case. This result is expected since this diagram is a trivial one. Both

F -factors will be the same as in chapter 2, i.e., they are disorder-independent and are
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defined by

F1pλ, β, µq � � 3λ2
R

2p4πq3
pµ2q4�d

4� d
β1�d, (4.34)

F2pλ, β, µq � �λ
2
Rm

2
R

2p4πq3
pµ2q4�d

4� d
β1�d. (4.35)

All the procedure of the previous section can be applied with s � 1. Then, the contribution

for the renormalized mass from this diagram will be written as

∆m2
p1q,1pβ, q0, µq|n1�0 �� 3λ2

R

p4πq4
pµ2q4�d

4� d
β1�d

�
�
Γ

�
1� d

2



π

d
2�1 ζ p2� d, q0q � ARp1, dq

�
,

(4.36)

∆m2
p1q,2pβ, q0, µq|n2�0 �� λ2

Rm
2
R

p4πq4
pµ2q4�d

4� d
β1�d

�
�
Γ

�
1� d

2



π

d
2�1 ζ p2� d, q0q � ARp1, dq

�
,

(4.37)

where ARp1, dq is the renormalized zero frequency term

ARp1, dq �
» 1

0
dt t d

2

�
exp

�
�β

2

4πm
2
0t

�
� 1




�
» 8

1
dt t d

2 exp
�
�β

2

4πm
2
0t

�
� 2

2� d
.

(4.38)

4.3.2 Double Scoop

The next two-loop correction for the renormalized mass will arise from the double-

scoop diagram, as shown in Figure 2.2-c. As we know, in this diagram, we cannot dis-

connect the loops as in the previous case. However, this is also a trivial diagram, which

means that the procedure from the previous section can be applied with some rearrange-

ment needed. First of all, let us write the expression for this diagram

∆m2
p2qpβ, q, µq �

λ2
Rpµ2q4�dβ2

4
�

2d�1π
d
2�1Γ

�
d
2

�	2

¸
n,rPZ

» 8

0
dk kd�1

�
πn2 � β2

4π
�
k2 �m2

0
�� β

2 qϱ
2|n|


�1

�
» 8

0
dl ld�1

�
πr2 � β2

4π
�
l2 �m2

0
�� β

2 qϱ
2|r|


�2

.

(4.39)

As we can see, in this diagram we have two momenta and two frequencies, which can be

treated independently. For practical purposes, we can define two dimensionless variables:
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K2 � β2

4π
k2 and L2 � β2

4π
l2. After some rearrangement, we obtain

∆m2
p2qpβ, q, µq � λ2

Rpµ2q4�d

�
β1�d

4πΓ
�

d
2

�
2 ¸
n,rPZ

» 8

0
dK Kd�1

�
πn2 �K2 � β2

4πm
2
0 �

β

2 qϱ
2|n|


�1

�
» 8

0
dL Ld�1

�
πr2 � L2 � β2

4πm
2
0 �

β

2 qϱ
2|r|


�2

.

(4.40)

Now we can perform the Mellin transform with s � 1 and s � 2 for the k-integrand and

l-integrand, respectively,

∆m2
p2qpβ, q, µq �λ2

Rpµ2q4�d

�
β1�d

4πΓ
�

d
2

�
2

�
¸
nPZ

» 8

0
dK Kd�1

» 8

0
dt1 exp

�
�
�
πn2 �K2 � β2

4πm
2
0 �

β

2 qϱ
2|n|



t1

�

�
¸
rPZ

» 8

0
dL Ld�1

» 8

0
dt2t2 exp

�
�
�
πr2 � L2 � β2

4πm
2
0 �

β

2 qϱ
2|r|



t2

�
,

(4.41)

and now to proceed, we just need to perform the both K and L integral that is an easy

task, after this we will get

∆m2
p2qpβ, q, µq � λ2

Rpµ2q4�d

�
β1�d

4π


2 » 8

0
dt1 t

� d
2

1 exp
�
�β

2

4πm
2
0t1

� ¸
nPZ

exp
�
�
�
πn2 � β

2 qϱ
2|n|



t1

�

�
» 8

0
dt2 t

1� d
2

2 exp
�
�β

2

4πm
2
0t2

�¸
rPZ

exp
�
�
�
πr2 � β

2 qϱ
2|r|



t2

�
(4.42)

And here we can notice that the first integral in the above expression is simply the

(4.18) for s � 1, and the second integral is for the analytic continuation of (4.18) for

s � 2. This is expected because this diagram is also a trivial one. All we need to do

now is evaluate the first integral in the same way as in the one-loop case and perform an

analytic continuation for the second integral.

Now, let us split ∆m2
p2qpβ, q, µq into two cases: n, r � 0 and n, r � 0. The contribution

∆m2
p2qpβ, q, µq|n,r�0 can be written as the sum of contributions from both zero frequencies

with s � 1 and s � 2. Specifically, we have

∆m2
p2qpβ, q, µq|n,r�0 � λ2

Rpµ2q4�d

�
β1�d

4π


2

ARp1, dq A1
Rp2, dq. (4.43)

In this case, the A1
Rps, dq represents the analytic continuation of Aps, dq, following the same

approach as in Section 4.2. However, in this case, we need to extend it to accommodate
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s � 2. Thus, we have

A1
Rps, dq �

» 1

0
dt ts� d

2�1
�

exp
�
�β

2

4πm
2
0t

�
� 1� β2

4πm
2
0 t




�
» 8

1
dt ts� d

2�1 exp
�
�β

2

4πm
2
0t

�
� 2
s� d

� 2
2s� 2� d

.

(4.44)

This expression is valid for Rerss ¡ d
2 � 2 for s � d

2 � 1 and s � d
2 . Now, we proceed with

the n, r � 0. The ∆m2
p2qpβ, q, µq|n,r�0 will be defined as

∆m2
p2qpβ, q, µq|n,r�0 �λ2

Rpµ2q4�d

�
β1�d

4π


2

�
» 8

0
dt1 t

� d
2

1 exp
�
�π

�
β2

4π2m
2
0 �Q2



t1

� 8̧

n�1
exp

��π pn�Qq2 t1
�

�
» 8

0
dt2 t

1� d
2

2 exp
�
�π

�
β2

4π2m
2
0 �Q2



t2

� 8̧

r�1
exp

��π pr �Qq2 t2
�
.

(4.45)

By choosing the particular value for Q � β2

4π2m
2
0, as already discussed on sec. 4.2, the

desired form of ∆m2
p2qpβ, q, µq|n,r�0 will be achieved,

∆m2
p2qpβ, q0, µq|n,r�0 � λ2

Rpµ2q4�d

�
β1�d

4π


2 » 8

0
dt1 t

� d
2

1

8̧

n�1
exp

��π pn�Q0q2 t1
�

�
» 8

0
dt2 t

1� d
2

2

8̧

r�1
exp

��π pr �Q0q2 t2
�
,

(4.46)

the zeroth term of both frequencies can be included, and we obtain

∆m2
p2qpβ, q0, µq|n,r�0 � λ2

Rpµ2q4�d

�
β1�d

4π


2
�» 8

0
dt1 t

� d
2

1

¸
nPZ

exp
��π pn�Q0q2 t1

�� ARp1, dq
�

�
�» 8

0
dt2 t

1� d
2

2

¸
rPZ

exp
��π pr �Q0q2 t2

�� A1
Rp2, dq

�
.

(4.47)

As we can see, both integrals have the form of (4.26), as expected. We can verify that for

both integrals in (4.47), the result of (4.26) will be achieved. However, in this case, we

need to consider the case for s � 2, so an analytic continuation is needed. Therefore, we

can write ∆m2
l pβ, q0, µq|n�0 as

∆m2
p2qpβ, q0, µq|n,r�0 � λ2

Rpµ2q4�d

�
β1�d

4π


2 �
Γ

�
1� d

2



π

d
2�1 ζ p2� d, q0q � ARp1, dq

�

�
�
Γ

�
2� d

2



π

d
2�2 ζ p4� d, q0q � A1

Rp2, dq
�
.

(4.48)
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The Hurwitz zeta function for s � 1 has a simple pole at z � 1. Therefore, for s � 1

and d � 3, the first zeta term in the above equation is finite. However, for s � 2, this is

not the case. We need to provide an analytic continuation for the Hurwitz zeta function

that is valid for s � 2. In this case, we can write the zeta function in the following integral

representation

ζpz, aq � �Γ p1� zq
2πi

»
C

dtp�tq
z�1e�at

1� e�t
, (4.49)

where C is the Hankel contour.

4.3.3 Sunset

The last of the two-loop corrections arises from the sunset diagram. Unlike the previ-

ous cases, this diagram cannot be treated using the approach presented in section 2.5. The

interconnection between the three momenta in this diagram makes it more challenging

to evaluate. Let us write down the expression for this diagram in the quenched disorder

scenario

∆m2
p3qpβ, q, µq �

λ2
Rpµ2q4�d

6β2

¸
n,rPZ

» ddk

p2πqd
» ddl

p2πqd

�prk
2 �m2

0 � ω2
n � σns rl2 �m2

0 � ω2
r � σrsq�1�

rp� k � ls2 �m2
0 � ω2

pt�n�rq � σpt�n�rq

	 .

(4.50)

To evaluate this diagram, we can take two approaches. One made by Braden [37], pre-

sented in chapter 2, for the non disorder case. However, applying this approach to the

quenched disorder case leads to a complicated analysis. Therefore, we will use another

approach, namely Feynman parametrization [41], as it appears to be more suitable for

this scenario.

After applying the Feynman parametrization , the three propagators in the diagram

will be combined into a single expression. In other words, we can write the diagram as

follows » ddk

p2πqd
» ddl

p2πqd
prk2 �m2

0 � ω2
n � σns rl2 �m2

0 � ω2
r � σrsq�1�

rp� k � ls2 �m2
0 � ω2

pt�n�rq � σpt�n�rq

	 �

� Γ p3� dq
» 1

0

» 1

0
dxdy rp1� xqxs d�3

2

y
d�1

2

�
�

1
p2

eff �m2
eff �N2p1� yq �R2 y

x
� T 2 y

1�x

�3�d

.

(4.51)
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where

m2
eff �m2

0

�
1� y � y

xp1� xq



; (4.52)

p2
eff �p2yp1� yq; (4.53)

N2 �ω2
n � σn; (4.54)

R2 �ω2
r � σr; (4.55)

T 2 �ω2
pt�n�rq � σpt�n�rq. (4.56)

By performing the Mellin transform and Poisson summation, we obtain the following

expression after some rearrangement

∆m2
p3qpβ, q, µq �

λ2
Rpµ2q4�d

32p4πqd
�

1
β2


d�1 » 1

0
dxdy pp1� xqxq d�3

2

y
d�1

2

» 8

0
dz z1�d

� exp
�
�β

2

4π
�
m2

eff � p2
eff

�
z

�

�
¸

n,rPZ

exp
�
�π
z

�
n2 � r2xpxpy � 1q � 1q

y
� 2nrx

��

� exp
�
�βp0

�
i rrxp1� yq � nys � 3βqϱ2

4π zyp1� yq
��

� exp
�
i

2qβϱ
2 rnp1� 3yq � rp1� 3xpy � 1qs

�

� exp
�
π

4

�
qβϱ2

2π


2 px2 r�9y2 � 10y � 1s � x r9y2 � 10y � 1s � yq
px� 1qx z

�

(4.57)

To proceed, let us split this mass correction contribution into two regions: the terms corre-

sponding to zero frequencies n and r, and the terms corresponding to nonzero frequencies.

We denote these contributions as ∆m2
p3qpβ, q, µq|n, r � 0 and ∆m2p3qpβ, q, µq|n, r � 0, re-

spectively. However, before continuing, let us use the definition of Q presented in Section

4.2. This allows us to write both cases in a simpler form. Now, considering n, r � 0, we

can write ∆m2p3qpβ, q, µq|n,r�0 as

∆m2
p3qpβ, q, µq|n,r�0 �λ

2
Rpµ2q4�d

32p4πqd
�

1
β2


d�1 » 1

0
dxdy pp1� xqxq d�3

2

y
d�1

2

» 8

0
dz z1�d

� exp
�
�
�
β2

4πm
2
eff �Q2

m0



z

�

� exp
�
�
�
β2

4πp2
eff �Q2

p



z

�
,

(4.58)

44



4.3. TWO LOOP EVALUATION

where

Q2
m0 �

π

4Q
2 px2 r�9y2 � 10y � 1s � x r9y2 � 10y � 1s � yq

px� 1qx ; (4.59)

Q2
p �

3
2βp0Q yp1� yq. (4.60)

In this case, if Q � 0 and β Ñ 8, we will obtain the result for the non-thermal pure

system. Now, let’s consider ∆m2
p3qpβ, q, µq|n,r�0, which is given by

∆m2
p3qpβ, q, µq|n,r�0 �λ

2
Rpµ2q4�d

32p4πqd
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(4.61)

As we can see, the expression above is quite complicated to read. Now, we can perform

some rearrangements to simplify it, and we obtain

∆m2
p3qpβ, q, µq|n,r�0 �λ
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(4.62)

with

C � xpxpy � 1q � 1q
y

(4.63)
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4.3. TWO LOOP EVALUATION

We can continue to rearrange (4.62) to obtain a form similar to (4.58). By doing this, we

can achieve the following form

∆m2
p3qpβ, q, µq|n,r�0 �λ
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(4.64)

where

Q2
M �π4Q

2
�

y

px� 1qx � 4y � p1� 3xpy � 1qq2
C



; (4.65)

Qn � i2Qp1� 3yq; (4.66)

Qr � i2Q
p1� 3xpy � 1qq

C
. (4.67)

As the only other possible divergence can occur with n � 0, r � 0 or n � 0, r � 0, we

can examine the r � 0 case. This implies that our mass correction term will be of the

following form

∆m2
p3qpβ, q, µq|n�0,r�0 �λ
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(4.68)

where

Q2
M |r�0 � π

4Q
2
�

y

px� 1qx � 4y


. (4.69)

As we can see, if Q � 0, we re-obtain the thermal case for the pure system, as presented

in sec. 2.6. This expression is difficult to analyze, as all terms are mixed due to the nature

of the sunset diagram. We will revisit this discussion in the next chapter.
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Chapter 5

Conclusion

The study of classical and quantum fields in the presence of randomness has been a

topic of research in the literature for decades. In this work, we focused on understanding

the effects of disorder in a system at the broken symmetry phase and at low temperature.

We started by investigating the effects of thermal fluctuations on the renormalized squared

mass using the one-loop approximation, building upon recent work by Heymans [38].

Subsequently, we extended this study to the two-loop approximation.

Initially, we examined the effects of thermal fluctuations on the pure system and ap-

plied the low-temperature approach. Our results, obtained using analytic regularization,

were consistent with the existing literature [37]. Building on these results, we then pro-

ceeded to derive the effects of disorder on the system. Given our focus on systems at

the broken symmetry phase and low temperature, it was natural to consider disordered

systems. We introduced the distributional zeta-function, which accounts for the effects

of randomness in the action functional and leads to a non-local contribution associated

with each momenta of the partition function.

The implications of disorder were particularly evident in the renormalized squared

mass. Building on our results for the one-loop diagram, we extended our analysis to

the two-loop diagram. We confirmed that the contributions from the double tadpole

and double scoop diagrams, which are trivial cases, yielded the expected results. These

contributions were straightforward to evaluate as they could be expressed in terms of

the tadpole diagram, corresponding to the one-loop case. However, the evaluation of

the non-trivial two-loop diagram proved to be more challenging. The interdependence of
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the third momentum and frequency with the internal and external momenta made the

evaluation complex. The approach used in this study led to a complicated expression for

this contribution, and it may be worthwhile to explore alternative methods to simplify

the evaluation process.

In conclusion, this study sheds light on the effects of disorder in systems at the broken

symmetry phase and low temperature. The renormalized squared mass serves as a key

observable to understand these effects. While the evaluation of the two-loop diagram

proved challenging, the results obtained for the trivial diagrams were in line with expec-

tations. Further investigations and alternative approaches may provide insights into the

evaluation of the non-trivial two-loop diagram and contribute to a more comprehensive

understanding of the effects of disorder in these systems.
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