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In a minute or two the Caterpillar took the

hookah out of its mouth and yawned once

or twice, and shook itself. Then it got

down off the mushroom, and crawled away

in the grass, merely remarking as it went,

"One side will make you grow taller, and

the other side will make you grow shorter."

"One side of what? The other side of

what?" thought Alice to herself. "Of the

mushroom," said the Caterpillar, just as if

she had asked it aloud; and in another

moment it was out of sight.

Lewis Carroll, Alice in Wonderland
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Resumo

O objetivo deste projeto foi utilizar técnicas computacionais para aproximar o melhor estado
microscópico a ser designado para um sistema dada uma descrição macroscópica deste, a partir de
resultados de pesquisa recentes sobre o assunto de mapeamento quântico da escala macro para a
micro. Três métodos são apresentados neste trabalho.

Primeiro, um método de amostragem por rejeição, em que os microestados quânticos são
amostrados uniformemente, um mapa de coarse-graining é aplicado neles e, então, os estados
são submetidos a condições de valor limiar para construir um conjunto que aproxima o ensemble
de todos os microestados que satisfazem as condições macroscópicas.

Em segundo lugar, um método de amostragem e partição, onde a imagem do mapa de coarse-

graining é dividido em células. Essa divisão, feita com o algoritmo de aprendizado de máquina
não supervisionado k-means++, é utilizada então para classificar os microestados com base na
posição dos estados efetivos correspondentes no espaço determinado pela imagem do mapa. A
abordagem cria células menores em lugares onde a concentração de dados é alta, consequentemente
permitindo que os assignments associados a macroestados mais prováveis sejam calculados com
precisão maior.

Finalmente, o leitor ou leitora é apresentado(a) a perspectivas para um método inspirado em
variational autoencoders para aprender como amostrar diretamente de microestados que satisfaçam
as condições macroscópicas.
Palavras-chave: Assignments, coarse-graining, física estatística, machine learning, k-means, vari-

ational autoencoders.
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Abstract

The goal of this project was to build upon existing research on the subject of macro-to-micro
quantum mapping by using computational tools to approximate the best microscopic assignment
for a system given a macroscopic description of it. Three methods are presented in this work.

First, a rejection sampling method, in which quantum microstates are sampled uniformly, acted
upon with a coarse-graining map and submitted to threshold conditions in order to construct a set
which approximates the ensemble of all microstates that satisfy the macroscopic conditions.

Second, a partition sampling method, in which the image space of the coarse-graining map is
divided into cells. This division, performed with the unsupervised learning algorithm k-means++,
is then used to label the microstates based on the position of their coarse-grained counterparts in the
image space. The approach creates smaller cells in places where the image space is densely popu-
lated, thereby allowing the assignments associated with more probable macrostates to be calculated
more precisely.

Lastly, the reader is presented with perspectives for a variational autoencoder inspired method
for learning how to sample microstates that satisfy the macroscopic constraints directly.
Keywords: Assignments, coarse-graining, statistical physics, machine learning, k-means, varia-
tional autoencoders.
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Chapter 1

Introduction

In his book Reliable Knowledge, John Ziman defines the goal of science as “a consensus of
rational opinion over the widest possible field” [1]. Throughout History, scientists have worked
together to tackle this monumental task. For many physicists, the ideal way to achieve this goal is
by finding a theory that is universal in the sense that its tenets can be applied to describe natural
phenomena from the scale of atoms and subatomic particles to that of celestial bodies and the
universe itself.

One of the main difficulties of this pursuit is the need to conciliate the laws of physics at extraor-
dinarily disparate scales. The properties of electrons in potential wells seem completely unrelated
to those of, for example, my cat curled up in his favorite box. Although it is technically true that my
cat’s properties could be described by the Schrödinger equation of his nuclei and electrons and their
Coulomb interactions, the amount of variables in this equation make it practically unsolvable. If the
goal of science is to achieve consensus between experts of a field, then the theory which describes
the interconnections between phenomena at different levels of description must be amenable to be
publicly assessed by the scientific community.

Statistical mechanics was one of the first fields of physics to bridge the macroscopic and mi-
croscopic descriptions of the world. When it first originated, it sought out to derive the thermal
properties of matter from the laws that govern the behavior of its constituent particles. This was
achieved through the use of thermodynamic ensembles. Three important ensembles of this sort,
introduced by Gibbs in 1902 [2] are the microcanonical, canonical and grand canonical ensembles.
The microcanonical ensemble describes a system in which the total energy and number of particles
do not change, in other words, a mechanically and adiabatically isolated system. In the canoni-
cal ensemble, the number of particles is still unchanging, but it is the temperature, rather than the
energy, that is fixed. It models a system in weak thermal contact with a heat bath, for example.
Finally, the grand canonical ensemble refers to a system with a specified temperature and chemical
potential, but whose energy and number of particles may vary [3].
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In all of these scenarios, there are either no exchanges between the system and the environment,
or the distinction between the two is clear enough that it is possible to describe their states before
the interaction occurs. In such situations, the degrees of freedom of the environment, which are
physically inaccessible, are discarded via the partial trace [4]. However, there are many physical
situations in which the split between our system of interest and the surrounding environment is not
so clear-cut. For example, recently, open quantum systems with non-Markovian evolutions have
been gaining the interest of a diverse set of research communities [5, 6, 7, 8, 9, 10].

One proposed method to deal with setups of this sort involves the use of coarse-graining maps.
A coarse-graining map is a generalization of the partial trace in the sense that it is a mathematical
tool that can be used to discard the experimentally unobtainable degrees of freedom of a physical
system. However, unlike the partial trace, which can only be applied to situations with a clear
separation between system and environment, coarse-graining maps can be used to model many
different kinds of phenomena. For instance, they have been used to describe the performance of a
blurred and saturated detector attempting to measure the state of atoms trapped in an optical lattice
[11, 12, 13]. In chapter 2, we will review quantum channel formalism which supports coarse-
graining maps in order to explain them in further detail.

Using coarse-graining maps, it is possible to define a statistical ensemble which allows us to
assign to systems with strongly interacting parts a microscopic state which abides by all the macro-
scopical constraints [13]. This can be used in order to assign a microscopic state to a system, given
only information on its macroscopic state. This is interesting because it allows for a more complete
understanding of the interelations of the descriptions of physical phenomena at different scales.

As is the case with thermodynamical ensembles, defining the set of relevant microstates and
calculating the ensemble average is not always trivial. Therefore, the goal of this project was to
use modern computational techniques, such as unsupervised machine learning, which have recently
generated some interesting applications in physics [14, 15], to create algorithms that could approx-
imate a system’s average microscopic state given a certain coarse-graining. In order to quantify our
algorithms’ efficiency, we applied them to simple situations for which the average global state can
be calculated analytically. This will allow us to estimate the numerical error involved in applying
them to other coarse-graining operators.

Our three main approaches were: brute force rejection sampling, a refinement of the rejection
sampling algorithm using unsupervised machine learning techniques and a variational autoencoder
inspired algorithm used to sample microstates non-uniformly. The algorithms and preliminary
results will be discussed in chapters 4, 5 and 6, respectively.
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Chapter 2

Coarse-graining maps

2.1 Quantum channels

The quantum channel framework is the most general way to describe physically realizable
changes in the states of quantum systems. A quantum channel is a map which, in the Schrödinger
picture, describes the time evolution of a quantum state. Let us denote this map Λ : L(HA) →
L(HB). In this notation, L(HA) refers to the space which contains all of the linear operators acting
on a Hilbert space of dimension A. Mathematically speaking, a quantum channel must satisfy the
following properties:

• Linearity

• Trace-preservation

• Complete positivity.

A map that satisfies the above properties is usually called a CPTP (Completely Positive Trace-
Preserving) map. Each of these properties is necessary in order for the evolution described by
this map to be physically meaningful. In the following subsections, we will define each of these
requirements and explain their physical interpretation.

2.1.1 Linearity

Let us take the map mentioned before, Λ : L(HA)→ L(HB). In order for this map to be linear,
it must satisfy the following properties [16]:

• Λ(ρ1 + ρ2) = Λ(ρ1) + Λ(ρ2), for any matrices ρ1, ρ2 ∈ L(HA)

• Λ(αρ) = αΛ(ρ), for any scalar α.
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Maps that describe time evolutions of quantum states must be linear, since a non-linear time evo-
lution would result in a violation of the no-signaling condition. An in-depth discussion on this can
be found in [17].

2.1.2 Trace preservation

A trace-preserving map is one that, when applied to an operator, will not change that operator’s
trace. It is easy to see why this is a requirement for a map Λ to describe a valid physical change
in a system. In order for a density operator ρ to represent a valid quantum state, it must satisfy
Tr[ρ] = 1. This is known as the normalization condition, and it is necessary in order for the density
matrix to have a coherent probabilistic interpretation. The state resulting from the application of
this map, Λ(ρ), must also have this property, i.e.,

Tr[Λ(ρ)] = Tr[ρ]. (2.1.1)

Hence, Λ must preserve the trace.

2.1.3 Complete positivity

Consider an arbitrary density matrix ρ in a vector space L(HA). Density matrices must be
positive in order to be physically meaningful. Therefore, if the map Λ : L(HA) → L(HB) is to
represent a valid time evolution, then Λ must necessarily satisfy:

Λ(ρ) ≥ 0. (2.1.2)

Maps that satisfy this condition for any operator are called positive maps. In the context of quantum
mechanics, however, this condition is not all that is necessary for Λ(ρ) to represent a valid quantum
state in all possible cases. Consider, for example, the case in which the system ρ is actually a
bipartite system composed of two subsystems that have become entangled. Suppose that some
physical change described by the map Λ is applied to one of the subsystems, while the other one
remains unchanged. The time evolution of the entire system is described by the map Λ̃ = 1k ⊗ Λ,
where 1k is the identity matrix associated to the dimention k of the unchanged subsystem. In order
for Λ̃ to yield a valid quantum state, the following must be true [17]:

Λ̃(ρ) = 1k ⊗ Λ(ρ) ≥ 0. (2.1.3)

In order to cover all possible cases of this sort, this equation must be true for all ρ, and for any value
of k up to the dimension of the space containing ρ. This condition is called complete positivity, and
is a stronger requirement than positivity.
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Quantum channels are not only able to describe the dynamics of open systems, but can also be
applied to situations in which we are only looking at a single part of a complex system, or account
for the effects of imperfect tools on the information that we can obtain from the system through
measurement. In the next section, we will see how this is done in more detail.

2.2 Coarse-graining channels

The idea behind coarse-grained modeling it is to simulate the behavior of complex systems
using a simplified, effective representation.

This work uses the definition of coarse-graining maps provided in [11]. Given a quantum
channel Λ : L(HD) → L(Hd), where HD and Hd are Hilbert spaces of dimentions D and d

respectively, we say that Λ is a coarse-graining map if and only if D > d. In other words, a
coarse-graining map is a quantum channel that reduces the dimensionality of the description of a
quantum state. This mathematical property makes it the ideal tool for creating effective descriptions
of systems by eliminating degrees of freedom that are experimentally unobtainable or irrelevant to
the phenomena being studied.

In this project, I used two particular coarse-graining maps corresponding to different physical
scenarios. These will be discussed in the following subsections.

2.2.1 The partial trace

The partial trace is a coarse-graining map that has a crucial role in the theory of open quantum
systems [18]. The primary goal of open quantum systems theory is to describe the local dynamics of
a system coupled to an environment. The environment is usually a large and complicated system,
which makes solving this problem by explicitly determining all the degrees of freedom of the
environment impratical or even unfeasible. Hence, the evolution of the system is described by an
effective dynamics. Given two linear operators LA and LB

TrB : L(HA ⊗HB)→ L(HA)

: LA ⊗ LB → Tr(B) · LA.
(2.2.1)

A familiar physical scenario to which the open quantum systems theory can be applied is that
of a bipartite system composed of a subsystem of interest interacting with a thermal bath [4]. The
Hilbert spaces associated each of these parts are denoted HA and HB, respectively. The total
system is described by a density matrix ρAB ∈ L(HA ⊗ HB), and their joint unitary evolution is
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given by U(t) = e−iHt, where H is the total Hamiltonian. If the initial joint state is ρAB(0), then,
by Schrödinger’s equation:

ρAB(t) = U(t)ρAB(0)U †(t). (2.2.2)

The spectral decomposition of the initial state of the bath, ρB(0), can be written as:

ρB(0) =
∑
i

λi |i〉〈i| , (2.2.3)

where {λi} are the eigenvalues and {|i〉} the eigenvectors which form an orthonormal basis for
ρB(0). The state of the system at time t, ρA(t), is given by:

ρA(t) = TrB[ρAB(t)] = TrB[U(t)ρAB(0)U †(t)] (2.2.4)

=
∑
j

〈j|U(t)ρAB(0)U †(t) |j〉 .

In order to effectively remove the degrees of freedom of the bath, we assume the initial state is
totally decoupled, i.e.,

ρAB(0) = ρA(0)⊗ ρB(0). (2.2.5)

This is a reasonable assumption to make, considering that, if the systems have only been in contact
for a short amount of time, strong correlations will not have formed yet. This considered, the
effective dynamics for A are given by:

ρA(t) =
∑
j

〈j| [U(t)ρA(0)⊗
∑
i

λi |i〉〈i|U †(t)] |j〉

=
∑
i,j

√
λi 〈j|U(t) |i〉 ρA(0)

√
λi 〈i|U †(t) |j〉 (2.2.6)

=
∑
i,j

Kij(t)ρA(0)K†ij(t),

where Kij(t) =
√
λi 〈j|U(t) |i〉 are called the Kraus operators.

As we can see, the effectiveness of this approach relies on the assumption that the correlations
between the subsystem of interest and the thermal bath are, initially, weak enough that the global
system can be described as a product state. This description is not appropriate for all physical
scenarios. In situations in which the split between the system and envinronment is not so clear-

12



cut, it would not be possible to describe the global state in this way. An example of this type of
circumstance will be given in the following subsection.

2.2.2 The blurry detector coarse-graining map

In [11, 12], a coarse-graining approach was proposed to model isolated quantum systems mea-
sured by a detector with an imperfect resolution. One of the situations that can be described by this
approach is that of cold atoms trapped in an optical lattice [19, 20, 21]. Consider an experiment
involving two such atoms. It is possible to model each atom as a qubit, where the state |0〉 refers to
atoms in the spin-up state, and |1〉 to atoms in the spin-down state. The global state of the system
can be described by a density matrix in L(H4).

The spin state of the atoms can be detected using a fluorescence imaging technique [22]. An
experimenter shines a laser on the system so that, for each atom, if it is in state |1〉, it scatters light,
and if it is in state |0〉, it does not. Suppose the experimental conditions are such that the detector
cannot resolve each individual atom. Furthermore, the amount of light coming from a single atom is
already enough to saturate the detector. In this case, one would not be able to discriminate between
states |01〉, |10〉 and |11〉. In other words, it is not possible to fully measure the microscopic state
of the system with this detector.

It is possible to represent the partial information that we obtained via experiment using coarse-
grained modeling. The pair of atoms is represented as a single ’effective’ atom which is in state |1〉
if light was scattered, and in state |0〉 if not.

Figure 2.2.1: Pictoral representation of the coarse-grained model. The drawing on the top represents the
blurred signal obtained by the detector, while the red sphere represents the approximation of the signal as
that of a single effective atom.

One possible coarse-graining map Λ : L(H4)→ L(H2) that describes this situation is: [11, 12]
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ΛCG(|00〉〈00|) = |0〉〈0| ΛCG(|01〉〈00|) =
|1〉〈0|√

3

ΛCG(|00〉〈01|) =
|0〉〈1|√

3
ΛCG(|01〉〈01|) = |1〉〈1|

ΛCG(|00〉〈10|) =
|0〉〈1|√

3
ΛCG(|01〉〈10|) = 0

ΛCG(|00〉〈11|) =
|0〉〈1|√

3
ΛCG(|01〉〈11|) = 0

ΛCG(|10〉〈00|) =
|1〉〈0|√

3
ΛCG(|10〉〈01|) = 0

ΛCG(|11〉〈00|) =
|1〉〈0|√

3
ΛCG(|11〉〈01|) = 0

ΛCG(|10〉〈10|) = |1〉〈1| ΛCG(|11〉〈10|) = 0

ΛCG(|11〉〈11|) = |1〉〈1| ΛCG(|10〉〈11|) = 0.

(2.2.7)

There are a few interesting observations to make about this map and how it reflects the physical
situation.

First of all, note that the coherences between distinguishable states are reduced by a 1/
√

3 factor.
This is necessary so that the blurry detector coarse-graining map satisfies the conditions of complete
positivity, linearity and trace preservation that were discussed previously. This signals that the
probability of observing coherence in this circumstance is reduced, but does not vanish [12].

Furthermore, recall that, since the detector is saturated, if any of the atoms is in an excited state,
what we will observe is an ’effective’ atom in an excited state. This is why it is impossible to
discriminate between states |01〉, |10〉 and |11〉. There are two immediate consequences to this fact.
The first is that there cannot be any coherece between these states, hence why these terms vanish
in the coarse-grained description. The second is that states |10〉〈10|, |11〉〈11| and |01〉〈01| are all
mapped to the same state, |1〉〈1|. A consequence of this is that, if one were to uniformly sample
a finite number of microstates ψi ∈ L(H4), where ψi = |ψi〉〈ψi|, and apply to them the blurry
detector coarse-graining map, the most densely populated region of the image space would be the
neighborhood of |1〉〈1|.

In contrast, note that the effective state ρ = |0〉〈0| can only be observed if both atoms are in
the pure state |0〉. In other words, there is only one possible microstate that leads to the macrostate
|0〉〈0|. In the case that was previously described, where one sampled a finite number of microstates
ψi ∈ L(H4) and applied to them the blurry detector coarse-graining map, the probability of obtain-
ing Λ(ψi) = |0〉〈0| would be null.

It is possible to visualize this property of the map by representing the coarse-grained states

14



using their Bloch vector coordinates, as I will show in the following subsection.

2.2.3 Visualizing properties of the map using the Bloch sphere

Using the computational basis, it is possible to parameterize pure single cubit states in the
following manner:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 , (2.2.8)

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. The parameters θ and φ can be re-interpreted in spherical
coordinates as the polar and azimuthal angles of a point on a sphere of radius one. Since mixed
states are convex combinations of pure states, all 1 qubit states can be represented as points of a
three-dimensional ball with radius one [23]. This ball is called the Bloch sphere. An illustration of
the Bloch sphere is shown in figure 2.2.2.

x

y

z

φ

θ

1

0

ψ

Figure 2.2.2: Illustration of the Bloch sphere. The states |0〉 and |1〉 lie, respectively, on the north and south
poles of the ball. Image by Smite-Meister, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>,
via Wikimedia Commons.

The vector composed of the cartesian coordinates of a one qubit state represented in this manner
is called its Bloch vector, and its components are defined as:

rx = Tr(ρσx)

ry = Tr(ρσy) (2.2.9)

rz = Tr(ρσz),

where σx, σy and σz are the Pauli matrices:
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σx =

[
0 1

1 0

]

σy =

[
0 −i
i 0

]
(2.2.10)

σz =

[
1 0

0 −1

]
.

Using the formulas in 2.2.9, one can verify that the state |0〉〈0| is represented as the north pole
of the Bloch sphere, while |1〉〈1| is the south pole.

Figure 2.2.3 shows a plot which allows one to visualize the effect of applying the blurry detector
coarse-graining map on a large number of uniformly sampled pure states. Using the QuTip toolbox
[24], I generated a set of 1000 Haar distributed pure quantum states ψi ∈ L(H4) and applied the
coarse-graining map to each one. The graph shows that, because of the properties of the map,
random states |ψi〉 ∈ H4 are more likely to be mapped onto the southern hemisphere of the Bloch
sphere than to the northern hemisphere. Figure 2.2.4 shows a histogram of the expected values of
the Pauli matrix σz for the states Λ(ψi) generated, further illustrating this point. This assymetry is
a consequence of the physical limitations of the detector which the coarse-graining map describes.
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Figure 2.2.3: Plot showing the coordinates of the Bloch vectors of uniformly sampled pure states ψi ∈ H4

to which the blurry detector coarse-graining map was applied. This plot allows us to visualize the effect
the map has on the pure states. It is interesting to observe that there is a tendency for the effective states to
concentrate in the southern hemisphere of the Bloch sphere. The incapacity of the detector of distinguishing
both atoms leads to many different microstates being mapped onto |1〉〈1|, while the effective state |0〉〈0| only
occurs for |ψi〉 = |00〉. This originates the assymetry observed in this plot.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0

5000

10000

15000

20000

25000
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Figure 2.2.4: Histogram of the expectation values of σz for a set of 400000 states Λ(ψi) where ψi were
uniformly sampled pure states ∈ H4. This histogram shows that if one were to sample a finite number of
microstates ψi ∈ H4 and apply to them the blurry detector coarse-graining map, the most densely populated
region would be in the southern hemisphere of the Bloch sphere, while the northern hemisphere is sparsely
populated in comparison.
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Chapter 3

Generalized statistical ensembles

Statistical ensembles were introduced in [2] to describe thermodynamic equilibrium and explain
how the laws of thermodynamics could be derived from classical mechanics. One can think of an
ensemble as an extremely large — sometimes infinite — amount of copies of a system, each of
which corresponds to a microstate that satisfies the macroscopical constraints. This concept is
based on the fact that, in practice, a physical law is established by repeating the same experiment a
large number of times. Experiments performed under the same conditions differ in the microscopic
scale. It is only the probability distribution of the microscopic variables that remains the same for
all samples, given specific macroscopic conditions [25].

The three main statistical ensembles that are commonly studied in graduate courses are the
microcanonical, canonical and grand canonical ensembles. The microcanonical ensemble describes
system of fixed energy. The canonical ensemble, which models a system in weak thermal contact
with a heat bath, characterizes a system of fixed temperature. Finally, the grand canonical ensemble
refers to a system with a specified temperature and chemical potential [3].

In a recent work [13], coarse-graining maps were used to define a statistical ensemble that
applies to situations that are more general than those covered by the thermodynamic ensembles
mentioned previously. Consider a system which can be described by an experimentally obtainable
density matrix ρ ∈ L(Hd), where Hd is a Hilbert space of dimention d. We assume that some of
the information about the system is lost in the process of measurement, so that ρ is an effective
description of an underlying microstate, to which we assign a pure quantum state ψ = |ψ〉〈ψ| ∈
L(HD). This process is described by a coarse-graining map Λ : L(HD) → L(Hd). In order to
satisfy the empirical constraints, we must have:

ρ = Λ(ψ). (3.0.1)

Generally, there will be multiple pure states that satisfy this condition. This leads us to define a
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set of all the pure quantum states which abide by the constraints:

ΩΛ(ρ) = {ψ ∈ L(HD)|Λ(ψ) = ρ}. (3.0.2)

This set can be thought of as a statistical ensemble, and it is possible to think of the process of
preparing a quantum state with the macroscopic properties described by ρ as sampling a microstate
ψ from it. Since there is no information which would lead one to believe that any particular mi-
crostate is more probable than the other, the principle of indifference is invoked, and all of the
microstates are assumed to be equally likely. Under the equal probabilities assumption, the most
likely microstate to obtain in a random preparation is the average over all microstates in the set.
Hence, the best assignment for the microstate is defined in [13] as:

AΛ(ρ) ≡ ΩΛ(ρ)
ψ

=

∫
ΩΛ

dµψPrΛ(ψ|ρ)ψ. (3.0.3)

In this expression, dµψ is the uniform Haar measure over pure states, and PrΛ(ψ|ρ) is the
probability density of the microscopic state ψ given the macroscopic constraints imposed by ρ

and the coarse-graining map Λ. Note that, in general, this assignment map is neither completely
positive nor linear. This is not a problem, since the assignment map does not represent any kind of
physical evolution of the system. It merely expresses the best guess for the underlying microstate
of a system given the available information. Furthermore, since, operationally, the assignment is
the result of averaging over a set of valid quantum states, it will always yield a valid quantum state.

In the following sections, we will show some examples of the application of this method, using
the coarse-graining operators mentioned the previous chapter.

3.1 Open quantum systems

Consider the scenario described in subsection 2.2.1, in which we had a bipartite system com-
posed of a subsystem of intererest interacting with a thermal bath. Let us assume that the state of
the subsystem is completely known and can be described as ρA ∈ L(HA). The density matrix ρA
can be written as:

ρA =
∑
i

Pi |ψi〉〈ψi| , (3.1.1)

where
∑

i Pi = 1, Pi ≥ 0 and the set of {|ψi〉〈ψi|} defines an orthonormal basis in L(HA). The
coarse-graining operator which maps the description of the global system to that of the subsystem
ρA is Λ = TrB. In this case, the set of states that satisfy the macroscopic constraints, ΩΛ(ρA), is
defined as:
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ΩΛ(ρA) = {ψ ∈ L(HdA ⊗HdB)|TrB[ψ] = ρA}. (3.1.2)

The states in this set are the purifications of ρ. Using equation 3.1.1, they can be written in the
following form [23]:

∣∣ψU〉 =
∑
i

√
Pi |ψi〉A ⊗ U |i〉B . (3.1.3)

In this expression, U is an arbitrary unitary operator acting on HB, and the set {|i〉B} form an
orthonormal basis in HB. We can show that equation 3.1.3 satisfies TrB[ψ] = ρA as follows.
Calculating the density matrix of

∣∣ψU〉〈ψU ∣∣ we find that:

∣∣ψU〉〈ψU ∣∣ =
∑
i,j

√
PiPj |ψi〉〈ψj| ⊗ U |i〉〈j|U †. (3.1.4)

Applying the partial trace, the result is:

TrB
∣∣ψU〉〈ψU ∣∣ =

∑
i,j

√
PiPj |ψi〉〈ψj|TrU |i〉〈j|U †.

Using the properties of the trace operator and the orthonormality of {|i〉B}, we find that:

TrU |i〉〈j|U † = Tr 〈j|U †U |i〉 = Tr 〈j|i〉 = δji.

Therefore,

TrB
∣∣ψU〉〈ψU ∣∣ =

∑
i,j

√
PiPj |ψi〉〈ψj| δij =

∑
i

Pi |ψi〉〈ψi| = ρA. (3.1.5)

The details of the evalution of the assignment map are included in [13], however, I included
here an alternate derivation of the result which can be interesting due to its simplicity. First, we
define a state |ψ1〉:

∣∣ψ1〉 =
∑
i

√
Pi |ψi〉A ⊗ |i〉B , (3.1.6)

Using the definition of the assignment in 3.0.3, we can write:
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AΛ =

∫
U

dU(1A ⊗ U
∣∣ψ1〉〈ψ1∣∣ 1A ⊗ U †)

=

∫
U

dU(1A ⊗ U)

(∑
i,j

√
PiPj |ψi〉〈ψj| ⊗ |i〉〈j|

)
(1A ⊗ U †)

=
∑
i,j

√
PiPj |ψi〉〈ψj| ⊗

∫
U

dUU |i〉〈j|U †.

(3.1.7)

In this expression, 1A denotes the identity matrix in the corresponding Hilbert space HA. Since
there are no other constraints on the global system, we invoke the principle of indifference and
integrate over the set of unitary operators inHB uniformly using the Haar Measure, which gives us
the result [16]: ∫

U

dUU |i〉〈j|U † =
Tr(|i〉〈j|)1

B
=
δij1B
B

. (3.1.8)

With this, we find that:

AΛ(ρA) =
∑
i,j

√
PiPj |ψi〉〈ψj| δij ⊗

1B

B

=
∑
i

Pi |ψi〉〈ψi| ⊗
1B

B

= ρA ⊗
1B

B
.

(3.1.9)

Therefore, given ρA ∈ L(HA), the best description for the state in L(HA ⊗ HB) is AΛ(ρA) =

ρA ⊗ 1B

B
.

Note that the state AΛ(ρ) is the same that we would obtain by maximizing entropy of the
system. Let us consider the interpretation of entropy as the quantity which defines our uncertainty
about the set of all conceivable microscopic experiments for a given macrostate [25]. It is possible
to see that ρA ⊗ 1B

B
maximizes this uncertainty, since it is a description that conveys only the

information given by our constraints — that the state of the subsystem A is ρA. The description for
B is an equiprobable mixture of states, which corresponds to a maximum level of ignorance about
the environment.
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3.2 A blurred and saturated detector

Consider an experiment like the one described in 2.2.2. Given an experimentally obtained
density matrix ρ ∈ L(H2) which contains partial information on the system, our objective is to find
its best microscopic description. To calculate the best assingment using equation 3.0.3, we must
first define the set ΩΛ of all possible microstates ψi that obey the constraint Λ(ψi) = ρ. To do this,
first we write |ψ〉 in the computational basis:

|ψ〉 =

i,j=1∑
i,j=0

cij |ij〉 . (3.2.1)

In this expression, cij ∈ C and
∑

ij |cij|2 = 1. Using this notation, the Λ(ψi) can be written:

Λ(ψ) =

(
|c00|2 1√

3
c00[c∗01 + c∗10 + c∗11]

1√
3
c∗00[c01+, c10 + c11] |c01|2 + |c10|2 + |c11|2

)
. (3.2.2)

From this, we find that the microstates that obey the constraints given by the available information
must satisfy:

ρ00 = |c00|2 (3.2.3)

ρ01 =
1√
3
c00[c∗01 + c∗10 + c∗11] (3.2.4)

ρ10 =
1√
3
c∗00[c01 + c10 + c11] (3.2.5)

ρ11 = |c01|2 + |c10|2 + |c11|2. (3.2.6)

Integrating over all states in ΩΛ is equivalent to integrating over all pure states in H4 that obey
equations 3.2.3-3.2.6. The probability density PrΛ to be integrated is proportional to a product of
delta functions:

PrΛ ∝ δ(|c00|2 − ρ00)δ

(
1√
3
c00[c∗01 + c∗10 + c∗11]− ρ01

)
×

δ

(
1√
3
c∗00[c01+, c10 + c11]− ρ10

)
×

δ(|c01|2 + |c10|2 + |c11|2 − ρ00). (3.2.7)

This integral can be exactly calculated. Details on how the calculations are performed can be seen
in [13]. After imposing the restrictions via the delta functions, we arrive at the following result:
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AΛ(ρ) =


ρ00

ρ01√
3

ρ01√
3

ρ01√
3

ρ01√
3

∗ ρ11

3
|ρ01|2
2ρ00
− ρ11

6
|ρ01|2
2ρ00
− ρ11

6
ρ01√

3

∗ ( |ρ01|2
2ρ00
− ρ11

6
)∗ ρ11

3
|ρ01|2
2ρ00
− ρ11

6
ρ01√

3

∗ ( |ρ01|2
2ρ00
− ρ11

6
)∗ ( |ρ01|2

2ρ00
− ρ11

6
)∗ ρ11

3

 . (3.2.8)

In contrast to the average assignment related to the partial trace case, the assignment for the
blurred and saturated detector has a nonlinear dependence on the coefficients of ρ. Note, however,
that the nonlinear terms are related to the coherences within the subspace spanned by {|01〉 , |10〉 , |11〉}.
As mentioned previously, the detector cannot resolve these coherences, hence, all nonlinear terms
vanish when the coarse-graining map Λ is applied. This nonlinearity has interesting applications
when considering the effective dynamics of the system. However, this discussion is beyond the
scope of this work. The reader is encouraged to consult [13] for further details.

In the next chapter, we will see how these results were used to test the quality of algorithms that
approximate the average assignment in scenarios such as these.
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Chapter 4

Rejection sampling

4.1 The rejection sampling algorithm

The goal of this work was to use computational methods in order to create datasets which could
approximate the set defined in equation 3.0.2. The first approach was that of brute force rejection
sampling. As discussed in chapter 3, we assume that we have access to a description ρ ∈ L(Hd)

of our system that contains only part of the information that describes its entire structure, which
belongs to a larger space L(HD). Furthermore, the loss of information can be represented by a
coarse-graining map Λ : L(HD)→ L(Hd).

The idea of this method is that of trial and error. One uniformly samples random quantum
states ψi = |ψi〉〈ψi| such that ψi ∈ L(HD), then checks if they satisfy the constraints of equation
3.0.1. Randomly sampling a random quantum state that satisfies this equation exactly is, however,
impossible, so it was necessary to impose a threshold condition. The criteria for accepting or
rejecting quantum states was based on the trace distance between Λ(ψi) and ρ, which is defined
[23]:

T (Λ(ψi), ρ) =
1

2
Tr |Λ(ψi)− ρ|, (4.1.1)

where, for any operator A, |A| =
√
A†A.

Physically, the trace distance represents a measure of the distinguishability between two states.
Hence, we require that the random states generated satisfy T (Λ(ψi), ρ) ≤ ε where ε is some fixed
threshold parameter, in order to be included in our dataset. This process is repeated for a number
of iterations, until the dataset reaches a certain size D. The resulting dataset, denoted Ω̃Λ(ρ) is
a numerical approximation to the set ΩΛ(ρ) defined in equation 3.0.2. Mathematically, it can be
written:
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Ω̃Λ(ρ) = {ψi|T (Λ(ψi), ρ) ≤ ε}, (4.1.2)

where , 0 ≤ i ≤ D − 1. The approximation to the assignment AΛ(ρ) defined in equation 3.0.3 is
the average of our dataset, given by:

ÃΛ(ρ) = Ω̃Λ(ρ) =
1

D

D−1∑
i=0

ψi. (4.1.3)

In summary, these are the steps for calculating the average microstate using rejection sampling:

1. Generate a random quantum state ψ = |ψ〉〈ψ|, with ψ ∈ L(HD).

2. Apply the coarse-graining map Λ to ψi.

3. Calculate the trace distance between Λ(ψi) and ρ. This quantity is denoted T (Λ(ψi), ρc).

4. Check if T (Λ(ψi), ρ) ≤ ε, where ε is an arbitrary threshold parameter. If the condition holds,
add ψi to the set of states that satisfy it.

5. Repeat steps 1-4 until the dataset reaches a size D. The resulting dataset is denoted Ω̃Λ(ρ)

and is defined in equation 4.1.2.

6. Calculate the average of Ω̃Λ(ρ), as shown in equation 4.1.3. This is the approximate assignmentÃΛ(ρ).

This program was implemented in Python using the QuTiP library [24], which allows one to gener-
ate random quantum states and perform operations on them. A flowchart illustrating this algorithm
is shown in Figure 4.1.1.

Two main variables influence how good of an approximation the assignment is to the desired
average microstate. The first one is the threshold parameter ε. As we can see from equation 4.1.1,
as ε → 0, Λ(ψr) → ρ. In other words, the randomly generated states in the dataset satisfy the
desired conditions more exactly. The second variable is the size D of the dataset. The law of large
numbers tells us that the averages calculated from an experiment involving a certain number of
trials become closer to the theoretical average as the number of trials increases. The process of
finding the average microstate by calculating the average of a set of randomly generated quantum
states can be thought of as an experiment of this sort, in which the number of trials is equal to the
size of the dataset. Therefore, we expect the approximated average to be closer to the theoretical
ensemble average as D increases.

Evidently, the size of the dataset is directly related to the number iterations of the algorithm.
Generating larger datasets reduces statistical error, but increases the time taken by the program to
calculate the approximate assignment. Therefore, it was necessary to consider these two factors in
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order to set a minimum value of D at which to stop the loop. This process shall be discussed in the
following subsection.

Input ρ

Generate random state ψi = |ψi〉〈ψi|

Apply linear map to get Λ(ψi)

Calculate trace distance T (Λ(ψi), ρ)

T (Λ(ψi), ρ) ≤ ε?

Add ψi to Ω̃Λ

Discard ψi

End loop?

Calculate average of Ω̃Λ

yes

no

yes

no

Figure 4.1.1: The rejection sampling loop
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4.2 Convergence criteria

Let ÃDnΛ (ρ) be the approximate assignment given by the rejection sampling algorithm for an
instance in which the size of the dataset was Dn. Furthermore, let the set of sets be ordered, so that
D1 < D2 < . . . < Dn. My first objective was to determine the qualitative behavior of ÃDnΛ (ρ)

as the datasize size increased, in order to determine a good cutoff point for the rejection sampling
loop.

Since the only relevant variables were the sizes of the dataset, there were no particular restric-
tions on the choice of Λ, ρ or ε to run this test with. It was only necessary that all of these inputs
remained constant. I decided to use the blurry detector coarse-graining map, for which the ana-
lytical solution for AΛ(ρ) is known, and calculate the quality of the approximation as Dn varied.
For this, I used two different metrics. The first one was the trace distance T (ÃDnΛ ,AΛ), as defined
in equation 4.1.1. Here, I omitted the dependence of the variables on ρ in order to simplify the
notation.

One possible limitation of this metric is that a relatively constant trace distance T (ÃDnΛ ,AΛ)

does not necessarily imply that the algorithm’s output has converged to a fixed value. It is possible
that, instead, the output ÃDnΛ is fluctuating around states within the same trace distance of AΛ. Be-
cause of this, I considered a second metric, the absolute value of the maximum difference between
the coefficients of the matrix representation of ÃDnΛ and AΛ. One first takes the difference matrix,
ÃDnΛ −AΛ [26]:


〈
i(1)
∣∣∣ÃDnΛ |j(1)

〉
−
〈
i(1)
∣∣AΛ|j(1)

〉
. . .

〈
i(1)
∣∣∣ÃDnΛ |j(N)

〉
−
〈
i(1)
∣∣AΛ|j(N)

〉
... . . . ...〈

i(N)
∣∣∣ÃDnΛ |j(1)

〉
−
〈
i(N)
∣∣AΛ|j(1)

〉
· · ·

〈
i(N)
∣∣∣ÃDnΛ |j(N)

〉
−
〈
i(N)
∣∣AΛ|j(N)

〉
 , (4.2.1)

where we have taken an orthonormal basis 〈i|j〉 = δij , and both matrices have dimentions N ×
N . After that, one calculates the absolute values of the coefficients of this matrix and takes the
maximum value.

In order to gain an understanding of the influence of statistical error on my results, I plotted
these metrics for the states ρ = |1〉〈1| and ρ = |0〉〈0| using the blurry detector coarse-graining. The
reason for this choice is that these two cases represent, respectively, an example of a macrostate
for which it is easy to generate a large number of matrices in the dataset D, and one for which it is
very hard to do so.

Setting the input parameters of the program to ρ = |1〉〈1| and ε = 0.2, I had the program
calculate ÃDnΛ for Dn = {100, 200, . . . , 3000}. The graph of how both the trace distance and the
maximum coefficient metric varied with the dataset size can be seen in figure 4.2.1. The mean of
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the output values for T (ÃDnΛ ,AΛ) was approximately 0.30, and the range was of approximately
0.04. The minimum value occured at Dn = 100, and the maximum occured at Dn = 300. For the
maximum coefficient metric, the mean was approximately 0.14, and the range, approximately 0.02.
The minimum value occured at Dn = 900 and the maximum, at Dn = 200. In conclusion, for both
metrics, the most significant statistical variations occured within values of D up to 900.
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max diff between coefficients

Figure 4.2.1: Graph showing the difference between the outputs ÃDnΛ for different dataset sizes Dn, and the
analytically derived assignmentAΛ for the blurry detector coarse-graining map, with ρ = |1〉〈1| and ε = 0.2.
The trace distance metric is defined in equation 4.1.1, and the maximum difference between coefficients is
largest of the absolute values of the coefficients in the matrix shown in equation 4.2.1. For both metrics, the
most significant statistical fluctuations occur within values of D up to 900, and, after that, they plateau.

As mentioned previously, in general, we do not know how to calculate the analytical value of
AΛ for an arbitrary coarse-graining operator. Therefore, it was of utmost importance to establish
a way of studying the behavior of ÃDnΛ for different dataset sizes that was independent of the
analytical prediction for AΛ. In order to do this, I decided to use the metrics introduced before to
analyze the variation between ÃDnΛ for consecutive values of Dn. For this I used the previously
generated data, consisting of a set of states

{
ÃDnΛ

}
with Dn = {100, 200, . . . , 3000}. The metrics

which were evaluted were the trace distance between consecutive outputs, T (ÃDn−1

Λ , ÃDnΛ ), and the
maximum of the absolute values of the coefficients of the difference matrix ÃDn−1

Λ − ÃDnΛ . The
results can be seen in figure 4.2.2.

As can be seen in Figure 4.2.2, both metrics decrease rapidly for datasets with up to 1000 el-
ements, and after that, the output variations being to plateau. One can argue that the statistical
fluctuations observed when analyzing the difference between the output and the analytical result
are related to the output variations that occur within 200 ≤ Dn ≤ 1000. Once the variations in the
output ÃDnΛ decrease, the distance between the numerical approximation and the analytical result
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begins to converge to a constant value. For 1500 ≤ Dn ≤ 3000, the mean value of T (ÃDn−1

Λ , ÃDnΛ )

was approximately 0.003, and the mean value for the maximum coefficient metric was approxi-
mately 0.002. These values are quite small compared to the error between the analytical result and
the program’s output, therefore D = 1500 was set as the ideal minimum value at which to stop the
rejection sampling loop.
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Figure 4.2.2: Graph showing the difference between the outputs ÃDnΛ for consecutive values of D. The
coarse-graining map used was the blurry detector one, with ρ = |1〉〈1| and ε = 0.2. The trace distance metric
is defined in equation 4.1.1, and the maximum difference between coefficients is largest of the absolute values
of the coefficients in the matrix shown in equation 4.2.1. Both metrics decrease rapidly for datasets with up
to 1000 elements, and after that, plateau and remain within values inferior to 0.005.

For certain choices of coarse-graining maps and macrostates ρ, however, achieving this ideal
minimum value can be computationally slow. For example, in the case of the blurry detector coarse-
graining map with ρ = |0〉〈0| and ε = 0.05, running the loop for 13000000 iterations yielded a
dataset with only 98 states. When evaluating the behavior of the trace distance T (ÃDn−1

Λ , ÃDnΛ ) and
maximum coefficient metrics for this case, it was observed that the mean value of T (ÃDn−1

Λ , ÃDnΛ )

was approximately 0.008, and the mean value for the maximum coefficient metric was approxi-
mately 0.006. Despite the statistical variations being higher than observed for the case of ρ = |1〉〈1|,
ε = 0.2 and 1500 ≤ Dn ≤ 3000, the differences between the outputs and the analytical results were
generally much lower. These results can be seen in figure 4.2.3.

This suggests that statistical fluctuations do not influence the algorithm’s quality in approximat-
ingAΛ as much as other factors such as the characteristics of the map, the choice of macrostate and
the ε parameter. In the following section, we will discuss the influence of ε in further detail.
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(a) Graph showing the difference between the outputs ÃDn

Λ for dif-
ferent dataset sizes Dn, and the analytically derived assignment
AΛ.
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(b) Graph showing the difference between the outputs ÃDn

Λ for con-
secutive values of D.

Figure 4.2.3: Graph (a) shows the difference between the outputs ÃDnΛ for different dataset sizesDn, and the
analytically derived assignment AΛ and graph (b) the difference between the outputs ÃDnΛ for consecutive
values of D, for the case of the blurry detector coarse-graining map with ρ = |0〉〈0| and ε = 0.05. The trace
distance metric is defined in equation 4.1.1, and the maximum difference between coefficients is largest of
the absolute values of the coefficients in the matrix shown in equation 4.2.1. Due to the characteristics of this
map, obtaining large datasets for this choice of macrostate is difficult, hence the datasets were much smaller.
The variations between consecutive outputs were observed to have a similar behavior to that of the case of
ρ = |1〉〈1| and ε = 0.2, however, the differences between ÃDnΛ and the analytical result were much smaller.
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4.3 The ε parameter

As mentioned previously, the constant ε is a threshold parameter for accepting or rejecting
random quantum states into the algorithm’s dataset. The dataset Ω̃Λ(ρ) generated by the rejection
sampling algorithm is meant to approximate the ensemble of microstates that satisfy the conditions
given by Λ(ψi) = ρ. However, the probability of randomly sampling a state that satisfies this
equation exactly is zero. Hence the need for a threshold parameter.

In order to better visualize the effect of reducing ε on dataset, I created a plot using the same
method that was explained in subsection 2.2.2. I ran the rejection sampling algorithm for blurry
detector coarse-graining map with ρ = |1〉〈1| and three different threshold parameters: ε = 0.2,
ε = 0.1 and ε = 0.05. I took the Bloch vectors of Λ(ψi) for the states which passed the threshold
conditions for each case and plotted the result in a 3D graph, which can be seen in figure 4.3.1.

From these images, it can be observed that decreasing ε has the effect of shrinking the region the
microstates in the dataset are mapped to around the vicinity of ρ. Consequently, one can intuit that
for ε → 0 all states will be mapped exactly unto ρ. In other words, reducing the ε parameter will
result in the microstates included in Ω̃Λ(ρ) satisfying the macroscopic constraints more exactly,
however, the number of iterations necessary to attain a satisfactory number of microstates will
increase.

In order to better understand the influence of ε on the numerical approximation of the as-
signment ÃΛ(ρ), the rejection sampling loop was applied to a set of different values of ε ∈
{0.5, 0.4, 0.3, 0.2, 0.1, 0.05} for each of the studied macrostates ρ. Two different coarse-graining
maps were used, the partial trace and the blurry detector coarse-graining map. Since, for both of
these maps, the analytical solution for the assignment is known, I used the trace distance T (ÃΛ,AΛ)

as a measure of the program’s error and plotted it against ε to observe how the algorithm’s perfor-
manced varied as the threshold conditions became stricter. The following section shows the results
of this study.
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(a) ε = 0.2

(b) ε = 0.1

(c) ε = 0.05

Figure 4.3.1: Visualization of Λ(ψi) for datasets with different values of ε. The algorithm was run with the
blurry detector coarse-graining map and ρ = |1〉〈1|. From this figure, it is possible to see that as we reduce
the threshold parameter, the states Λ(ψi) become more localized around the macrostate ρ. Also note that
the shape of the volume to which selected microstates are mapped to on the Bloch sphere is the intersection
between a sphere of radius ε centered on the Bloch coordinates of the macrostate and the Bloch sphere itself.
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4.4 Results

4.4.1 The partial trace

In studying the algorithm’s performance for the partial trace coarse-graining map, I considered

four different macroscopic states: ρ1 = |1〉〈1|, ρ2 =

[
0.1 0

0 0.9

]
, ρ3 =

[
0.3 0

0 0.7

]
and ρ4 = 12

2
.

When plotting the error in the approximation, measured by T (ÃΛ,AΛ) versus the parameter ε, it
was observed that T (ÃΛ,AΛ) fluctuated around 0.019 ± 0.006 for the maximally mixed state, ρ4.
For all of the other states T (ÃΛ,AΛ) was observed to decrease as ε decreased. At ε = 0.5, ρ1 had
the highest value for T (ÃΛ,AΛ), followed by ρ2, ρ3 and finally ρ4. At ε = 0.05, the algorithm gave
an approximation with an error measure T (ÃΛ,AΛ) ≤ 0.025 for all of the states. This plot can be
seen in figure 4.4.1.

An interesting aspect of this result is that the states ρ1 to ρ4 have decreasing values of purity, as
defined by [23]:

P (ρ) = Tr
(
ρ2
)
. (4.4.1)

The purity of a state is always less than or equal to 1, with the equality occuring if and only
if ρ is pure. For the macrostates used in this test, P (ρ1) = 1, P (ρ2) = 0.82, P (ρ3) = 0.58 and
P (ρ4) = 0.5. This result suggests that the threshold conditions one must impose to achieve an
approximation such that T (ÃΛ,AΛ) ≤ 0.025 are stricter for pure states than they are for mixed
states. Furthermore, the lower the purity of the state, the higher ε can be.

Note that applying the partial trace to a two qubit state will only yield a pure state if there is
no entanglement, i.e., the system is in a product state. To see this, recall that any pure state in a
bipartite system can be written in terms of its Schmidt decomposition [23]:

|ψAB〉 =
∑
i

λi |iA〉 |iB〉 , (4.4.2)

where the Schmidt coefficients λi are all non-negative numbers with
∑

i λi = 1, and the orthonor-
mal bases |iA〉 and |iB〉 are called the Schmidt bases. Applying the partial trace to this state, we see
that:

TrB [|ψAB〉〈ψAB|] =
∑
i

λ2
i |iA〉〈iA| . (4.4.3)

If ρA is pure, λi = 1 for some value of i, and 0 for all the others. Hence, |ψAB〉 = |iA〉 |iB〉 is
a product state. Previous results in the field [27] have shown that that entangled states are more
probable to be obtained through random sampling in L(H4) in comparison to non-entangled ones.
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This means that it is more difficult to sample states that satisfy the macroscopic conditions TrB = ρ

when ρ is pure than when it is mixed. Therefore, the errors involved in calculating the approximated
assignment for pure states are larger and the threshold conditions must be stricter in order to obtain
better results.
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Figure 4.4.1: Rejection sampling error by ε for four different macroscopic states: ρ1 = |1〉〈1|, ρ2 =[
0.1 0
0 0.9

]
, ρ3 =

[
0.3 0
0 0.7

]
and ρ4 = 12

2 . Macrostate ρ1 is a pure state, ρ4 is maximally mixed state,

and the other two have intermediate values of purity. Note that the axis is oriented in the direction of de-
creasing ε. Observe that, for higher of ε, the algorithm performs worse on states with higher purity. As ε
decreases, however, the quality of the approximation becomes similar for all states.

4.4.2 Blurry detector coarse-graining map

In studying the algorithm’s performance for the blurry detector coarse-graining map, I consid-

ered four different macroscopic states: ρ1 = |1〉〈1|, ρ2 = |0〉〈0| , ρ3 = 12

2
, and ρ4 =

[
0.2 0.4

0.4 0.8

]
.

The states ρ1 and ρ2were chosen because, given the assymetry of the image space of the coarse-
graining map discussed in subsection 2.2.2, I was interested in observing the difference in how the
algorithm performed for each of them. State ρ3 = 12

2
was chosen because I wanted to see how

the algorithm would behave when ρ was a mixed state. Finally, state ρ4was chosen to observe the
algorithm’s performance on a macrostate which exhibitted coherences between the states |0〉 and
|1〉.

A graph of the error measure T (ÃΛ(ρ),AΛ) versus ε for each of the states can be seen in Figure
4.4.2. Two things can be observed in this graph. The first is that, as expected, the error measure
decreases with ε for all of the ρ analyzed. The second is that the algorithm performs better for some
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Figure 4.4.2: Rejection sampling error by ε for four different macroscopic states: ρ1 = |1〉〈1|, ρ2 = |0〉〈0| ,

ρ3 = 12
2 , and ρ4 =

[
0.2 0.4
0.4 0.8

]
. Note that the axis is oriented in the direction of decreasing ε. As expected,

the algorithm’s performance improves as ε decreases. However, the quality of the approximation given by
the algorithm varies depending on the input macrostate.

macrostates ρ than for others.
The macrostate that exhibited the lowest values of T (ÃΛ(ρ),AΛ) for all ε was ρ3 = 12

2
. In

order to better understand this, let us consider the region of space to which the Bloch vectors of
Λ(ψi) for ψi ∈ Ω̃Λ(ρ3) are mapped to. Using equation 2.2.9, it is possible to verify that the Bloch
coordinates of ρ3 are [0, 0, 0], i.e., exactly the center of the Bloch sphere. The region described by
T (Λ(ψi), ρ3) ≤ ε is approximately a sphere of radius ε. It is possible to argue that the spherical
symmetry of this region helps the algorithm’s performance, as errors in opposing directions will
tend to cancel each other out when the average over the whole set is performed. This was not the
case with any of the other macrostates analyzed, since they were all pure states. As we know, pure
1 qubit states are situated on the surface of the Bloch sphere. This means that the states Λ(ψi) for
ψi ∈ Ω̃Λ(ρi 6=3) will not be distributed in a radially symmetric way around ρ, because if they were,
the set would include vectors that are outside the Bloch sphere, and therefore, not valid quantum
states.

Another interesting observation was that the algorithm performed better for ρ2 = |0〉〈0| than for
ρ1 = |1〉〈1|, for all values of ε. As mentioned previously, the only microscopic state that satisfies
the macroscopic conditions described by ρ2 is the state |00〉〈00|. In contrast, there are an infinite
number of microstates that satisfy the macroscopic conditions described by ρ1. A consequence of
this is that there is a smaller variation between the matrices in the dataset Ω̃Λ(ρ2) as opposed to
those in Ω̃Λ(ρ1). This leads to a better performance for ρ2, despite the computational difficulties in
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sampling states that satisfy the microscopic conditions through this method.
The algorithm performed the worst on ρ4 for ε up to 0.1. It is possible that for larger values of

ε, the sets Ω̃Λ(ρ4) contained more noise in comparison to the other states. The Bloch coordinates of
ρ4 are [0.8, 0,−0.6], which means it is in the southern hemisphere. As discussed in chapter 2, when
randomly sampling states ψi and applying to them the blurry detector map, the resulting dataset
will contain states Λ(ψi) that are mostly distributed about the south pole. Let us denote the set
Λ ◦ Ω̃Λ(ρ4), where symbol ◦ denotes the element-wise application of Λ on Ω̃Λ. For larger values
of ε, it is possible that Λ ◦ Ω̃Λ(ρ4) contained more states in the neighborhood of more probable
macrostates, such as ρ1, than states in the vicinity of ρ4. Hence, stricter threshold conditions were
needed to eliminate the noise.

Evidently, this is not an extensive study of how the algorithm performs for all ρ. The way the
program is constructed makes it inconvenient to run for many different macrostates, because each
time the value of ρ is changed, the loop has to be run again. This difficulty lead to the development
of a method that circumvents this problem, which will be discussed in the following chapter.
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Chapter 5

Partition sampling

5.1 Motivation for this approach

One clear drawback to the rejection sampling algorithm shown in the last section is that it only
saves the random microstates ψi = |ψi〉〈ψi| such that T (Λ(ψi), ρ) ≤ ε. This means that for each
different value of the macrostate ρ, we must run the algorithm again from the beginning. It would
be more efficient to be able to create one large dataset of uniformly generated quantum states, save
it and reuse it for each input ρ. In order to try to solve this problem, I developed an algorithm which
I will refer to in this work as partition sampling.

The main objective of this method is to create a labeled dataset of random microstates ψi such
that, given any macrostate ρ, an approximate average microstate can be calculated. Let us assume,
as before, that we are using a coarse-graining map Λ : L(HD) → L(Hd). Any quantum state can
be parametrized in such a way as to be interpreted as a point in some vector space. The core idea
of this method is to label each ψi based on the region of space in which Λ(ψi) lies. This is done
through the following steps:

1. Generate a dataset D with uniformly distributed pure quantum states ψi ∈ L(HD).

2. Apply the coarse-graining map Λ : L(HD) → L(Hd) to all ψi. The resulting set will be
denoted Λ ◦D.

3. Divide the points in Λ ◦ D into k partitions. Each partition is denoted Kn, with n =

{0, 1, ..., k}.

4. Label each element of D in the following manner. Given a state Λ(ψi) ∈ Λ ◦ D, if Λ(ψi)

belongs to a certain partition Kn, then the label of ψi is n. Save the labels in a dataset L.

This process only has to be performed once. Once it is done and all of the datasets are saved, the
approximate assignment for any given ρ can be calculated as follows:
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1. For a given macrostate ρ, determine which partition ρ belongs to.

2. Let us say that ρ belongs to the partition Kn. The set Ω̃Λ(ρ) which approximates the one
given by equation 3.0.2 will be composed of the elements of D that possess the label n.

3. The approximate assignment ÃΛ(ρ) is given by the average over Ω̃Λ(ρ).

Note that, for this method, the number k of partitions we choose to divide Hd into has a role
equivalent to that of the ε parameter in the rejection sampling method. This is because using more
partitions means dividing the space into smaller regions. A consequence of smaller partitions is
that, on average, there will be less states in each partition. On the other hand, the states in that
partition will satisfy the macroscopic constraints more exactly.

A question one may ask themselves when attempting to implement partition sampling is: what
is the best way to partition the data points? It was this question that piqued my interest in an
unsupervised machine learning method called k-means clustering. The next section will discuss
the k-means++ algorithm and how it was used in this work.

5.2 Partitioning with k-means++

K-means clustering is an algorithm that originates from signal processing [28]. Its objective is
to partition n observations into k clusters. The criteria for including an observation into a cluster
is that the observation must be closer to the center of its respective cluster than to any of the other
cluster centers. In mathematical terms, this is equivalent to partitioning the data space into Voronoi
cells [29].

Given a positive integer k and a set of n data points in Rd, the objective of the algorithm is to
choose k points such that the distance between each data point and its closest center is minimal.
Denoting the set of centers as C and the set of data points as X , the cost function φ that this
algorithm attempts to minimize is:

φ =
∑
x∈X

min
c∈C
|x− c|2. (5.2.1)

This quantity φ is commonly called the inertia in the context of machine learning, and shall be
reffered to as such in this text. In this work, I used the algorithm k-means++ [30], an improvement
upon the traditional k-means algorithm [28]. The steps of the algorithm are as follows:

1. Randomly choose k initial centers C = {c1, c2, · · · ck} from X .

2. For each i ∈ {1, · · · k}, set the cluster Ki to be the set of points in X that are closer to ci than
they are to all cj , for all j 6= i.
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3. For each i ∈ {1, · · · k}, update ci to be the center of mass of all points in Ki: ci =
1
|Ki|
∑

x∈Ki x. Note that ci does not necessarily need to correspond to a data point in X .

4. Repeat steps 2 and 3 until C no longer changes.

Figure 5.2.1 illustrates the steps of the traditional k-means algorithm. More details on k-means++
can be found in [30]. The algorithm was implemented in Python using the scikit-learn library [31].

Let us consider the minimization objective of k-means and how it will affect the distribution of
the partitions for the cases in which it will be applied. From what we have seen in the previous
chapters, we know that, in general, the states in Λ ◦D will not be uniformly distributed in L(Hd).
This means that, if we represent this set as a series of points in R

d, there will be regions of the
space with higher density than others. Given the learning objective of k-means++, the algorithm
will tend to create smaller partitions where the data concentration is higher, and larger partitions
where the data is sparse. This is physically interesting because, recall, the regions of space that
are more densely populated correspond macrostates which are more likely to be observed for any
given experiment. Hence, partitioning using k-means++ allows for a greater precision in calculating
ÃΛ(ρ) for the most commonly observed macrostates. This is the physical motivation behind this
choice of algorithm.
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(a) Step 1 of the k-means clustering
method. Squares represent data points,
and circles represent the cluster centers.
At first, the initial cluster centers are cho-
sen at random. Note that in the case il-
lustrated, the cluster centers do not cor-
respond to data points. This is one of
the differences between k-means and k-
means++.

(b) Step 2 of the k-means clustering
method. All points in the dataset are
labeled according to which cluster cen-
ter they are closest to. The colored par-
titions represent the clusters, and dat-
apoints are colored in accordance to
which cluster they were placed in.

(c) Step 3 of the k-means clustering
method. The cluster centers are rede-
fined as the centers of mass of all points
in their respective clusters. Note that
since there was initially only one data
point in the red cluster, the cluster center
is placed exactly on the same position as
this single data point.

(d) After step 3, the points in the dataset
are relabeled according to which clus-
ter center they are closest to, resulting in
a new distribution of the data along the
partitions.

Figure 5.2.1: Figures ilustrating the steps of the k-means algorithm. Steps 2-3 are repeated until, when
recalculating the cluster centers, the algorithm finds that they no longer change coordinates. All images
shown here were created by Weston.pace and distributed under a CC BY-SA 3.0 license.
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5.3 The k parameter and partition size

I applied this method to the previous cases, described by the partial trace and the blurry detector
coarse-graining maps. The partition sampling algorithm requires the use of two datasets. The
dataset D contained the microstates, a set of uniformly sampled pure quantum states ψi ∈ L(H4).
The second set, Λ◦D, contained the corresponding coarse-grained states Λ(ψi) ∈ L(H2). Since the
k-means algorithm can only be applied to data consisting of arrays of real numbers, the macrostates
were not stored in their density matrix representation, but in their Bloch vector representation.

Analogously to what was done in chapter 4, I applied partition sampling using a variety of
k values and analyzed the behavior of the trace distance T (ÃΛ,AΛ) as k varied. As before, ÃΛ

denotes the numerical approximation of the assignment given by our algorithm, andAΛ the analyt-
ical result. The number k of clusters the dataspace is divided into in the partition sampling method
has a comparable role to that of the ε parameter in the rejection sampling method. In the rejec-
tion sampling algorithm, reducing ε reduces the region of the Bloch sphere occupied by the states
Λ(ψi) which satisfy the condition T (Λ(ψi), ρ) ≤ ε. Similarly, in the partition sampling algorithm,
increasing the k parameter reduces the size of each partition. Figure 5.3.1 shows the k-means par-
titioning of the same dataset for different values of k. It is possible to see that as the number of
partitions increases, the size of each individual one decreases.

In order to better compare the performance of partition to rejection sampling, I wanted to choose
values for k which would induce k-means++ to partition the Bloch sphere into cells of comparable
volumes to those occupied by the Bloch vector representations of the coarse-grained states Λ(ψi)

for different ε (recall figure 4.3.1, which shows a visualization of this). In order to do this, I used
two approximations. First, I considered that it was possible to approximate the volume occupied by
all Λ(ψi) which satisfy T (Λ(ψi), ρ) ≤ ε to that of a sphere of radius ε centered on the Bloch vector
coordinates of ρ. Using a second assumption, that k-means++ would divide the Bloch sphere into
partitions of approximately equal sizes, one could argue that the value of k which would induce the
algorithm to create partitions of compatible sizes to those of {Λ(ψi)|T (Λ(ψi), ρ) ≤ ε} would be:

k =
VBloch sphere

Vsphere of radiusε
=

1

ε3
. (5.3.1)

It must be noted, however, that none of these approximations are applicable in general. As dis-
cussed in the previous chapter, approximating the volume of {Λ(ψi)|T (Λ(ψi), ρ) ≤ ε} to a sphere
is not accurate for all possible choices of ρ and ε. For instance, any pure 1 qubit macrostate lies on
the surface of the Bloch sphere, and therefore, part of the volume of any sphere centered on ρ will
contain points that are not valid quantum states. Also, in general, it is not true that the partitions
created by k-means++ are of similar sizes. In fact, in cases in which the distribution of data points
is not uniform in the Bloch sphere, k-means++ will tend to create larger partitions in regions where
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data points are sparse and smaller ones in regions where they are densely concentrated. Neverthe-
less, these considerations were helpful as a guide for the choice of k values. The values for which
the algorithm was run were k ∈ 8, 16, 37, 125, 1000.

Once the algorithm had been run, I was able to construct a more accurate metric with which to
compare both methods. Given a macrostate ρ belonging to a partitionKi, I calculated the maximum
trace distance between all random states Λ(ψi) ∈ Ki, i.e.,

dmax = max{T (Λ(ψi), ρ)|Λ(ψi) ∈ Kn}. (5.3.2)

In the rejection sampling method, the set of states that approximated the set defined in equation
3.0.2 was Ω̃Λ(ρ) = {ψi|T (Λ(ψi), ρ) ≤ ε}. From this expression, one can see that ε functions
as an upper bound to the distance between the coarse-grained states {Λ(ψi)|ψi ∈ Ω̃Λ} and ρ.
Furthermore, recall that the states ψi are uniformly sampled before the threshold conditions are
applied. Taking this into account, one can see that perfoming the same procedure used to calculate
dmax for the rejection sampling case must yield dmax ≈ ε. Given this, it is possible to directly
compare the quality of the partition and rejection sampling algorithm by plotting the variation of
the trace distance T (ÃΛ,AΛ) with dmax for both of the methods.
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(a) k = 2

(b) k = 5

(c) k = 125

Figure 5.3.1: Visualization of k-means partitioning of the feature space for different values of k. The
training data shown in the graph was generated by applying the blurry detector coarse-graining map to
10000 randomly generated quantum states ψi ∈ L(H4) and taking the Bloch vector representations of the
resulting effective states.
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5.4 Results

5.4.1 Partial trace

Using the partial trace map, I ran the algorithm on the previously used states, ρ1 = |1〉〈1|,
ρ2 = 0.1 |0〉〈0| + 0.9 |1〉〈1|, ρ3 = 0.3 |0〉〈0| + 0.7 |1〉〈1| and ρ4 = 12

2
. The test was performed

using a dataset with 4 × 105 random quantum states and a single initialization of k-means++,
using a personal notebook, making the precision that it was possible to obtain with this method
limited. Despite this, some interesting properties of the method were able to be observed from
these preliminary results.

When investigating the partitions each of these states had been assigned to for each value of k,
I found that states ρ1, ρ2 and ρ3 had all been assigned to the same partition for all k values. Recall
that, for a given macrostate ρ, the assignment ÃΛ is calculated by taking the average of all states
ψi such that Λ(ψi) falls into the partition Kn 3 ρ. This means that all of these three states were
assigned the same microstate ÃΛ for all values of k. This exemplifies one of the drawbacks of the
partition sampling model in relation to the rejection sampling one. Contrary to what we saw with
the rejection sampling algorithm, the partitions Ki do not have any dependence on ρ. Instead, they
are related to the geometrical distribution of the data points, which is only a property of the map Λ.
Hence, this method can end up assigning the same microstate ÃΛ(ρ) for values of ρ whose Bloch
vectors are situated in close proximity. As one can imagine, the quality, measured by the trace
distance T (ÃΛ,AΛ) was not the same for ρ1, ρ2 and ρ3. A graph of T (ÃΛ,AΛ) versus k for the
three states can be seen in figure 5.4.1a.

The graph shows that, for ρ1 = |1〉〈1|, ρ2 = 0.1 |0〉〈0| + 0.9 |1〉〈1| and ρ3 = 0.3 |0〉〈0| +

0.7 |1〉〈1|, T (ÃΛ,AΛ) fluctuated as k increased, while for ρ1 = |1〉〈1|, it decreased monotonically.
The performance of the algorithm was observed to be directly related to the difference between the
macrostate and the center of the cluster it was assigned to. Table 5.4.1b shows the trace distance
between each macrostate and ρci , the quantum state whose Bloch vector coordinates would lie on
center ci of the partition Ki 3 ρ. Comparing the table with the graph in figure 5.4.1, one can see
that the algorithm performed better for the macrostates ρ for which T (ρ, ρci) was lowest.

44



0 200 400 600 800 1000
k

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

T(
k,

|
)

1

2

3

(a) Graph of T (ÃΛ,AΛ) versus k.

T (ρ, ρci) k = 8 k = 16 k = 37 k = 125 k = 1000

ρ1 0.18160353 0.13702275 0.11610937 0.10946386 0.062845
ρ2 0.09115251 0.03739661 0.03941795 0.06602427 0.04881202
ρ3 0.13771948 0.16323312 0.10172241 0.09385382 0.03361624

(b) Table showing the trace distance T (ρ, ρci) between each macrostate ρ and ρci .

Figure 5.4.1: Results of applying partition sampling to the case of the partial trace, on three different
macrostates ρ1 = |1〉〈1|, ρ2 = 0.1 |0〉〈0|+0.9 |1〉〈1| and ρ3 = 0.3 |0〉〈0|+0.7 |1〉〈1|. and The three macrostates
were allocated in the same partition for all k, but the quality of the approximation T (ÃΛ,AΛ) is different
for each macrostate at each point in the graph shown in (a). The best approximations correspond to points
at which T (ρ, ρci) was minimum, where ρci is defined as the quantum state whose Bloch vector coordinates
lie on center ci. This can be seen by comparing the graph (a) to the table shown in (b).

The largest fluctuations in the quality of the approximation as k increased were observed for
ρ4 = 12

2
, whose graph of T (ÃΛ,AΛ) versus k can be seen in figure 5.4.2. Furthermore, when

plotting the graph dmax versus k for ρ4 = 12

2
, I observed a different behavior to that seen in the

case of the other three macrostates. While for ρ1 = |1〉〈1|, ρ2 = 0.1 |0〉〈0| + 0.9 |1〉〈1| and ρ3 =

0.3 |0〉〈0| + 0.7 |1〉〈1|, dmax decreased monotonically with k, this was not the case for ρ4. These
graphs can be seen in figure 5.4.3.

To better understand this behavior, I observed the partitions in which ρ4 was placed into for
each k value, plotted in figure 5.4.4. Analyzing this figure, one can see that, although the partitions
decrease in size, for k = 16, ρ4 fell near the center of the partition, while for k = 37, it fell on
the edge. As a consequence, dmax, the maximum trace distance between ρ and all of the states in
Λ ◦ Ω̃Λ(ρ), is larger for the case of k = 37 than for k = 16. Another factor to take into account
it that the partition in which ρ3 falls in at k = 16 exhibits greater radial symmetry around ρ4 than
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the one it falls into at k = 37. It is likely that, even though both partitions include a great number
of states that are relatively distant from ρ3, when calculating the average of the set Ω̃Λ(ρ), radial
symmetry leads to these errors canceling each other out. In contrast, the partition ρ3 falls in at
k = 37 is shifted towards the negative x-axis in relation to ρ3. This could shift the average away
from the theoretically expected value of the assignment.
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Figure 5.4.2: Graph of T (ÃΛ,AΛ) versus k for ρ4 = 12
2 . We see that the error drops sharply from k = 8 to

k = 16, rises again at k = 37. With this, it is possible to see that there are factors other than the number of
partitions that affect the quality of the algorithm.
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(a) ρ1 = |1〉〈1|, ρ2 =
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Figure 5.4.3: Graphs of dmax versus k for ρ1, ρ2 and ρ3 and for ρ4. It is possible to see that, unlike in the
case of the first three macrostates, the value of dmax did not decrease monotonically with k. This suggests
that even though the sizes of the partitions decrease on average as k increases, it is still possible for dmax to
increase if the macrostate ρ is placed in a suboptimal manner.

(a) k = 8 (b) k = 16

(c) k = 37

Figure 5.4.4: Partitions to which ρ4 = 12
2 was assigned to for different k values. As k increases, the

partitions become more smaller. However, some choices of partition may not be optimal and can shift ÃΛ

away from the analytically calculated value.
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Plotting T (ÃΛ,AΛ) versus dmax for the partition and rejection sampling cases, it was found
that, in general, for the partial trace coarse-graining map, the rejection sampling method gave
better approximations to the analytically derived assignment AΛ. The results can be seen in figure
5.4.5. It is possible that the errors exhibited by the partition sampling method in this case could be
mitigated by choosing larger values of ρ and therefore, reducing the sizes of the partitions. It would
be interesting to investigate this possibility by running the algorithm on a computer cluster.
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Figure 5.4.5: Graphs of T (ÃΛ,AΛ) versus dmax for the case of the partial trace coarse-graining map,
given different macrostates. It was found that, although partition sampling is computationally faster, the
approximations given by the rejection sampling method are generally more accurate.

5.4.2 Blurry detector coarse-graining map

For the blurry detector coarse-graining map, I ran the algorithm on the states, ρ1 = |1〉〈1|, ρ2 =

|0〉〈0| , ρ3 = 12

2
, and ρ4 =

[
0.2 0.4

0.4 0.8

]
and plotted the graph of T (ÃΛ,AΛ) versus k, which is shown

in figure 5.4.6. As before, the test was performed using a dataset with 4 × 105 random quantum
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states and a single initialization of k-means++. For this test, it was observed that T (ÃΛ,AΛ)

decreased monotonically as k increased.
The values of dmax also decreased monotonically with k, as can be seen in figure 5.4.7. In

addition, it was found that, the sizes of dmax were generally lower for some states than for others.
Note, however, that the states with lowest values for dmax and the states with the lowest values of
T (ÃΛ,AΛ) do not overlap. This suggests that dmax was not the most important factor influencing
the performance of the algorithm.

Unlike in the case of the previous section, the different macrostates generally fell into different
partitions. Figure 5.4.8 shows the partitions for the different macrostates in the case in which
k = 1000. It must also be noted that the only macrostate which is located on the center of its
partition is ρ3 = 12

2
. This is also the macrostate for which the algorithm performed better globally.

Once again, it is possible to argue that radial symmetry around ρ3 benefitted the algorithm when
calculating the average over the states {ψi|Λ(ψi) ∈ Ki}. Being pure states, all of the other states
lied on the edges of their respective partitions. As was discussed previously, when the average of
Λ(ψi) ∈ Kn is shifted away from ρ, the error in the approximation increases. Hence, the algorithm
does not perform as well for states on the edges of their partitions.

It is also interesting to note that, unlike what was seen with the rejection sampling method,
partition sampling performed similarly for ρ1 = |1〉〈1| and ρ2 = |0〉〈0|. Although both these states
were placed on the edges of their partitions, it is possible to see that there is some radial symmetry

about them if one takes into account only the x-y plane. For ρ4 =

[
0.2 0.4

0.4 0.8

]
, on which the

algorithm performed worse globally, there is no symmetry of this sort.

The graphs comparing the rejection and partition sampling algorithms for the case of the blurry
detector coarse-graining map can be seen in figure 5.4.9. One observes that the partition sampling
algorithm performs better than the rejection sampling algorithm for some states, and worse for
others.

For ρ1 = |1〉〈1|, the k-means partition sampling algorithm performed better overall. It was
possible to generate a partition Kn cointaining states ψi such that T (Λ(ψi), ρ) ≤ 0.05, which lead
to a value of T (ÃΛ,AΛ) smaller than obtained by the rejection sampling algorithm. Regarding
ρ2 = |0〉〈0|, both methods performed similarly in terms of quality. This is a great result considering
that ρ2 was the state for which the rejection sampling algorithm took the most time to give results.
However, the best approximation was given by the rejection sampling method. The case of ρ4 =[

0.2 0.4

0.4 0.8

]
is similar. The algorithm performed better for equivalent values of dmax, but best

approximation overall was given by the rejection sampling algorithm. It would be interesting to
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Figure 5.4.6: Graph of T (ÃΛ,AΛ) versus k for the case of the blurry detector coarse-graining map, given

the macrostates ρ1 = |1〉〈1|, ρ2 = |0〉〈0| , ρ3 = 12
2 , and ρ4 =

[
0.2 0.4
0.4 0.8

]
.

see if lower values of T (ÃΛ,AΛ) than what was observed for the rejection sampling method could
be achieved by implementing partition sampling with larger values of k. For both ρ2 and ρ4, the
states in the partitions for k = 1000 were such that T (Λ(ψi), ρ) ≥ 0.05, and therefore, the rejection
sampling algorithm performed better. Finally, in the case of ρ3 = 12

2
, k-means partition sampling

performed worse than rejection sampling globally.
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Figure 5.4.7: Graphs of T (ÃΛ,AΛ) versus dmax for the case of the blurry detector coarse-graining map,

given the macrostates ρ1 = |1〉〈1|, ρ2 = |0〉〈0| , ρ3 = 12
2 , and ρ4 =

[
0.2 0.4
0.4 0.8

]
.
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(b) ρ2 = |0〉〈0|
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Figure 5.4.9: Graphs of dmax versus T (ÃΛ,AΛ) for states ρ1 = |1〉〈1|, ρ2 = |0〉〈0| , ρ3 = 12

2 , and

ρ4 =

[
0.2 0.4
0.4 0.8

]
for the rejection sampling and the partition sampling method using k-means++, for the

case of the blurry detector coarse-graining map. One can see that partition sampling performs better or
comparably in most cases, while also providing a quicker evaluation of the approximated assignment ÃΛ.
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Figure 5.4.8: Partitions for which the macrostates ρ1 = |1〉〈1|, ρ2 = |0〉〈0| , ρ3 = 12
2 , and ρ4 =

[
0.2 0.4
0.4 0.8

]
were found to belong to, for k = 1000. It is possible to see that the partition for the least probable macrostate,
ρ2, is larger than the partition for the most probable macrostate, ρ1.

5.4.3 Conclusions on the partition sampling method

From these results, it is possible to conclude that the k-means algorithm has the potential of
performing better and faster than rejection sampling. However, there are some problems and limita-
tions that must be taken into consideration. First, since the k-means++ algorithm seeks to minimize
the inertia φ 5.2.1 of the feature space, the partitions it generates are smaller in regions in which the
density of datapoints is greater, in comparison to places in which they are sparse. Although this is
good in the sense that it improves the quality of the approximation for the most commonly observed
macrostates, the precision we can obtain for macrostates that are less likely to result from applying
the coarse-graining map to a random quantum state is somewhat limited. Secondly, the quality of
the approximation given by partition sampling is heavily dependent on the geometric location of
the macrostate inside its partition. This limits its ability to be applied as a general method, as there
will always be states which fall on the borders of a given partition. It is possible to mitigate this
effect by increasing the value of k, thereby making the partitions smaller in general. It would be
interesting to run this algorithm on a computer cluster in order to see if these limitations can be
overcome when using large values of k.

After analyzing these results, I became interested in attempting to devise a method which
would be more effective at sampling random quantum states that are mapped onto less probable
macrostates. The preliminary results of this study will be shown in the next chapter.
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Chapter 6

VAE-inspired sampling

6.1 Why use variational autoencoders?

A significant challenge for both methods explored in the previous chapters is that, for some
physical scenarios, sets Ω̃Λ which attempt to numerically approximate ΩΛ(ρ) = {ψi ∈ L(HB)|Λ(ψi) =

ρ} can have vastly different sizes for different macrostates ρ. Recall that Λ is a coarse graining map
Λ : L(HD) → L(Hd). When uniformly sampling from L(HD), states ψi such that, when one
applies the coarse-graining map Λ result in a macrostate ρ that is unlikely to be observed compared
to the other macrostates will be underrepresented in the data. In the case of rejection sampling, this
makes the algorithm computationally slow for certain choices of Λ and ρ. Partition sampling can
help to increase the speed of the calculations for these states, but it does not offer great improve-
ments to the quality of the approximation.

One way to avoid this problem and create an algorithm that could more effectively approximate
ΩΛ(ρ) for any given ρ would be to create an algorithm that could sample microstates directly from
the set itself. In order to do this, one would have to know the conditional probability distribution
p(ψ|ρ). This probability distribution can be understood as the probability of a certain microstate ψ
given that we have observed the coarse-grained macrostate to be ρ.

This is exactly the type of problem that generative machine learning models attempt to solve
[32]. Given an observed variable x that is a random sample from an unknown underlying process
with a probability distribution p(x), generative models attempt to approximate this distribution
with a model pθ(x), where θ are the parameters of said model. Learning is the process by which
the parameters of the model are adjusted in order for pθ(x) to approximate the true probability
distribution. Generative models can include latent variables. As the name suggests, latent variables
refer to variables that are a part of the model but which are not observed directly. In this work,
I shall denote latent variables as h. If the joint probability distribution between both observed
and latent variables given by the model is written pθ(x, h), then the marginal distribution over the
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observed variables is:

pθ(x) =

∫
pθ(x, h) dh. (6.1.1)

Typically, the marginal distribution is intractible due to the integral in equation 6.1.1 not having
an analytic solution or efficient estimator [32]. This intractibility is related to that of the posterior
distribution pθ(h|x). This is because these distributions are related through the identity:

pθ(h|x) =
pθ(x, h)

pθ(x)
. (6.1.2)

Variational autoencoders, introduced in [33], deal with this problem by introducing a parametric
inference model qφ(h|x) which is called the encoder. Here, φ denotes the parameters of the encoder
model. This model attempts to approximate the posterior pθ(h|x).

As mentioned in chapter 3, the physical interpretation of generalized statistical ensembles is
related to how physics is carried out in practice. Physical laws are established by carrying out
experiments a large number of times. Scientists can control the macroscopic variables of the ex-
perimental setup, however, the microscopic state of the system varies. In the method proposed
in [13], the way to determine the best assignment for the microscopic state of a system with a
known macroscopic description is by averaging over all microscopic configurations that satisfy the
macroscopic constraints. If it were possible to successfully approximate the conditional probability
p(ψ|ρ), I could sample a large number of states from this distribution and calculate their average in
order to approximate the assignment AΛ.

Given this, I decided to study the possibility of using a VAE-inspired model to attempt to
compute a probability distribution qφ(ψ|ρ) which could approximate p(ψ|ρ). This research is still
being carried out. In this work, I will present the idea of the VAE-Inspired sampling algorithm,
which I plan to continue to develop during my doctoral research. Before doing so, I will present
to the reader the main concepts on neural networks that they will need in order to understand this
work.

6.2 Neural networks

6.2.1 Perceptrons, sigmoid neurons and neural networks

The perceptron is the simplest type of neural network, and can be thought of as a building
block for more complex ones. It is composed of a single neuron, which takes n binary inputs
and produces a single binary output. The inputs are usually represented in the form of a vector
~x = [x1, x2, . . . , xn]. Each input xi is weighted by a certain value wi. These weights are also
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represented by a vector ~w = [w1, w2, . . . , wn]. The output is calculated by taking the weighted sum
of the inputs, which can be expressed as the dot product ~w · ~x, and checking if it is less than or
greater than some threshold value [34], i.e.,

output =

{
0 if ~w · ~x ≤ threshold
1 if ~w · ~x > threshold

. (6.2.1)

Machine learning textbooks usually express this condition using a term called the bias, denoted b.
The value of the bias is equal to minus the value of the threshold and equation 6.2.1 is written as:

output =

{
0 if ~w · ~x+ b ≤ 0

1 if ~w · ~x+ b > 0
. (6.2.2)

The equation can be simplified further by defining the quantity z ≡ ~w · ~x + b. Determining the
output of the perceptron is equivalent to applying the Heaviside step function to z. The function
applied to z in order to determine the output of a neuron is called its activation function. In the case
of the perceptron, the activation function is the Heaviside step function. Different types of neural
networks use other activation funtions. The type of neuron most commonly used in modern neural
networks, the sigmoid neuron, uses as its activation function the sigmoid function:

f(z) =
1

1 + e−z
. (6.2.3)

Unlike the perceptron, the sigmoid neuron’s output is not binary. Instead, it outputs a real
number between 0 and 1. The reason the sigmoid function is a good activation function is because
it maintains the property that f(z) ≈ 1 for z → ∞, and f(z) ≈ 0 when z → −∞. However, it
is not discontinuous like the step function. This allows one to change the output by incremental
amounts through slight alterations in the weights and biases. For the neural networks described in
this text, we shall assume that the activation function used in each neuron is the sigmoid.

x1

x2

x3

f(z) output

w1

w2

w3

Figure 6.2.1: Graphical representation of a single neuron in a neural network. In this figure, there are three
inputs, x1, x2 and x3, with weights w1,w2 and w3, respectively. However, this can be generalized for an
arbitrary number of inputs and corresponding weights. The symbol f(z) represents the application of the
activation function on z = ~w · ~x+ b, where ~w = [w1, w2, w3] and ~x = [x1, x2, x3].
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(a) Step function (b) Sigmoid function

Figure 6.2.2: Graphs depicting the step function and the sigmoid function. The shape of the sigmoid function
is a smoothed out version of that of the step function, which leads to it being effective as an activation function
for cases in which one does not want output values to be binary.

Most neural networks are not made up of a single neuron. Neurons are organized in layers
which are connected to each other. The first layer of the network is called the input layer, and it
holds the input values ~x. The last of the layers is called the output layer. As the name suggests, it
returns the output of the neural network. There can be an arbitrary number of layers between these
two. These are called the hidden layers. Figure 6.2.3 shows an example of a neural network and
highlights the different types of layers in them.

Each of the hidden layers takes the weighted sum of the outputs of the previous layer and
applies to it an activation function. The resulting outputs are called the activations and denoted a.
The activations are refered to with two indices. The activation alj refers to the activation of the j-th
neuron in the l-th layer. These serve as inputs for the next layer. Each activation can be written as
follows:

alj = f

(∑
k

wlkja
l−1
k + blj

)
. (6.2.4)

In this expression, wlkj denotes the weight for the connection from the k-th neuron in the (l− 1)-th
layer to the j-th neuron in the l-th layer. Furthermore, blj refers to the bias of the j-th neuron in the
l-th layer. In order to simplify this expression, it is useful to consider a weight matrix wl composed
of the weights that connect the (l − 1)-th layer to the l-th layer. Similarly, we can define a bias
vector bl, and an activation vector al, composed, respectively, of the values of blj and alj for a given
layer l. Using this notation, it is possible to rewrite equation 6.2.4 as follows:

al = f(wlal−1 + bl). (6.2.5)
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The quantity zl ≡ wlal−1 + bl is called the weighted input to the neurons in layer l, and equation
6.2.5 is sometimes written as al = f(zl). Neural networks are interesting to use for learning tasks
because, by adjusting the weights and biases of the neurons in the network, one can express a great
different number of functions [34]. The process through which the algorithm learns the optimal
weights and biases that will enable it to perform a certain task is called training. In the following
subsection, I will present a brief explanation on how training works.

x1

x2

x3

h1

h2

h3

hidden layerinput layer output layer

o1 output

Figure 6.2.3: Graphical representation of a neural network containing one hidden layer. Here, the output
layer cointains only one neuron. However, it is possible to have multiple neurons in the output layer. The
outputs of the neurons in the hidden layer act as input values for the neuron in the output layer.

6.2.2 Training a neural network

In order to facilitate understanding, I will explain how the training process works in supervised
learning tasks before talking about how this task is performed for the VAE. Supervised learning
happens when the training data that the algorithm is given consists of a set of examples ~x and a set
of expected outputs ~y. The expected outputs ~y are usually called the labels.

Let aL be the vector of outputs from a neural network, whereL denotes the last layer. A possible
function that quantifies how close aL is to the desired output is:

C(w, b) ≡ 1

2n

∑
x

|y(x)− aL|2, (6.2.6)

where w is the collection of all of the weights, b is the collection of all biases and n is the total num-
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ber of training inputs. Note that ~a depends on w and b, although this dependence is not explicitly
shown. The function C is called the quadratic cost function or the mean squared error (MSE). From
equation 6.2.6 it is possible to see that C → 0 as ~y(x) → ~a. Hence, the objective of the training
algorithm is to minimize the cost function as a function of the weights and biases. The idea of this
method is that, once these optimal values of w and b are found, one can input unlabeled data into
the neural network and obtain reliable predictions. In order reduce the number of variables used in
some equations, I will consider that each of the layers of the neural network has an extra neuron
that is permanently set to 1. The biases b can be interpreted as the weights of those extra neurons.
Therefore, during the remainder of the section I will refer to the parameters of the neural network
as the weights.

The algorithm used to minimize the cost function is called gradient descent. It is based on
changing the weights in incremental amounts for every element of the training data that the algo-
rithm processes. To find the direction of this change, one calculates the gradient of the cost function
with respect to its weights, for each time the algorithm is run. We know from calculus that the gra-
dient will point towards the direction of steepest ascent. Therefore, the gradient descent mechanism
adjusts the weights in the direction of −∇C(w).

The change applied to w for each iteration of the algorithm can be written as:

∆w = −η · ∇C(w). (6.2.7)

The parameter η is called the learning rate, and is always positive. It determines the size of the
incremental change applied to the parameters for each iteration of the algorithm. In other words,
for each training example, the weights are updated in the following manner:

wlkj → wlkj − η
∂C(ν)

∂wlkj
. (6.2.8)

When there is a very large number of training examples, however, gradient descent can be
computationally slow. Therefore, usually what is used is a variation of the method called stochastic
gradient descent. Stochastic gradient descent estimates the value of ∇C(w) by computing it not
over all of the training data, but over a small number of randomly chosen training inputs, called a
batch. By averaging over the batch, one can acquire a good estimate for∇C(w).

The partial derivative indicated in equation 6.2.8 can be calculated analytically using the chain
rule. Let us denote the last layer of the neural network by the letter L, so that the output of the
j-th neuron of the last layer is denoted aLj . The cost function for a single training example can be
written as:

C(w) =
1

2

(
y − aLj

)2
, (6.2.9)
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where aLj = f(zLj ) = f
(∑

k w
L
kja

L−1
k + bLj

)
. The derivative of C(w) with respect to wLkj is

∂C

∂wLkj
=
(
y − aLj

)
f ′
(
zLj
) ∂zLj
∂wLkj

. (6.2.10)

Evaluating the derivative of zLj with respect to wLkj , we obtain:

∂zLj
∂wLkj

=
∑
k

∂zLj

∂aL−1
k

∂aL−1
k

∂wLkj
=
∑
k

wLjkf
′ (zL−1

k

) ∂zL−1
k

∂wLkj
. (6.2.11)

From this, we see that there is a recursion relation between the derivatives and it is possible to keep
applying the chain rule until we reach the first layer of the network. Because of this property, the
algorithm for calculating the partial derivatives of the cost function is called backpropagation.

A schematic representation of the gradient descent method can be seen in figure 6.2.4. The
figure shows one of the limitations of the method, which is that, depending in the initial values
of the parameters of the neural network and on the choice of learning rate, it is possible for the
algorithm to become “stuck” in a local minima. This is a potential source of problems for training
the neural network.
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Figure 6.2.4: Figure illustrating gradient descent with 3 different initial conditions. Note that, depending on
the initial conditions and the size of the training step used, it is possible for the algorithm to become “stuck”
in a local minima. When this happens, the cost function does not reach its absolute minimum. All images
shown here were created by Jacopo Bertolotti and distributed under a CC0 1.0 license.

6.3 Variational autoencoders

As mentioned in section 6.1, variational autoencoders attempt to learn the probability of some
latent variable~h given some observed variable ~x, denoted pθ(h|x), where θ are the parameters of the
model. Note that, a priori, we do not know the values of the latent variables ~h. Therefore, it is not
possible to generate a set of labels in order to train the algorithm in a supervised way, as described
in the previous section. Instead, the neural network needs to be trained in an unsupervised manner.
In order to understand how VAEs manage to do this, we must first talk about the structure of the
VAE and the role of each of its components.

Structurally, VAEs are composed of a pair of connected neural networks — the encoder and the
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decoder. The encoder is a neural network that takes the input data and generates a vector with a
set of means, ~µ, and a set of standard deviations, ~σ, for each of the latent variables. This is usually
called the latent representation of the data. These means and standard deviations are used to sample
the elements of h, which are used as the input for the decoder. The objective of the decoder is then
to reconstruct ~x given ~h. A schematic representation of this can be seen in figure 6.3.1.

x encoder

µ

σ

h decoder x̂

Figure 6.3.1: Visual representation of the VAE. The encoder learns the propability distribution of the latent
variables pφ(h|x). This probability distribution is parametrized by a vector of variances µ and a vector of
standard deviations σ.

In order to sample ~h, the encoder computes a probability distribution qφ(h|x) which approx-
imates pθ(h|x). The decoder computes pθ(x|h). The optimization objective of the VAE is to
maximize the evidence lower bound (ELBO), defined as [32]:

Lθ,φ(x) = Eqφ(h|x)

[
log

[
pθ(x, h)

qφ(h|x)

]]
, (6.3.1)

where E denotes the expected value of the argument. The ELBO and the marginal likelihood pθ(x)

are related in the following way:

log pθ(x) = Lθ,φ(x) +DKL(qφ(h|x)||pθ(h|x)). (6.3.2)

A more detailed derivation of this relation can be see in [32]. The quantity DKL(qφ(h|x)||pθ(h|x))

is the Kullback-Leibler (KL) divergence between qφ(z|x) and pθ(z|x), defined as:

DKL(qφ(h|x)||pθ(h|x)) = Eqφ(h|x)

[
log

[
qφ(h|x)

pθ(h|x)

]]
, (6.3.3)

and can be understood as a measure of how much one probability distribution differs from another
[35]. Looking at equation 6.3.2, one can see that maximizing the ELBO is beneficial in two ways.
First, it approximately maximizes the marginal likelihood, which in turn makes the generative
model better. Secondly, it minimizes the KL divergence between qφ(h|x) and pθ(h|x), which means
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that qφ(h|x) approximates pθ(h|x) more accurately.
Notice that, since ~h is the result of stochastic sampling, and not a deterministic operation, we

cannot apply backpropagation through the layers in the way shown in the previous section. In order
to deal with this problem, ~h is reparameterized in the following manner:

~h = ~µ+ ~σ � α, (6.3.4)

where α is a random noise sample and the symbol � denotes element-wise multiplication. This
way, all of the layers in the autoencoder become deterministic and backpropagation can be applied,
allowing for the network to be trained. An illustration of this trick is shown in figure 6.3.2.

decoder

h

σµ

encoder

original form

decoder

h

σµ α

encoder

reparameterized form

Figure 6.3.2: Illustration of the reparameterization trick. Deterministic nodes are represented by circles and
stochastic nodes are represented by diamonds. By reparemeterizing h as a function of µ and σ, using the
random variable α, it is possible to turn h into a “deterministic node” through which backpropagation can be
applied.

6.4 VAE-Inspired sampling algorithm

As mentioned in the introduction of this chapter, I am interested in finding a way to estimate
p(ψ|ρ), the probability of a certain microstate ψ given a coarse-grained state ρ. In the physical
context explored by this work, the density matrix ρ is the observed variable, while the microstate ψ
is a sample from the probability distribution p(ψ|ρ). Unlike in the general problem explored by the
VAE, the probability distribution p(ρ|ψ) in this case is known exactly. We know that, given a state
ψ, the macrostate ρ will be determined by application of the coarse-graining map Λ : L(HD) →
L(Hd). Hence, the structure proposed for the VAE-Inspired sampling algorithm is as follows. A
vector ~x parameterizing ρ is input into a multilayered neural network like the VAE’s encoder and
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outputs a vector of means ~µ and strandard deviations ~σ from which a vector ~h is sampled. The
vector ~h is then represented as a quantum state |ψ〉 ∈ HD. Then, the coarse-graining map Λ is
applied to ψ = |ψ〉〈ψ| in order to reconstruct the input. A schematic representation of this can be
seen in figure 6.4.1.

ρ encoder

µ

σ

ψ ρ̂
Λ

Figure 6.4.1: Schematic representation of the VAE-Inspired algorithm. The coarse-graining map Λ performs
the decoder’s role of reconstructing the input.

Once this model is trained, I will be able to use the encoder-style neural network in order to
sample microstates ψi that approximate the set ΩΛ(ρ) defined in equation 3.0.2. The approximate
assignment ÃΛ can then be calculated by taking the average over Ω̃Λ(ρ).

In order for the algorithm to work, it is essential that the output of the encoder, ~h, be a valid
representation of a quantum state. The vector ~h is composed of real numbers, and its dimension,
denoted L is usually called the latent dimension in the context of machine learning. It is possible to
represent a pure |ψ〉 ∈ HD as a vector of this sort by interpreting each of the components of ~h as an
angle parameterizing a sphere of dimension 2N+1 − 1. The reason for this will be seen as follows.

In terms of a general basis |j1, j2, ..., jN〉, an N q-bit quantum state can be written as:

|ψ〉 =
1∑

j1,j2,...,jN=0

Cj1,j2,...,jN |j1, j2, ..., jN〉 , (6.4.1)

where:

1∑
j1,j2,...,jN=0

|Cj1,j2,...,jN |2 = 1. (6.4.2)

The number of coefficientsCj1,j2,...,jN that describe anN q-bit quantum state is 2N . Each coefficient
is a complex number that can be written as:

Cj1,j2,...,jN = aj1,j2,...,jN + ibj1,j2,...,jN . (6.4.3)
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And the normalization condition 6.4.2 can be rewritten as:

1∑
j1,j2,...,jN=0

|aj1,j2,...,jN |2 + |bj1,j2,...,jN |2 = 1 (6.4.4)

Given this, we can see that anyN qubit quantum state can be specified using 2N+1 real numbers that
satisfy equation 6.4.4. It is possible to interpret this set of 2N+1 real numbers as a set of coordinates
that determine a point on a sphere of dimension 2N+1−1 and radius 1. Using spherical coordinates
[36], we write:

a0,0,...,0 = cos θ1

b0,0,...,0 = sin θ1 cos θ2

...
...

a1,1,...,1 = sin θ1 . . . sin θN−2 cos θ2N+1−1

b1,1,...,1 = sin θ1 . . . sin θN−2 sin θ2N+1−1,

where θ1, θ2, . . . , θN−2 range over [0, π] radians and φN−1 ranges over [0, 2π] radians.
Therefore, if we choose our latent dimention so that L = 2N+1 and set the components of ~h

to be in the appropriate ranges for each of the angles θi. An obvious drawback of this is that the
dimension of the latent description will increase exponentially with the number of qubits of the
microscopic states. The effects of this will need to be studied in more detail in the future. However,
for an initial version of the algorithm, it is possible to study microscopic descriptions with a small
amount of qubits in order to avoid this issue.

So far, the greatest challenge to implementing this algorithm is finding the best way to train
the model. Although the VAE-inspired algorithm has already been constructed, early tests showed
that it was not possible to get the error between the input and the reconstructed output to converge.
In other words, the VAE is not learning the best values for the parameters of the network. It is
possible that the cost function that is being applied is not adequate given the adaptations that have
been performed to the structure of the VAE. Another consideration is that the initial values of the
parameters and the learning rate are set to values that lead to the gradient descent algorithm getting
“stuck” in a local minima. For my doctoral research, I plan to continue to study neural networks in
order to diagnose this problem.
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Figure 6.4.2: Graph showing the reconstruction loss — the error between the input and the reconstructed
output, as defined by equation 6.2.6 — for each epoch of training. The reconstruction loss does not converge
and instead fluctuates as the training is performed, which means that the program is not learning how to
reconstruct the data.
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Chapter 7

Conclusion

One of the greatest challenges of physics is developing a framework that can describe natural
phenomena on all scales. In statistical mechanics, the connection between the macroscopic laws of
thermodynamics and the microscopic laws of classical or quantum physics are connected through
the concept of statistical ensembles. A statistical ensemble is an infinitely large set of microscopic
systems which share the same macroscopic properties, such as, for example, a fixed energy or
temperature. This reflects the reality of the how physics is developed in practice, with experiments
being performed many times by researchers in order to establish a physical law. Experimentalists
may be able to control the macroscopic variables in their experimental setups precisely, but due to
uncertainty, the microscopic description of equivalent experimental preparations is bound to vary.
Recent results in the field of quantum information theory have provided new perspectives on how
to use this concept to assign a quantum microstate to a system given a coarse-grained description.
One considers a generalized statistical ensemble, where what determines if the states satisfy the
macroscopic conditions is a coarse-graining map [11, 12]. The best assignment for the system
is defined as the average over all microstates in the set ΩΛ(ρ) = {ψ ∈ L(HD)|Λ(ψ) = ρ}[13].
Using these results, this work sought out to explore the possibility of applying machine learning
techniques to numerically approximate the best assignment for the microscopic state of a system
given partial information.

In order to form a basis for comparision, I first developed a program that did not use machine
learning methods, the rejection sampling algorithm. Given a macrostate ρ ∈ L(Hd), this program
uniformly samples microstates ψi ∈ L(HD), applies to them a coarse-graining map Λ and checks
if the trace distance T (Λ(ψi), ρ) is bellow a certain threshold value ε. After the resulting dataset
Ω̃Λ achieves a sufficiently large size, the program calculates the average over the set, which is
the approximate assignment ÃΛ. In order to gain a more quantitative understanding of the per-
formance of the algorithm, I applied it to coarse-graining maps for which the analytical result for
the assignment AΛ is known, such as the partial trace and the blurry detector coarse-graining map
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[11, 12, 13]. This allowed me to use the trace distance T (ÃΛ,AΛ) as a metric of error.
The results of the rejection sampling algorithm allowed me to gain intuition about the maps I

was working with, as well as some of the properties of the systems they describe. In order to be
able to visualize the states Λ(ψi) in 3D space, I decided to work with macrostates ρ ∈ L(H2). In
the case of the partial trace mapping from L(H4) → L(H2), we saw that the performance of the
algorithm was related to the degree of purity of the macrostate ρ. This originates from the fact that
applying the partial trace to a two qubit state will only yield a pure state if there is no entanglement,
i.e., the system is in a product state. States with higher purity needed to be submitted to stricter
conditions in order to achieve measures of error of the same order as the maximally mixed state.
This corroborates results such as [27], which show that entangled states are more probable to be
obtained through random sampling in L(H4) in relation to non-entangled ones. Another factor
that lead the program to perform better on mixed states, for both the partial trace and the blurry
detector map, was related to the geometry of the sets Λ ◦ Ω̃Λ, where symbol ◦ denotes the element-
wise application of Λ on Ω̃Λ. For mixed states, as ε → 0, the shape of the dataset containing the
states that satisfied the threshold conditions approximates that of a ball of radius ε. This radial
symmetry allowed for the errors of the method to cancel each other out in part, resulting in a better
performance. Pure states, which are situated on the surface of the Bloch sphere, do not benefit from
this property. Comparing the performance of the algorithm on macrostates |0〉〈0| and |1〉〈1|, it was
found that, despite the program requiring a large amount of time to calculate ÃΛ(|0〉〈0|), the error
was generally smaller than for ÃΛ(|1〉〈1|).

The partition sampling algorithm aimed to reduce the amount of time necessary to calculate
ÃΛ. The method consists of creating a large dataset of uniformly sampled microstates D = {ψi ∈
L(HD)}, applying a coarse-graining map to each one, and creating a dataset Λ ◦ D. Next, the
unsupervised machine learning algorithm k-means++ divides the states in Λ ◦ D into clusters.
Each cluster has a center associated to it, and a point is said to belong to a given cluster if it
is closer to the center of that cluster than to any of the other centers. This process divides the
space L(Hd) into a k number of partitions. Given that the macrostate ρ belongs to a partition Kn,
the set Ω̃Λ is defined as the set of states ψ such that Λ(ψ) ∈ Kn. The approximate assignment
ÃΛ(ρ), as before, is the average over Ω̃Λ. The reason the k-means++ method was chosen for
partition sampling is because its objective is to minimize the inertia of the data points. One of
the consequences of this is that, when the states in Λ ◦ D are not uniformly distributed in L(Hd),
k-means++ will tend to create smaller partitions where the data concentration is higher, and larger
partitions where the data is sparse. This makes the predictions of the algorithm more precise for
macrostates located in densely populated regions of Λ ◦ D. This is physically interesting because
those regions correspond to the macrostates which are more likely to be observed in any given
experiment. Hence, partitioning using k-means++ allows for a greater precision in calculating
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ÃΛ(ρ) for the most commonly observed macrostates.
In order to compare partition sampling with the rejection sampling approach, I applied it to the

same coarse-graining maps and macrostates used in the previous case. For the partial trace, parti-
tion sampling did not perform as well as rejection sampling on the states that were analyzed. It is
possible that this is because most of the macrostates chosen were situated in close proximity to one
another on the Bloch sphere and, therefore, fell into the same partition and were assigned the same
average microstate. It is likely that the method has to be applied with a larger number of partitions
in order to be able to discriminate between macrostates that are closer to one another. This would
require more powerful computational resources than I currently have access to, as, although parti-
tion sampling is a faster method than rejection sampling, it requires more memory. For the blurry
detector map, partition sampling performed better for three out of four of the macrostates inves-
tigated. The error associated to ÃΛ(|0〉〈0|) for both methods was similar. Unlike in the rejection
sampling case, the error for ÃΛ(|1〉〈1|) was not larger than for ÃΛ(|0〉〈0|). Instead, the quality of
the approximation was similar for both of these macrostates.

The last algorithm that was proposed in this work was the VAE-Inspired sampling algorithm.
Variational autoencoders are neural network based machine learning algorithms that aim to approx-
imate the probability distribution of latent variables given some observed data. The idea of studying
variational autoencoders came from the fact that VAEs are being used today to learn the probability
distributions of quantum states [14]. Hence, it could be possible to use a similar approach to learn
the conditional probability distribution p(ψ|ρ) of a microstate ψ given a macrostate ρ. Then, for
any given ρ, we could sample microstates from p(ψ|ρ) to create a dataset Ω̃Λ. The numerically
calculated assignment ÃΛ would, once again, be the average of Ω̃Λ.

The VAE-Inspired algorithm is structured in the following manner: a multilayered neural net-
work called the encoder takes ρ as an input and generates a probability distribution from which
we sample a microstate ψ. The network is trained so that the difference between Λ(ψ) and ρ is
minimized. Unfortunately, during my early tests of this algorithm, I was unable to minimize the
difference between Λ(ψ) and ρ. During my doctoral research, I plan to study VAEs in more detail
in order to diagnose the cause of this problem.

In conclusion, there is still much to be explored on the subject of applying machine learning
algorithms to physics. In this work, I attempted to explore some of these applications in order to
gain knowledge of these new techniques that are being developed. For my Ph.D. project I intend
to study not only variational autoencoders, but other modern machine learning methods, such as
generative adversarial networks (GANs). It is possible that these techniques could be applied not
only to the coarse-graining problem to this work, but to inverse problems in general.
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