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Abstract

In this thesis we investigate the spontaneous symmetry breaking induced by quan-

tum fluctuations in scalar Quantum Electrodynamics. This phenomenon was originally

studied by S. Coleman and E. Weinberg using the perturbative approach to calculate

the effective potential. Their pioneering work, however, was limited to a specific region

of the parameter space, therefore it is interesting to investigate if their results remain

valid beyond the perturbative regime. To do this, we follow Wetterich’s path and use the

functional renormalization group tools to obtain non-perturbative informations about the

theory, studying the flow equations for the effective average potential and for the gauge

coupling, taking into account the anomalous dimensions corrections, in such a way that

we can recover the original results and go further. Solving numerically the complete flow

equations with suitable approximations, we discuss whether or not spontaneous symme-

try breaking takes place in each regime and, for the range of parameters analyzed, the

different phases of the theory as a function of mass.

Key Words: Spontaneous Symmetry Breaking; Functional Renormalization Group;

Coleman-Weinberg Mechanism; Scalar Quantum Electrodynamics.



Resumo

Nesta dissertação investigamos a quebra espontânea de simetria causada por correções

quânticas na Eletrodinâmica Quântica escalar. Tal fenômeno foi originalmente estudado

por S. Coleman e E. Weinberg usando a teoria de perturbação para calcular o potencial

efetivo. A abordagem original, entretanto, se limita a uma certa região do espaço de

parâmetros, portanto é interessante investigar se os resultados permanecem válidos fora do

regime perturbativo. Para isso, seguimos Wetterich e usamos as ferramentas do grupo de

renormalização funcional para obter informações não perturbativas, estudando as equações

de fluxo para o potencial efetivo médio e para o acoplamento de gauge, levando em conta

as correções da dimensão anômala, de tal forma que possamos recuperar os resultados

originais e ir além deles. Resolvendo numericamente as equações de fluxo completas com

algumas aproximações, discutimos se ocorre ou não a quebra espontânea de simetria em

cada regime e quais são as diferentes fases da teoria em função da massa, no conjunto de

parâmetros analisados.

Palavras-Chave: Quebra Espontânea de Simetria; Grupo de Renormalização Fun-

cional ; Mecanismo de Coleman-Weinberg; Eletrodinâmica Quântica Escalar.
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Presentation and General Framework

Quantum Field Theory is the mathematical framework with which we build up the

Standard Model of Particle Physics, an extremely successful theory that describes the

fundamental interactions of nature and classifies the existing elementary particles.

In the Standard Model and in the Quantum Field Theory as a whole, the idea of

symmetry plays a key role, helping us to understand the patterns that are present in

nature and build the proper mathematical structure to describe them. One of the main

pillars of the Standard Model is gauge symmetry, a hallmark in the description of all

fundamental interactions known today. Another building block of the Standard Model

is the concept of spontaneous symmetry breaking, in which the fundamental state of a

theory does not respect a symmetry present in its dynamics. By bringing together the two

ingredients above, that is, when the spontaneous breaking of a gauge symmetry occurs, we

are faced with the mechanism by which the particles of the Standard Model acquire mass,

making clear the fundamental importance of these concepts for the building of Standard

Model.

During the development of Quantum Field Theory, physicists had to find a way to

deal with the infinities that resulted from their calculations, modifying the parameters of

their theory to take into account the effects of quantum fluctuations, giving an adequate

interpretation of their results and ensuring that the theory was meaningful. Further on,

in an attempt to better understand what was happening, they realized that the change of

the physics with scale was enormously relevant, and that the coupling constants they used

were not so constant as they thought. Because of this behavior, in Quantum Chromody-

namics for example, the gauge coupling is small in the high energy regime, which made

possible a great success of the perturbative approach of Quantum Field Theory. How-

ever, even today we do not understand some issues about the non-perturbative regime of

Quantum Field Theory, and this subject is still being discussed.

The concepts considered above were essential for building and better understanding of

the Standard Model as a whole, therefore, comprehending these ingredients and how they

relate is extremely important. This is the context in which this dissertation is developed,

since we are studying a model in which all these ideas appear intrinsically related.

The central idea of this work is to study the phenomenon of spontaneous symmetry

breaking induced by quantum fluctuations in a gauge theory, beyond the perturbative

regime. In fact, working with a simple gauge theory, we part from a situation where the

classical analysis would say that there is no spontaneous breaking and then verify the

possibility of, if taking into account quantum corrections, the system starts to show the

phenomenon of spontaneous breaking. In this way we would have the most spontaneous

of all spontaneous symmetry breakings, since the phenomenon would be caused solely by

the quantum fluctuation of the fields.



This work is organized as follows:

• In Chapter 1, we present a general introduction to the subject of this thesis;

• In Chapter 2 we introduce the problem from the original point of view, with the

purpose of putting the problem well-defined, fixing the notation and helping the

less experienced reader. The savvy reader can quickly read or even skip this initial

chapter.

• Chapter 3 reviews the ideas of functional renormalization group used in this work,

which is essential for understanding what comes next. We introduce the effective

average action and derive the Wetterich equation, the principal tool of this approach.

At the end we explain how to extract information from the Wetterich equation, for

instance, how to compute beta-functions and anomalous dimensions. The reader

who knows Wetterich’s approach will not learn anything new there.

• Chapter 4 deals with scalar Quantum Electrodynamics and is the heart of the thesis.

We use all the tools introduced in previous chapters to investigate the issues raised.

We begin by giving a truncation and obtaining the ingredients of the Wetterich equa-

tion. Then, we present the relevant flow equations through two different regimes. In

sequence, we show that our approach is consistent with the original results, we dis-

cuss numerical solutions for the flow equations and interpret the solutions showing

what happens in each regime of the theory.

• In Chapter 5 we make the conclusions and, in the Appendix, we compute the anoma-

lous dimensions used in the Chapter 4.

We used the software Mathematica1(and in particular the Package-X 2) to do many

computations here.

1Wolfram Research, Inc., Mathematica, Version 11.3, Champaign, IL (2018)
2Hiren H. Patel, Comput. Phys. Commun. 197, 276 (2015), ePrint: arXiv:1503.01469



“Physics is like sex: sure, it

may give some practical results,

but that’s not why we do it.”

Richard P. Feynman
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Chapter 1

Introduction

How spontaneous is the spontaneous symmetry breaking?

In Quantum Field Theory, following the traditional approach in the analysis of spon-

taneous symmetry breaking, we usually limit ourselves to a classical approximation of

the situation, looking at the potential and saying whether or not spontaneous symmetry

breaking occurs. We do so because we believe that quantum fluctuations are only capable

of modifying the theory by making small quantitative corrections in it. If we are based in

the usual paradigm of perturbation theory this approximation will be successful most of

the time.

It is very common in textbooks to treat this question by giving as an example a

model where the phenomenon of spontaneous symmetry breaking occurs due to a signal

exchanged in the Lagrangian mass term [1]. However, such term is artificial, and there

is nothing spontaneous and natural about assuming it from the beginning. Another very

common example is that of the spontaneous symmetry breaking caused by the change of

an external parameter of the theory but, although it is not so artificial, this phenomenon is

associated with the explicit change of a parameter that can be performed by someone in a

laboratory and therefore it is not so spontaneous. Is there a truly spontaneous symmetry

breaking in nature, that does not depend on an artificial term placed in the Lagrangian or

on the change of an external parameter? A breaking that occurs because of the intrinsic

properties of quantum fields, fundamental objects used to describe everything in nature?

The answer is yes, quantum fluctuations may be wild enough to modify the whole theory

from a qualitative point of view, making it completely different from that expected by

classical analysis.

The spontaneous symmetry breaking due to radiative corrections was originally stud-

ied by S.Coleman and E. Weinberg in 1973 in a seminal paper [2], and since then it has

obtained several applications, for example, in Condensed Matter in the study of quantum

phase transitions [3], and in Cosmology, in cosmological models with inflation [4]. In

the original work, the authors adopted the functional approach of Quantum Field The-
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ory, which is extremely suitable for dealing with quantum fluctuations and spontaneous

symmetry breaking and after introducing such formalism, proposed to study the effective

potential, a fundamental object for the analysis of this phenomenon. The authors used

the perturbative expansion to calculate the 1-loop effective potential through the sum

of Feynman diagrams, giving as a basic (but instructive) example a simple scalar field

theory, and after that studying the case of massless scalar Quantum Electrodynamics,

used as a model to understand this rich phenomenon. With this model at hand, they

computed the effective potential at 1-loop, with an additional hypothesis of a relation

between the orders of magnitude of the couplings of the theory, which is later justified in

light of the ideas of renormalization group. They found the region of parameters where

the spontaneous symmetry breaking by quantum effects occurs, showing that such phe-

nomenon can in fact take place. Even though from the classical point of view the massless

scalar Quantum Electrodynamics does not present spontaneous symmetry breaking, at

the quantum level it is induced by the fluctuations, thus causing the Higgs mechanism [5]

which gives mass to the photon and to the scalar field, making this theory not as massless

as we had thought before. In addition, it was observed the interesting phenomenon of

dimensional transmutation and obtained a relation between the masses of the photon and

the scalar field. This pioneering work, however, was restricted to the perturbative sector

of the theory, and therefore the result is valid only for the small coupling regime. The

natural following question is: does this phenomenon also occurs in the non-perturbative

sector of theory?1

We need a tool that allows us to analyze the non-perturbative regime of the theory,

without losing the advantages obtained with the use of functional formalism. For this, we

use the functional renormalization group according to Wetterich’s approach [6] (there are

other approaches, such as Wilson-Polchinski’s [7]). Based on Wilson’s ideas about renor-

malization group [8], this approach uses the Quantum Field Theory functional method

and is capable to obtain non-perturbative information by studying the flow equations for

effective potential and for the couplings of the theory. For this we use the effective average

action, a generalization of the usual effective action and obtain for it an exact equation,

the Wetterich equation, which tells us how this object change as we change the scale.

With this object, we can look at the classical approximation on the one hand and to the

full quantum theory on the other hand. However, it is not all flowers. Wetterich equation,

although exact, is too complicated to be solved analytically with the currently available

methods. Therefore we are forced to make approximations and eventually use numerical

methods to extract relevant information from the theory.

Even though working with approximations, however, the method proves to be very ef-

fective. With this approach we can obtain, for example, the Coleman-Weinberg expression

1It is important to remark that we could have done the path integral explicitly as in [9] in the massless
scalar Quantum Electrodynamics case, but we preferred to adopt other approach
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for the 1-loop effective potential as well as the already known beta-function of the scalar

Quantum Electrodynamics obtained with the usual Quantum Field Theory, and we can

find for both a correction coming from the anomalous dimension, which shows that our

analysis is tuned with the known results, and allows us to go further. In fact, as we shall

see latter, we can solve the flow equations numerically (with suitable approximations)

and, therefore, investigate different regimes to see if and where spontaneous symmetry

breaking occurs.

The basic physical idea behind the functional renormalization group is to connect

microscopic and macroscopic physics. Physics changes with the scale, and the functional

renormalization group is a suitable tool to connect effective descriptions on different scales,

and derive macroscopic physics from underlying microscopic descriptions, including the

effect of quantum fluctuations on all intermediate scales. With this approach, we can

access regimes where physics is governed by strong correlations and non-perturbative

effects [10],[11].

The functional renormalization group has been applied to an enormous variety of

physical phenomena, of which we can cite: i) Quantum Gravity [12]; ii) Finite-temperature

Yang-Mills [13]; iii) Higgs sector of SM [14]; iv) Non-equilibrium physics [15]; v) Nuclear

physics [16]; vi) QCD phase diagrams [17]; vii) Supersymmetric models [18].
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Chapter 2

Quantum Fluctuations and

Spontaneous Symmetry Breaking

2.1 Introduction

The concept of spontaneous symmetry breaking [19] is extremely important for many

areas of Physics and in particular for the Standard Model. Through this concept it was

possible to understand the mass generation for the gauge bosons of the weak interaction

without losing the benefits of gauge symmetry, a crucial question to guarantee the renor-

malizability of the theory and therefore to guarantee the Electroweak unification developed

by Salam-Weinberg-Glashow [20]. Moreover, the Higgs mechanism, the expression of the

spontaneous breaking of a gauge symmetry, is the way in which all fundamental parti-

cles acquire mass and therefore is a crucial aspect of all Particle Physics. The precursor

of the Higgs mechanism, however, came from the Condensed Matter through the works

of Anderson [21] that, while studying the superconductivity phenomenon, observed the

need for the photon to acquire mass to sustain the already known Meissner effect [22] and

suggested a breaking mechanism for the mass generation in a Condensed Matter system.

This concept is also central to Statistical Mechanics in the study of fluctuation induced

quantum phase transitions (see for example [3]) and finds applications even in Cosmology,

where a spontaneous symmetry breaking was proposed by Linde for a cosmological model

with inflation [4].

Basically, the spontaneous symmetry breaking occurs when the vacuum of a theory

does not respect some symmetry present in the Lagrangian. In the traditional treatment

of the subject, we assume that by looking at the Lagrangian, we can determine whether

or not there is spontaneous symmetry breaking. In fact, given a Lagrangian L(Φ, ∂µΦ),

we group the non-derivative terms defining a potential V (Φ), and then we can already

search for symmetries, that is, transformations of the fields that leave L invariant. To find

the minimum energy configuration, we assume that all fields are constant in space-time
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in the vacuum state (to minimize the kinetic part), and minimize the potential V (Φ) as a

function of the fields, basically by taking dV (Φ)
dΦ

= 0 and defining the solution 〈Φ〉0 as the

expected value of the field in the vacuum state.

In general, when we find a nontrivial value for the vacuum expectation value of the

field, that is, 〈Φ〉0 6= 0, we obtain a degenerate vacuum situation, where there are several

possible vacua (generally infinite, in the case of a continuous symmetry), connected by

a symmetry. In choosing a minimal energy configuration around which we are going to

perform perturbations that will be associated with the particles, we choose one of the

possible vacua, which is now considered to be the vacuum of theory, and therefore it is

no longer invariant under the symmetry in question. Thus, in general, we say that there

is spontaneous symmetry breaking if the vacuum expectation value of any of the fields

present in the theory is not invariant by some symmetry of the Lagrangian.

In Quantum Field Theory, we define fields as distributions that take values in oper-

ators. These do not commute, nor do they have well-defined product at the same point

in space-time. This wild nature of quantum fields gives rise to radiative corrections to

the interactions of the theory and even to the emergence of interactions that were not

present in the original Lagrangian. Therefore, traditional treatment, since it only takes

into account the effects present in classical theory, serves at best as an approximation if

we are dealing with a Quantum Field Theory. The effects of quantum fluctuations will

change the vacuum of our theory. To determine the true nature of the vacuum, we will

need a method that takes into account not only the interactions present in the Lagrangian,

but also the quantum corrections that will arise. It should be noted that, unlike what is

assumed in the traditional approach, the effects of quantum corrections not only make

small quantitative changes but can qualitatively change the whole theory, as we shall see

later.

An appropriate method to deal with these questions is the functional formalism of

Quantum Field Theory, introduced by Schwinger [23] and developed by Jona-Lasinio

[24], which permits us to deal with the question of quantum corrections and spontaneous

symmetry breaking in a natural way. This method enables us to define a function, the

effective potential, which includes all interactions present in the theory (both classical and

quantum corrections), and whose minimum determines the true vacuum of the theory, the

quantum vacuum, which includes influences of the quantum fluctuations present in nature,

and that will allow us to investigate more precisely the question of spontaneous symmetry

breaking.
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2.2 Functional Methods

Let a theory be described by a Lagrangian L(Φ, ∂µΦ) in a d-dimensional space-time

with Euclidean metric. As a starting point, we will define the generating functional Z[J ]

as the vacuum transition amplitude in the asymptotic states in the presence of an external

source J(x), that is,

Z[J ] = 〈0|0〉J . (2.1)

We can write Z[J ] in the functional integral representation

Z[J ] =

∫
Dφ e−S[φ]+

∫
ddx J(x)φ(x). (2.2)

The functional Z[J ] is called generating functional because with it, we can expand

on a functional Taylor series and compute the correlation functions, or n-points Green

functions through

Z[J ] =
∞∑
n=0

1

n!

∫
ddx1...d

dxnG
(n)(x1, ..., xn)J(x1)...J(xn), (2.3)

where we have

G(n)(x1, ..., xn) = 〈φ(x1)...φ(xn)〉 =
1

Z[J ]

δ(n)Z[J ]

δJ(x1)...δJ(xn)
|J=0. (2.4)

However, in these Green functions there are still contributions of disconnected events,

which do not matter in the calculation of amplitudes in a scattering. Therefore, we can

define an object that does not have these terms, namely

W [J ] = logZ[J ], (2.5)

and then we have

eW [J ] = 〈0|0〉J =

∫
Dφ e−S[φ]+

∫
ddx J(x)φ(x). (2.6)

Similarly, we can expand W [J ], the generating functional of the connected Green func-

tions, by

W [J ] =
∞∑
n=1

1

n!

∫
ddx1...d

dxnG
(n)
c (x1, ..., xn)J(x1)...J(xn), (2.7)
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and then,

G(n)
c (x1, ..., xn) = 〈φ(x1)...φ(xn)〉c =

δ(n)W [J ]

δJ(x1)...δJ(xn)

∣∣∣∣
J=0

. (2.8)

These correlation functions are the fundamental objects that allows the Quantum Field

Theory to make contact with the values measured in the experimental Particle Physics,

because these Green functions enter in the so-called LSZ reduction formula [25], which

enables us to calculate the coefficients of the S-matrix and obtain the probability ampli-

tudes associated with events in a scattering. In a field theory with Euclidean signature,

these are the so-called Schwinger Functions. If we adopt a certain set of axioms for these

functions, we can define Wightman’s functions [26] in the space with Lorentz signature

through an analytical continuation, as Osterwalder and Schrader proved [27].

Let us now define an extremely important physical quantity, the expected value of the

quantum field φ. The classical field, sometimes also called average field, is defined as

ϕJ(x) = 〈φ(x)〉J =
1

Z[J ]

δZ[J ]

δJ(x)
=
δW [J ]

δJ(x)
. (2.9)

From this definition, we can invert the relation to obtain Jϕ as a function of ϕJ , so we

can perform the Legendre transform.

Finally, we define the quantum action as

Γ[ϕ] = −W [Jϕ] +

∫
ddxJϕ(x)ϕ(x). (2.10)

Differentiating with respect to ϕ, and using the definition of classical field, we can obtain

immediately the quantum equation of motion

δΓ[ϕ]

δϕ(x)
= Jϕ(x). (2.11)

Substituting these definitions in the expression (2.6), we obtain

e−Γ[ϕ]+
∫
ddxJϕ(x)ϕ(x) =

∫
Dφe−S[φ]+

∫
ddx

δΓ[ϕ]
δϕ(x)

φ(x). (2.12)

Let us now make a change of variables through φ = ϕ+ ξ, splitting the full quantum

field into classical field plus fluctuation field. Now, since we defined ϕ = 〈φ〉, we naturally

have 〈ξ〉 = 0. Since the ϕ field does not fluctuate, it does not contribute to the functional

measure, and therefore we have Dφ → Dξ. Thus, we obtain an integral-differential

equation for the quantum action

e−Γ[ϕ] =

∫
Dξe−S[ϕ+ξ]+

∫
ddx

δΓ[ϕ]
δϕ(x)

ξ(x). (2.13)
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This equation is the fundamental representation of the quantum action through the

functional integral, and could even serve as an alternative definition of it, being used as a

starting point. With this, we could at first get any information desired about our theory,

just solving this integral. Surely, this is only a formal solution, as we have no methods

available to solve such a complicated equation. In the next chapter we will show a possible

way to get information from this object without having to solve this equation.

The functional Γ also admits a Taylor expansion, and can be seen as a functional

generator of the proper vertices Γ(n)(x1, ..., xn) according to

Γ[ϕ] =
∞∑
n=0

1

n!

∫
ddx1...d

dxnΓ(n)(x1, ..., xn)ϕ(x1)...ϕ(xn). (2.14)

In the perturbative approach, we can show that these Γ(n) are given by the sum of all

1PI Feynman diagrams (i.e. connected graphs that can not be disconnected by cutting

an inner line) with n external legs, with the usual convention of amputating the external

propagators to perform the calculation. It is with these amputated graphs that we usually

work, because from the point of view of perturbative field theory, they carry the most

important information about our theory.

2.3 The Effective Potential

A convenient way to expand the quantum action Γ, is in powers of momentum around

a point at which momenta cancels out, that is, expand in

Γ[ϕ] =

∫
ddx

(
Veff (ϕ) +

1

2
Zϕ(∂µϕ)2 + . . .

)
. (2.15)

In this expansion, the term without derivatives Veff , is the so-called effective potential,

which we announced at the beginning of the chapter. From the perturbative point of

view, we can compare this expression with the Taylor expansion, and see that Veff is

given by the sum of all 1PI Feynman graphs with zero external momenta. The effective

potential will be the central object of our study as it is fundamental to the determination

of the true vacuum of the theory and to the investigation of questions about spontaneous

symmetry breaking. We will now see how to describe spontaneous symmetry breaking

using functional methods.

Suppose that the Lagrangian has a simple symmetry. We want to know if the vacuum

expectation value of our theory respects this symmetry. Note that

ϕJ(x) =
δW [J ]

δJ(x)
= 〈φ(x)〉J =

〈0|φ(x)|0〉J
〈0|0〉J

, (2.16)
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then, taking J → 0, we get the vacuum expectation value of the field

lim
J→0

ϕJ(x) = 〈0|φ(x)|0〉 = 〈0|φ(0)|0〉 = 〈φ〉0, (2.17)

where we are supposing Poincaré invariance for the vacuum and the usual normalization.

A non-trivial outcome here (〈φ〉0 6= 0) can result in non-invariance of the vacuum

under the studied symmetry. Putting this same condition J → 0 in the equation of

motion, we obtain that

lim
J→0

(
δΓ[ϕ]

δϕ(x)
= Jϕ

)
→ δΓ[ϕ]

δϕ(x)

∣∣∣∣
ϕ∗

= 0. (2.18)

Therefore, we can say that there is spontaneous symmetry breaking in a given theory,

if and only if there is a field configuration with nonzero vacuum expected value that solves

the quantum equation of motion, that is,

∃ϕ∗ 6= 0 such that
δΓ[ϕ]

δϕ(x)

∣∣∣∣
ϕ∗

= 0. (2.19)

Now, using the momentum expansion and assuming that our theory has Poincaré

invariance, as well as our vacuum state, we can simplify the above condition and get the

main result of this section:

Spontaneous Symmetry Breaking ≡

(
∃ϕ∗ 6= 0 such that

δVeff (ϕ)

δϕ(x)

∣∣∣∣
ϕ∗

= 0

)
(2.20)

Therefore, the investigation of the true vacuum of a theory and the existence or not of

spontaneous symmetry breaking is summarized in the calculation of the effective potential

Veff and in the calculation of the configurations that minimize it.

2.4 Massless Scalar Quantum Electrodynamics

Let us consider here the massless scalar Quantum Electrodynamics, the theory of

a complex scalar field minimally coupled to the electromagnetic field, whose classical

Lagrangian is given by

L =
1

4
F 2
µν + (Dµφ)∗(Dµφ) +

λ

4!
φ4. (2.21)

Here, we define the field strength Fµν as usual (Fµν = ∂µAν − ∂νAµ) and the covariant

derivative as Dµ = ∂µ + ieAµ.

Analyzing classically the potential, this theory seems to have a symmetric vacuum.
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Let us investigate what happens when we take into account quantum fluctuations. For

this, as discussed in the previous section, we need to calculate the effective potential.

Following the results of the original paper [2], the 1-loop effective potential for this theory

can be obtained in the Landau gauge and is of the form

V 1−loop
eff =

λ

4!
ϕ4 +

(
5λ2

1152π2
+

3e4

64π2

)
ϕ4

(
log

ϕ2

M2
− 25

6

)
, (2.22)

where M is an arbitrary mass parameter coming from the renormalization conditions.

Now, analyzing this expression for the effective potential, we have indications that we

can have a non-trivial minimum in this approximation. Assuming that we have λ ≈ e4,

which can be done without loss of generality, according to arguments from the renormal-

ization group of Gell-Mann and Low [28], we can consider the contribution of order λ2

irrelevant compared to others and simplify the above expression, getting

V 1−loop
eff =

λ

4!
ϕ4 +

3e4

64π2
ϕ4

(
log

ϕ2

〈ϕ〉2
− 25

6

)
, (2.23)

where we chose the arbitrary mass parameter M (the point where we define the renormal-

ization conditions) as the minimum of the potential, 〈ϕ〉, to simplify the computations.

In fact, if 〈ϕ〉 is the minimum of the effective potential, we can easily deduce that

V ′(〈ϕ〉) = 0 →
(
λ

6
− 11e4

16π2

)
〈ϕ〉3 = 0. (2.24)

Therefore, we obtain the relation between the couplings:

λ =
33

8π2
e4. (2.25)

Thus, we begin the description of our theory through two dimensionless parameters, e and

λ, and we end up describing the theory with e and 〈ϕ〉. This shift from a dimensionless

parameter to one with mass dimension is what Coleman and Weinberg called dimensional

transmutation, and it is a common phenomenon in massless gauge theories that undergo

spontaneous symmetry breaking.

Using the relation between the coupling constants, we obtain a final expression for the

effective potential at 1-loop

V 1−loop
eff =

3e4

64π2
ϕ4

(
log

ϕ2

〈ϕ〉2
− 1

2

)
. (2.26)

From this expression, it is clear that we have a non-trivial minimum for the effective

potential, at least at 1-loop order. (Note that we have V (0) = 0, and V (〈ϕ〉) = −3 e4 〈ϕ〉4
128π2 ).

Therefore, although classical analysis indicates a symmetric vacuum, 1-loop quantum
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corrections indicate that there is spontaneous symmetry breaking. In this way we conclude

that it is possible for a theory to have the spontaneous symmetry breaking induced by

quantum corrections, even when classical analysis says otherwise, giving an example of a

simple theory where this occurs. However, the result obtained above is only valid in the

perturbative regime, where we are assuming small couplings. The natural question that

we could ask next is: does this phenomenon occur if we consider the non-perturbative

regime?

In order to face this issue, we need tools that access the non-perturbative sector of

Quantum Field Theory and allow us to reproduce the above computations and verify

whether spontaneous breaking induced by quantum fluctuations occurs or not. To do

this, we will review the ideas of the functional renormalization group in the next chapter

according to Wetterich’s approach, and we will use this tool in Chapter 4 to re-study the

scalar Quantum Electrodynamics, now from a broader point of view.
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Chapter 3

The Functional Renormalization

Group

3.1 Introduction

The heart of a Quantum Field Theory is its quantum action Γ, the generating func-

tional of the 1PI Green functions. This object includes all the effects of quantum fluctu-

ations of the theory and with Γ we can calculate the correlations that give us scattering

amplitudes, cross sections, among other things. If we could find the quantum action Γ

and therefore the 1PI Green functions, we could say that we solved the quantum theory.

We want to understand how a theory changes as we change the scale, so we will modify

a fundamental object, the generating functional, implementing a scale dependence directly

on the functional integral, so that we will have a non-perturbative character in the regu-

larization of the theory. Based on the Wilsonian approach of the renormalization group,

instead of integrating all quantum fluctuations at once taking into account all modes of

the field to calculate the functional integral, we will restrict ourselves to integrating only

the modes with momenta above a specific cutoff scale by suppressing the contribution of

the modes with momenta below this cutoff scale in the functional integral.

In this sense, the effective average action Γk is defined as a generalization of the ef-

fective action, obtained by restricting the integration of quantum fluctuations through a

cutoff scale. This object, besides carrying a scale dependence, will have as asymptotic

limits on the one hand the bare action S when we suppress all the quantum fluctuations

(k →∞), and on the other hand the quantum action Γ when we do not suppress any mode

(k → 0). The effective average action Γk will be seen as a renormalization group trajec-

tory in a “theory space”, linking classical theory to the full quantum theory whose scale

dependence will be given by a non-perturbative flow equation , the Wetterich equation.

From it, we can obtain a hierarchy of flow equations for their proper vertices, forming an

infinite system of equations analogous to the Dyson-Schwinger equations. Such equations
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will be useful for calculating the so-called anomalous dimension, for example. It should

be noted that the equations studied here admit a schematic representation very similar

to Feynman diagrams in perturbation theory, which can be very useful when dealing with

more complicated models.

3.2 Wilsonian Approach to RG

The Quantum Field Theory since its beginning has been struggling with the question

of the infinities that arose naturally from its computations. At one point, the question

of the infinities caused a certain skepticism and even the abandonment of the theory

by some scientists. However, with the works of Feynman, Schwinger, and Tomonaga

[29], the Quantum Electrodynamics became an example to be followed, and there was an

attempt to describe everything that was known at the time with Field Theory. In this

process it was found that to be predictive, a theory should be renormalizable. But at

this time of development, questions about the renormalization procedure as a whole were

still unclear, and scientists still did not trust the method and did not understand the

issues involved. It was with the introduction of the renormalization group concept in the

context of perturbative renormalization by Gell-Mann and Low [28] that things became

gradually clearer. The non-perturbative vision of the renormalization group came only

later, created by Wilson [8], in the context of Statistical Mechanics in Condensed Matter,

helping in the general understanding of the renormalization procedure. The methods of

functional renormalization group used in this thesis are all based on the central ideas of

Wilson’s approach, and so it is worth briefly commenting on this conception here.

In the functional approach of Quantum Field Theory that we presented in the previous

chapter, we integrate over all quantum fluctuations at once. Naturally, the expression of

Z for example, has only a formal character since we are not able to realize that integral

and not even to define it rigorously mathematically speaking. We also do not have a

guarantee that our theories apply to any energy scale, so let us work from a point of view

of effective theories, and define the theory only up to a certain UV scale. The central

question that arises is: what happens when we change the cutoff scale, that is, how does

the theory changes with scale?

The central idea of the Wilsonian approach is to perform the functional integral in an

iterative way, a finite momentum shell at a time, that is, to perform the integral of modes

with momentum in a finite interval to guarantee finitude at each step, as shown below.1

Consider a theory with bare S action on a UV scale Λ. Separate the slow modes φs,

with momenta |q| < Λ1 = bΛ, and the fast modes φf with momenta Λ1 < |q| < Λ (here,

1note that we discuss here in a simplified way, since this section serves only as a motivation for what
follows.
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0 < b < 1). The generating functional of the theory is given by

Z =

∫
dφ e−S[φ] =

∫
dφs

∫
dφf e

−S[φ] =

∫
dφs e

−S1[φs], (3.1)

where in the above expression, we define the Wilsonian Action in the scale Λ1 integrating

only the fast modes. That is, we can write formally

e−S1[φs] =

∫
dφf e

−S[φ]. (3.2)

The Wilsonian action S1[φs], obtained by integrating the fast modes of the original

action, is the action that describes the slow modes, that is, the theory in the |q| < Λ1 = bΛ

scale. Certainly, by integrating the other modes, we get the same generating functional,

since we are still talking about the same theory. We can now repeat the procedure and

perform the integration in the finite momentum shell bΛ1 = Λ2 < |q| < Λ1, getting the

Wilsonian action S2, defined for modes with momenta |q| < Λ2. Iterating this process,

we will obtain a sequence of Wilsonian actions S1, S2, ..., Sn valid on scales each time

smaller Λ1,Λ2, ...,Λn, such that all of them reproduce the same physics if we integrate the

remaining modes. To reach the zero momentum, we would need to do infinite iterations.

However, in general we can content ourselves iterating up to a given momentum L−1,

where L is the size of the system.

The above process is only explained in a qualitative way, since these integrals are very

hard to execute. It should be noted that by performing the first integral, even if we start

from a very simple and local bare action, we obtain a very complicated Wilsonian action,

typically involving all the terms that are allowed by the symmetries of the original action.

Thus, the Wilsonian renormalization group naturally introduces the space of all possible

actions compatible with symmetries, the so-called theory space, where the flow of the

renormalization group takes place, described by the flows of the couplings that change as

we change the scale.

We can also take this b arbitrarily close to 1, such that Λ = bΛUV is infinitesimally

close to ΛUV , and observe what is the infinitesimal change that occurs in the Wilsonian

action, to obtain a continuous formulation of the method. In fact, integrating all modes

with Λ < |q| < ΛUV

Z =

∫
0<|q|<ΛUV

dφ e−S[φ] =

∫
0<|q|<Λ

dφs

∫
Λ<|q|<ΛUV

dφf e
−S[φ] =

∫
0<|q|<Λ

dφs e
−SΛ . (3.3)

Thus, we can obtain a continuous family of Wilsonian actions whose derivative will define

the so-called beta-functionals that will describe the flow of the full action through simple

differential equations.
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Motivated by the Wilsonian renormalization group, we will next introduce the func-

tional renormalization group. We follow the approach presented in Percacci’s book [30].

3.3 The Effective Average Action Γk

Let be a scalar theory in d Euclidean dimensions, whose classical dynamics is given

by S[φ]. We define its generating functional in the functional integral representation, as

we have already seen, by

Z[J ] =

∫
Dφe−S[φ]+

∫
ddx J(x)φ(x). (3.4)

In order to study the behavior of our theory with the change of scale, we will implement

a procedure in the Wilsonian spirit to suppress quantum fluctuations in the functional

integral, adding to the classical action a cutoff action of the form

∆Sk[φ] =
1

2

∫
ddxφ(x)Rk φ(x), (3.5)

where Rk is the cutoff operator, object responsible for suppressing the modes with mo-

menta smaller than the given cutoff scale k, about which we will give detailed information

later, in section 3.5. It is important to use a quadratic cutoff action in the fluctuations,

because we do not want to change the vertices, the interactions of the theory, we just want

to regulate its propagator. With this strategy, in addition to achieving the dependence

on the scale that we want, we are able to avoid infrared divergences and also maintain a

simple structure for the flow equation that we will see later.

Taking S → Sk = S + ∆Sk, we obtain a scale dependence as we wish. Define

Zk[J ] =

∫
Dφ e−S[φ]−∆Sk[φ]+

∫
ddx J(x)φ(x) = eWk[J ]. (3.6)

With this object at hand, we can follow a path analogous to that already followed in the

usual functional approach of Quantum Field Theory, now carrying a scale dependence.

Define the classical field

ϕ(x) =
δWk[J ]

δJ(x)
= 〈φ(x)〉J , (3.7)

and with it, propose the change of variables φ = ϕ+ ξ in the functional integral. Now, as

the field ϕ determined by the equation above does not fluctuate, it does not contribute

to the functional measure and therefore Dφ→ Dξ.
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Using the result

S[φ+ ξ] + ∆Sk[φ+ ξ] = S[φ+ ξ] + ∆Sk[φ] + ∆Sk[ξ] +

∫
ddx ξ(x)

δ

δφ(x)
∆Sk[φ], (3.8)

and substituting this expression in the integral after doing the split in the quantum field

eWk =

∫
Dξ e−S[φ+ξ]−∆Sk[φ]−∆Sk[ξ]−

∫
ddx ξ(x) δ

δφ(x)
∆Sk[φ]+

∫
ddx (ϕ(x)+ξ(x)) J(x). (3.9)

Removing from the integrals the terms that do not contribute, we obtain

eWk[J ]−
∫
ddx J(x)ϕ(x) + ∆Sk[ϕ] =

∫
Dξ e−S[ϕ+ξ]−∆Sk[ξ]+

∫
ddx ξ(x) (J(x)− δ

δφ(x)
∆Sk[ϕ]). (3.10)

Looking at the expression that appeared naturally on the left side, we will define the

effective average action as the usual Legendre transform corrected by the cutoff action

Γk[ϕ] = −Wk[J ] +

∫
ddx J(x)ϕ(x)−∆Sk[ϕ], (3.11)

where as before, we obtain J(x) by inverting the relation ϕ(x) = δWk[J ]
δJ(x)

. From this

definition of Γk, we can derive functionally with respect to ϕ, to obtain the quantum

equation of motion

δΓk[ϕ]

δϕ(x)
= J(x)− δ

δϕ(x)
∆Sk[ϕ]. (3.12)

Therefore, replacing J(x) in the expression (3.9) by the value given in the equation (3.12),

we obtain an alternative definition for the effective average action in the functional integral

representation

e−Γk[ϕ] =

∫
Dξ e−S[ϕ+ξ]−∆Sk[ξ]+

∫
ddx

δΓk [ϕ]

δϕ(x)
ξ(x). (3.13)

The above equation could be used to define the effective average action, and we could

start from here and walk in the opposite way. With this expression, we can verify that

Γk satisfies the desired asymptotic behavior, namely

• (limk→0 Γk = Γ);

• (limk→Λ Γk = SΛ).

Therefore, we have obtained an exact expression for a scale-dependent object that

interpolates between the bare action (used as input from the theory we are interested in)

and the quantum action that has all the information of the full theory, taking into account

all quantum fluctuations.
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3.4 The Wetterich Equation

Let us now study the behavior of the effective average action by a change of scale. For

this we define for convenience the variable t = log( k
Λ

) such that we have ∂
∂t

= k ∂
∂k

. Define

as starting point the generating functional with the addition of a cutoff

Zk[J ] =

∫
Dφ e−S[φ]−∆Sk[φ]+

∫
ddx J(x)φ(x) = eWk[J ]. (3.14)

Differentiating the above expression with respect to the renormalization group parameter

t, we obtain

∂tWk e
Wk =

∫
Dφ (−∂t∆Sk)e−S−∆Sk+

∫
ddx J(x)φ(x). (3.15)

Recalling the definition of the expected value of an observable, and remembering that

Zk[J ] = eWk[J ], we have

∂tWk = 〈−∂t∆Sk〉J . (3.16)

Now, recalling the definition of ∆Sk we see that the only scale dependence is in the cutoff

operator Rk. Introducing a delta function and an integral to replace the argument of one

of the fields,

−∂tWk =
1

2

∫
ddx ddy δ(x− y) ∂tRk 〈φ(x)φ(y)〉J . (3.17)

From the definition of the effective average action Γk[ϕ] = −Wk[J ] +
∫
ddxJ(x)ϕ(x) −

∆Sk[ϕ], differentiating with respect to t and using the above result

∂tΓk[ϕ] =
1

2

∫
ddx ddy δ(x− y) ∂tRk 〈φ(x)φ(y)〉J −

1

2

∫
ddx ddy δ(x− y) ∂tRk ϕ(x)ϕ(y).

(3.18)

Note that we have defined ϕ(x) = 〈φ(x)〉J , then we can group the two parts and write

∂tΓk[ϕ] =
1

2

∫
ddx ddy δ(x− y) ∂tRk (〈φ(x)φ(y)〉J − 〈φ(x)〉J〈φ(y)〉J). (3.19)

Now, the expression in parentheses is precisely the already known connected 2-point

function, or the propagator. Defining the integrals with the delta as the functional trace

in the position representation, we can write

∂tΓk[ϕ] =
1

2
Tr

[(
δ2Wk[J ]

δJ(x)J(y)

)
∂tRk

]
. (3.20)
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We have ϕ(y) = δWk[J ]
δJ(y)

, so differentiating this expression

δϕ(y)

δJ(x)
=

δ2Wk[J ]

δJ(x)δJ(y)
. (3.21)

On the other hand we have δΓk[ϕ]
δϕ(x)

= J(x)− δ
δϕ(x)

∆Sk[ϕ], so differentiating again

δJ(x)

δϕ(y)
=

δ2Γk
δϕ(x)δϕ(y)

+
δ2∆Sk

δϕ(x)δϕ(y)
= (Γ2

k +Rk)x,y , (3.22)

where we express compactly the dependence of the expression on x and y, typically a

δ(x− y).

Looking at the equations (3.21) and (3.22), we clearly see an inversion relationship

here. Therefore, we have

δ2Wk[J ]

δJ(x)δJ(y)
= (Γ2

k +Rk)
−1
x,y. (3.23)

Substituting this result in the equation (3.20), we obtain the main result of this chapter,

the famous Wetterich Equation

∂tΓk[ϕ] =
1

2
Tr

[(
Γ

(2)
k +Rk

)−1

∂tRk

]
. (3.24)

If we can solve this equation, we obtain the effective average action, and with it, having

as a boundary condition in k = Λ our bare action SΛ, we can take the limit k → 0 to get

the quantum action Γ. However, this equation is too complicated to be solved exactly, so

we will have to call for approximate solutions. We will see that even though we are forced

to content ourselves with approximations, this equation can give us an enormous amount

of information, allowing us to study the evolution of the couplings of our theory through

the beta-functions and look for possible fixed points, for example. We can also obtain the

flow equation for the effective average potential and thus study the true vacuum of the

theory in question taking into account all quantum fluctuations, and without the usual

weak coupling restriction present in the usual perturbative Quantum Field Theory. With

this we can analyze questions about the spontaneous symmetry breaking, among other

things.

Let us now make some comments about the Wetterich Equation:

• It is an exact equation, since we did not make any approximation in its derivation.

It is an all loop order result;

• It is a closed equation, since the evolution of Γk on the left side is given as a function

of the Γk itself on the right side ;
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• It is a non-perturbative equation, since there are no restrictions in the values of the

couplings, nor in the regime in which we work;

• It is a finite equation for any k 6= 0. According to the properties of the cutoff oper-

ator, it is possible to show that the presence of ∂tRk in the numerator guarantees

finitude in the UV regime and that the presence of Rk guarantees finiteness in the

IR regime;

• It is an equation with 1-loop structure. By this we mean that the Wetterich equation

has the structure very similar to that of the equation for the quantum action at 1-

loop order.

In fact, looking at the quantum action at 1-loop order, obtained through perturba-

tion theory, we have

Γ(1−loop)[ϕ] = S[ϕ] +
1

2
Tr log S(2). (3.25)

Taking S → S + ∆Sk and removing ∆Sk from the Legendre transform, we get

Γ
(1−loop)
k [ϕ] = S + ∆Sk +

1

2
Tr log (S + ∆Sk)

(2) −∆Sk, (3.26)

that is, Γ
(1−loop)
k = S + 1

2
Tr log(S(2) +Rk). Taking the derivative

∂tΓ
(1−loop)
k =

1

2
Tr
[(
S(2) +Rk

)−1
∂tRk

]
. (3.27)

Therefore, with our definition of effective average action, to pass from the result

at 1-loop to the exact result at any order in the loop expansion, we just have to

make a renormalization group improvement S(2) → Γ
(2)
k , while maintaining the same

structure of the equation.

3.5 More About the Cutoff Rk

In this section, we will discuss about what we expect from a good cutoff operator.

Remember that it appears when we make the transformation S → S + ∆Sk, where we

define ∆Sk =
∫
ddxφ(x)Rk φ(x). We have already talked about the need to keep the

cutoff action quadratic in the fluctuations when we introduced the cutoff, so I will not

repeat myself in this matter.

The cutoff operatorRk has the function of suppressing the slow modes in the functional

integral. As we will do this by modifying the propagator structure, the cutoff operator

will depend fundamentally on the dynamic operator of our theory, that is, the operator

that appears in the kinetic part. More explicitly, given a theory with a kinetic term of the
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form 1
2
φ(∆)φ, the role of the cutoff operator Rk(∆) will be to suppress in the functional

integral eigenvectors φn of the operator ∆ whose eigenvalues λn are smaller than a given

cutoff scale k2 (∆φn = λnφn).

The functional form of the cutoff operator is arbitrary at first, but to be able to fulfill

its role, it is interesting that Rk(z) has the following properties:

1. For fixed k, Rk(z) must be monotonically decreasing with z;

2. For fixed z, Rk(z) must be monotonically increasing with k;

3. limk→0Rk(z) = 0, for any z;

4. if, z >> k2, then Rk(z)→ 0 fast enough;

5. Rk(0) = k2.

Properties 1 and 2 are expected for a cutoff operator and are those that will determine the

suppression of the slow modes without changing the other sector. The 3 guarantees that

when we remove the cutoff we recover the original theory; 4 emphasizes that fast modes

must be integrated without suppression; the 5 act as a sort of normalization. With all this,

we see that the role of the cutoff operator is basically to replace the original propagator

G(z) = 1
z

by a regularized propagator Gk(z) = 1
Pk(z)

, where Pk(z) = z+Rk(z). Note that

the cutoff scale k acts as an infra-red cutoff since it does not affect the fast modes, and it

increasingly suppresses the modes below the k-scale as if it were giving a mass of order k

for these modes. Therefore, besides implementing scale dependence, this procedure helps

to avoid divergences in the IR sector of theory. We mention here the most used cutoff

operators as examples:

• the Litim cutoff [31]

Rk(z) = (k2 − z)θ(k2 − z); (3.28)

• the exponential cutoff

Rk(z) =
z

e
z
k2 − 1

. (3.29)

3.6 Working with the Wetterich Equation

Our goal here is to understand the behavior of a theory when we change the scale. For

this, we defined an object that interpolates between the classical action and the quantum

action and that satisfies a flow equation of the functional renormalization group. The

Wetterich equation is finite at all scales, thanks to the properties of the cuttoff operator
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and the way it was defined. In this way, we change the task of solving a very complicated

integro-differential equation, by solving a complicated differential equation, which at first

sight is a good exchange. However, as we have already said, we are not able to solve

this equation exactly, so let us adopt a strategy of approximation to extract as much

information as we can from it. The path we are going to follow is to perform a systematic

expansion in the effective average action and truncate the result in a given finite order.

Based on the Wilsonian approach, we know that the effective action can be expanded

in a series where all terms compatible with the symmetries of a given theory appear. What

we can do is adopt a finite set of operators compatible with the symmetries of theory and

carry out an expansion on that basis, so that we put all the terms that we deem relevant,

but in a form that we can operate with this expansion. With this procedure, we will

naturally get an approximate answer, but we can improve it with the addition of new

terms, and even being approximate, it is a non-perturbative approach, since we are not

specifying the region in which we take our couplings.

Therefore, the procedure is: we expand Γk in a systematic way, truncate the sum with

a finite number of terms and place that ansatz in the Wetterich equation. Hence, we

can use projections to extract information about a given term, and obtain for example

its beta-function. Doing this, we are trying to understand the effective average action as

an RG trajectory in the theory space, linking the classical action with the full quantum

action. The directions in this theory space are given by the operators used as the basis

for our truncation, and the coupling constants works as the coordinates of the space; the

beta-functions will be like velocities there. In this way, we can take a geometric point of

view for the flows of the functional renormalization group.

Let the truncation for the effective average action be given by

Γk =
N∑
i=1

gi(k) k−∆i Oi[φ], (3.30)

where Oi[φ] is a finite basis of operators compatible with the symmetries of the theory,

gi(k) are the associated coupling constants, and ∆i is the associated canonical dimension,

which we explicitly put into the sum to ensure that the couplings are dimensionless and

avoid having to deal with readjustments in the future.

Putting this ansatz in the left hand side of Wetterich equation, we have

∂tΓk =
N∑
i=1

(∂tgi −∆i gi) k
−∆i Oi. (3.31)

On the right hand side, by expanding the result of the trace on a basis containing these

operators Oi, with coefficients Ai (apart from the k−∆i), and throwing out any term

21



beyond the N of the basis considered for our ansatz, we obtain

1

2
Tr(...) =

N∑
i=1

k−∆i AiOi. (3.32)

Comparing both sides, we obtain ∂tgi −∆i gi = Ai, and with the usual definition of the

beta-function

βi(g) = ∂tgi = ∆i gi +Ai(g). (3.33)

Since we are not able to solve the Wetterich equation exactly, we need to use approx-

imations. We want to maintain the non-perturbative character of our analysis, so we

do not want to use expansions in terms of small parameters. Instead, our strategy is to

restrict the functional space in which we will solve the renormalization group equation

by proposing a systematic way of expanding effective action and truncating the series

in a finite number of terms. Naturally, we have to choose well the operators present in

the truncation, among all the infinite operators compatible with the symmetries, and in

that choice we can end up leaving out operators (and therefore couplings) that are very

important for the theory. There is nothing we can do about it, and we must always be

careful to refine the results obtained with the already known data, and eventually improve

our truncation including new terms in order to capture relevant information.

3.7 Flow Equation for the Proper Vertices

With the Wetterich equation at hand, we can derive a hierarchy of new flow equations

for the proper vertices
(

Γ
(n)
k;x1,...,xn

= δ(n)Γk[ϕ]
δϕ(xn)...δϕ(x1)

)
, deriving the Wetterich equation with

respect to the fields. Such equations give us information about the flow of a given vertex,

and may be useful for obtaining some more specific information about a certain part of

our truncation. We will see an example of this in the next section by using the equation

for Γ
(2)
k to compute the anomalous dimension.

Define the regularized propagator

Gk(x, y) = (Γ
(2)
k +Rk)

−1
x,y. (3.34)

Then, we can rewrite the Wetterich equation as

∂tΓk[ϕ] =
1

2
Tr

[(
Γ

(2)
k +Rk

)−1

∂tRk

]
=

1

2
Tr [Gk ∂tRk]

=
1

2

∫
x,y

δ(x− y) ∂tRk Gk(x, y). (3.35)
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With this definition for the Gk(x, y), we obtain

δGk(x, y)

δϕ(x1)
= −

∫
w,z

Gk(x,w) Γ
(3)
k;wzx1

Gk(z, y). (3.36)

Now, deriving the Wetterich equation we have

∂tΓ
(1)
k,x1

[ϕ] = −1

2

∫
x,y,z,w

δ(x− y) ∂tRkGk(x,w) Γ
(3)
k;wzx1

Gk(z, y) = −1

2
Tr
[
∂tRkGk Γ

(3)
k;x1

Gk

]
.

Deriving again, we will obtain two parts because of the chain rule

∂tΓ
(2)
k,x1,x2

[ϕ] =− 1

2

∫
x,y,z,w

δ(x− y) ∂tRkGk(x,w) Γ
(4)
k;wzx1x2

Gk(z, y)

+

∫
x,y,z,w,z′,w′

δ(x− y) ∂tRkGk(x,w) Γ
(3)
k;wzx1

Gk(z, w
′) Γ

(3)
k;w′z′x2

Gk(z
′, y).

So, we have in a simple form

∂tΓ
(2)
k,x1,x2

[ϕ] = −1

2
Tr
[
∂tRkGk Γ

(4)
k;x1x2

Gk

]
+ Tr

[
∂tRkGk Γ

(3)
k;x1

Gk Γ
(3)
k;x2

Gk

]
. (3.37)

We could go on and get the flow equations for the other vertices in the same way. In

dealing with a truncation in the form of a expansion in Γ
(n)
k , these equations will serve to

tie the vertices, they will be like constraints.

3.8 Anomalous Dimension

When calculating the beta-functions for the couplings, taking into account the wave-

function renormalization Zφ, it is common to occur a contribution due to the evolution

of Zφ, expressed through the anomalous dimension, defined as ηϕ = − 1
Zϕ
∂tZϕ. To ob-

tain a closed expression for the beta-function, we must be able to express the anomalous

dimension in terms of the couplings present in the theory. Let us now describe a simple

procedure for calculating the anomalous dimension.

The simplest term in which Zϕ appears is the kinetic term, for example, 1
2
Zϕ(∂µϕ)2.

Note that we would not be able to extract information about Zϕ using the Wetterich

equation in the scheme of constant field configurations, since in these circumstances the

kinetic term cancels out. However, using the flow equation for the vertex Γ
(2)
k , derived

from the previous section, we can easily isolate the Zϕ, as follows.

Consider a truncation for the effective average action given by a simple kinetic term

plus other terms involving other fields, interactions, etc.

Γk =

∫
x

1

2
Zϕ(∂µϕ)2 + (...) =

∫
p

1

2
Zϕ p

2 ϕ(p)ϕ(−p) + (...). (3.38)
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Deriving this Fourier expression with respect to the fields, we have

δ2Γk
δϕ(p) δϕ(−p)

= Zϕ p
2 + (...). (3.39)

Therefore, we can isolate the Zϕ taking the derivative with respect to p2 in the configu-

ration in which we have all the fields zero (Φ = 0) and also the moments zero (p2 = 0) to

ensure that any other undesirable part is canceled. That is,

Zϕ =
∂

∂p2

δ2Γk
δϕ(p)δϕ(−p)

∣∣∣∣
p2=0;Φ=0

. (3.40)

To compute the anomalous dimension, we only have to take the derivative in the renor-

malization group parameter t

ηϕ = − 1

Zϕ
∂tZϕ = − 1

Zϕ

∂

∂p2
∂tΓ

(2)
k

∣∣∣∣
p2=0;Φ=0

. (3.41)

Using the result obtained in the last section, (3.37), we obtain

ηϕ = − 1

Zϕ

∂

∂p2

[
−1

2
Tr
(
∂tRkGk Γ

(4)
k Gk

)
+ Tr

(
∂tRkGk Γ

(3)
k Gk Γ

(3)
k Gk

)] ∣∣∣∣
p2=0;Φ=0

.

(3.42)

3.9 Getting the Hands Dirty

In this section, we will perform some calculations in a simple scalar model to illustrate

the tools developed throughout this chapter [32]. As we discussed earlier, we are not able

to solve the Wetterich equation exactly, so we need to use approximations to work. We

do this by means of truncations of the effective average action, restricting the functional

space in which we describe it, using only a subset of the operators compatible with the

symmetries of the theory. Note that this is a truncation in the sense that we are neglecting

couplings that may be non-zero in our description, but we will see that we can still get

good results with this method.

3.9.1 The Local Potential Approximation

Consider the local potential approximation for a scalar model in a space without

curvature in d Euclidean dimensions, a truncation of the effective average action given by

Γk[ϕ] =

∫
ddx

(
Zk
2

(∂µϕ)2 + Vk(ϕ
2)

)
, (3.43)
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where the above potential has the symmetry (ϕ→ −ϕ), and its form is generic. The Zk

factor is the wavefunction renormalization of the ϕ field.

In the following, we will use the conventions∫
x

=

∫
ddx and

∫
p

=

∫
ddp

(2π)d
. (3.44)

We will insert this ansatz into the Wetterich equation to extract information. For this,

we have to calculate the Hessian, impose the regularization and calculate the functional

trace. Deriving the truncation above, we get

δΓk[ϕ]

δϕ(x1)
=

∫
x

(
Zk∆xϕ(x) +

δVk
δϕ

)
δ(x− x1). (3.45)

Deriving again and integrating the delta function

δ2Γk[ϕ]

δϕ(x1) δϕ(x2)
=

(
Zk∆x1 +

δ2Vk
δϕ δϕ

)
δ(x2 − x1). (3.46)

So we can write our Hessian in the position space

Γ(2)(x2 − x1) = (Zk∆x1 + V ′′k ) δ(x2 − x1). (3.47)

To facilitate the calculation, let us consider the particular case in which we have constant

field configuration ϕ(x) = ϕ0, so that the potential will no longer depend on the position

and hence we can integrate more easily (we will use the notation Γ
(2)
0 (x2−x1)). With this

simplification, we can easily write the Hessian operator in the Fourier representation

Γ
(2)
0 (p) = Zk p

2 + V ′′k . (3.48)

Using the Fourier transform, we can write the cutoff action in the form

∆Sk(ϕ) =
1

2

∫
q

ϕ(q)Rk(q
2)ϕ(−q). (3.49)

Then, the Wetterich equation is

∂tΓk =
1

2
Tr

(
∂tRk

Γ
(2)
0 +Rk

)
. (3.50)

3.9.2 Computing the Trace

To calculate this functional trace, we will express it more directly, and take advantage

of the dependence in p2 to express the integral in the Fourier space in generalized spherical

25



coordinates

TrW (∆) =

∫
ddx ddy δ(x− y)W (∆) =

∫
ddx

∫
ddq

(2π)d
W (q2)

=

∫
x

∫
dΩd

(2π)d

∫
|q|
|q|d−1 d|q| W (|q|2)

=

∫
x

1

(4π)d/2
2

Γ(d/2)

∫
dz

2
z
d
2
−1W (z), (3.51)

where we used the already known result of the integration over the angular part∫
dΩd

(2π)d
=

1

(4π)d/2
2

Γ(d/2)
. (3.52)

Then, we can write for the functional trace of an arbitrary functional

TrW (∆) =

∫
x

1

(4π)d/2
1

Γ(d/2)

∫
dz z( d

2
−1)W (z) =

1

(4π)d/2

∫
x

Qd/2[W ], (3.53)

where we defined the Q-functionals as

Qn[W ] =
1

Γ(n)

∫ ∞
0

dz z(n−1)W (z). (3.54)

The left hand side of Wetterich equation will give us, on the other hand

∂tΓk =

∫
x

(∂tZk)
1

2
(∂µϕ)2 + ∂tVk. (3.55)

Therefore, by restricting us to constant field configurations in addition to canceling the

kinetic term, we can factorize the volume element on both sides and obtain the flow

equation for the effective average potential

∂tVk =
1

2

1

(4π)d/2
1

Γ(d/2)

∫ ∞
0

dz z(d/2−1) ∂tRk(z)

Γ
(2)
0 (z) +Rk(z)

. (3.56)

A convenient way to introduce the cutoff operator is by the following formula

Rk(z) = Γ
(2)
0 (Pk(z))− Γ

(2)
0 (z), (3.57)

where Pk(z) = z + rk(z), with rk a function with the same properties as Rk. With this

prescription, we have for our model

Rk(z) = [Zk (Pk(z)) + V ′′k ]− [Zk (z) + V ′′k ], (3.58)
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that is, we will use a cutoff function given by

Rk(z) = Zk rk(z). (3.59)

Therefore, taking this cutoff operator, the quotient present in the flow equation takes the

form

∂tRk(z)

Γ
(2)
0 (z) +Rk(z)

=
∂t(Zk rk(z))

[Zk z + V ′′k ] + Zk rk(z)
=

(∂tZk)rk + Zk(∂trk)

[ZkPk + V ′′k ]
. (3.60)

Using ∂tPk = ∂trk, we obtain

∂tRk(z)

Γ
(2)
0 (z) +Rk(z)

=
∂tPk − ηk rk
Pk + Z−1

k V ′′k
, (3.61)

where naturally we defined the anomalous dimension as

ηk = −∂tZk
Zk

. (3.62)

To proceed further, let us specify a cutoff function to perform the calculations more

explicitly. We will use here the Litim cutoff [31], also called optimized cutoff

rk(z) = (k2 − z) θ(k2 − z), (3.63)

where the θ(k2 − z) is a Heaviside function, responsible for making a sharp cutoff at

z = k2. Deriving in ∂
∂t

= k ∂
∂k

, we obtain

∂tPk(z) = ∂trk(z) = 2k2θ(k2 − z). (3.64)

Note that we ignored the part with the delta, since being inside an integral in z, it cancels

out due to the factor (k2 − z). We can write∫ ∞
0

dz z(d/2−1) ∂tPk − ηk rk
Pk + Z−1

k V ′′k
=

∫ ∞
0

dz z(d/2−1) [2k2 − ηk (k2 − z)] θ(k2 − z)

z + (k2 − z) θ(k2 − z) + Z−1
k V ′′k

=

∫ k2

0

dz z(d/2−1) (2− ηk)k2

k2 + Z−1
k V ′′k

+

∫ k2

0

dz zd/2
ηk

k2 + Z−1
k V ′′k

. (3.65)

3.9.3 Flow Equations

Performing the above integrals and putting this result in the flow equation, we finally

obtain

∂tVk =
1

2

1

(4π)d/2
1

Γ(d/2 + 2)

(d+ 2− ηk) kd+2

k2 + Z−1
k V ′′k

. (3.66)
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With the flow equation at hand, we can begin to extract information about the evolu-

tion of couplings. From now on, for simplicity, let us restrict ourselves to the 4-dimensional

case and ignore the anomalous dimension, taking (ηφ = 0 ; Zφ = 1). Under these condi-

tions, the equation above is

∂tVk =
1

32π2

k6

k2 + V ′′k
. (3.67)

Expanding the potential in powers, we obtain

Vk =
∞∑
m=0

k−∆m

m!
λm ϕ

m, (3.68)

where ∆m = m − 4 is the canonical dimension associated with the monomial ϕm. Since

we have the symmetry Vk(−ϕ) = Vk(ϕ), only the even powers will appear here. It follows

that

∂tVk =
∞∑
m=0

k−∆m

m!
(∂tλm −∆mλm) ϕm. (3.69)

We can expand the right hand side (RHS) of the flow equation on the same basis that we

expanded the left hand side, as

RHS =
1

32π2

k6

k2 + V ′′k
=

∞∑
m=0

k−∆m

m!
Am(λ)ϕm0 , (3.70)

where we defined the coefficients Am(λ) as

Am(λ) =

[
∂m

∂ϕm0

(
k∆m RHS

)]
ϕ0=0

. (3.71)

From the equations (3.69) and (3.70), comparing the coefficients we obtain

βm(λ) = ∂tλm = ∆m λm +Am. (3.72)

With the expansion (3.68) for the Vk, we have explicitly

Vk =
∞∑
m=0

k−∆m

m!
λm ϕ

m = (3.73)

=
k4

0!
λ0 +

k2

2!
λ2 ϕ

2
0 +

k0

4!
λ4 ϕ

4
0 +

k−2

6!
λ6 ϕ

6
0 +

k−4

8!
λ8 ϕ

8
0 + (...). (3.74)
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Then, it follows directly

V ′′k = k2 λ2 +
k0

2!
λ4 ϕ

2
0 +

k−2

4!
λ6 ϕ

4
0 +

k−4

6!
λ8 ϕ

6
0 + (...). (3.75)

With this expression, we can calculate Am

A0 =
1

32π2

[
∂0

∂ϕ0
0

(
k∆0

k6

k2 + V ′′k

)]
ϕ0=0

=
1

32π2

1

(1 + λ2)
; (3.76)

A2 =
1

32π2

[
∂2

∂ϕ2
0

(
k∆2

k6

k2 + V ′′k

)]
ϕ0=0

=
1

32π2

−λ4

(1 + λ2)2
; (3.77)

A4 =
1

32π2

[
∂4

∂ϕ4
0

(
k∆4

k6

k2 + V ′′k

)]
ϕ0=0

=
1

32π2

[
6λ2

4

(1 + λ2)3
− λ6

(1 + λ2)2

]
. (3.78)

Therefore, we obtain the beta-functions

β0(λ) = −4λ0 +
1

32π2

1

(1 + λ2)
; (3.79)

β2(λ) = −2λ2 −
1

32π2

λ4

(1 + λ2)2
; (3.80)

β4(λ) = 0 +
1

32π2

[
6λ2

4

(1 + λ2)3
− λ6

(1 + λ2)2

]
. (3.81)

It is important to note that the beta-functions of a given coupling are related not only

with the coupling in question but also with other couplings of the theory. Thus, even

if we begin with a simplification by considering a certain coupling zero, the flow of the

renormalization group may turn on such a coupling, showing us that the initial ansatz

should include it for a more precise description of our theory.

Once these examples of beta-functions are obtained explicitly for the 4-dimensional

case, we write here a general formula for obtaining beta-functions in the most general

case

β2n(λ) = [(d− 2)n− d]λ2n +
k(d−2)n

(4π)d/2 Γ(d/2 + 1)
Ã2n(λ), (3.82)

where we defined the modified coefficients

Ã2n(λ) =

 ∂2n

∂ϕ2n
0

(
1 +

∞∑
m=2

k−(d−2)(m−1)

(2m− 2)!
λ2m ϕ

(2m−2)
0

)−1

ϕ0=0

. (3.83)

Next we will include the evolution of Zk in the equations to observe the changes caused

by taking into account the anomalous dimension.
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3.9.4 The Evolution of Zk

In the previous section, we calculated the flow equations ignoring the contribution of

the evolution of Zk, which we now consider. Again, we start with the truncation

Γk[ϕ] =

∫
x

(
Zk
2
∂µϕ∂µϕ+ Vk(ϕ)

)
. (3.84)

And as we have already obtained in the last section, we have the flow equation

∂tVk =
1

2

1

(4π)d/2
1

Γ(d/2 + 2)

(d+ 2− ηk) kd+2

k2 + Z−1
k V ′′k

. (3.85)

Performing the expansion of Vk in powers again, now taking into account the wavefunction

renormalization

Vk(ϕ0) =
∞∑
m=0

k−∆m

m!
Z
m/2
k λm ϕ

m
0 . (3.86)

Taking the derivative of this new expression, we get one more contribution, according to

∂tVk =
∞∑
m=0

k−∆m

m!

(
∂tλm −∆mλm +

m

2
ηkλm

)
Z
m/2
k ϕm0 . (3.87)

In four dimensions, we can expand the right hand side according to

1

12

1

(4π)2

(6− ηk) k6

k2 + Z−1
k V ′′k

=
∞∑
m=0

k−∆m

m!
Am Zm/2

k λm ϕ
m
0 , (3.88)

where we defined the coefficients

Am =

[
∂m

∂ϕm0

(
1

12

k∆m Z
−m/2
k

16π2

(6− ηk) k6

k2 + Z−1
k V ′′k

)]
ϕ0=0

. (3.89)

Comparing the coefficients, we obtain the relation

βm(λ) = ∂tλm(k) = ∆m λm +
m

2
ηk λm +Am. (3.90)

Therefore, taking into account the anomalous dimension will change the beta-functions

directly through the part proportional to ηk in the above equation and indirectly through

the coefficients Am. Following the same steps of the calculation previously made, we need

to get the Am and then calculate the beta-function with the above expression. We get

βm(λ) =
(
m− 4 + ηk

m

2

)
λm +

(6− ηk)
192π2

[
∂m

∂ϕm0

(
km Z

−m/2
k

1 + k−2 Z−1
k V ′′k (ϕ0)

)]
ϕ0=0

. (3.91)
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And from there, we can extract the flow equations

β0(λ) = −4λ0 +
(6− ηk)
192π2

1

1 + λ2

; (3.92)

β2(λ) = (ηk − 2)λ2 −
(6− ηk)
192π2

λ4

(1 + λ2)2
; (3.93)

β4(λ) = 2ηk λ4 +
(6− ηk)
192π2

(
6λ2

4

(1 + λ2)3
− λ6

(1 + λ2)2

)
. (3.94)

Therefore, the comment made on the relation between the different couplings of the theory

still holds true. It should be noted that in the case where we do not consider the evolution

of Zk, the first portion of a generic beta-function is completely determined by the canonical

dimension of the coupling in question β2n = [(d− 2)n− d]λ2n + (...). When we consider

the anomalous dimension, these terms receive a contribution of ηk, as we can observe in

the general expression

β2n(λ) = [(d− 2 + ηk)n− d]λ2n +
(d+ 2− ηk) k(d−2)n Z−nk

2 (4π)d/2 Γ(d/2 + 2)
Ã2n, (3.95)

where we defined the modified coefficients

Ã2n(λ) =

 ∂2n

∂ϕ2n
0

(
1 +

∞∑
m=2

k−(d−2)(m−1) Zm−1
k

(2m− 2)!
λ2m ϕ

2m−2
0

)−1

ϕ0=0

. (3.96)

We will not compute explicitly the anomalous dimension here, but we remark that in

this simple truncation example, the result for the anomalous dimension is zero.
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Chapter 4

Functional Renormalization Group -

Scalar Quantum Electrodynamics

4.1 Introduction

Gauge theories occupy a central place among the Quantum Field Theories. In fact,

they are the building blocks of the Standard Model, the theory that describes the fun-

damental interactions between the elementary particles with extraordinary precision be-

tween theory and experiment. By definition, a gauge theory is a field theory that has

a Lagrangian invariant by a Lie group of local transformations of the fields. The gauge

symmetry is, at heart, a redundancy in our description of the world1, but nevertheless, it

is the sort of thing that brings joy to the heart of an elementary particle theorist.2

The first field theory to present a gauge symmetry was Maxwell’s Electromagnetism

[33], where we notice a redundancy in the definition of the electromagnetic fields. The

importance of this, however, was only clear in the last century, when the gauge symmetry

became one of the pillars of the construction of Particle Physics. In fact, in addition to the

extremely successful Quantum Electrodynamics of Feynman, Schwinger, and Tomonaga

[29], the generalization of the gauge principle to non-abelian symmetry groups developed

by Yang and Mills [34] was used for the construction of Quantum Chromodynamics,

the Quantum Field Theory used to describe the strong interactions between quarks and

gluons, according to the Gell-Mann and Zweig Quarks Model [35], and which naturally

describes the important property of asymptotic freedom present in this interaction. Gauge

symmetry is also at the heart of Glashow-Weinberg-Salam Electroweak unification, which,

in addition to adequately describing the weak interaction, shows a common origin to

electromagnetic and weak interactions. To be possible that two interactions with such

distinct characteristics can be described by the same model, it is necessary to break this

symmetry in some scale. The spontaneous breaking of a gauge symmetry is described

1“Gauge Theories” - David Tong
2“The Making of the Standard Model”- Steven Weinberg
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by the Higgs mechanism, which shows a loophole in Goldstone theorem [36] and gives a

mechanism of mass generation for the mediators of the weak interaction, absorbing what

would be Goldstone bosons, without losing the renormalizability of the theory as would

occur if the mass of the gauge bosons had been put by hand.

Despite the extraordinary success achieved by gauge theories using perturbation the-

ory, we still do not fully understand the non-perturbative sector of the theory, where

strong couplings do not allow the expansions usually made. So, to get a more general un-

derstanding of these theories, we need to develop tools that access information beyond the

perturbative regime. The functional renormalization group, as we have already discussed,

is a path. This approach allows us to obtain non-perturbative information through the

flow equations for the coupling constants present in the theory. However, implementing

the procedure described in the previous chapter in a gauge theory is a slightly more com-

plicated task, and to do so, it will be convenient to use the background field method [38]

to deal with the gauge symmetry and to get the flow equations efficiently.

In this chapter, we will study the scalar Quantum Electrodynamics from the point

of view of the functional renormalization group. In this way, we can study the question

of spontaneous symmetry breaking in the Coleman-Weinberg model discussed at the be-

ginning of this thesis, with the tools developed in the previous chapter to understand

what happens when we take into account the non-perturbative sector of the theory. An

excellent first study in this direction was made in [37]. Here we follow their work to get

the flow equations, and extend slightly their results, including the anomalous dimensions

corrections and using a more general potential.

4.2 Development

Let be a theory of a complex scalar field φ minimally coupled to a gauge field Aµ.

Consider the following truncation for the effective average action (from now on we restrict

ourselves to four space-time dimensions with Euclidean signature)

Γk =

∫
x

1

4
FµνFµν + (Dµφ)∗(Dµφ) + Uk(φ

∗φ) + Γgf , (4.1)

where Uk(φ
∗φ) is a generic potential, and the last term is a gauge-fixing term that will be

written later. Our convention for the covariant derivative is

Dµ = ∂µ + ieAµφ. (4.2)
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Inspired by the background field method [38], consider a splitting of the gauge field in a

classical background field Āµ and quantum fluctuations aµ according to

Aµ = Āµ + aµ. (4.3)

Thus, we will have

Fµν = F̄µν + fµν , (4.4)

and we will also have the splitting in the covariant derivative

Dµφ = (∂µφ+ ieĀµφ) + ieaµφ = D̄µφ+ ieaµφ, (4.5)

where we defined the background covariant derivative

D̄µφ = ∂µφ+ ieĀµφ. (4.6)

Since we want to quantize only the fluctuations, we will follow the prescription of the

background field method and adopt the gauge fixing only in this sector, writing

Γgf =
1

2ξ

∫
x

(∂µaµ)2. (4.7)

Therefore, by rewriting the action using this decomposition, we obtain

Γk =

∫
x

1

4
F̄ 2
µν +

1

2
F̄µνfµν +

1

4
f 2
µν + D̄µφ

∗D̄µφ+

+ ieaµ(φ D̄µφ
∗ − φ∗ D̄µφ) + e2a2

µ φ
∗φ+ Uk(φ

∗φ) + Γgf . (4.8)

Let us now consider the wavefunction renormalization

Āµ → Z
1/2
A Āµ ; φ→ Z

1/2
φ φ ;

aµ → Z1/2
a aµ ; φ∗ → Z

1/2
φ φ∗. (4.9)

We will also impose the condition

Uk(Zφ φ
∗φ)→ Uk(φ

∗φ), (4.10)

absorbing the scale dependence in the functional form of the potential, that is, in the

coupling constants inside it.

Following this approach, the background field has no dynamics, so we need to ensure
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that the background covariant derivative does not renormalize. That is,

∂tD̄µ = 0 → ∂t(∂µ + ieZ
1/2
A Āµ) = 0 → ∂t(Z

1/2
A e) = 0. (4.11)

Therefore, without loss of generality, we have

(Z
1/2
A e) = 1 → Z

1/2
A = e−1. (4.12)

The non-renormalization condition in the background derivative (4.11) is a fundamental

condition, since it creates a relation between the gauge coupling and the wavefunction

renormalization (4.12), whereby we will calculate the flow equation for the coupling

Z
1/2
A = e−1 → βe = ∂te = −1

2
e3∂tZA. (4.13)

Taking into account the wavefunction renormalization, we obtain

Γk =

∫
x

ZA
4
F̄ 2
µν +

1

2
Z

1/2
A Z1/2

a F̄µνfµν +
Za
4
f 2
µν +

Za
2ξ

(∂µaµ)2 + Zφ D̄µφ
∗D̄µφ+

+ ieZ1/2
a Zφ aµ(φD̄µφ

∗ − φ∗D̄µφ) + e2Za Zφ a
2
µφ
∗φ+ Uk(φ

∗φ). (4.14)

In what follows, we need to look at the quadratic sector in the fluctuations. For this,

we will consider an expansion of the scalar field around a constant configuration according

to φ→ φ0 + φ. In the gauge sector, we get

ΓquadAA =
Za
4
f 2
µν +

Za
2ξ

(∂µaµ)2 =
Za
2
aµ

(
∆ θµν +

∆

ξ
ωµν

)
aν , (4.15)

where we defined (∆ = −∂2) and used the transversal and longitudinal projectors, given

by

θµν = δµν −
∂µ∂ν
∂2

; ωµν =
∂µ∂ν
∂2

. (4.16)

In the sector involving the scalar field, restricting us to the quadratic part in the fluctua-

tions, we obtain

Γquadφφ + ΓquadAφ = + Zφ D̄µφ
∗D̄µφ + U (2) + e2Za a

2
µ φ
∗
0φ0 +

+ ieZ1/2
a Zφ aµ

(
φ D̄µφ

∗
0 + φ0 D̄µφ

∗ − φ∗0 D̄µφ− φ∗ D̄µφ0

)
. (4.17)

To obtain in the above expression the contribution U (2), that is, the terms from the poten-

tial, we Taylor expand and keep only those terms which are relevant for our computation
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(here we use ρ = φ∗φ)

φ∗φ→ (φ∗0 + φ∗)(φ0 + φ) = φ∗0φ0 + (φ∗0φ+ φ0φ
∗ + φ∗φ) = ρ0 + δρ, (4.18)

U(ρ) = U(ρ0) + U ′(ρ0) δρ+
1

2
U ′′(ρ0) (δρ)2. (4.19)

Therefore, using the above expansion for the potential in terms of the fields defined around

the constant configuration φ0, with the shorthand notation U(ρ0) = U0 and retaining only

the quadratic contributions in the fluctuations, we obtain

U (2) = U ′0 φ
∗φ+

1

2
U ′′0 (φφφ∗0 φ

∗
0 + φ∗φ∗φ0 φ0 + 2φ∗φφ∗0 φ0) . (4.20)

With these partial results at hand, let us now combine all quadratic contributions into one

expression. To simplify, let us restrict ourselves to a scheme in which we do not consider

effects of scalar field fluctuations with respect to the background derivative, that is, let

us adopt the simplification
(
D̄µφ0 = D̄µφ

∗
0 = 0

)
. Note that we have

Γ
(2)
k =

∫
x

Za
2
aµ

(
∆ θµν +

∆

ξ
ωµν

)
aν + e2Za Zφ ρ0 aµ (θµν + ωµν) aν

+ ieZ1/2
a Zφ aµ

(
φ0 D̄µφ

∗ − φ∗0 D̄µφ
)

+

+ Zφ φ
(
−D̄µD̄

µ
)
φ∗ + φ (U ′0 )φ∗ + φ (U ′′0 ρ0)φ∗

+
1

2
U ′′0 (φφφ∗0 φ

∗
0 + φ∗φ∗φ0 φ0) . (4.21)

In this way, we can easily set up the Hessian

Γ
(2)
k =

(
Γµν ΓAS D̄µ

ΓSA ∂ν ΓSS

)
, (4.22)

where we have the following definitions

Γµν = Za
(
∆ + 2Zφe

2ρ0

)
θµν +

Za
ξ

(
∆ + 2ξZφe

2ρ0

)
ωµν ; (4.23)

ΓAS =
(
−ieZφZ1/2

a φ∗0 ; ieZφZ
1/2
a φ0

)
; (4.24)

ΓSA =
(
ieZφZ

1/2
a φ∗0 ; −ieZφZ1/2

a φ0

)t
; (4.25)

ΓSS =

(
φ∗0 φ

∗
0 U
′′
0 −Zφ D̄2 + U ′0 + ρ0 U

′′
0

−Zφ D̄2 + U ′0 + ρ0 U
′′
0 φ0 φ0 U

′′
0 .

)
(4.26)

Let us now use the Wetterich equation to obtain the flow equations for the gauge

coupling and for the effective average potential. We have already found the Hessian, so

it is enough to propose a cutoff function Rk to proceed. Note that with this Hessian
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structure, the cutoff must have a matrix structure in order to achieve its goal.

Take a generic prescription for the cutoff operator: Rk(z) = Γ
(2)
k (Pk(z)) − Γ

(2)
k (z),

where we defined as before Pk(z) = z + rk(z), and used as a profile rk the Litim cutoff,

given by

rk(z) = (k2 − z) θ(k2 − z). (4.27)

This profile will cutoff the limit of the integral, helping a lot in the computations. Note

that we ignored the part with the delta, since being inside an integral in z, it cancels out

due to the factor (k2 − z). In addition, ∂tPk = ∂trk = 2k2θ(k2 − z), so if a θ(k2 − z) has

already been used, transforms terms like ∂tPk in 2k2, which greatly simplifies the integrals

that we have to calculate.

The Wetterich equation here in this model, even with the usual simplifications becomes

difficult to work because it presents a complicated matrix structure, with two types of

operators to work with, D̄µ and ∂µ, hindering the implementation of the cutoff and making

it hard to invert the regularized Hessian and take the functional trace of the operator. To

obtain the information that we want in a simpler way, the strategy we will adopt here is

to consider the Wetterich equation in two different regimes, to extract information from

disjoint sectors, and then put them together.

• Regime A : (φ0 = 0)

In this regime, considering scalar field fluctuations around the trivial field configura-

tion, we obtain a rather simplified situation, where only few terms survive in Γ
(2)
k , so

it is easy to calculate the operator trace that appears on the right side of Wetterich

equation. There are still two types of operator in the game, however, because of

the simpler Hessian structure in this scheme, we can conveniently regulate it and

calculate the functional trace with the help of the Heat Kernel expansion method

[39].

From here, we will extract information about the gauge coupling to calculate its

beta-function.

• Regime B:
(
Āµ = 0

)
By taking the background field equal to zero, we will have the simplification D̄µ →
∂µ, which gives us only one type of operator to work with, the Laplacian ∆ = −∂2,

and facilitates the implementation of the cutoff. We still have a complicated matrix

structure, which allows us to use a block structure to start the account by hand,

but it will require the use of a software to obtain the expressions of the products

and the inverse of the matrices.

From here, we will obtain the flow equation for the effective potential.
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With these expressions at hand, we can recover in a certain limit the expression for

the effective potential found in the original paper of S.Coleman and E.Weinberg and the

usual expression for the beta-function of the gauge coupling in scalar Quantum Elec-

trodynamics. The equations that we are going to obtain are, therefore, an extension of

Coleman-Weinberg’s results, with the correction of the anomalous dimension and with

validity in a non-perturbative regime, different from the results of those authors, that

was restricted to the perturbative regime of the theory. With these equations, we can

investigate the occurrence or not of spontaneous symmetry breaking, understanding the

true nature of the quantum vacuum in scalar Quantum Electrodynamics.

4.3 Regime A : (φ0 = 0)

4.3.1 Setting the Stage

In this regime, we write the Wetterich equation as

∂tΓk [ϕ = φ0 = 0 ; Ā] =
1

2
Tr

[(
Γ

(2)
k +Rk

)−1

∂tRk

]
ϕ=0 ;φ0=0

. (4.28)

Taking the condition φ0 = 0 in the expression of the Hessian Γ
(2)
k , we get

Γ
(2)
k =


Za ∆

(
θµν + 1

ξ
ωµν

)
0 0

0 0 −Zφ D̄2 + U ′0

0 −Zφ D̄2 + U ′0 0

 . (4.29)

This way, following the prescription Rk(z) = Γ
(2)
k (Pk(z))−Γ

(2)
k (z) to implement the cutoff

operator, it is easy to obtain

Rk =


Za rk

(
θµν + 1

ξ
ωµν

)
0 0

0 0 Zφ r̃k

0 Zφ r̃k 0

 , (4.30)

here, the convention is: when the cutoff dependence is on the usual Laplacian, we write

rk = rk(∆) = rk(−∂2), and when the dependence is on the gauge covariant Laplacian, we

write r̃k = r̃k(−D̄2).

Thus, recalling the definition of Pk(z) = z+ rk(z) (and similarly for the P̃k), it is easy

38



to obtain the regularized Hessian (basically, what occurs is the substitution z → Pk(z))

(
Γ

(2)
k +Rk

)
=


Za Pk

(
θµν + 1

ξ
ωµν

)
0 0

0 0 Zφ P̃k + U ′0

0 Zφ P̃k + U ′0 0

 . (4.31)

Now, with such a simple structure it is trivial to invert this matrix to get the regularized

propagator Gk, as below

Gk =
(

Γ
(2)
k +Rk

)−1

=


1

Za Pk
(θµν + ξωµν) 0 0

0 0 1
Zφ P̃k+U ′0

0 1
Zφ P̃k+U ′0

0

 . (4.32)

Deriving the cutoff operator matrix, we obtain

∂tRk =

(∂tZa rk + Za ∂trk)(θµν + 1
ξ
ωµν) 0 0

0 0 ∂tZφ r̃k + Zφ ∂tr̃k

0 ∂tZφ r̃k + Zφ ∂tr̃k 0

 .

(4.33)

Now, we have to multiply the expressions above to get the functional W = [Gk ∂tRk],

from which we will compute the trace. Then,

W =


Z′a rk+ZaP ′k

Za Pk
(θµν + ωµν) 0 0

0
Z′φr̃k+ZφP̃

′
k

ZφP̃k+U ′0
0

0 0
Z′φr̃k+ZφP̃

′
k

ZφP̃k+U ′0

 . (4.34)

In fact, it is from this object that we will take the trace. Recalling first that in 4 dimensions

the trace of the projectors is given by Tr(θµν) = 3 and also Tr(ωµν) = 1, taking the trace

of the operators that appear in the diagonal, we have

Tr[W ] = 4Tr

[
Z ′a rk + ZaP

′
k

Za Pk

]
+ 2Tr

[
Z ′φr̃k + ZφP̃

′
k

ZφP̃k + U ′0

]
. (4.35)

Defining the operators Wa and Ws using the anomalous dimensions
(
ηΦ = − 1

ZΦ
∂tZΦ

)
Wa =

P ′k − ηark
Pk

; (4.36)

Ws =
P̃ ′k − ηφr̃k
P̃k + Z−1

φ U ′0
. (4.37)
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Therefore, we obtain the equation

∂tΓk =
1

2
Tr [Gk ∂tRk] =

1

2
Tr [W ] = 2Tr [Wa] + Tr [Ws]. (4.38)

4.3.2 Computing Traces

To calculate these functional traces, we will use the Heat Kernel expansion [39].3 With

this method, in a space-time with four dimensions and without curvature, we can carry

out the following expansion for the trace

TrW [∆] =
1

(4π)2
[Q2[W ]B0[∆] +Q1[W ]B2[∆] +Q0[W ]B4[∆] ], (4.39)

where we have Bn[∆] =
∫
d4xTr bn[∆], and the traces of the coefficients bn[∆] can be

found in the literature for the most usual operators [39],[30]. For our needs, we need just

look at the coefficients for the operators ∆ = −∂2 and ∆ = −D̄2. In the first case the

expansion is trivial, that is, we have b0[−∂2] = I, and the other coefficients are zero. In

the case of the gauge covariant Laplacian, we have

Tr [b0] = I; Tr [b2] = 0; Tr [b4] = − 1

12
F̄ 2
µν . (4.40)

In our model, the only Q-functionals that matter are those with integer indices, so we

will use the definition

Qn[W ] =
1

Γ(n)

∫
dz zn−1W (z). (4.41)

Computing Tr [Wa]

To perform this calculation, let us remember that the dependence of the functional

Wa is on the operator ∆ = −∂2. Therefore, its Heat Kernel expansion is trivial and we

only have to calculate the Q2, because the B0 only gives a volume factor
∫
d4x and the

other coefficients are zero (we will see in the other section a more direct way of calculating

the Q-functionals in this simpler case). Therefore,

Tr [Wa(∆)] =Tr

[
P ′k − ηark

Pk

]
=

1

16π2
(Q2[Wa]B0)

=
1

16π2

1

Γ(2)

∫
dz z2−1

[
P ′k − ηark

Pk

] ∫
d4x. (4.42)

3A good reference for this technique is also the Appendix A of Codello’s thesis, in the reference [11]
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Taking the Litim cutoff rk(z) = (k2− z)θ(k2− z), with the hints already given before, we

have

Tr [Wa] =
1

16π2

1

Γ(2)

∫
dz z

[
2k2 − ηa(k2 − z)

k2
θ(k2 − z)

] ∫
d4x

=
1

16π2

∫ k2

0

dz z
[
2− ηa +

ηa
k2
z
] ∫

d4x

=
1

16π2

∫
d4x

(
k4 − ηa

2
k4 +

ηa
3
k4
)
. (4.43)

Therefore, we obtain for this first functional trace, the following result

Tr [Wa] =
(6− ηa)

96π2
k4

∫
d4x. (4.44)

Computing Tr [Ws]

Now since our functional depends on the gauge covariant Laplacian ∆ = −D̄2, we

have to take into account the coefficients given above for the traces, and therefore we

have to compute

Tr [Ws] =
1

16π2
[Q2[Ws]B0[D̄2] +Q1[Ws]B2[D̄2] +Q0[Ws]B4[D̄2]]

=
1

16π2

[
Q2[Ws]

∫
d4x+Q0[Ws]

(
−1

12

)∫
d4xF 2

µν

]
. (4.45)

Let us now calculate the Q-functionals to replace in the above expression

Qn[Ws] =
1

Γ(n)

∫
dz zn−1

(
P̃ ′k − ηφr̃k
P̃k + Z−1

φ U ′0

)

=
1

Γ(n)

∫
dz zn−1

(
2k2 − ηφ(k2 − z)

k2 + Z−1
φ U ′0

)
θ(k2 − z)

=
1

Γ(n)

1

(k2 + Z−1
φ U ′0)

∫ k2

0

dz zn−1
[
(2− ηφ)k2 + ηφz

]
=

1

Γ(n)

1

(k2 + Z−1
φ U ′0)

[
(2− ηφ)

k2n+2

n
+ ηφ

k2n+2

n+ 1

]
. (4.46)

Then, we obtain for the Q-functionals

Qn[Ws] =
1

(k2 + Z−1
φ U ′0)

[
(2− ηφ)

Γ(n+ 1)
k2n+2 +

n ηφ
Γ(n+ 2)

k2n+2

]
. (4.47)
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From the above expression we get immediately

Q0[Ws] =
(2− ηφ)

(k2 + Z−1
φ U ′0)

k2 ; Q2[Ws] =
(6− ηφ)

(k2 + Z−1
φ U ′0)

k6

6
. (4.48)

Now, substituting these values in the expression of the trace, we obtain finally the result

Tr [Ws] =

∫
d4x

[(
k6

96π2

(6− ηφ)

(k2 + Z−1
φ U ′0)

)
−

(
k2

192π2

(2− ηφ)

(k2 + Z−1
φ U ′0)

)
F̄ 2
µν

]
. (4.49)

4.3.3 The Flow Equation

So, putting it all together, we obtain the equation

∂tΓk

∣∣∣∣
φ0=0

=

∫
d4x

[(
k4

48π2
(6− ηa) +

k6

96π2

(6− ηφ)

(k2 + Z−1
φ U ′0)

)
−

(
k2

192π2

(2− ηφ)

(k2 + Z−1
φ U ′0)

)
F̄ 2
µν

]
.

(4.50)

Now taking Γk in our truncation and imposing the condition (fluctuations = 0) and

also (φ0 = 0), we get

Γk =

∫
x

1

4
ZAF̄

2
µν + Uk(0). (4.51)

Therefore,

∂tΓk =

∫
x

1

4
∂tZA F̄

2
µν + ∂tUk(0). (4.52)

Comparing both sides of the Wetterich equation, we obtain the equation

1

4
∂tZA =

−k2

192π2

(2− ηφ)

(k2 + Z−1
φ U ′0)

. (4.53)

Now, we have already stated the non-renormalization condition for the background co-

variant derivative (4.11), which makes the constraint (4.12),

Z
1/2
A = e−1 → ∂tZA = −2e−3 ∂te. (4.54)

So, replacing this expression in the (4.53) we obtain the flow equation for the gauge

coupling, expressed by its beta-function

βe = ∂te =
e3 (2− ηφ)

96π2

k2

(k2 + Z−1
φ U ′0)

. (4.55)

It should be noted that this result is consistent with the known result obtained for scalar
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Quantum Electrodynamics in the perturbative approach of Quantum Field Theory, since

by turning off the anomalous dimension contribution and ignoring the potential contri-

bution, we obtain exactly

βe =
e3

48π2
. (4.56)

4.4 Regime B:
(
Āµ = 0

)
4.4.1 Setting the Stage

In this regime, we write the Wetterich equation according to

∂tΓk [ϕ = 0 ; Ā = 0] =
1

2
Tr

[(
Γ

(2)
k +Rk

)−1

∂tRk

]
ϕ=0 ; Āµ=0

. (4.57)

Taking the condition Āµ = 0 in the expression of the Hessian Γ
(2)
k , we obtain

Γ
(2)
k =

(
Γµν ΓAS ∂µ

ΓSA ∂ν ΓSS

)
, (4.58)

where we have the same initial structure, but with D̄µ → ∂µ. Since now we only have one

type of operator to regularize (∆), propose the regulator so that it just turns in Pk, as in

(∆→ Pk(∆) = ∆ + rk(∆)), that is

Rk =


Za rk

(
θµν + 1

ξ
ωµν

)
0 0

0 0 Zφ rk

0 Zφ rk 0

 . (4.59)

Then, we have to invert the regularized Hessian

(
Γ

(2)
k +Rk

)
=

(
ΓθAAθµν + ΓωAAωµν ΓAS ∂µ

ΓSA ∂ν ΓSS

)
, (4.60)

where we have the same structure as before, but with ∆→ Pk(∆), as

Γµν = Za
(
Pk + 2Zφe

2ρ0

)
θµν +

Za
ξ

(
Pk + 2ξZφe

2ρ0

)
ωµν ; (4.61)

ΓAS =
(
−ieZφZ1/2

a φ∗0 ; ieZφZ
1/2
a φ0

)
; (4.62)

ΓSA =
(
ieZφZ

1/2
a φ∗0 ; −ieZφZ1/2

a φ0

)t
; (4.63)

ΓSS =

(
φ∗0 φ

∗
0 U
′′
0 −Zφ Pk + U ′0 + ρ0 U

′′
0

−Zφ Pk + U ′0 + ρ0 U
′′
0 φ0 φ0 U

′′
0

)
. (4.64)
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That is, we need to obtain a formal matrix such that we have(
Aθθµα + Aωωµα B∂µ

C∂α D

)(
ΓθAAθαν + ΓωAAωαν ΓAS ∂α

ΓSA ∂ν ΓSS

)
=

(
δµν 0

0 I

)
. (4.65)

From here, using simple properties of the projectors, we have to solve the system

Aθ ΓθAA θµν + (Aω ΓωAA +B ΓSA ∂
2)ωµν = δµν ; (4.66)

(Aω ΓAS +B ΓSS) ∂µ = 0; (4.67)

(C ΓωAA +D ΓSA) ∂ν = 0; (4.68)

C ΓAS ∂
2 +D ΓSS = I. (4.69)

Using the homogeneous equations to substitute, it is easy to obtain the entries of the

inverse of the regularized Hessian

Aθ = (ΓθAA)−1; (4.70)

Aω = (ΓωAA + ΓAS (ΓSS)−1 ΓSA ∆)−1; (4.71)

B = −(ΓωAA + ΓAS (ΓSS)−1 ΓSA ∆)−1 ΓAS (ΓSS)−1; (4.72)

C = −(ΓSS + ΓSA (ΓωAA)−1 ΓAS ∆)−1 ΓSA (ΓωAA)−1; (4.73)

D = (ΓSS + ΓSA (ΓωAA)−1 ΓAS ∆)−1. (4.74)

Then, the inverse of the regularized Hessian
(

Γ
(2)
k +Rk

)−1

is of the form

(
(ΓθAA)−1θµν + (ΓωAA + ΓAS (ΓSS)−1 ΓSA ∆)−1ωµν (...)

(...) (ΓSS + ΓSA (ΓωAA)−1 ΓAS ∆)−1

)
.

From this expression we can obtain the regularized propagators, simply by carrying out

the above products. As an example, we mention here the propagator of the gauge field

GA
k =

1

(ZA (Pk + 2Zφρe2))
θµν +

1(
ZA

[
Pk
ξ

+ 2Zφρ
(
e2 − ∆e2

Pk+U ′

)]) ωµν . (4.75)

From the prescription used for Rk, we get immediately

∂tRk =

ZA ∂tPk + rk ∂tZA 0 0

0 0 Zφ ∂tPk + rk ∂tZφ

0 Zφ ∂tPk + rk ∂tZφ 0

 . (4.76)
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4.4.2 Computing Traces

To move on, we must take the product of the regularized Hessian with the above

matrix obtaining the matrix W , and then take the functional trace as prescribed by the

Wetterich equation. Then, to simplify the calculations, soon after we make the product

of these two matrices we will restrict ourselves to the Landau gauge (ξ → 0). Therefore,

remembering that ηΦ = −Z−1
Φ ∂tZΦ, we have

W θ
AA =

∂tPk − rk ηA
Pk + 2ρ e2 Zφ

; (4.77)

W ω
AA =

∂tPk − rk ηA
Pk

. (4.78)

Then, using Tr θµν = 3 and Tr ωµν = 1, in four dimensions, we get

Tr [WAA] = 3Tr[W θ
AA] + Tr[W ω

AA]

= Tr

[(
3

Pk + 2ρ e2 Zφ
+

1

Pk

)
(∂tPk − rk ηA)

]
. (4.79)

For the scalar sector, we have

Tr [WSS] = 2 Tr

[
(∂tPk − rkηφ) (Pk + Z−1

φ U ′ + ρZ−1
φ U ′′)

(Pk + Z−1
φ U ′) (Pk + Z−1

φ U ′ + 2 ρZ−1
φ U ′′)

]
(4.80)

As we have already discussed, since here there is only dependence on type of operator ∆,

the procedure of calculating the functional trace becomes quite simple. In fact, the task

is basically reduced to performing an integral of the type

Tr [O] =

∫
x

1

16π2

∫ ∞
0

dz zO(z). (4.81)

Therefore, performing the integrals, we obtain

Tr [WAA] =

∫
x

k6

96π2
(6− ηA)

(
1

k2
+

3

k2 + 2 ρ e2 Zφ

)
; (4.82)

Tr [WSS] =

∫
x

k6

48π2
(6− ηφ)

[
(k2 + Z−1

φ U ′ + ρZ−1
φ U ′′)

(k2 + Z−1
φ U ′)(k2 + Z−1

φ U ′ + 2 ρZ−1
φ U ′′)

]
. (4.83)
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4.4.3 The Flow Equation

Therefore, on the right hand side of the Wetterich equation, we have

1

2
Tr [W ] =

1

2

∫
x

k6

96π2

[
(6− ηA)

(
1

k2
+

3

k2 + 2 ρ e2 Zφ

)
+

+ (6− ηφ)
2 (k2 + Z−1

φ U ′ + ρZ−1
φ U ′′)

(k2 + Z−1
φ U ′)(k2 + Z−1

φ U ′ + 2 ρZ−1
φ U ′′)

]
. (4.84)

On the left hand side of the Wetterich equation, in the regime in which we deal, by taking

the background field and the fluctuations zero, the only term that remains is the derivative

of the effective potential. Therefore, factoring the volume of both sides, we obtain the

flow equation for the effective average potential

∂tUk =
k6

192π2

[
(6− ηA)

(
1

k2
+

3

k2 + 2 ρ e2 Zφ

)
+

+ (6− ηφ)

(
1

k2 + Z−1
φ U ′

+
1

k2 + Z−1
φ U ′ + 2 ρZ−1

φ U ′′

)]
. (4.85)

4.5 Tying Up the Loose Ends

In the previous section, we obtained the important flow equations for the gauge cou-

pling and for the effective average potential. In this section, we restrict ourselves to a

certain approximation to show that we can retrieve the results of Coleman-Weinberg’s

original paper with our approach to the subject, showing that our results are tuned with

the already known result, and extend the validity regime of it.

Given the flow equation for the effective potential obtained above, we will consider

only the contribution of the gauge sector, ignoring the effects of scalar fluctuations. In a

first approximation, we will also ignore the effects of anomalous dimension, as well as the

evolution of the gauge coupling. Therefore,

∂tUk =
k6

32π2

(
1

k2
+

3

k2 + 2 ρ e2

)
=

k4

32π2
+

3

32π2

(
k6

k2 + 2 ρ e2

)
. (4.86)

Recalling that ∂t = k ∂k, we can integrate the above equation in k from 0 to a certain

scale Λ, obtaining

UΛ − U0 =

∫ Λ

0

∂kUk =

∫ Λ

0

[
k3

32π2
+

3

32π2

(
k5

k2 + 2 ρ e2

)]
. (4.87)

The effective potential is the limit of Uk when k → 0, so we can perform the integral
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above, obtaining

Veff = UΛ −
Λ4

128π2
− 3

32π2

(
Λ4

4
− e2Λ2 ρ+ 2 e4 ρ2 log

(
Λ2 + 2 e2 ρ

2 e2 ρ

))
. (4.88)

Suppose that this scale Λ is large enough so that UΛ is the bare potential, which we will

define as

UΛ = EΛ +m2
Λ ρ+ λΛ ρ

2. (4.89)

Therefore, we obtain the expression for the effective potential in terms of bare couplings

Veff =
(
EΛ +m2

Λ ρ+ λΛ ρ
2
)
− Λ4

32π2
+

3

32π2

(
e2Λ2 ρ− 2 e4 ρ2 log

(
Λ2 + 2 e2 ρ

2 e2 ρ

))
.

(4.90)

Let us rewrite the logarithmic term using the following trick

log

(
Λ2 + y

y

)
= log(Λ2 + y)− log(y) = log

[
Λ2
(

1 +
y

Λ2

)]
− log(y) =

= log(Λ2) + log
(

1 +
y

Λ2

)
− log(y) =

= log

(
Λ2

y

)
+

[
y

Λ2
+
( y

Λ2

)2

+ (...)

]
. (4.91)

where we used the expansion of log
(
1 + y

Λ2

)
in the second part of the above expression.

Therefore, we have

log

(
Λ2 + 2 e2 ρ

2 e2 ρ

)
= log

(
Λ2

2 e2 ρ

)
+

[
2 e2 ρ

Λ2
−
(

2 e2 ρ

Λ2

)2

+ (...)

]
. (4.92)

Note that all terms of the expansion have increasing powers of Λ in the denominator, so,

remembering that Λ is a very large scale, we can neglect these contributions. So let us

rewrite our effective potential as

Veff =

(
EΛ −

Λ4

32π2

)
+

(
m2

Λ +
3 e2 Λ2

32π2

)
ρ +

(
λΛ −

6e4

32π2
log

(
Λ2

2 e2 ρ

))
ρ2. (4.93)

With this expression at hand, we will now impose the renormalization conditions. To

begin with, we will impose the normalization of the potential

• (Veff (0) = 0) . (4.94)
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which ensures that

EΛ =
Λ4

32π2
. (4.95)

Now, we impose the mass renormalization condition

•
(
dVeff
dρ

(0) = m2
R

)
. (4.96)

Which gives us the relation

m2
Λ = m2

R −
3 e2 Λ2

32π2
. (4.97)

Finally, we renormalize the coupling according to

•
(
d2Veff
dρ2

(M2) = λR

)
. (4.98)

Which gives us the last relation between the parameters

λΛ =
λR
2
− 9 e4

32π2
+

6 e4

32π2
log

(
Λ2

2 e2M2

)
. (4.99)

Substituting these results into the expression of the effective potential, we obtain an

expression that is a function of renormalized couplings, as

Veff = m2
R ρ+

[
λR
2
− 9 e4

32π2
+

6 e4

32π2
log
( ρ

M2

)]
ρ2. (4.100)

Now, as M is an arbitrary mass parameter at our disposal (the point where we define

the renormalization condition (4.98)), let us choose for convenience exactly the value that

minimizes the potential, M2 = 〈ρ〉, such that we have V ′eff (〈ρ〉) = 0, that is

dVeff
dρ

∣∣∣∣
〈ρ〉

= m2
R +

(
λR −

9 e4

16π2
+

3 e4

16π2

)
〈ρ〉 = 0. (4.101)

Solving this equation and assuming 〈ρ〉 6= 0, the choice of the renormalization scale gives

us a constraint through the relation

λR = −m
2
R

〈ρ〉
+

6 e4

16π2
. (4.102)

Turning now to the expression for the effective potential, we obtain

Veff =

(
m2
R ρ−

m2
R

2〈ρ〉
ρ2

)
+

3 e4

16π2
ρ2

[
log

(
ρ

〈ρ〉

)
− 1

2

]
. (4.103)
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Defining the renormalized mass using a parameter β

m2
R = β

3 e4

16π2
〈ρ〉, (4.104)

we can write the final expression for the effective potential in the form

Veff =
3 e4

16π2

[
β〈ρ〉ρ+ ρ2

(
log

(
ρ

〈ρ〉

)
− (1 + β)

2

)]
. (4.105)

With this expression at hand, we can do an analysis of our theory according to β, a

dimensionless parameter, which gives the behavior of the theory as we change the mass.

Therefore, taking the particular case of a massless theory (m2
R = 0), we obtain

Veff =
3 e4

16π2
ρ2

[
log

(
ρ

〈ρ〉

)
− 1

2

]
, (4.106)

which is exactly the original result obtained by Coleman and Weinberg in their seminal

paper [2].

Thus, we see that our flow equation gives us the same result of perturbation theory, if

we restrict ourselves to a certain approximation, that is, considering only the contributions

of the gauge sector of theory, and disregarding the evolution of the gauge coupling and

the effects of anomalous dimension, showing that our result is consistent with the original

results.

4.6 Solving Numerically the Flow Equations

Let us briefly summarize what we have already achieved so far and then attack the

complete flow equations.

Starting from a truncation for the Γk, and using the Wetterich equation we were able

to extract the flow equations for the effective average potential and for the gauge coupling,

which we rewrite here for convenience of the reader

• Flow equation for the potential

∂tU(ρ,t) =
k6

192π2

[
(6− ηA)

(
1

k2
+

3

k2 + 2 ρ e2 Zφ

)
+

+ Zφ (6− ηφ)

(
1

k2 Zφ + U ′(ρ, t)
+

1

k2 Zφ + U ′(ρ, t) + 2 ρU ′′(ρ, t)

)]
. (4.107)

• Flow equation for the gauge coupling

∂te =
e3 (2− ηφ)

96π2
, (4.108)
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where we have adopted a simplification in the ∂te equation, by neglecting U ′(0, t).

The flow equations for the wavefunction renormalizations can be obtained from the

definition of anomalous dimension, ηΦ = − 1
ZΦ
∂tZΦ. Therefore, we obtain the auxiliary

flow equations for Zφ and ZA

• Flow equation for ZΦ

∂tZΦ + ηΦ ZΦ = 0. (4.109)

Using the same techniques mentioned in the section 3.8, we can compute the anomalous

dimensions ηφ e ηA. However, as it is a long computation, to not disturb the line of

reasoning, we put this computation in the Appendix. The result obtained in the Landau

gauge with the same simplifications as before is given by

• Anomalous dimensions

ηφ =
288π2 e2 + e4

768π4 − 24π2 e2
= − e2

24π2

(e2 − 288π2)

(e2 − 32π2)
, (4.110)

ηA =
e2

24π2
. (4.111)

It is important to note that both are determined in terms of e2, and that with ηφ at

hand we can write the flow equation for the ∂te as a function of e2 only, as

∂te =
e3

96π2

[
e4 − 240π2 e2 − 1536π4

24π2(e2 − 32π2)

]
. (4.112)

In this way, we have a system of coupled differential equations to solve. However, the

flow equation for the effective average action is too complicated to be solved analytically,

so from now on we will use numerical methods.

The strategy here is: we solve the flow equation for the gauge coupling (4.112) nu-

merically. In this way, we obtain a numerical solution for the gauge coupling e[t], which

we will use to feed the other equations. Using this numerical result of the gauge coupling

in the auxiliary flow equations for the wavefunction renormalizations (4.109), we can now

solve them numerically using Zφ[0] = ZA[0] = 1 as initial conditions to the ZΦ in the

reference scale.

With the numerical solutions obtained for the gauge coupling e[t] and the wavefunc-

tion renormalizations Zφ[t], ZA[t], we can now feed the flow equation for the effective

average potential, and then obtain a somewhat simpler differential equation for the func-

tion U(ρ, t). We solve this flow equation using as boundary condition for the U(ρ, t) the

prescription U(ρ, 0) = m2
Λ ρ + λΛ ρ

2 (with λΛ > 0). We know the results for the effective

average potential in t = 0, which corresponds to the bare potential used as boundary

condition, and we are interested in the t → −∞ limit, which corresponds to the full
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quantum effective potential. In practice, we will take t → −100, because this is enough

for our purposes since we observed that below this scale we do not have any appreciable

change in the results.

It must be stressed that when we turn on the flow, the potential will not be quadratic

in ρ anymore, developing other non-zero couplings and taking a generic form. The results

obviously depend on our choice for the couplings in the reference scale.

We analyze below the behavior of the effective potential for different coupling regimes

characterized by the values of the couplings in the reference scale (m2
Λ, λΛ, e

2
Λ).

4.6.1 m2
Λ = 0

Following the strategy announced above, we solved the complete flow equation (4.107)

with the initial conditions m2
Λ = 0, e2

Λ = 0.1, λΛ = 0.1, as showed in figure 4.1.
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t= -0.2

t= -0.3

t= -100

Figure 4.1: Effective Average Potential for different scales (m2
Λ = 0, e2

Λ = 0.1, λΛ = 0.1) .

Observing figure 4.1, we note that even starting from a situation where classically

there is no spontaneous symmetry breaking, due to quantum corrections spontaneous

symmetry breaking takes place. In fact, we have symmetric potential as a boundary

condition on the reference scale Λ (t = 0), and as we decrease the parameter t, taking

into account the effect of quantum fluctuations, we observe the change in the profile of

the effective average potential, until that in the limit where t → −∞ we have the full

quantum effective potential clearly indicating the spontaneous symmetry breaking due to

quantum corrections.

The above result goes beyond the Coleman-Weinberg original result, since it considers

the contributions of the scalar sector, the running of the gauge coupling and the anomalous

dimensions correction, but still does not answer the question initially posed. To verify if

the phenomena observed above actually occurs in the non-perturbative regime, we must

solve the full flow equation for large couplings.

In fact, by studying the massless case m2
Λ = 0, let us now consider the initial con-

ditions e2
Λ = 1, λΛ = 1, where the perturbation theory is no longer valid and see if the
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phenomenon of spontaneous breaking by quantum fluctuations still occurs in a regime

where the perturbative results can no longer help. By solving the flow equations with

these specifications, we obtain the result for the effective potential as we can see in figure

4.2.
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Figure 4.2: Effective Average Potential for different scales (m2
Λ = 0, e2

Λ = 1, λΛ = 1) .

Therefore, even considering the non-perturbative regime where the couplings are not

small and the perturbation theory is not valid, the phenomenon of the spontaneous sym-

metry breaking due to quantum fluctuations still occurs, as it is clear by observing the

profile of the effective potential above, responding in a positive way to the question posed

at the beginning of this work.

We observed that taking one coupling small and the other large, we still have the same

phenomenon, as for example in the regimes e2
Λ = 0.1, λΛ = 10 and e2

Λ = 4, λΛ = 0.1,

respectively looking at figure 4.3.
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Figure 4.3: Effective Average Potential for different scales (m2
Λ = 0, e2

Λ = 1, λΛ = 10) and
(m2

Λ = 0, e2
Λ = 4, λΛ = 0.1), respectively.

It should be noted, however, that if we have both coupling constants big enough,

in a really strongly coupled regime, such as e2
Λ = 4, λΛ = 10, we observe the sign of

spontaneous breaking when we turn on the quantum fluctuations but to the extent that

we take into account all quantum fluctuations, going to full quantum effective potential,
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we obtain a symmetric vacuum solution evidencing a restoration of the original symmetry

by quantum fluctuations, as shown in figure 4.4.
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Figure 4.4: Effective Average Potential for different scales (m2
Λ = 0, e2

Λ = 4, λΛ = 10) .

Therefore, we can conclude that for the case m2
Λ = 0, the phenomenon of spontaneous

breaking by quantum fluctuations also occurs in the non-perturbative sector of the theory,

considering the contributions of the scalar sector, the running of the gauge coupling and

the anomalous dimensions correction, but when we consider a regime very strongly coupled

the symmetry is restored. The region of couplings where the phenomenon occurs can be

seen in the figure 4.5 below, where the green region represents the set of couplings for

which the theory exhibits the phenomenon.
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Figure 4.5: Region of couplings where spontaneous symmetry breaking occurs for m2
Λ = 0.
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4.6.2 m2
Λ > 0 ; m2

Λ < 0

It is interesting to investigate the solution of the complete flow equations in the case

where we have a non-zero mass parameter in the reference scale Λ. Let us analyze in

the sequence for different non-zero values of the mass parameter which are the coupling

regimes that show the spontaneous symmetry breaking and which have symmetric vac-

uum. In this way, we can compare with the results obtained for the massless case, and

with the results expected by the traditional classical analysis.

Considering the case of positive mass, with m2
Λ large enough, we obtained unbro-

ken symmetry for any configurations of e2
Λ and λΛ analyzed. Similarly, considering a

large enough negative mass, we obtained spontaneous symmetry breaking for all coupling

regimes analyzed. In fact, this is the behavior expected by classical analysis and for large

values of the mass parameter is the result that dominates. However, by taking very small

positive mass values, although the classical analysis states that we have unbroken sym-

metry, we find coupling regimes in which spontaneous symmetry breaking occur. That

is, taking into account the non-perturbative sector, quantum fluctuations may be strong

enough to qualitatively change the theory, even with the presence of a positive mass term.

Similarly, for the case of very small negative mass, although the classical analysis indi-

cates that spontaneous breaking occurs for any coupling regimes, there are regimes in

which the effective potential indicates that there is no spontaneous breaking. Thus, for a

sufficiently small neighborhood of the mass parameter, the occurrence or not of the spon-

taneous breaking will depend on the values of the couplings in the reference scale, and

may agree with the classical prediction or present a qualitative change due to the quan-

tum fluctuations. We conclude summarizing the results obtained. There are, in the range

of parameters used here, three different regions according to the mass parameter of the

theory: the region of large positive masses, where the vacuum is symmetric independent

of the values of the couplings; the region of large negative masses, where the spontaneous

breaking of symmetry occurs independently of the values of the couplings; and finally

the transition region characterized by mass values in a small neighborhood around zero,

where the occurrence or not of the spontaneous breaking depends on the values of the

couplings of the theory. We next illustrate (figure 4.6) the evolution of regimes according

to the mass parameter divided by the reference scale, making clear the behavior of the

theory as we move from the regime of negative masses (broken), through the massless

neighborhood (transition) to the region of positive masses (unbroken), where the green

region indicates the region of couplings where there is spontaneous symmetry breaking.
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Figure 4.6: The green region indicates the regime in which spon-
taneous breaking occurs. In each figure, we have a different ini-
tial value for the mass parameter, in units of the reference scale Λ2

(m2
Λ = −0.001; m2

Λ = −0.0004; m2
Λ = 0; m2

Λ = 0.003; m2
Λ = 0.01; m2

Λ = 0.02) .
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Chapter 5

Concluding Remarks

We studied here the possibility of spontaneous symmetry breaking, even when the

classical analysis says that there is a symmetrical vacuum, that is, we studied the spon-

taneous symmetry breaking induced by quantum fluctuations. Such phenomenon had

already been studied by Coleman and Weinberg in 1973 [2] using perturbation theory to

calculate 1-loop effective potential. Such an approach, however, does not allow us to take

conclusions about the non-perturbative sector of the theory, since the results obtained by

the authors are only valid for small couplings. We then reviewed the functional renor-

malization group techniques and studied again the problem with these tools to access the

non-perturbative sector of the theory. Using the Wetterich equation, we obtained flow

equations for the potential and for the gauge coupling and from them we were able to

recover the original results in the appropriate limit. However, even with small couplings,

we were able to obtain a more complete result than the original, since we take into ac-

count the contributions of the scalar sector, the running of the gauge coupling and the

anomalous dimensions correction. The strength of this approach lies in considering the

more general case, since we need not restrict ourselves to small couplings. In fact, we were

able to solve numerically the complete flow equations in the non-perturbative regime with

some approximations, and we conclude that in the massless case, there is still the sponta-

neous breaking by quantum fluctuations. We also note as a limiting case that if we have

the couplings large enough, there can be symmetry restoration and we obtain a symmet-

ric potential. We analyzed non-zero mass situations, and note that for large masses the

classical result holds, but for small masses we have a situation analogous to the massless

case, where fluctuations can alter the character of the theory. Therefore, in the studied

range, the theory has 3 regimes: for large positive masses the system maintains unbroken

symmetry for any couplings; for large negative masses spontaneous symmetry breaking

occurs for any couplings; for masses in a neighborhood around zero, there is spontaneous

symmetry breaking or not according to the values of the couplings. We analyzed the

neighborhood where transition occurs and we plotted for some values of mass of this

region, the regimes where the system presents spontaneous symmetry breaking.
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• In this work, we limit ourselves to a certain range in the parameter region and

use some approximations. A first improvement would be to broaden the region of

interest and remove the approximations, increasing the scope of results and their

precision.

• One way to continue this work is to study the modified Ward identities and their

influence in the flow equations. In a quantum gauge theory, we lose the explicit

gauge symmetry because of gauge-fixing term. The gauge symmetry however re-

mains encoded in constraint equations for quantum action called Ward-Takahashi

Identities (WTIs). Such identities in Quantum Electrodynamics, for example, pre-

vents the photon from acquiring mass by quantum corrections. In our approach,

in addition to gauge-fixing term, we have yet another term that breaks the gauge

symmetry during the quantization process, the cutoff action term ∆Sk. Therefore,

we will have a further contribution to the WTIs, altering the constraint equations,

in such a way that we call these new identities of modified WTI. In the limit k → 0,

we have ∆Sk → 0, so we get the original WTIs. However, for k 6= 0, the modified

WTIs provide a non-trivial constraint that can give relevant information, changing

the possible terms present in the truncation and possibly changing the flow equa-

tions. The modified WTIs therefore encode a kind of modified gauge symmetry,

which give us the original WTIs and thus the original gauge symmetry, at the limit

k → 0. It is interesting therefore to study what are the influences of this kind of

modified gauge symmetry in our results.

• An interesting idea would be to generalize this work to a Yang-Mills theory. Cou-

pling the scalar field with a non-abelian gauge field, we could investigate if the

studied phenomenon also occurs. Yang-Mills theories are very rich, with more gauge

bosons, self-interaction, ghosts, and a beta-function with a completely different be-

havior. Therefore, it would be extremely interesting to analyze the possibility of

spontaneous symmetry breaking induced by quantum fluctuations in this more gen-

eral context.

• A more ambitious idea would be to study the extension of the phenomenon presented

in this thesis to a supersymmetric context, that is, investigate the spontaneous su-

persymmetry breaking induced by radiative corrections in the context of functional

renormalization group.

• We mention here some subjects somehow related to the subject of this thesis, that

were investigated by C. Wetterich and his collaborators, and could be used to in-

spire new paths. Finite temperature phase transition [40] ; critical behavior in 3

dimensions [41] ; Coleman-Weinberg phase transitions with 2 scalars [42] ; phase

diagrams of superconductors [43].
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Appendix A

The Anomalous Dimensions

Here, we will outline the computation of anomalous dimensions ηφ e ηA, using the

techniques showed in section (3.8), with the help of Mathematica1, using the Package-X 2.

Let the truncation be given by

Γk =

∫
x

1

4
FµνFµν + (Dµφ)∗(Dµφ) + Uk(φ

∗φ) +
1

2ξ

∫
x

(∂µaµ)2. (A.1)

Considering the regime in which we have zero background, taking into account the wave-

function renormalizations, we have as before

Γk =

∫
x

ZA
4
FµνFµν +

ZA
2ξ

(∂µAµ)2 + Zφ ∂µφ
∗∂µφ+

+ i e Zφ Z
1/2
A Aµ (φ ∂µφ

∗ − φ∗ ∂µφ) + e2 ZAZφAµAµ φ
∗φ+ Uk(φ

∗φ). (A.2)

Using the following conventions for the Fourier transform

Aµ(x) =

∫
p

Aµ(p) e−i p x; φ(x) =

∫
p

φ(p) e−i p x; φ∗(x) =

∫
p

φ∗(p) e+i p x, (A.3)

we can write our truncation in the Fourier space as

Γk =

∫
p

1

2
ZAAµ(−p)

(
p2 θµν +

1

ξ
p2 ωµν

)
Aν(p) + Zφ φ

∗(p) p2 φ(p) +

− Zφ Z1/2
A ek (pµ + qµ) φ∗(p)φ(q)Aµ(k)(2π)4 δ(−p+ q + k) +

+ Zφ ZA e
2
kδµν φ

∗(p)φ(q)Aµ(k)Aν(l)(2π)4 δ(−p+ q + k + l) +

+ Uk(0) + φ∗(p)U ′k(0)φ(p) +
1

2
U ′′k (0)φ∗(p)φ(q)φ∗(k)φ(l) (2π)4 δ(−p+ q − k + l).

1Wolfram Research, Inc., Mathematica, Version 11.3, Champaign, IL (2018)
2Hiren H. Patel, Comput. Phys. Commun. 197, 276 (2015), ePrint: arXiv:1503.01469
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From the expression above, we can easily calculate the Hessians and the vertices. In

fact, taking into account the conventions that we have been using, we obtain for the

Hessians

Γ
(2)
A = ZA

(
p2 θµν +

1

ξ
p2 ωµν

)
; (A.4)

Γ
(2)
φ = Zφ p

2. (A.5)

And for the vertices

V
(3)
Aφ∗φ = −Zφ Z1/2

A ek (pµ + qµ) (2π)4 δ(−p+ q + k) ; (A.6)

V
(4)
AAφ∗φ = +2Zφ ZA e

2
k δµν (2π)4 δ(−p+ q + k + l); (A.7)

V
(4)
φ∗φφ∗φ = + 2U ′′k (0) (2π)4 δ(−p+ q − k + l). (A.8)

Taking a simple regulator, prescribed by the expression Rk(z) = Γ(2)(Pk(z))− Γ(2)(z), it

does the substitution z → Pk(z) = z + rk(z), and we can obtain the expression for the

regularized propagators

GA =
1

ZA Pk
θµν +

ξ

ZA Pk
ωµν ; (A.9)

Gφ =
1

Zφ Pk
. (A.10)

With these objects at hand, now we can begin the computation of anomalous dimensions

properly.

As we saw in the section 3.8, we can compute the anomalous dimension with the

Fourier expression of the truncation with

ηϕ = − 1

Zϕ
∂tZϕ = − 1

Zϕ

∂

∂p2
∂tΓ

(2)
k

∣∣∣∣
p2=0;Φ=0

. (A.11)

Using the flow equation for the Γ
(2)
k obtained in the section 3.7, we can write the formal

expression for the anomalous dimension

ηϕ = − 1

Zϕ

∂

∂p2

[
−1

2
Tr
(

Γ
(4)
k Gk ∂tRkGk

)
+ Tr

(
Γ

(3)
k Gk ∂tRkGk Γ

(3)
k Gk

)]
p2=0;Φ=0

.

(A.12)

Naturally, here the objects have matrix structure, as we are working with more than one

field.
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Scalar Anomalous dimension ηφ

To obtain the anomalous dimension of the scalar field ηφ, we have to take the deriva-

tives with respect to the scalar field, then in this case

Γ
(4)
φ∗φ =

δ2 Γ
(2)
k

δφ∗ δφ
, Γ

(3)
φ∗ =

δ Γ
(2)
k

δφ∗
, Γ

(3)
φ =

δ Γ
(2)
k

δφ
. (A.13)

Given the expressions obtained for the truncation in question, we can easily write the

regularized propagator of this theory, as

Gk =
(

Γ
(2)
k +Rk

)−1

=

GA 0 0

0 0 Gφ

0 Gφ 0

 , (A.14)

We can also write the 4-vertex matrix

Γ
(4)
φ∗φ =

V
(4)
AAφ∗φ 0 0

0 0 V
(4)
φ∗φφ∗φ

0 V
(4)
φ∗φφ∗φ 0

 , (A.15)

and the 3-vertex matrices

Γ
(3)
φ∗ =

 0 V
(3)
Aφ∗φ 0

V
(3)
Aφ∗φ 0 0

0 0 0

 , Γ
(3)
φ =

 0 0 V
(3)
Aφ∗φ

0 0 0

V
(3)
Aφ∗φ 0 0

 , (A.16)

where the expressions for the entries are given by the vertex expressions (A.6),(A.7),(A.8).

Therefore, we can obtain the matrix

Mk = Gk ∂tRkGk =

GA ∂tRA
k GA 0 0

0 0 Gφ ∂tRφ
k Gφ

0 Gφ ∂tRφ
k Gφ 0

 , (A.17)

where the entries here are given by

Mµν
A = Gµα

A ∂tRαβ
A Gβν

A = (θµν + ξ ωµν)

(
ZA ∂tRk +Rk ∂tZA

P 2
k Z

2
A

)
; (A.18)

Mφ = Gφ ∂tRφGφ =
(Zφ ∂tRk +Rk ∂tZφ)

Z2
φ P

2
k

. (A.19)
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And then we can compute the product in the sector with the four-vertex

(
Γ

(4)
k Gk ∂tRkGk

)
=

V
(4)
AAφ∗φMA 0 0

0 V
(4)
φ∗φφ∗φMφ 0

0 0 V
(4)
φ∗φφ∗φMφ

 . (A.20)

Therefore, taking the trace we have

−1

2
Tr
[
Γ

(4)
k Gk∂tRkGk

]
= −1

2
Tr
[
V

(4)
AAφ∗φMA

]
− Tr

[
V

(4)
φ∗φφ∗φMφ

]
. (A.21)

We also can do the product in the other sector and obtain

(
Γ

(3)
k Gk ∂tRkGk Γ

(3)
k Gk

)
=

V
(3)
Aφ∗φMφ V

(3)
Aφ∗φGA 0 0

0 V
(3)
Aφ∗φMA V

(3)
Aφ∗φGφ 0

0 0 0

 . (A.22)

And then, we obtain

Tr
[
Γ

(3)
k Gk ∂tRkGkΓ

(3)
k Gk

]
= Tr

[
V

(3)
Aφ∗φMφV

(3)
Aφ∗φGA

]
+ Tr

[
V

(3)
Aφ∗φMAV

(3)
Aφ∗φGφ

]
.

(A.23)

Remember that the expression for the scalar field anomalous dimension ηφ is (A.12),

ηϕ = − 1

Zϕ

∂

∂p2

[
−1

2
Tr
(

Γ
(4)
k Gk ∂tRkGk

)
+ Tr

(
Γ

(3)
k Gk ∂tRkGk Γ

(3)
k Gk

)]
p2=0;Φ=0

,

and we have just obtained the expression for these traces in (A.21), (A.23).

Putting these expressions in Mathematica, what we obtain is

− 1

Zϕ

∂

∂p2

[
−1

2
Tr
(

Γ
(4)
k Gk ∂tRkGk

)]
p2=0;Φ=0

= 0, (A.24)

therefore, the sector with four-vertex does not contribute for the scalar field anomalous

dimension. For the other part we have

− 1

Zϕ

∂

∂p2

[
Tr
(

Γ
(3)
k Gk ∂tRkGk Γ

(3)
k Gk

)]
p2=0;Φ=0

=

= −e
2(−3 + 2ξ)

96π2
ηφ +

e2(3 + ξ)

96π2
ηA +

e2(−3 + ξ)

8π2
. (A.25)

Therefore, in the Landau gauge ξ → 0, the equation obtained is(
1− e2

32π2

)
ηφ −

e2

32π2
ηA +

3e2

8π2
= 0. (A.26)
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Gauge Anomalous Dimension ηA

Following the same line of reasoning used to calculate the scalar anomalous dimension,

we can obtain

ZA (θµν +
1

ξ
ωµν) =

∂2

∂p2

δ2 Γk
δAµ(−p) δAν(p)

∣∣∣∣
Φ=0;p2=0

. (A.27)

Then, contracting this expression with θµν (since we are using the Landau gauge) and

dividing by 3 to take into account the trace factor, we can write for the anomalous

dimension

ηA = − 1

ZA

1

3
θµν

[
∂2

∂p2

(
δ2 ∂tΓk

δAµ(−p) δAν(p)

)]
Φ=0;p2=0

. (A.28)

The formal structure of the flow equation is the same, but taking derivatives with respect

to the gauge field, which change the vertices. In fact

Γ
(4)
AAφ∗φ =

0 0 0

0 0 V
(4)
AAφ∗φ

0 V
(4)
AAφ∗φ 0

 ; (A.29)

Γ
(3)
Aφ∗φ =

0 0 0

0 0 V
(3)
Aφ∗φ

0 V
(3)
Aφ∗φ 0

 . (A.30)

We also have the matrix

Mk = Gk ∂tRkGk =

GA ∂tRA
k GA 0 0

0 0 Gφ ∂tRφ
k Gφ

0 Gφ ∂tRφ
k Gφ 0

 , (A.31)

with entries that we will callMA andMφ, as before. Then, we can compute the product

in this sector

Γ
(4)
AAφ∗φ Gk ∂tRkGk =

0 0 0

0 V
(4)
AAφ∗φMφ 0

0 0 V
(4)
AAφ∗φMφ

 . (A.32)

And therefore

−1

2
Tr [Γ

(4)
AAφ∗φ Gk ∂tRkGk] = −Tr [V

(4)
AAφ∗φMφ]. (A.33)
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In the same way, we can compute

(
Γ

(3)
k Gk ∂tRkGk Γ

(3)
k Gk

)
=

0 0 0

0 V
(3)
Aφ∗φMφ V

(3)
Aφ∗φGφ 0

0 0 V
(3)
Aφ∗φMφ V

(3)
Aφ∗φGφ

 . (A.34)

And therefore

Tr [Γ
(3)
Aφ∗φGk ∂tRkGk Γ

(3)
Aφ∗φGk] = 2Tr [V

(3)
Aφ∗φMφ V

(3)
Aφ∗φGφ]. (A.35)

As before, what we have to compute is

ηA = − 1

ZA

1

3
θµν

∂2

∂p2

[
−1

2
Tr
(

Γ
(4)
k Gk ∂tRkGk

)
+ Tr

(
Γ

(3)
k Gk ∂tRkGk Γ

(3)
k Gk

)]
Φ=0;p2=0

,

(A.36)

and we have already written the expression for the traces in terms of objects that we

know.

Putting these expressions in Mathematica, we obtain

− 1

ZA

1

3
θµν

∂2

∂p2

[
−1

2
Tr
(

Γ
(4)
k Gk ∂tRkGk

)]
Φ=0;p2=0

= 0, (A.37)

therefore, the sector with four-vertex does not contribute for the gauge field anomalous

dimension. For the other part we have

− 1

ZA

1

3
θµν

∂2

∂p2

[
Tr
(

Γ
(3)
k Gk ∂tRkGk Γ

(3)
k Gk

)]
Φ=0;p2=0

=
e2

24π2
. (A.38)

Therefore, in the Landau gauge ξ → 0, the equation obtained is

ηA −
e2

24π2
= 0. (A.39)

The results

With the computations made above, we can solve the system and conclude that, in

the Landau gauge, the anomalous dimensions are given by

ηφ =
e4 − 288π2e2

768π4 − 24π2e2
; (A.40)

ηA =
e2

24π2
. (A.41)
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