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Abstract

This thesis is about topological Anderson insulators. It is divided into two parts: one

in which we study the so-called Strong Disorder Renormalization Group (SDRG)

analysis of a disordered wire, and other in which we use a Neural Network that

can recognize topological phases in clean insulators, with possibility of extension to

disordered insulators. In the first part, we start with a review of the basic concepts

about Anderson localization and one of the most known models for topological insu-

lators (named the Su-Schriefer-Heeger - SSH - model). Then, we study a disordered

wire with chiral symmetry, considering that the usual single parameter scaling hy-

pothesis is violated, and introducing a second scaling parameter. Using the SDRG

analysis, we show how to obtain the two-parameter flow diagram for this model.

The second part, in its turn, addresses a brief picture to what is a Machine Learn-

ing algorithm and more precisely, one with a Feed-forward Neural Network (FNN)

architecture. Our starting point is the question of how Machine Learning can be

useful to classify topological phases of matter. We found the phase diagram of a

clean insulator and extend the analysis for a disordered insulator.
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são minha fonte de inspiração diária e meus melhores amigos. Este trabalho é
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Jáuregui (Gabriela e Máx), os meus agradecimentos pelos Domingos multiculturais,
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À Capes pelo apoio financeiro.

September 3, 2019



Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I SDRG 7

2 A brief introduction to localization and topological insulators 8

2.1 Introduction to Anderson localization . . . . . . . . . . . . . . . . . . 9

2.1.1 Clasical limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Anderson localization . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Numerical experiments in 1d . . . . . . . . . . . . . . . . . . . 14

2.2 Scaling theory of localization . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Su-Schrieffer-Heeger (SSH) model . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Chiral symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Bulk winding number . . . . . . . . . . . . . . . . . . . . . . . 23

3 SDRG of a disordered SSH model 26

3.1 The disordered SSH model . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Disordered system: topological invariant, two-parameter flow . . . . . 27

3.3 SDRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 The RG step: Decimating a hopping term . . . . . . . . . . . 29

3.3.2 Back to generating function for disordered SSH model . . . . . 31

vi



Contents vii

3.3.3 Exact results . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

II Machine Learning 37

4 Special case: N = 3 connected chains 38

4.1 SCBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Topological invariant in a disordered system . . . . . . . . . . . . . . 41

4.3 Self-energies for N = 3 chains . . . . . . . . . . . . . . . . . . . . . . 43

5 Machine Learning 46

5.1 Brief introduction to ML . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Implementing the model and preliminary results . . . . . . . . 50

6 Conclusions and Perspectives 51

Bibliography 52

September 3, 2019



Chapter 1

Introduction

Many physical systems contain different types of impurities and imperfections that

naturally appear in the sample preparation process, influence the physical properties

and are source of a rich phenomenology. These imperfections are generally referred

to as disorder and understanding their impact is often challenging. In particular, for

phase-coherent systems, quantum interference resulting from disordered scattering

may lead to localization and consequently insulating behavior [1]. Indeed, in his

seminal work of 1958, P.W. Anderson observed that the electron wave function

in a three-dimensional system with a random potential completely changes upon

increasing the disorder strength [2]. That is, the system undergoes a transition

from a metallic phase at weak disorder - described by delocalized eigenstates and a

finite probability to find the particle throughout the entire sample - to an insulating

phase at strong disorder, where eigenfunctions are exponentially localized around

some region in space.

The nature of this localization transition stayed unclear for almost 20 years un-

til Thouless formulated in 1974 a scaling description of the localization problem of

non-interacting electrons in static disorder potentials [3]. Two years later, Wegner

conjectured the relation between this transition and the theory of critical phenomena

for continuous phase transitions [4]. Finally, in 1979, Abrahams, Anderson, Liccia-

rdello, and Ramakrishnan, the so-called “gang of four”, established a scaling theory

of localization, which describes how the dimensionless conductance of a disordered

single-particle system changes with increasing system size [5]. According to the sin-
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Chapter 1. Introduction 2

gle parameter scaling theory for non-interacting electrons, all states are localized in

a d ≤ 2 phase coherent system in the thermodynamic limit. Localization induced by

static disorder is by now a well established paradigm in condensed matter physics,

and the resulting insulators are named Anderson insulators.

A different type of insulating behavior may be observed in clean single-particle

systems and understood within the band theory of translational invariant systems.

The band theory of electric conduction exists since the foundations of quantum

mechanics. It explains, among many physical properties of solids, how crystalline

materials are electric insulators, even with electrons hopping between the atoms

[6]. For insulators, in particular, the eigenstates form energy bands separated by

an energy gap where the lower band, the valence band, is completely filled and the

creation of electron excitation thus requires energies overcoming the energy gap (see

figure 1.1). For temperatures smaller than the gap such energy is not available and

the electronic state is insulating.
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Overlap

Semiconductor Insulator

Bandgap

Figure 1.1: Scheme for conductance and valence bands in a metal, semiconduc-

tor and insulator (with the bandgap). Adapted from https://commons.wikimedia.

org/wiki/File:Isolator-metal.svg.

It was realized only in 2005 that this is not the entire story and band insulators

can come in different topological realizations. In their pioneering work, Kane and
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Chapter 1. Introduction 3

Mele [7] realized that spin-orbit interactions in low energy electronic structures of

graphene lead to a new variant of the Quantum Hall phase, named Quantum Spin

Hall, which is characterized by a bulk energy band gap and gapless edge states on the

boundary. In the same year, they showed that a nontrivial topological number can

be associated to this phase [8], hence making it different from a normal insulator,

e.g. resulting from intervally scattering. These works showed for the first time

that topological trivial and non-trivial variants of band insulators can result from

perturbing a semi-metal. The non-trivial variant is now called topological insulator.

Soon after their first discovery, a periodic table for band insulators has been worked

out, indicating in which systems (here characterized by the fundamental symmetries)

and what space-dimension insulating behavior with non-trivial topology can occur

[9].

At this point, a natural question arises, namely how topological band insula-

tors get along with disorder. The first guess is that sufficiently strong disorder

will destroy topological insulators: A crucial ingredient for the latter is the band

gap which allows for the topological classification of band insulators. Disorder in-

troduces mid-gap states that eventually create disorder bands, invalidating thus

the necessary requirement of a bulk energy gap. On the other hand, in-gap states

in low-dimensional systems are Anderson localized, and one may suspect that the

notion of topology introduced for the band insulators may also survive in their An-

derson insulating cousins. A famous example where this second scenario applies

is the Quantum Hall effect. Historically, the discovery of the Quantum Hall (QH)

effect in the 1980’s introduced the idea that topology may play a central role in

distinguishing electronic phases. It was observed that in the low temperature quan-

tum limit the Hall resistivity assumes, differently from the classical behavior at high

temperatures, only integers values. It is here worthy noting that a macroscopic and

not microscopic physical property is quantized, hence stressing the importance of

topology of quantum systems. By now it has been recognized that Quantum Hall

insulators (close to the plateau transitions) are Anderson insulators with non-trivial

topology, that is, the Anderson insulating variant of a topological insulator.

In this thesis we study topological Anderson insulators, which can occur in one-
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Chapter 1. Introduction 4

dimensional systems with a specific lattice symmetry, labeled chiral symmetry. The

thesis consists of two parts: In the first one we perform a Strong Disorder Renor-

malization Group (SDRG) analysis of a disordered wire with chiral symmetry. We

derive the two-parameter scaling behavior which generalizes the single-parameter

scaling of the “gang of four” to scenarios in which non-trivial topology plays a role.

The SDRG is a powerful method to study the effect of disorder in quantum systems.

It was first developed by D. S. Fisher [10]-[12] to study the ground state properties

of disordered spin chains. In recent works, Mard, Hoyos, Miranda, and Dobrosavl-

jevic [13] used the SDRG to analyse the scaling behaviour of a disordered wire with

particle-hole/chiral symmetry, and observed that the usual single-parameter scaling

was violated. However, they did not relate this unusual behaviour to the flow of a

second relevant parameter: the (average) winding number accounting for non-trivial

topological properties. Here, we show how one can incorporate this second flow pa-

rameter into the SDRG analysis and how this completes the picture, resulting in a

flow diagram analogous to that of the Quantum Hall effect.

In the second part of the thesis, we take a different perspective and look at

the problem of topological phases in disordered systems from a Machine Learning

(ML) perspective. In the last years, the field of ML has appeared as a powerful

alternative tool to study physical systems. Examples range from numerical solutions

accelerating Monte Carlo simulations [14], classification of phases of matter [15], to

the detection of entanglement [16] and many more. In particular, the problem of

learning phases is quite challenging. In terms of a ML algorith, we can classify

phases for categorizing information or use regression to predict continuous values,

both cases are in general performed via supervised training. Topological phases of

matter are in this context challenging since they are characterized by a manifestly

non-local property, the topological number, while only local Hamiltonians are used

as inputs. Specifically, we look for a ML algorithm which is able to classify non-

trivial phases in disordered quantum wires with chiral symmetry. To make the

problem richer we change from the single channel wires, considered in the first part

of this thesis, to three-channel wires, since the latter allow for a larger number of

different topologically non-trivial phases. We first derive the phase diagram of the
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1.1. Outline 5

three channel wire as a function of hopping parameters and disorder strength from

a self-consistent Born approximation for the disorder induced self-energy. We then

train a Feedforward Neural Network on the clean wires using the eigenvectors of

the Hamiltonian as input data, and study if the neural network can reproduce, in

a next step, the phase diagram of the disordered system. This second part is not

concluded yet, and we here only report our first results.

1.1 Outline

Since different approaches for topological Anderson insulators are studied within

this work, it is divided into two parts. The first one addresses the SDRG analysis

of a disordered wire along with chapters 2 and 3, while the second part contains

a Machine Learning approach to the problem of classifying topological phases, on

chapters 4 and 5.

Chapter 2 contains a brief introduction to the theory of Anderson localization,

starting with a simple model of a one-dimensional quantum particle moving in a

random potential, then using the transfer matrix formalism in order to compute

transport properties in such system and performing some numerical experiments.

The main ideas behind the single parameter scaling of localization and its limits

of validity are also presented. To illustrate topological aspects, a review of the

paradigmatic Su-Schrieffer-Heeger (SSH) model is discussed, including ideas about

chiral symmetry and topological invariants.

The single channel disordered quantum wire is presented in chapter 3. In posses

of the SDRG decimation rules, the topological invariant defined in terms of a gener-

ating function is calculated. Finally, the two-parameter scaling flow and a discussion

of its properties is shown.

In chapter 4, the self-energies correction to the disordered topological invariant

is presented. The target is to present a model for N = 3 connected chains, that has

known phase diagram from the literature, for later comparison with the computed

phase diagrams from our algorithm. This is the first step to the data generation

process.
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1.1. Outline 6

Chapter 5 addresses a brief introduction to Machine Learning algorithms, as well

as a detailed description of data generation and numerical implementations. The

last part contains conclusions and possible experiments to be explored in future

works.
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Chapter 2

A brief introduction to localization

and topological insulators

In this chapter, we review the two key concepts relevant for this thesis: Anderson

localization and topological insulators.

First, we review the phenomenon of wave localization in random media within

a simple tight-binding model for a disordered chain in section 2.1. To this end, we

compare transmission coefficients of the chain, which is related to its conductance,

in the classical and quantum limits. While in the classical limit strong dephasing

suppresses any quantum interferences, the quantum limit is characterized by perfect

phase coherence. This way we can see that the physical mechanism behind Anderson

localization is the interference in multiple scattering paths. We support this analysis

with some numerical experiments for this model.

In section 2.2 we discuss localization in higher dimensions by examining the effect

of scaling on the conductance in a general d dimensional disordered system. We also

discuss the main ideas underlying the scaling theory of localization, introduced by

“the gang of four”, following here a discussion in Ref. [5].

We then turn in section 2.3 to topological insulators. Concepts and properties

of topological insulators, in their turn, are probably best accessed and understood

within a concrete model. We, therefore, introduce the Su-Schrieffer-Heeger (SSH)

model, which describes a one-dimensional system with staggered hopping ampli-

tudes. It is one of the simplest models for a topological insulator, and we illustrate

8



2.1. Introduction to Anderson localization 9

how topological properties arise in one of its insulating phases.

2.1 Introduction to Anderson localization

Consider a one-dimensional non-relativistic particle of mass m initially prepared in

a Gaussian wavepacket propagating along with some potential V (x). The evolu-

tion of the wavefunction ψ(x, t) is given by the Schrödinger’s equation, that in one

dimension reads [
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ(x, t) = i~∂tψ(x, t). (2.1.1)

We specify the potential V to a series of obstacles j = 1, 2, ..., N well separated and

placed at randomly chosen distances

∆xj = (xj − xj−1),

and each obstacle in its turn described by a potential Vj(x) (see fig. 2.1).

e ikx±

...

x1 x2 x
N

x

?t1

r1

Figure 2.1: Each barrier j = 1, 2, ..., N is placed at xi. The transmission and

reflection coefficients are known for each scatter, and the question is to find the

total transmission across all barries.

For simplicity let us first consider the case of a single scatterer at x = 0. We

then decompose the wavefunction with respect to the left (L, x < 0) and right (R,
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2.1. Introduction to Anderson localization 10

x > 0) side of the sample:

ψ(x) =

ψL(x) = ψINL eikx + ψOUTL e−ikx

ψR(x) = ψOUTR eikx + ψINR e−ikx
, (2.1.2)

where IN (OUT) means ingoing (outgoing) amplitudes at the sample (see fig. 2.2).

These amplitudes are related by the reflection (r) and transmission (t) coefficients

from the left side and r′ and t′ from the right side. So we have

ψOUTR = tψINL + r′ψINR

ψOUTL = rψINL + t′ψINR

. (2.1.3)

In matrix form, the relations above can be written as ψOUTL

ψOUTR

 =

 r t′

t r′

 ψINL

ψINR

 , with S =

 r t′

t r′

 , (2.1.4)

where S is the scattering matrix relating incoming to outgoing amplitudes. No-

tice that the transmission and scattering coefficients are complex numbers, and the

probabilities for reflection and transmission from the left are given by

R = |r|2 = rr∗, T = |t|2 = tt∗ and R + T = 1,

(equivalently from the right side).

Sample

t

t’

r’r

Ψ INL

Ψ OUT
L Ψ R

IN

Ψ R
OUT

Figure 2.2: Scheme for ingoing/outgoing waves at the sample.

While the scattering matrix S allows for a very compact representation of the

scattering at a single impurity, it becomes rather involved once we consider a series
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2.1. Introduction to Anderson localization 11

of scatterers. In this case, it is more convenient to use a description in terms of the

transfer matrix M , which follows a simple multiplication rule for scatterers in series.

To see this, we decompose first the wavefunctions into right/left moving amplitudes,

ψ(x) = ψ+eikx + ψ−e−ikx.

The transfer matrix M then maps the amplitudes from the left side of the scat-

terer to that of the right side of the scatter, ψ+
R

ψ−R

 = M

 ψ+
L

ψ−L

 .

Rewriting 2.1.3, we have

ψOUTL = ψ−L = rψ+
L + t′ψ−R =⇒ ψ−R =

1

t′
ψ−L −

r

t′
ψ+
L (2.1.5)

and analogously for ψOUTR . Combining both, we finally arrive at the the transfer

matrix:

M =

 1
t∗
− r∗

t∗

− r
t

1
t

 . (2.1.6)

Since M maps the amplitudes from left to right across each scatterer, one can readily

extend the scattering from a single impurity to several impurities in series. The

total transfer matrix for N scatterers is simply obtained from multiplying transfer

matrices Mi for the i-th scatterer,

M12...N = MNMN−1...M2M1.

In an experiment with two barriers (fig. 2.3) M12 = M2M1, and we find

t12 =
t1t2

1− r′1r2

. (2.1.7)

The physical meaning of eq. (2.1.7) becomes more clear if we expand the right-

hand side in a power series

t12 = t1
[
1 + r2r

′
1 + (r2r

′
1)2 + (r2r

′
1)3 + ...

]
t2. (2.1.8)

That is, the transmission amplitude is given by the sum of the contributions of all

possible paths γ trough the two barriers,

t12 =
∑
γ:1→2

tγ (2.1.9)
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2.1. Introduction to Anderson localization 12

21
t1t2

t1r1r2t2

t1r1r2r1r2t2

’

’ ’

21

1 2

t1t2

’

’ ’

21

1 2

t1

t1

t1

1 2

t1r1r2t2

t1r1r2r1r2t2

Figure 2.3: Scheme of

the transmission across

two barriers. Notice that

the amplitude t12 con-

tains terms from all pos-

sible paths.

where the paths can be organized in the number of the internal reflections. So, in the

simplest path γ0, the particle just propagates through the two potentials tγ0 = t1t2,

in the first nontrivial path there is one internal reflection tγ1 = t1r2r
′
1t2, etc. We

then recall that the transmission probability is given by the square of the amplitude,

and can be organized as follows

T12 =
∑
γ,γ′

tγt
∗
γ′ =

∑
γ

tγt
∗
γ +

∑
γ 6=γ′

tγt
∗
γ′ . (2.1.10)

In the expression above, the first contribution describes the classical transmission

probability, while the second contribution sums all the quantum interference cor-

rections to it. We next discuss that the latter drastically changes the transmission

probability through a series of N randomly placed scatterers.

2.1.1 Clasical limit

Let us first consider the classical limit in which strong dephasing is present and

the quantum interference corrections are strongly suppressed. One then finds the

transmission probability to propagate through two impurities

T12 '
∑
γ

tγt
∗
γ (2.1.11)

The geometric series then gives

T12 =
T1T2

1−R1R2

, (2.1.12)
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2.1. Introduction to Anderson localization 13

where Ti and Ri are, respectively, the total transmission and reflection probabilities

for each scatter i.

The element resistance of the obstacles, defined as (1− T )/T , is calculated with

the classical transmission and sums in series classical behavior,

1− T12

T12

=
1− T1

T1

+
1− T2

T2

. (2.1.13)

Across N identical impurities distributed with density n = N/L, the classical resis-

tance grows like
R

T
= N

R1

T1

=:
L

l1
, (2.1.14)

in which l1 = T1/(nR1) characterizes the backscattering strength of a single impurity.

Equation 2.1.14 simply states that the total classical resistance of a wire grows

linearly with its length L. This result is known as Ohm’s law and reflects that the

classical dynamics of the particle is diffusive.

2.1.2 Anderson localization

Consider now the opposite limit of perfect phase coherence, where the quantum

interference correction have to be accounted for. Again, in case of two scatterers,

the transmission probability now reads

T12 =
T1T2

|1−
√
R1R2eiθ|2

. (2.1.15)

The difference with respect to the classical limit (in 2.1.12) is in the denominator,

where the phase eiθ marks a difference between the classical and quantum mechanical

limits and has a straightforward interpretation: It simply accounts for accumulated

dynamical phase during the internal reflection of the particle. While this latter

looks rather innocent it becomes very involved once N randomly placed scatterers

are considered.

In this case, the interference corrections will come with multiple phase factors

accumulated during propagation in between the randomly placed scatterers. This

random distances makes the phase factors randomly distributed in the interval [0, 2π]

independently of the reflection phases, and a calculation of T looks very complicated.
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2.1. Introduction to Anderson localization 14

However, the randomness can be taken as an advantage, once we consider the

logarithm of the transmission. Across long samples, when one averages the logarithm

in (2.1.15), the denominator drops out, since

∫ 2π

0

dθ

2π
ln |1−

√
R1R2e

iθ| = 0, (2.1.16)

and so 〈lnT 〉 is additive: the total extinction of a channel with length L grows

like |〈lnT 〉| = nL| lnT1|. With this scaling behavior, the log-averaged transmission

drops fast by increasing the length L,

exp(〈lnT 〉) = e
−L
ξloc . (2.1.17)

Recalling that the transmission is related to the conductivity, we conclude that

the conductance in the fully phase-coherent regime becomes exponentially small.

Quantum interference thus drastically changes the classical diffusion: The particle

becomes Anderson localized.

The characteristic length scale for Anderson localization is the localization length

ξloc =
1

n| lnT1|
. (2.1.18)

For weak scattering, nl1 = T1R
1
1 � 1, and | lnT1| ≈ (nl1)−1, with localization length

ξloc = l1 = 2l. In one dimension, no matter how weak is the disorder, all states will

localize due to quantum interference. We will see in section 2.2 how this conclusion

can be also derived from a single parameter scaling hypothesis.

2.1.3 Numerical experiments in 1d

In this section, we perform two numerical experiments of the 1d Anderson model.

All codes are written in Python3 and the detailed scripts for this chapter can be

found at https://github.com/Danielaleite. Here, we use the following parameters:

the energy (E), the system size (L) and the number of realizations N .

Up to this point, we used the transfer matrix formalism to combine the discrete

scatters with the proper phases in a model of a propagating wave along a continuous

1d axis. We can also go further and build a discrete model in a 1d lattice, whose
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2.1. Introduction to Anderson localization 15

Hamiltonian is given by

H =
+∞∑
−∞

(εn|n〉〈n|+ t|n〉〈n+ 1|+ t|n+ 1〉〈n|) , (2.1.19)

where |n〉 describes the occupation of site n and on-site energies εn are randomly

drawn from some gaussian distribution, and the hopping t is set to have energy

units (t = 1). If εn is zero, the system is translational invariant and eigenstates are

discrete plane waves ψn = eikn, where k is the wavenumber and k ∈ [−π, π[. The

dispersion relation is E(k) = 2 cos k. We introduced disorder considering εn as a

random variable, distributed along the interval εn ∈ [−W/2,W/2] [1].

In the first numerical experiment, we diagonalized the Hamiltonian 2.1.19 on a

finite lattice. Plot in fig. 2.4 contains an example of a typical localized wavefunction

of a given state with energy E = 0.005.

Figure 2.4: We notice that the eigenstates are localized in the presence of disorder.

In this example, we used W = 1, L = 1000 and energy E = 0.005.

We also estimated the localization length using the Inverse Particpation Ratio

(IPR), which is defined for each eigenstate by

IPR =
∑
i

|ψi|4.
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2.2. Scaling theory of localization 16

Essentially, this value carries all information about the localization properties of the

quantum state. The figure 2.5 shows how this ratio changes in terms of the energy,

and a comparision with the estimated localization length.

Figure 2.5: Numerical experiments of the 1d Anderson model: IPR vs. energy in

the (a) experimentand (b) Theory.

In a second experiment, we computed the intensity ln |ψ2
n| for a given realiza-

tion of disorder. Starting from the reduced form of time-independent Schröedinger

equation for an eigenstate |ψ〉 =
∑

n ψn|n〉, with energy E, we have

εn|n〉〈n|ψn|n〉+ |n〉〈n+ 1|ψn|n〉+ |n+ 1〉〈n|ψn|n〉 = Eψ|n〉 (2.1.20)

εnψn|n〉+ ψn−1|n〉+ ψn+1|n〉 = Eψ|n〉, (2.1.21)

that lead us to a recursive relation

ψn+1 = (εn − E)ψn − ψn−1. (2.1.22)

We solved eq. 2.1.22 at some arbitrary energies and with periodic boundary condi-

tions (ψn = 1 and ψn+1 = eik), describing an outgoing wavevector k and amplitude

1. We plot the intensity ln |ψn|2 in figure 2.6.

2.2 Scaling theory of localization

In this section, we present some of the key ideas behind the single parameter scaling

hypothesis, guided by the approach in Ref. [5].
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2.2. Scaling theory of localization 17

Figure 2.6: The intensity |ψn|2 decays exponentially for one realization of disorder.

Here, we set L = 1000, W = 1 and E = 0.5.

A scaling theory describes how relevant physical properties of a system change

under a change of its size. It is one of the most influential applications of renormal-

ization group ideas. In 1979, the “gang of four” composed by Abrahams, Anderson,

Licciardello and Ramakrishnan [5] proposed a scaling theory of localization in the

context of transport properties of disordered conductors. Traditionally, this the-

ory is formulated in terms of a dimensionless parameter, namely the dimensionless

conductance or “Thouless number” [5], defined as

g(L) =
G(L)

(e2/2~)
, (2.2.23)

where ~ is the Planck’s constant, e the elementary charge, L is the size of the system

(in the original approach of the gang of four, the system is a finite hypercube) and

G(L) is the system conductance, defined by

G(L) = σLd−2, (2.2.24)

and σ is the conductivity of the system. They suggested that scaling properties
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2.2. Scaling theory of localization 18

of the conductance are determined by a single parameter - the conductance itself -

through a scaling equation
d(ln g)

d(lnL)
= β(g). (2.2.25)

Notice that if β is positive (β > 0), L grows as we increase g and the system goes

to a conducting phase. If β is negative (β < 0), g decreases by increasing L and

the system flows to an insulating phase. When β = 0, the system is at a phase

transition point.

We can get asymptotic behaviour of β for both large and small g, from general

physical arguments [5]. For large g, from eq. 2.2.24, we have

lim
g→∞

β(g) = d− 2. (2.2.26)

In the other limit g → 0, the exponencial localization is valid, then g falls off

exponentially: g ∼ e−αL, with α being the inverse of the localization length. So we

have

lim
g→0

β(g) ∼ ln g < 0. (2.2.27)

From these asymptotics limits, we can build a curve for β in dimensions d = 1, 2

and 3. To do so, we need to assume that this curve is: (i) monotonic and (ii)

continuous. Regarding the dimensions, according to eq. 2.2.26, if d = 1, no matter

how large is g, the β function is always negative, so the β-flow is to an insulating

phase. If d = 2, β = 0 and the prediction is that all states are localized, so the flow

is also to an insulating phase. In d = 3 dimensions, we have β(g) > 0 for large values

of g and β(g) < 0 for small values of g. So, there is a critical point - where β = 0

- that separates these behaviours, and the flow goes to either metallic or insulating

phase. Figure 2.7 summarizes these behaviours.

We will see in the next chapter that the scaling ideias are challenged in the con-

text of topological systems. The assumption that scaling properties of conductance

are governed by only one parameter is not valid in such systems anymore, and it

is necessary to introduce a second scaling parameter. In fact, the appearence of

a second scaling parameter was suggested first for the integer Quantum Hall ef-

fect, where an insulating state has a non-trivial topology. Specifically, Pruisken and

Khmelnitskii proposed in 1988 that the diagonal and off-diagonal elements of the
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2.3. Su-Schrieffer-Heeger (SSH) model 19

Figure 2.7: Qualitative behaviour of β(g) in dimensions d = 1, 2, 3. Taken from [5].

dimensionless conductance tensor g = gxx and gH = gxy [24] are the relevant pa-

rameters determining the β function in this case. At this point, it is convenient to

introduce the main ideas behind topological systems.

2.3 Su-Schrieffer-Heeger (SSH) model

The Su-Schrieffer-Heeger (SSH) model [21] is one of the simplest to understand the

physical properties of a one-dimensional topological system. It is a tight-binding

model that exhibits a topological phase transition, and was first proposed to describe

topological solitons in polyacetylene, a linear polymer composed by quasi-1d chains

of Carbon-Hydrogen monomers (see figure). The spinless fermions can hop in the

chain (1d lattice) with alternating amplitudes. In this section, we describe this

model and introduce some relevant concepts as the chiral symmetry and topological

number. The material presented throughout this section is guided by the approach

in Ref. [6].

We consider a 1d chain with 2N sites and spinless fermions described by the
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2.3. Su-Schrieffer-Heeger (SSH) model 20

Figure 2.8: Origin and geometry of the SSH model. Configuration of polyacetilene

molecule (above), and scheme for a 1D chain with two atoms in a unit cell, with

alternating hopping amplitudes t (double line) and µ (single line) intra-cell and

inter-cell, respectively.

following Hamiltonian

Ĥ =
2N∑
i=1

tiĉ
†
i ĉi+1 + h.c. (2.3.28)

where “h.c.” means hermitian conjugate, c†i is the operator that creates a fermion

on site i = 0, 1, ..., 2N , and ti is the hopping amplitude. This model has no onsite

potential terms and we assume periodic boundary conditions (ĉ†2N+1 ≡ c1). The

hopping amplitudes alternate between “weak” and “strong” hopping, so it’s more

convenient to change the notation to t2i = t and t2i+1 = µ, indicating even and odd

links,

Ĥ =
2N∑
i=1

(
tĉ†2i−1ĉ2i + µĉ†2iĉ2i+1 + h.c.

)
(2.3.29)

We can think of the system as an N site lattice with a two-component unit cell

(i.e. containing the two sites), which implies that it is described by two energy-

bands. If the latter are separated by a gap throughout the entire Brillouin zone, the

system is in an insulating phase.

Building on the two-component unit cell picture, it is convenient to introduce

ĉ†i = (ĉ†i,1, ĉ
†
i,2) = (ĉ†2i−1, ĉ

†
2i), (2.3.30)

where i labels the cell index. Rewriting the Hamiltonian in this new notation

Ĥ =
N∑
i=1

(
tĉ†i,1ĉ

†
i,2 + µĉ†i,2ĉ

†
i+1,1 + h.c.

)
=

N∑
i=1

ĉ†iHij ĉj. (2.3.31)
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2.3. Su-Schrieffer-Heeger (SSH) model 21

Each component Hij is now a (2× 2) matrix, and we will name Ti = Hi,i+1 hopping

matrices, and Ui = Hii onsite potentials. In a chain with 4 cells (8 sites), for

example, the entire Hamiltonian matrix H takes the form

H =


U1 T1 0 T †4

T †1 U2 T2 0

0 T †2 U3 T3

T4 0 T †3 U4

 , where U =

0 t

t∗ 0

 and T =

0 0

µ 0

 . (2.3.32)

We can write onsite and hopping matrices in terms of the Pauli matrices

U = tσx, T =
µ

2
(σx − iσy), (2.3.33)

where we recall that

σ0 =

1 0

0 1

 , σx =

0 1

1 0

 , σy =

0 −i

i 0

 and σz =

1 0

0 −1

 .
If we apply a Fourier transform in 2.3.31 from real to k-space, we arrive at

H(k) = U + Teik + T †e−ik = U + (T + T †) cos k + i(T − T †) sin k

= tσx + µ cos kσx + µ sin kσy

= hx(k)σx + hy(k)σy + hz(k)σz = h(k) · σ

where in the last line we introduced

hx(k) = t+ µ cos k, hy(k) = µ sin k, hz(k) = 0. (2.3.34)

Using anticommutation relations of the Pauli matrices it can be verified that [H(k)]2 =

[E(k)]2σ0 and we thus obtain the dispersion relations for the two bands

E±(k) = ±|t+ µe−ik| = ±
√
t2 + µ2 + 2tµ cos(k). (2.3.35)

We notice that for staggered hopping an energy gap of 2∆, with

∆ = minE(k) = |t− µ|, (2.3.36)

separates the two bands (see fig. 2.9), and the system is an insulating phase. For t =

µ, on the other hand, the SSH model is in a conducting phase. The staggering of the
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2.3. Su-Schrieffer-Heeger (SSH) model 22

hopping amplitudes occurs naturally in many solid state systems, e.g., polyacetylene,

by what is known as the Peierls instability [6]. As the gap due to the staggering

of the hopping amplitudes opens, the energy of occupied states is lowered, while

unoccupied states move to higher energies. Thus, the staggering is energetically

favorable.

Figure 2.9: Dispersion relations of the SSH model that determines the energy level

of each band. Values for hopping amplitudes are set according to: µ = 0; µ = t;

µ < t; t = 0.

2.3.1 Chiral symmetry

The Hamiltonian (2.3.29) describes a bipartite system: there are no transitions

between sites within the same sublattice and we can define projectors in these sub-
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lattices (say A and B) as

PA =
∑
r=2n

|r〉〈r| and PB =
∑

r=2n+1

|r〉〈r|. (2.3.37)

The chiral symmetry is represented by the operator Σz = PA− PB: it is hermitean,

unitary and local. There are no onsite terms in the Hamiltonian, so

ΣzHΣz = −H

(anticommutation). A consequence of this chirallity is the symmetry of the spec-

trum: every eigenstate E has a partner −E, that is

H|ψn〉 = En|ψn〉 −→ HΣz|ψn〉 = −ΣzH|ψn〉 = −ΣzEn|ψn〉 = −EnΣz|ψn〉 (2.3.38)

For any eigenstate with nonzero energy, flipping the sign of the wavefunction on the

odd sites gives another eigenstate with opposite energy.

2.3.2 Bulk winding number

Let us consider the bulk Hamiltonian H(k) = h(k) · σ. As k goes through the

Brillouin Zone (k = 0→ 2π), the tip of the vector h(k) runs through a closed path

in the (hx, hy) plane. One can associate to this closed path a winding number ν,

which counts how many times this path circles around the origin. Notice that in the

insulating phase this path always avoids the origin because if there is a k at which

h = 0 , the gap would close at this k, and we would not have an insulator. The

chiral symmetry, on the other hand, ensures that the vector h(k) is restricted to lie

on the XY plane.

To calculate this winding number consider a projection of the closed path to the

unit circle. Recall that the winding number is a topological property which does

not change under continuous deformations. One can then calculate the winding in

terms of the unit vector

h̃(k) = h(k)/|h(k)|

(see figure 2.10), by computing the area enclosed by ˜h(k), and then dividing this

area by the surface of the unit circle [6],

ν =
1

2π

∫ π

−π
dk

(
h̃(k)× ∂

∂k
h̃(k)

)
z

. (2.3.39)
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Since the bulk Hamiltonian is off-diagonal,

H(k) =

 0 h(k)

h∗(k) 0

 ; h(k) = hx(k)− ihy(k)

we can write the winding number as the following integral

ν =
1

2iπ

∫ π

−π
dk

d

dk
log h(k). (2.3.40)

One can readily compute the winding number for the SSH model in the insulating

phase. It turns out to be 0 in cases the intracell hopping dominates over the intercell

(t > µ), and 1 in cases the intercell hopping dominates over the intracell (t < µ). We

say that the insulator is in the trivial phase if ν = 0 and otherwise in a topological

nontrivial phase, here characterized by ν = 1.

Notice that there are two ways to change the winding number and get a topo-

logical transition: Either one has to deform the path through the origin in the

(kx, ky)-plane, or one lifts the path out of the plane. In the first case one makes

a transition through a metallic phase and in the second case one breaks the chiral

symmetry.

We here close our introduction on Anderson localization and the SSH model as

one example of a topological insulator. In the next chapter, we turn to the main

system of interest for this thesis, the disordered SSH model.

September 3, 2019



2.3. Su-Schrieffer-Heeger (SSH) model 25

Figure 2.10: Winding number of the Bloch Hamiltonian of the SSH model. The loop

is performed by the vector h(k) on the plane (hx, hy), parametrized by: (a) t = 1,

µ = 0.5; (b) t = 0.5, µ = 0.5; (c) t = 0.4, µ = 0.8; (d) t = 0.5,µ = 0.5 now closing

the loop as k −→ 2π. The number of times that the origin is encircled by the loop,

the topological invariant discontinuously changes, accompanied by a closing of the

band gap.
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Chapter 3

SDRG of a disordered SSH model

In this thesis we study the disordered SSH model as an example of a topologically

nontrivial Anderson insulator. This chapter contains a study of how the single-

parameter scaling of conventional Anderson insulators has to be generalized to ob-

tain a complete picture once non-trivial topology comes into play.

In section 3.1 we introduce the model, which generalizes the SSH model already

presented in chapter 2, to include disorder in form of random alternating hoppings

in a way to keep the chiral symmetry. We then generalize the topological invariant

to a disordered system, and derive in section 3.2 the second scaling parameter. The

main ideas behind the SDRG are introduced in section 3.3, where we derive the

decimation rules for the hoping terms in the SSH model. Also, we compute the

second scaling parameter to the disordered chain in section 3.3.2. We conclude with

a discussion of the two-parameter flow diagram in section 3.4.

3.1 The disordered SSH model

We consider a disordered single channel quantum wire with chiral symmetry, de-

scribed by the Hamiltonian

H =
2L∑
i,j=1

c†iTijcj, (3.1.1)

where c†i (cj) is the canonical creation (annihilation) operator at site i and L is the

physical length of the wire. The hopping amplitude has an alternating strength that
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can be written as

T2i−1,2i = T2i,2i−1 ≡ µi (3.1.2)

T2i+1,2i = T2i,2i+1 ≡ ti, (3.1.3)

where ti and µi are random variables with

〈µi〉 = µ, 〈µiµj〉 = v2
µδij,

〈ti〉 = t, 〈titj〉 = v2
t δij.

(3.1.4)

We will later consider

ti = tvi, µi = µvi,

〈vi〉 = 1, 〈vivj〉 = v2δij.
(3.1.5)

Rewriting the Hamiltonian 3.1.1 in matrix form, we have

H =
L∑

i,j=1

[
c†i,+ ci,−

] 0 µi + tit̂a

µi + tit̂
−1
a 0

c†i,+
ci,−

 , (3.1.6)

where t̂ is the single site translation operator.

3.2 Disordered system: topological invariant, two-

parameter flow

The first step is to obtain the topological invariant χ for the disordered model.

Let us recall the standard winding number construction for the clean system [25]

previously mentioned. In the clean case, one can turn to the Fourier representation

with a given wavenumber k such that the matrix elements are [17]:

hi,j(k) = δij(µ+ teik),

and the topological number, introduced in 2.3.40,

χ =
1

2π
Im

∫ 2π

0

dktr[h−1(k)∂kh(k)] = Θ(|t| − |µ|). (3.2.7)

How can we generalize this number to a disordered system, i.e., without appealing

to the k space? The answer comes as a trick: we consider a system with L unit cells
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and periodic boundary conditions in a ring geometry (i ≡ 2L+ i), and introduce by

convenience the unit cell notation,

c2i −→ c+,i c2i−1 −→ c−,i. (3.2.8)

Through this ring, we insert a ’chiral flux’ that affects the block matrices h as

hij(k) = hij(k + φ/L)

h†ij(k) = h†ij(k − φ/L).
(3.2.9)

In other words, the non-unitary axial transformation,

Tjk 7−→ T φjk ≡ Tjk exp

[
−iφ
L

(j(−)j + k(−)k)

]
, (3.2.10)

explicitly changes the hopping as

µj 7−→ µφj ≡ µje
i φ
L , tj 7−→ tφj ≡ tje

−i φ
L . (3.2.11)

The second step is to define the zero energy retarded Green function Gφ =

(i0−Hφ)−1, and understand how it changes with the insertion of the chiral flux.

Considering first the translational invariant case, we notice that

1

4π
ln

(
det(G2π)

det(G0)

)
=

1

4π

∫ 2π

0

dϕtr(∂ϕ ln(Gφ)) (3.2.12)

=
1

4π

∑
k

∫ 2π

0

dϕtr
[
∂ϕ
(
lnh(k + ϕ/L) + lnh†(k − ϕ/L)

)]
,

(3.2.13)

where in the last line we used the translational invariance. We then use the identity∑
k

∫ 2π

0
dϕF (k + ϕ/L) = L

∫
dkF (k), to obtain

1

4π
ln

(
det(G2π)

det(G0)

)
=

i

2πL
Im
∑
k

∫ 2π

0

dktr [∂k (lnh(k))] ,

which is exactly the winding earlier introduced in eq. 3.2.7. Then, we see that

χ =
1

4π
Im ln

[
det(G2π)

det(G0)

]
. (3.2.14)

This equation represents the topological invariant in terms of a “spectral flow”

[17]. As we earlier mentioned in section 2.2, this topological invariant becomes our
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second scaling parameter. We then define the β function associated with each scaling

parameter as

βg(g, χ) =
d ln g

d lnL
and βχ(g, χ) =

d lnχ

d lnL
. (3.2.15)

Now we introduce the generating function [17]

F(ϕ) = −∂φ〈ln detGφ〉|φ=ϕ. (3.2.16)

Finally, the idea is to compute the two physical quantities of interest (that is, the

two scaling parameters (g, χ)), from this generating function

g = −∂ϕF(ϕ)|ϕ=0 and χ =
1

4π

∫ 2π

0

dϕ ImF(ϕ), (3.2.17)

and then to derive the flow equations using the SDRG rules. In the following section,

we describe this procedure.

3.3 SDRG

Usually one uses the Strong Disorder Renormalization Group (SDRG) in the study

of disordered systems. This method was introduced by C. Dasgupta and S.K. Ma in

the 80’s [23] and was further developed by Fisher [10] in a context of disordered spin

chains. In this section, we describe the main RG-step in a SSH model of the previous

sections, where disorder has been introduced by taken staggered amplitudes from

some probability distribution. This step is the decimating procedure for hopping-

terms and onsite energies from the Hamiltonian. Our discussion here is guided by

the work in ref. [13].

3.3.1 The RG step: Decimating a hopping term

The basic idea behind a SDRG step, as in a normal RG step, is to successively

integrate out high-energy modes and renormalize the remaining degrees of freedom

(see figure 3.1). If the hopping terms are drawn from a random distribution, then

there will be one bond with a much larger coupling than those in the rest of the

system.
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Figure 3.1: Scheme for the SDRG step.

We first locate this bond in the Hamiltonian 3.1.1 and name it as the cuttoff

of our problem, that is Ω = max{|ti|, |µi|}. Let us consider, for example, the case

where the largest coupling is |t2|. In a language of perturbation theory, we can

separate the Hamiltonian in two parts:

H = H0 +H1, (3.3.18)

where we treat

H0 = t2ĉ
†
2ĉ3 + h.c. (3.3.19)

exactly, and

H1 =
N∑
i 6=2

tiĉ
†
2i−1ĉ2i +

N∑
i=1

µiĉ
†
2iĉ2i+1 + h.c. (3.3.20)

in second order perturbation theory. The unperturbed Hamiltonian reads

H0 =

0 t2

t2 0

 . (3.3.21)

The eigen-energies are just λ± = ±
√
t22 = ±|t2|, with corresponding eigenvectors

|+〉 =
|1〉+ |0〉√

2
(3.3.22)

|−〉 =
|1〉 − |0〉√

2
. (3.3.23)

Treating H1 perturbatively, the first order correction is zero and we should find

the second order correction. Let’s use |1〉 ≡ |1k; 0〉 to indicate a particle out of site
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2 and |0〉 ≡ |0;±〉 for when the particle is at the highest energy state. The effective

hopping t̃ reads

t̃2 =
∑
s=±

〈1k; 0|H1|0; s〉〈0; s|H1|1l; 0〉
−λs

=⇒ t̃2 =
〈1k; 0|H1|0; +〉〈0; +|H1|1l; 0〉

−λ+

+
〈1k; 0|H1|0;−〉〈0;−|H1|1l; 0〉

−λ−
.

So we arrive at the renormalized hopping term t̃2:

t̃2 = −µ1µ3

t2
, (3.3.24)

and in a similar way, the renormalized hopping µ̃

µ̃2 = −t1t3
µ2

. (3.3.25)

3.3.2 Back to generating function for disordered SSH model

With these preparation we now return to the calculation of the disorder averaged

generating function F(ϕ) using the SDRG method. We eliminate sucessively largest

energies until we arrive at a two site problem described by a single unit cell Hamil-

tonian, then use the generating function to this two-site problem. The relations for

a single elimination step are exact transformations. We now rewrite our Hamilonian

considering transformations in eq. 3.2.11,

H =

 0 (µe
−iφ
L + te

iφ
L )

(µe
−iφ
L + te

iφ
L ) i0


From the retarded Green’s function, we have

Gφ =

 i0 −(µe
−iφ
L + te

iφ
L )

−(µe
−iφ
L + te

iφ
L ) i0

−1

= −

 i0 1

µe
−iφ
L +te

iφ
L

1

µe
−iφ
L +te

iφ
L

i0


(3.3.26)

September 3, 2019



3.3. SDRG 32

Then we can compute the generating funcion as defined in 3.2.16

F(ϕ) = −∂φ〈ln detGφ〉|φ=ϕ (3.3.27)

= −∂ϕ ln

[
1

(µe
−iϕ
L + te

iϕ
L )2

]
(3.3.28)

= ∂ϕ ln
[
(µe

−iϕ
L + te

iϕ
L )2
]

= 2∂ϕ ln
[
(µe

−iϕ
L + te

iϕ
L )
]

(3.3.29)

= 2∂ϕ ln
[
teiϕ/L

(
1 +

µ

t
e
−2iϕ
L

)]
(3.3.30)

= 2∂ϕ ln t+ 2∂ϕ ln
(
eiϕ/L

)
+ 2∂ϕ ln

(
1 +

L∏
l=1

tl
µl
e−2iϕ/L

)
, (3.3.31)

where we used that eqs. 3.3.25 are exact transformations. In order to check the

consistency of our approach, let us recall the clean case, where we have tl = t and

µl = µ. The above equation becomes

F(ϕ) ≈ 2∂ϕ ln

(
1 +

(
t

µ

)L
e−2iϕ/L

)
, (3.3.32)

and from 3.2.17, we recover the topological winding number 2.3.40. Back to disorder,

we obtain

F(ϕ) = 2∂ϕ ln

(
1 +

(
t

µ

)L
v1v3...v2L−1

v2v4...v2L

e−2iϕ/L

)
. (3.3.33)

Following previous works [13], we consider a dimensionless scaling variable ζi =

ln(Ω0/vi) in which

ζ = − ln(v), (3.3.34)

where v = v1v3...v2L−1

v2v4...v2L
is a random walk in ζi-space. For large system sizes L � 1 is

gaussian distributed by the central limit theorem,

P (ζ) =
1√
πv2

ζ

e
−ζ2

v2
ζ (3.3.35)

So, we can rewrite the topological invariant as

χ =

∫ 2π

0

dϕ

4π
Im 2∂ϕ ln

[
1∓

(
t

µ

)L
eζe2iϕ/L

]
= Θ(L ln(t/µ)− 2ζ), (3.3.36)

and upon disorder average

χ =
1

2

[
1− Erf

(
L

vζ ln(µ/t)

)]
. (3.3.37)
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Notice that in the particle-hole symmetric point, t = µ is an unstable fixed point

with χ = 1
2
. On the other hand, the conductance will be

g = −∂ϕ

[
2∂ϕ ln

(
1 +

(
t

µ

)L
v1v3...v2L−1

v2v4...v2L

e−2iϕ/L

)
+O(1/L)

]
ϕ=0

=⇒ g = −∂ϕ

[
2∂ϕ ln

(
1 +

(
t

µ

)L
2eζe2iϕ/L

)]
ϕ=0

.

Now we can compute the conductance.

3.3.3 Exact results

From eq. 3.3.2 we obtain, for a single realization of disorder,
gζ =

2

sinh2(2ζ − L ln(t/µ))
, L = 4k

gζ =
2

cosh2(2ζ − L ln(t/µ))
, L = 4k + 2

(3.3.38)

Upon disorder average, we obtain the average conductance:

Figure 3.2: Illustraive plot for the conductance.

September 3, 2019



3.3. SDRG 34

Typical vs. average conductance

Let us analyze the behavior of g in the limits of the system size L. From (3.3.38)

we compute the distribution of conductance samples. Using the fact that

sinhx =
1− e−2x

2e−x
and coshx =

1 + e−2x

2e−x
, (3.3.39)

and rewriting the argument as ζ̃ = 2 [ζ − L ln(t/µ)], the conductance (one realization

of disorder) reads

gζ =
16e−2ζ̃

(1− e−2ζ̃)2
, (L = 4k), and gζ =

16e−2ζ̃

(1 + e−2ζ̃)2
, (L = 4k + 2).

(3.3.40)

One can chose only one case, e.g. L = 4k, then the other will be analogous, so

trough (3.3.35) yelds the typical conductance

ln gζ̃ = ln

[
16

e2ζ̃(1− e−2ζ̃)2

]
=⇒ ln g = ln 16− 2〈ζ̃〉 −

〈
2 ln(1− e−2ζ̃)

〉
.

Finally,

ln g = ln 16− 4〈[ζ − L ln(t/µ)]〉 −
〈
2 ln

(
1− e−4[ζ−L ln(t/µ)]

)〉
, (3.3.41)

that lead us to the β-function defined in (3.2.15)

βg = 4L ln

(
t

µ

)
− 8

〈
L ln(t/µ)

e4[ζ−L ln(t/µ)] − 1

〉
. (3.3.42)

We also compute βχ from (3.2.15) and (3.3.37), using the trick from the chain

rule

βχ =
d(lnχ)

d lnL
=

dL

d lnL

d

dL
(lnχ) = L

d

dL
(lnχ), (3.3.43)

and then

βχ = L
d

dL
ln

{
1

2

[
1− Erf

(
L

vζ ln(µ/t)

)]}
=

4Lvζe

[
L
vζ

ln(µt )
]2

√
π ln(µ/t)

[
Erf

[
L
vζ

ln(µ/t)
]
− 1
] .

(3.3.44)

Since we are interested in the limit L → ∞, we can use the following divergent

asymptotic expansion

Erf(x) ≈ 1− e−x2(x
√
π)−1

[
1− 1

2x2
+ ...

]
,
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and so

Erf

[
L

vζ
ln
(µ
t

)]
≈ 1− e

−
[
L
vζ

ln(µt )
]2

√
π
(
L
vζ

ln(µ/t)
) [1− 2

[
L

vζ
ln(µ/t)

]−2

+ ...

]
. (3.3.45)

After some algebra and considering only the first two terms of the expansion, the

eq. (3.3.44) becomes

βχ ≈

[
2vζ√
π ln

(
µ
t

)]2 [
1− vζ

2

2L2 ln2
(
µ
t

)] (3.3.46)

3.4 Discussion

In this first part, we have studied a disordered one-dimensional wire with chiral sym-

metry. We have shown how the single parameter scaling hypothesis by the so called

“gang of four” has to be generalized to account for topologically nontrivial phases.

While topologically trivial systems follow single parameter flow, fully characterized

by the conductance, the topological index enters as second relevant parameter in

systems allowing for topologically non-trivial insulating phases. Specifically, we dis-

cussed how the winding number can be generalized from translational invariant to

disordered systems.

We obtained using the SDRG procedure, the flow of the two scaling parameters

and then analyzed the change of average winding in a disordered SSH chain. We

found a phase diagram summarized in fig. 3.3. Generically, the system flows to one

of two possible Anderson insulating phases characterized by windings 0, 1.

The disordered SSH chain has been previously analyzed in the limit of a large

number N � 1 of channels (i.e., quasi one-dimensional rather than one-dimensional

system) in ref. [17]. We obtained in the case N = 1, qualitatively, similar results

(same phase diagram, as expected), though scaling functions differ in detail. While

the field theory approach is rather involved and requires knowledge of advanced

methods, the SDRG approach, on the other hand, is rather simple. There however,

only the flow of the conductance was studied and we here presented how to complete

the picture taking into account the winding number.
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Figure 3.3: Two parameter flow (χ(L),β(L)) diagram. Notice that when the system

is fine tuned to the critical state χ = 1/2, the topological number does not flow.

Here, we close the first part. In the next chapter, we present a different perspec-

tive and look at the N = 3 connected channels, preparing the required parameters

to build a supervised Machine Learning algorithm.
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Chapter 4

Special case: N = 3 connected

chains

In this second part, we aim to understand what a Machine Learning (ML) algorithm

can say about the topological phases of a finite disordered system.

In the first part, we argued that the field theory description for N connected

chains is not applicable in the case where N = 1. In the construction of this field

theory, the topological parameter is obtained by a perturbative self-consistent Born

approximation (SCBA). Along in ref. [17], they provided a numerical verification

of this approach, that worked well when N = 3 wires. They also obtained a phase

diagram in this particular case.

The idea in this second part is to reproduce the same phase diagram from a

Machine Learning algorithm. When one uses this approach, the data generated

is supposed to have a Hamiltonian (in the momentum-space representation) and

corresponding topological number. Here is useful to compute the topological number

in the real space.

In this chapter, we aim to analytically obtain the self-energy correction to com-

pute the topological invariant for N = 1 and N = 3 disordered chains. Our starting

point in section 4.1 is the self-consistent equation that defines the correction. We

finally arrive in the topological invariant in section 4.2.
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4.1 SCBA

It is known that an analytical approach for disordered topological insulators consists

of the disordered averaged self-energy Σ using the Self-Consistent Born Approxima-

tion (SCBA) [26]. This approach is useful to our problem because a solution in

low-energy approximation for the self-energy is momentum-independent.

Σ ≈ −g
∫

ddp

(2π)d
1

p2 + r − Σ
. (4.1.1)

The above equation is ”self-consistent” because the self-energies appears recursively

on the right-hand side of the equation. Using this approximation, we can include the

vertex corrections. The iteration generates an expansion in terms of the interaction

and the Green’s function will be a self-consistent solution of the Dyson equation.

In our model, we assume from symmetry arguments, that Σ can be expanded as

Σ0τ0 + Σzτz with

Σ0 =

 1 0

0 1

 , Σz =

 1 0

0 −1

 ,

and from [26], we write this correction as

Σ =
6∑
d=1

W 2
d

12

∑
k∈BZ

(στ)d
1

iδ −H0(k)− Σ
(στ)d, (4.1.2)

where BZ means a summation over the Brillouin zone and H0(k) is the SSH hamil-

tonian already presented in 3.1.1. We have

Σ0τ0 + Σzτz =
w2

2π

∫ π

−π
dk · σx

1

[i0−H0(~k)− (Σ0τ0 + Σzτz)]
σx. (4.1.3)

The disordered averaged propagator features renormalized mass and chemical po-

tential as

m̄ = m0 + Re Σz (4.1.4)

µ̄ = µ− Re Σz. (4.1.5)

The left side of (4.1.3) is just

Σ0

 1 0

0 1

+ Σz

 1 0

0 −1

 =

 Σ0 + Σz 0

0 Σ0 − Σz

 .
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Let us denote as I the integral on the right side of 4.1.3, with the respective terms,

I =
w2

2π

∫ π

−π
dk

 0 1

1 0

 iδ − (Σ0 + Σz) −(µ+ teik)

−(µ+ te−ik) iδ − (Σ0 − Σz)

−1 0 1

1 0



=⇒ I =
w2

2π

∫ π

−π
dk

1

∆

 0 1

1 0

 (iδ − Σ0) + Σz µ+ teik

µ+ te−ik (iδ − Σ0)− Σz

 0 1

1 0



=⇒ I =
w2

2π

∫ π

−π
dk

1

∆

 (iδ − Σ0)− Σz µ+ te−ik

µ+ teik (iδ − Σ0) + Σz

 , (4.1.6)

where ∆ = [(iδ −Σ0)2 −Σ2
z − (µ+ te−ik)(µ+ teik)]. From now, we consider Σz = 0

and iδ → 0, that lead us to Σ0 0

0 Σ0

 =
w2

2π

∫ π

−π
dk

1

∆

 −Σ0 µ+ te−ik

µ+ teik −Σ0

 , (4.1.7)

where now ∆ = Σ2
0 − (µ2 + t2 + 2tµ cos k). Finally,

Σ0 = −w
2

2π

∫ π

−π
dk

Σ0

Σ2
0 − (µ2 + t2 + 2tµ cos k)

. (4.1.8)

This is clearly a trigonometric contour integral, so we solve it first locating the

poles inside the contour, finding the residues at these poles and then apply the

residue theorem. The limits of integration are finite, which allows us to change the

variables from k to z = eik, with 0 6 k 6 2π. Denoting the integral as I2, we have

I2 = −2i

∫ 2π

0

dz

2az + z2 + 1
, (4.1.9)

where a =
µ2+t2−Σ2

0

2tµ
. The denominator can be written as

2az + z2 + 1 = (z − r1)(z − r2), r1 + r2 = −2a and r1r2 = 1. (4.1.10)

The residue theorem states that for any analytic function f(z) with a pole at z0∮
Γ[z0]

f(z)dz = ±2iπRes[f(z)]z=z0 (4.1.11)
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where Γ[z0] is an infinitesimal loop around z0. The sign plus (minus) indicates if

the loop goes counterclockwise (clockwise). With this, and considering the pole r1

inside the contour, we have

I2 = 2πiResr1

[
1

(z − r1)(z − r2)

]
= 4π lim

z→r1

[
(z − r1)

(z − r1)(z − r2)

]
=

4π

(r1 − r2)
.

Since r1 = −a+
√
a2 − 1 and r2 = −a−

√
a2 − 1, the integral is just

I2 =
2π√
a2 − 1

. (4.1.12)

And now we back to eq. (4.1.8),

1 =
−w2

2π

(−2π)√
(µ2 + t2 − Σ2

0)2 − (2tµ)2

w2 =
√

(µ2 + t2 − Σ2
0)2 − (2tµ)2 =⇒ w4 + (2µt)2 = (µ2 + t2 − Σ2

0)2

=⇒ Σ0 =
[
µ2 + t2 −

√
w4 + (2tµ)2

]1/2

, (4.1.13)

which is the solution for the self-energy.

4.2 Topological invariant in a disordered system

We now compute the topological invariant n considering the self-energy correction,

n =
1

4iπ

∫ π

−π
dk tr(σzG∂kG

−1), (4.2.14)

where the Green function G contains Σ,

G = −(H0 + Σ)−1 = −

 Σ0 µ+ teik

µ+ te−ik Σ0

−1

,

=⇒ G = − 1

Ω

 Σ0 −(µ+ teik)

−(µ+ te−ik) Σ0

 , (4.2.15)

where

Ω = Σ2
0 − (µ+ teik)(µ+ te−ik). (4.2.16)
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The matrix product on the integral is just

σz ·G = − 1

Ω

 1 0

0 −1

 Σ0 −(µ+ teik)

−(µ+ te−ik) Σ0

 = − 1

Ω

 Σ0 −(µ+ teik)

(µ+ te−ik) −Σ0


Introducing this matrix above in (4.2.14):

n =
1

4iπ

∫ π

−π
dk tr

 1

Ω

 Σ0 −µ− teik

µ+ te−ik −Σ0

 0 iteik

−ite−ik 0

 (4.2.17)

=⇒ n =
1

4iπ

∫ π

−π
dk tr

 1

Ω

ite−ik(µ+ teik) −itΣ0e
ik

itΣ0e
−ik iteik(µ+ te−ik)

 (4.2.18)

=⇒ n =
i

4iπ

∫ π

−π
dk

[
te−ik(µ+ teik) + teik(µ+ te−ik)

Σ2
0 − µ2 − t2 − tµ(eik + e−ik)

]
(4.2.19)

The numerator can be analyzed as

tµe−ik + t2 + tµeik + t2 = 2t2 + tµ(eik + e−ik)

and dividing this integrand by tµ, we obtain

n =
i

4iπ

∫ π

−π
dk

 2t
µ

+ (eik + e−ik)(
Σ2

0−t2−µ2
tµ

)
− (eik + e−ik)

 (4.2.20)

This is another contour integral that can be solved as before, changing the variables

to z = eik and dk = dz
iz

:

n =
i

4iπ

∫ 2π

0

dz

iz

[
2t
µ

+ (z + z−1)

2a− (z + z−1)

]
=
−i
4π

∫ 2π

0

dz
bz + z2 + 1

z(2a− z2 − 1)
, (4.2.21)

with

2a =

(
Σ2

0 − t2 − µ2

tµ

)
and b =

2t

µ
. (4.2.22)

The poles of the function are z0 = 0, z1 = a−
√
a2 − 1 and z2 = a+

√
a2 − 1. This

implies that the residues are

Resz0 = lim
z→0

[(
bz + z2 + 1

2az2 − z3 − z

)
(z − 0)

]
= −1;
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Resz1 = lim
z→z1

[(
bz + z2 + 1

(z − z1)(z − z2)

)
(z − z1)

]
=
bz1 + z2

1 + 1

z1 − z2

;

Resz2 = lim
z→z2

[(
bz + z2 + 1

(z − z1)(z − z2)

)
(z − z2)

]
=
bz2 + z2

2 + 1

z2 − z1

.

Finally, the integral reads

I3 = 2iπ

[
−1 +

b(z1 − z2) + z2
1 − z2

2

z1 − z2

]

I3 = 2iπ

[
−1 +

b(a−
√
a2 − 1− (a+

√
a2 − 1)) + (a−

√
a2 − 1)2 + (a+

√
a2 − 1)2 + 2

(a−
√
a2 − 1)− (a+

√
a2 − 1)

]
=⇒ I3 = 2iπ(b+ 2a− 1) (4.2.23)

and so the invariant takes the form

n =
1

2

(
2t

µ
+

Σ2
0 − t2 − µ2

tµ
− 1

)
. (4.2.24)

Putting (4.1.13) into the above equation, we obtain the topological invariant in

terms of the disorder avegare and the self-energy Σ,

n =
1

2

(
2t

µ
−
√
w4 + (2tµ)2

tµ
− 1

)
, (4.2.25)

or in its simplified form

n =
t

µ
−

(
1

2
+

√
w4

(2tµ)2
+ 1

)
.

In the limit of weak disorder, we have |t− µ| � w � t.

4.3 Self-energies for N = 3 chains

Let us consider a system with N chains of length L described by the Hamiltonian

H =
∑
l

[
C†l

(
(µ+ t) + (µ− t)P̂

)]
Cl+1 + C†l V̂lCl+1 + h.c., (4.3.26)
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where Cl = cl,j is the vector of fermion creation operators, the chain index is j =

1, ..., N , l = 1, ..., L labels the chain sites, P̂ cl,j = (−)lcl,j is a parity operator,

and the matrix V̂l is a random inter-chain hopping, that has Gaussian distribution

W 2/N . Without disorder, the winding number is defined and calculated as in the

normal SSH chain. In this case, we use the same strategy as before to find the

self-energies correction. We begin start rewriting the Hamiltonian (N = 3) as

Ĥ =
L∑
l=1

{
c†l,1
[
(µ+ t) + (µ− t)(−)l

]
cl+1,1 + c†l,2

[
(µ+ t) + (µ− t)(−)l

]
cl+1,2+

+c†l,3
[
(µ+ t) + (µ− t)(−)l

]
cl+1,3

}
,

or in matrix form,

H =
[
C†I C†II C†III

]
H̃I 0 0

0 H̃II 0

0 0 H̃III



CI

CII

CIII

 , (4.3.27)

where the index i = I, II, III labels each chain and in the momentum space it can

be written as bloch matrices 2× 2, remaining as in (3.1.6) with h±(k) = µ + te±ik.

We then write the full shape of the hamiltonian as H̃i ⊗ I, where I is the identity

matrix of order 3L× 3L. Also,

C† =
[
(c†1,1 c†2,1 ... c†L,1)I (c†1,2 c†2,2 ... c†L,2)II (c†1,3 c†2,3 ... c†L,3)III

]
.

This means that is posible to write the self-energy equations as we did before, now

taking into account that the Hamiltonian is a (3L× 3L) matrix, which means that

a factor of 3 proportional to the number of chains must appear. Eq. (4.1.8) after

symmetry considerations will be

Σ0(σx ⊗ I) =
ω2

2π

∫ π

−π
dk(σ0 ⊗ I) · 1

[(−H̃(~k)⊗ I)− Σ0(σx ⊗ I)]
· (σ0 ⊗ I)

=⇒ Σ0(σx ⊗ I) =
ω2

2π

∫ π

−π
dk(σ0 ⊗ I) · 1

−[(H̃(~k) + Σ0σx)⊗ I)]
· (σ0 ⊗ I) (4.3.28)

and the procedure is the same as we did before. In the limit of small disorder, we

again have that |t− µ| � w � t, and we write the self-energies as

w2 =
√

(µ2 + t2 − Σ2
0)2 − (2tµ)2
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4.3. Self-energies for N = 3 chains 45

w2 =
√

(µ2 + t2 − Σ2
0)2 − (2tµ)2 =⇒ w2 + (2µt)2 = (µ2 + t2 − Σ2

0)2

∴ Σ0 =
[
µ2 + t2 −

√
w4 + (2tµ)2

]1/2

, (4.3.29)

We introduce a gaussian disorder of type w2/N [17]. With this argument, we finally

arrive at the topological number (analougusly to the previous case)

n =
3

2

(
2t

µ
−
√
w4 + (2tµ)2

tµ
− 1

)
. (4.3.30)

Comparing this equation with 4.2, the difference is in a factor of 3. In the general

case, where all chains are connected, we have an N factor. That is, the topological

invariant becomes

n =
N

2

(
2t

µ
−
√
w4 + (2tµ)2

tµ
− 1

)
. (4.3.31)

We will use the result in eq. 4.3.30 in the generation of the datasets.

This particular case of N = 3 chains is interesting since its phase diagram was

already presented in ref. [31], so we can compare if the ML algorithm is able to

make the right classification. Fig. 4.1 shows this diagram.

Figure 4.1: Phase diagram of the A-III class 3-channel disordered wire. Taken from

[31].
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Chapter 5

Machine Learning

It is very notorious that machines are increasingly influencing everyday decision-

making: from web search results to spam filters, from suggestions on streaming

media platforms to friends in social networks. This is possible due to developments

in the field of Artificial Intelligence (AI) over the last decades. Machine Learning

(ML) is a sub-field of AI that combines Statistics and Computer Science to extract

knowledge from data, also known as predictive analysis or statistical Learning [29].

It has also a range of scientific applications like helping to discover distant planets

and new particles or providing personalized cancer treatments .

In this chapter, we answer the question of how ML can be useful in the problem

of classifying topological phases from data in the real space. We give a brief intro-

duction about ML and Neural Networks (NN) in section 5.1, and detail the process

of data generation for a topological insulator, with and without disorder, in section

5.1.1. Finally, in 5.2, some preliminary results are presented.

5.1 Brief introduction to ML

We classify machine learning systems in supervised, unsupervised, semi-supervised

and reinforcement learning, according to the type and amount of supervision they

get during training. The most used categories are the first two.

If a ML algorithm make predictions (outputs) from known data (inputs), we label

it as a supervised algorithm. It can decide to which classes a given new input belongs
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to, according with the training set of data. On the other hand, unsupervised learning

occurs if the prediction is made only with the input data known (no output is given):

the learner receives only unlabeled data and there are only inputs. Unsupervised

algorithms are harder to implement.

Every problem requires a good knowledge of the dataset. The first step for build

a ML algorithm is a good knowledge of the data you’re working with and how it

relates the tasks you want to solve. We chose to implement a supervised algorithm,

but not discarding the idea of trying an unsupervised model in the future (in fact,

ref. [36] shows an example of such implementation in the classification of exotic

phases of matter).

5.1.1 Neural Networks

The process of building a NN consists of 4 steps: collect data, design features (fea-

tures are those defining characteristics of a given dataset that allow for optimal

learning [37]), train network and test network.

The basic unit in a NN is a neuron (in reference to the human brain. A neuron

receives the input data and comput the output. Perceptrons are considered the

simplest type of neurons, such they can process an input by computing a scalar

product with a given weight and feeding the results in terms of a Θ function:

a(z) = Θ(x ·w − b) = Θ(z), (5.1.1)

where a is the activation function, z is the weighted input, x is the input, w the

weght vector and b a bias. In our model, we used the sigmoid as the activation

function.

Among the many classes of NN, we chose by simplicity to use a Feedforward

Neural Network (FNN). In this type of network, the information moves in only one

direction (forward) from the input nodes trough the hidden layers/output nodes.

We first perform the trivial topological insulator (SSH without disorder) in a few

experiments, and later use the model for N = 3 connected chains presented in 4 to

illustrate the non-trivial insulator, repeating the same procedure. The 4 steps in

our experiments are: Creating datasets, which consists of generating Hamiltonians

September 3, 2019



5.2. Data generation 48

Figure 5.1: The layers in a neural network are in general structures where all neurons

are connected to each other.

and Winding numbers and splitting them into training, testing and validation sub-

sets; Training the eigenvectors in the real space, which consists of implement in a

Feedforward neural network; and test the model to take the its accuracy.

5.2 Data generation

Our input labels are Hamiltonians Hi. In general, these Hamiltonians take a rep-

resentation in the momentum space [35], that is H = H(k). The targets are the

corresponding topological invariants Wi. Guided by an approach made by Holanda

and Rufo [34], our Hamiltonians are in the real space.

We generate a grid with 500 Hamiltonians that has periodic boundary conditions

distributed in the parameter space µ-t, in order to recover the phase diagram in this

space. Each Lattice had 30 unit cells. A plot for the spectrum is shown in fig. 5.2.

We set t = 1.
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5.2. Data generation 49

Figure 5.2: Variation of the energy E vs. hopping µ in the clean case. We set t = 0.5

In the disordered case, we generated a grid also with 500 Hamiltonians and pe-

riodic boundary conditions. An idea of how disorder can affect the energy spectrum

is shown in fig. 5.3, in which we used t = 0.5 and a disorder of magnitude V0 = 0.8.

We created a matrix of features and targets of variables. There were some

columns that should be excluded from the analysis for not being usefull at all (this

data cleaning process is usually boring). We used 80% of the dataset for training,

10% for test and 10% for validation.
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Figure 5.3: Energy E versus hopping µ in the disordered case. We set t = 0.5.

5.2.1 Implementing the model and preliminary results

There are some libraries in Python that can make the process of dividing the data

into training/test and validation. We used a sequential model from Keras libraries,

and a sigmoid function to activate the layers. We used the accuracy to measure the

learning ratio, obtaining a value of 95.65%.

A plot with the accuracy vs. epochs is shown in fig. 5.4. We noticed from this

learning rate that our NN can recover topological phases from data in real space.
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Chapter 6

Conclusions and Perspectives

In the first part of this work, we presented a model for a 1d topological Anderson

insulator. We started introducing relevant concepts as Anderson localization, scaling

hypothesis and topological numbers. Then, we calculated the topological invariant

as a second scaling parameter, using the SDRG approach and arrived at the two-

parameter flow diagram, completing a scenario proposed by the work in refs. [13]

and [17].

In the second part, we went into a different perspective in order to unsderstand

how Machine Learning could be useful for classifying topological phases of matter.

We showed that in a clean insulator, the supervised algorithm worked really well, in

particular our accuracies on training eigenvectors were really high (95.65%). In order

to introduce disorder, we needed to calculate the self-energies correction to then re-

obtain the topological invariant. There is still a lot to be done in this disordered

scenario.

The next step is to make use of other activation functions and train with other

types of Neural Networks. We can go even further and build an unsupervised one,

and in such case, the topological numbers would be directly predicted from the

eigenvectors training.
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[29] MÜLLER, Andreas C., GUIDO, Sarah. Introduction to Machine Learning

with Python: A Guide for Data Scientists. O’Reilly Media (2016).

[30] BRUNS, Daniel; HAENEL, Rafael; TOM, Gary. Project 17: Anderson Local-

ization, lecture notes, University of British Columbia, 25 Nov 2017.

[31] ALTLAND, A., BAGRETS, D., FRITZ, L., KAMENEV, A., SCHMIEDT,

Hanno. Quantum criticality of quasi-one-dimensional topological Anderson in-

sulators. Physical Review Letters 112, no. 20: 206602 (2014).

[32] LAMACRAFT, A., SIMONS, B. D., ZIRNBAUER, M. R. ”Localization from

σ-model geodesics.” Physical Review B 70.7: 075412 (2004).

[33] LANDAU, L. D. On The Theory of Phase Transitions I, Phys. Z. Sowj. Un.11,

26–47 (1937).

[34] HOLANDA, N. L., GRIFFITH, M. A. Machine learning topological phases in

real space. arXiv preprint arXiv:1901.01963 (2019).

September 3, 2019



Bibliography 55

[35] ZHANG, P., SHEN, H. and Zhai, H. Machine learning topological invariants

with neural networks. Physical review letters, 120(6), p.066401 (2018).

[36] RODRIGUEZ-NIEVA, J.F., SCHEURER, MS. Identifying topological order

through unsupervised machine learning. Nature Physics, May 6:1 (2019).

[37] WATT, J., KATSAGGELOS, Borhani R. Machine Learning Refined: Foun-

dations, Algorithms, and Applications. Cambridge University Press (2016).

September 3, 2019


