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Resumo

Quando analisamos a transição do mundo quântico para a nossa vida cotidiana, muitas questões
aparecem. Em uma primeira tentativa, podemos recorrer a tomar o limite de sistemas com infinitos
qubits, ou talvez ao uso de coarse graining, mas essas tentativas não são o suficiente para responder
nossas questões. Usando relação de incerteza entrópicas em oposição ao conhecido prinćıpio de incerteza
de Heisenberg, a tomando muitas inspiração de experimentos de RMN (que conseguem siultaneamente
medir a magnetização total de um sistema em duas direções perpendiculares), constrúımos um modelo
para medições clássicas que ilumina o problema, e tem sucesso em aprimorar nosso entendimento da
emergência de caracteŕısticas clássicas.

Palavras chave: RMN, prinćıpio de incerteza de Heisenberg, medicões macroscópicas, prinćıpios de
incerteza entrópicos.
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Abstract

When analyzing the transition from the quantum world to our classical everyday life, many issues
appear. At first, we may appeal to taking the limit of systems with infinite qubits, or maybe using
coarse grainig, but these do not suffice to answer our questions. Using entropic uncertainty relations in
opposition to the well known Heisenberg uncertainty principle, and taking many inspirations from NMR
experiments (that can simultaneously measure the total magnetization of the system in two perpendicular
directions), we construct a model for classical measurements that sheds some light into the matter, and
succeeds to improve our understanding of the emergence of classical features.

Keywords: NMR, Heisenberg uncertainty principle, macroscopic measurements, entropic uncertainty
principles.
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Chapter 1

Introduction

We are all acquainted with some of quantum mechanics most odd effects and properties. Even
throughout pop culture, we have references to quantum tunneling [1], entanglement [2] [3], quantum tele-
portation [4], wave function collapse [5], and, of course, Heisenberg’s uncertainty principle [6]. However,
when looking around in our everyday life we do not experience any of that. Our best description of the
world, so far, is fundamentally quantum [7], but it certainly doesn’t seem so most of the time. Moreover,
whenever we try to push the boundaries of quantum mechanics into macroscopic systems we end up with
the most singular situations, such as Schroedinger’s cat [8].

The transition from a macroscopic quantum ruled world to our everyday macroscopic world is far
from simple. The explanations we are informally given, when there are any at all, usually go along the
lines of taking the limit of many particles to make the state become classical. Other explanations rely on
a coarse graining reasoning, or perhaps taking average values of quantities of interest. Nevertheless, all
these explanations are constructed with a reasoning appealing to common sense, and lack a underlying
mathematical foundation to make it a strong claim.

In classical mechanics, we rely on observables to describe a physical quantity that can be measured.
Observables are also present in the description of measurements in quantum mechanics, but then they
must obey Heisenberg’s principle. This means that we can only prepare a quantum state with two
quantities simultaneously well defined if the observables associated with them commute, which is obviously
not an issue in classical mechanics. This is only one feature from quantum mechanics that differs from
classical mechanics and lacks a better understanding on the transition from one to another.

Another feature of special interest in this work will be the ability of jointly measuring incompatible
observables. We know that, at least at first, we are not able to successfully jointly measure two observables
that do not commute, most notably position and momentum in the continuous case, or a spin component
in the x and z directions in the discrete case. We do now, however, that in NMR experiments we
get to simultaneously measure the total nuclear magnetization of carbon and hydrogen atoms in two
perpendicular directions. For this reason, NMR systems and setup will be the major source of inspiration
and guidance in this work.

The main quest of this dissertation is to better understand the transition from quantum to classi-
cal mechanics, particularly from the point of view of uncertainty relations: what can we do to better
understand how classical systems satisfy the requirements on preparation and measurements posed by
quantum mechanics?

To address this matter, we will start by discussing entropic uncertainties as substitutes for Heisenberg’s
uncertainty principle in chapter 2, pointing out the shortcomings of the latter as a preparation uncertainty
relation and providing an alternative based on entropic relations, as well as presenting measurement
uncertainty relations. We then proceed, in chapter 3, to discuss how to model macroscopic measurements
by introducing type measurements, as well as providing support for investigating the specific set of
product states, inspired from NMR. Finally, in chapters 4 and 5 we present our results, the motivation
to use a division by bins to incorporate imprecision and inaccuracy in our model, and the numeric and
analytical conclusion we draw from them.
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Chapter 2

Entropic Uncertainties

When discussing uncertainty relations, Heisenberg’s uncertainty principle is what mostly comes to
mind, at first. When approached in introductory quantum mechanics courses, it is usually presented like
this:

∆x∆px ≥
h̄

2
. (2.1)

Here, ∆Q is the standard deviation of an operator Q with respect to the state ρ, calculated as

∆Q =
√
〈Q2〉 − 〈Q〉2,

where 〈Q〉 = Tr[ρQ] is the mean value of Q with respect to ρ. It means that there is a lower bound for
the product of the standard deviations of position and momentum for a fixed state preparation.

In his 1927 paper [6], Heisenberg uses a heuristic semi-classical argument, to arrive, actually, at a
simpler relation that he expressed symbolically as:

p1q1 ≈ h,

where p1 is the position inaccuracy and q1 is the momentum inaccuracy, that Heisenberg connected with
the spreads of the wave function. This relation was later expanded to any two observables by Robertson
[11]:

∆A∆B ≥
1

2
|〈Ψ| [A,B] |Ψ〉 |. (2.2)

The scenario corresponding to Heisenberg’s uncertainty principle is as follows: the spreads of observ-
able A, ∆A, and observable B, ∆B , (or, specifically, position and momentum) are determined separately,
in different experiments on the same state. Physically, it means that if the two observables do not
commute, then we cannot prepare a system in a state with well defined properties given by A and B.

Figure 2.1: In this scenario, we never measure both position and momentum on the same particle. In
two different sets of experiments, we estimate the spreads of A and B on the same initial state ρ. Figure
adapted from [24]

However, according to Busch [24], it is not the scenario Heisenberg adopts on his paper. The scenario
that was actually discussed by Heisenberg is that of sequential measurements on the same state. In this
scenario, one could compare the distribution of momentum after an approximate position measurement
with an ideal distribution of momentum without being disturbed first by a position measurement.
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Figure 2.2: In this scenario, we perform sequential measurements on the same initial state. We first
determine statistics of the ideal observables A and B, that will serve as a standard. Then, we measure
an observable A and sequentially measure B, resulting on an effective measurement of A′ and B′ on the
initial state. We then compare the statistics obtained from A and B with A′ and B′. The measurement
of A followed by B can be viewed as a single measurement M . Figure adapted from [24]

To determine the error of the approximate position measurement X ′ compared to the ideal one X,
we evaluate the accuracy that accounts for the difference between the distributions obtained by X and
X ′. The same goes for the momentum measurement P and the disturbed approximate momentum
measurement (or effective momentum measurement) P ′.

The situation described in the first case by figure 2.1 sets the scenario for a preparation uncertainty
relation, such as the traditional Heisenberg’s uncertainty principle, where we account for how far from
the Dirac delta the two distributions can simultaneously be. These uncertainty relations state simply
that two deviations cannot be simultaneously small for non-commuting observables.

The situation described in the second case by figure 2.2 is that of a measurement uncertainty relation,
where we account for how far from an ideal distribution the disturbed results are. The question that is
being posed is “can two observables A and B be accurately jointly measured?” or, put in another way,
“are A and B compatible?”, or yet “how well do A′ and B′ reproduce A and B for any state?”. We
point out that the sequential measurement scenario described above is simply a particular case of joint
measurements, as worked out in [33], since we can always put the two successive measurements inside a
black box and call them a single joint measurement.

2.1 Entropic Uncertainty Relations

When dealing with classical physics, the only source of uncertainty are the experimental limitations of
the measurement procedure. However, when dealing with quantum physics we face an additional element
of uncertainty, a consequence of its underlying fundamental nature. Though Heisenberg-like uncertainty
principles are very insightful in the sense that they call attention to intrinsically quantum features, they
can display some limitations and inconveniences.

Firstly, these relations are generally state dependent. It means that ∆A getting bigger or smaller
doesn’t necessarily imply on restrictions on ∆B , because the state |Ψ〉 may be changed and compensate
for it. We can divide the whole inequality by ∆B ,

∆A ≥
1

2∆B
|〈Ψ| [A,B] |Ψ〉 |.

It means that even if ∆B gets bigger we cannot make any conclusions about ∆A having to get smaller,
because we can change the state |Ψ〉 so that |〈Ψ| [A,B] |Ψ〉 | gets bigger. We also cannot simply minimize
the module of the commutator over all possible states because for finite dimension the bound would
always be trivial.

∆A∆B ≥ min
|Ψ〉

1

2
|〈Ψ| [A,B] |Ψ〉 |= 0.
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Secondly, these relations are not defined for POVMs. In quantum mechanics, the most general form
of measurement operators, which will be specially useful in section 5, is given by a POVM. Standing for
Positive Operators Valued Measure, a POVM is a set of n operators Ei obeying

• Positivity: Ei ≥ 0, meaning 〈Ψ|Ei|Ψ〉 ≥ 0 for any vector |Ψ〉;

• Completeness:
∑
iEi = 1.

It means that, when using Heisenberg-like uncertainty principles, we could only analyze the cases
involving projective measurements.

It is of interest to construct other uncertainty relations that will not present these downsides. Following
Deutch’s approach [12], we must first determine a good measure for uncertainty. This quantity should
obey a few properties:

• It should reach a global minimum (that we can chose to be zero) if and only if A and B have a shared
eigenstate (or arbitrarily close eigenstates). Any other case should yield a positive value. It is the
case for Heisenberg’s inequality (2.1) (because it is state independent), but not for Robertson’s (2.2),
as follows. If |Ψ〉 is in the kernel of A, for instance, the inequality’s lower bound will vanish regardless

of their commutator. Take, for instance, the Pauli matrices A = σx =

(
0 1
1 0

)
, B = σz =

(
1 0
0 −1

)
.

Let |Ψ+
z 〉 =

(
1
0

)
be the eigenvector of σz associated with eigenvalue +1 and |Ψ−z 〉 =

(
0
1

)
be the

eigenvector of σz associated with eigenvalue −1. In this situation, equation (2.2) would give

∆x∆z ≥
1

2
|〈Ψ+

z | [σx, σz] |Ψ+
z 〉 |,

=
1

2
|〈Ψ+

z | (σxσz − σzσx) |Ψ+
z 〉 |,

=
1

2
|〈Ψ+

z |
(
σx |Ψ+

z 〉 − σz |Ψ−z 〉
)
|,

=
1

2
|〈Ψ+

z |
(
|Ψ−z 〉+ |Ψ−z 〉

)
|.

Since 〈Ψ+
z | and 〈Ψ−z | are orthogonal, the lower bound of the inequality vanishes, even though

[σx, σz] = −2iσy

• It shouldn’t be responsive to rescaling, in the sense that a simple relabeling of the eigenvalues
shouldn’t have any effects. When evaluating the standard deviation, the absolute value of the
eigenvalues has a big impact on the results. If the eigenvalues are multiplied by a factor γ, the
mean will also be multiplied by this same factor, and ultimately the standard deviation will also be
rescaled by γ. In this case, the absolute value of the standard deviation loses its significance, and
all information we can get is whether it is zero or non-zero.

2.1.1 Entropies

Entropies are often regarded as a measure of diversity or randomness of a system. In information
theory, it is usually used to assess how much uncertainty there is in a state of a physical system before
a measurement, or equivalently how much information we gain after a measurement [29]. It is the usual
choice of measure for uncertainty. Moreover, they automatically satisfy the second requirement just
posed, since they depend only on probability distributions, without relying on eigenvalues.

Suitable candidates for the measure of uncertainty of a single observable are the Renyi entropies,
defined for a random variable X with N possible outcomes {n1, n1, ..., nN } and respective probabilities
given by the vector P = { p1, p2, ..., pN } as

Hα(X) =
1

1− α
log

(
N∑
i=1

pαi

)
,
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where α > 0 and α 6= 1. Consequently, the Renyi entropy for a distribution obtained from measuring an
observable Q with eigenvectors |qi〉 on the state |Ψ〉:

Hα(Q|Ψ) =
1

1− α
log

(
N∑
i=1

|〈qi|Ψ〉 |2α
)
.

A desirable feature satisfied by Renyi entropies is that their value will be maximum when the outcomes
are equally probable, the situation in which we have the greatest amount of uncertainty. On the other
hand, when a single outcome is associated with a probability of 1 the entropy of the distribution is zero,
compatible with a situation of no uncertainty where we know for sure which outcome we will get.

The Renyi entropies are related to the p-norm of the vector of probabilities, given by ||P ||α=

(pα1 + pα2 + ...+ pαN )
1/α

, so that

Hα(X) =
α

1− α
log (||P ||α) .

Different values of α define different entropies, which are all non-increasing in α for a same probability
distribution, meaning that

H0(X) ≥ H1(X) ≥ H2(X) ≥ H∞(X) ≥ 0.

As α approaches 0, the Renyi entropy gives the same weight to all possible events, even though they
might have different probabilities. When α → 0, it is simply the logarithm of the number of outcomes
for X

H0(X) = log

(
N∑
i=1

p0
i

)
= logN.

On the other hand, as α approaches ∞, the entropy gives increasingly more weight to the most probable
outcome, eventually reaching

H∞(X) = − log max
i
pi,

as α→∞.
A special case of interest is α→ 1, as we recover the Shannon entropy:

H1(X) = H(X) = lim
α→1

Hα(X) = −
N∑
i=1

pi log pi.

The Shannon entropy is of special interest, and usually used instead of the more general Renyi entropy,
because it is the only case for which the chain rule for conditional entropy holds. Let Y be a discrete
random variable taking values y ∈ Y conditioned on the discrete random variable X taking values x ∈ X .
Then,

H(Y |X) = H(X,Y )−H(X),

where H(Y |X) = −
∑
x,y p(x, y) log p(x)

p(x,y) is the conditional entropy of Y given X and H(X,Y ) =

−
∑
x,y p(x, y) log p(x, y) is their joint entropy. This is a desirable feature because it reproduces this

intuitive notion: if you consider a system given by two random variables X and Y , you need on average
H(X,Y ) bits of information to describe it. However, once you learn the value of X you only need
H(X,Y )−H(X) bits of information, and this quantity is precisely H(Y |X).

2.2 Preparation Entropic Uncertainty Relations

Now, it is only reasonable that we choose our measure of uncertainty to be the sum of the Renyi
entropies for two different observables measured on the same state, or particularly the sum of their
Shannon entropy H(A|Ψ) +H(B|Ψ). If |aj〉 and |bk〉 are the eigenvectors of A and B, respectively, then
this can be rearranged as

H(A|Ψ) +H(B|Ψ) = −
N∑
j=1

|〈Ψ|aj〉 |2log|〈Ψ|aj〉 |2−
N∑
k=1

|〈Ψ|bk〉 |2log|〈Ψ|bk〉 |2,
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= −
∑
j,k

|〈Ψ|aj〉 |2|〈Ψ|bk〉 |2
(
log|〈Ψ|aj〉 |2+ log|〈Ψ|bk〉 |2

)
.

As we want to achieve a state independent relation, we will minimize the right hand side of the
equation. The term between parenthesis is non-positive, and, because of its symmetries, reaches its
maximum value when |Ψ〉 lies midway between |aj〉 and |bk〉. Bialynicki-Birula and Rudnicki obtain it
explicitly in [25]:

|φj,k〉 =
1√

2 (1 + |〈aj |bk〉 |)

(
|aj〉+ e−i arg〈aj |bk〉 |bk〉

)
.

Since this is the case when the term in parenthesis has its maximum, we have an inequality given by

H(A|Ψ) +H(B|Ψ) ≥ −
∑
j,k

|〈Ψ|aj〉 |2|〈Ψ|bk〉 |2
(
log|〈φjk|aj〉 |2+ log|〈φjk|bk〉 |2

)
,

or as worked out in [25],

H(A|Ψ) +H(B|Ψ) ≥ −2
∑
j,k

|〈Ψ|aj〉 |2|〈Ψ|bk〉 |2log
1

2
(1 + |〈aj |bk〉 |) ,

= 2
∑
j,k

|〈Ψ|aj〉 |2|〈Ψ|bk〉 |2log
2

(1 + |〈aj |bk〉 |)
.

This inequality will still hold if we take the lowest lower bound possible, namely by replacing |〈aj |bk〉 |
for maxj,k{|〈aj |bk〉 |}, and sum over all j, k to arrive at the final inequality:

H(A|Ψ) +H(B|Ψ) ≥ 2 log
2

1 + maxj,k{|〈aj |bk〉 |}
.

This is the inequality obtained by Deutsch in [12]. It obeys all the expected characteristics for a
measure of uncertainty: firstly it doesn’t depend on the eigenvalues of the observables A and B, meaning
it is not sensitive to rescaling; secondly, it vanishes if and only if A and B have a common eigenvector, in
which case maxj,k{|〈aj |bk〉 |} = 1 and we are left with log 1 = 0. Moreover, we get rid of the dependence
on the state |Ψ〉 in a non-trivial way, another advantage over the Heisenberg generalized inequality.

A few years later, Kraus had conjectured [13] that this bound could be improved to

H(A|Ψ) +H(B|Ψ) ≥ −2 log c,

where c = maxj,k|〈aj |bk〉 |.
This conjecture was proved by Maassen and Uffink in the following year[14]. We introduce the

following theorem due to Riesz[15]:

Riesz Theorem. Let x = (x1, x2, ..., xN ) denote a sequence of complex numbers and Tjk a linear trans-
formation matrix element, so that (Tx)j =

∑
k Tjkxk and

∑
j |(Tx)j |2=

∑
k|xk|2 for all x, and let

c = maxj,k|Tjk|. Then,

c1/a
′

∑
j

|(Tx)j |
a′

1/a′

≤ c1/a
[∑

k

|(xk)j |
a

]1/a

,

for 1 ≤ a ≤ 2 and 1/a+ 1/a′ = 1.

We can associate xk = 〈ak|Ψ〉 and Tjk = 〈bj |ak〉, and consequently (Tx)j =
∑
k 〈bj |ak〉 〈ak|Ψ〉 =

〈bj |Ψ〉. If we chose a = 2(1 + r) and a′ = 2(1 + s), we can rearrange the former equation:∑
j

|〈bj |Ψ〉 |2(1+s)

1/2(1+s) [∑
k

|〈ak|Ψ〉 |2(1+r)

]−1/2(1+r)

≤ c
s−r

2(1+r)(1+s) .

Let P and Q denote an arbitrary probability distribution of N possible outcomes. We relabel Pj =
|〈bj |Ψ〉 |2 and Qk = |〈ak|Ψ〉 |2, and notice that since
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1

a
+

1

a′
= 1,

then

r =
−s

2s+ 1
,

so

s− r
2(1 + r)(1 + s)

= s/(s+ 1).

With that, we can update the expression to∑
j

P
(1+s)
j

1/2(1+s) [∑
k

Q
(1+r)
k

]−1/2(1+r)

≤ cs/(s+1),

and identify Ms(P ) =
[∑

j P
1+s
J

]1/s
and Mr(Q) =

[∑
kQ

1+r
k

]1/r
for clarity, leaving us with

Ms(P )s/2(s+1)Mr(Q)r/2(r+1) ≤ cs/(s+1).

Using once again r = − s
(2s+1) ,

Ms(P )s/2(s+1)Mr(Q)s/2(s+1) ≤ cs/(s+1),

and, finally,

Ms(P )Mr(Q) ≤ c2.

Now, we replace Ms(P ) and Mr(Q)∑
j

P 1+s
j

1/s [∑
k

Q1+r
k

]1/r

≤ c2,

take the logarithm on both sides to get

1

s
log
∑
j

P 1+s
j +

1

r
log
∑
k

Q1+r
k ≤ 2 log c,

and relabel 1 + s = s′ and 1 + r = r′

− 1

1− s′
∑
j

P s
′

j −
1

1− r′
∑
k

Qr
′

k ≤ 2 log c.

These are Renyi entropies, so we have

Hα(P ) +Hα(Q) ≥ −2 log c.

This is the entropic preparation uncertainty relation for Renyi entropies. To prove Kraus’ conjecture, we
finally take the limits s′ → 1, r′ → 1 and identify the Shannon entropy

H(P ) +H(Q) ≥ −2 log c.

and since Pj = |〈bj |Ψ〉 |2 and Qj = |〈aj |Ψ〉 |2

H(B|Ψ) +H(A|Ψ) ≥ −2 log c. (2.3)

We can now revisit the example carried out in 2.1 to point out a shortcoming of Heisenberg’s equation.
Then, we evaluated the lower bound given by equation (2.2) to show that if |Ψ〉 is in the kernel of A (or,
particularly, of σx) the inequality yields zero even though A and B (or σx and σz) do not commute.

The problem will not be an issue if we use equation 2.3 instead of (2.2). We want to evaluate

H(σx|Ψ+
z ) +H(σz|Ψ+

z ) ≥ −2 log c,
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where once again Ψ+
z is the eigenvector of σz associated with eigenvalue 1. The bound given by the right

hand side is state independent, so it will be the same whether Ψ is in the kernel of σx or not. Since the
maximum overlap between eigenvectors of σx and σz is 1/

√
2, we get

H(σx|Ψ+
z ) +H(σz|Ψ+

z ) ≥ log 2.

Contrary to Heisenberg-like uncertainty principles, preparation entropic uncertainty relations do not yield
a trivial bound unless A and B have a shared eigenstate.

Now that we have these preparation uncertainty relations, we proceed to investigate the measurement
uncertainty relations.

2.3 Measurement Uncertainty Relations

We now move on to the scenario of measurement uncertainty relations, given by the situation that
was actually discussed by Heisenberg in [6]. In this case, two observables will be sequentially measured
on a state ρ. The first observable A to be measured will potentially disturb results from the second
measurement B, when compared to the results that B would have yielded without measuring A first.

The question that Heisenberg poses is if two observables can be jointly measured. We want to achieve
uncertainty relations that can answer that question, and additionally give us a quantitative measure of
how compatible these two observables are. In other words, we want to be able to compute how wrong it is
to substitute a target observable by its approximation, or how inaccurate it is to take (A,B) ' (A′, B′),
as in figure 2.2. If the measurements of A and B don’t disturb one another (if they are compatible),
we expect that A = A′ and B = B′. Measurement uncertainty relations should reflect that, yielding a
quantity that equates zero if A and B are compatible and some positive number otherwise.

To investigate these uncertainty relations, we must first present some relevant concepts [32].
Let H be the finite dimensional complex Hilbert space, and L(H) be the set of linear operators on H.

Let M(X ) be the subset of L(H) of POVMs with outcomes in X .
Marginal POVMs and compatibility : Let M ∈ M(X × Y) be a POVM that yields two outcomes

x, y ∈ X × Y. We define the marginal POVMs M
[1]
x and M

[2]
y by

M [1]
x =

∑
y∈Y

Mx,y,

M [2]
y =

∑
x∈X

Mx,y,

where Mx,y is the POVM element that has outcomes x and y. We say A ∈ M(X ) and B ∈ M(Y) are
compatible if they are jointly measurable, meaning there exists a parent POVM M ∈M(X ×Y) that has
marginals recovering M [1] = A and M [2] = B, as discussed in [33]. A has POVM elements Ax associated
with outcome x, and B has POVM elements By associated with outcome y, obeying

∑
xAx =

∑
y By = 1.

If we want to model sequential measurements, we need to use other mathematical tools. In order
to implement the approximate measurement A′, with POVM elements A′x , we start by defining an
instrument yielding an outcome x ∈ X acting on the state ρ:

Jx[ρ] = JxρJ
†
x,

∀ρ. Jx is the Kraus operator associated with A′x such that
∑
x∈X J

†
xJx = 1. The POVM A′ can be

implemented as the adjoint instrument

J †x [ρ] = J†xρJx

acting on the identity operator

J †x [1] = J†xJx ≡ A′x,

Meaning Jx are Kraus operators of A′. Notice that the Kraus operators are J†x =
√
A′xU , so that

J†xJx =
√
A′xUU

†√A′x = A′x, where U is an unitary operator. It means we can choose which U to use,
so the instruments implementing A′ are not unique. We use this to implement A′x, the first measurement
to be performed on ρ. A sequential measurement of A and B with outcomes x and y, in this order, is
then described as
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Mx,y = J †x [By] = J†xByJx,

where By is the POVM element of B associated with the outcome y. This description is useful because
we get marginals

M [1]
x =

∑
y∈Y

J†xByJx = J†xJx = A′x,

the first approximate measurement of A, and

M [2]
y =

∑
x∈X

J†xByJx = J †X [By] ,

the second measurement of B′, a potentially perturbed version of By. The measurement of B on the
state ρ′ resulting from the measurement of A can thus be better regarded as an effective measurement
B′ on the initial state ρ.

Particularly, if M
[1]
x = Ax and M

[2]
y = By we say A and B are sequentially compatible observables,

because the measurements of A did not disturb B. We call attention once more to the fact that if A and
B are sequentially compatible then they are also jointly measurable, but not necessarily the other way
around: not all joint measurements can be performed sequentially. Two concrete examples are carried
out in [30].

Ultimately, what we want to do is to compare the probability distributions of the target observable and
its approximation. In order to do that, one possibility is to use relative entropies for discrete probabilities.
Let p = {p1, p2, . . . , pN}, q = {q1, q2, . . . , qN} be two probability vectors. The relative entropy of p with
respect to q is

H(p||q) =

{∑
x∈supp of p p(x) log p(x)

q(x) if supp p ⊆ supp q,

+∞ otherwise.

It is a way to account for how wrong we would be if we used probability q instead of p, which is exactly what
we want when comparing the probability distributions yielded by the POVM A and its approximation
A′. It is a measure of the information lost when we take q instead of p [31]. Relative entropies hold the
property that H(p||q) = 0 ⇐⇒ p = q, which is a very desirable feature since we want our uncertainty
relation to equal 0 in the case of measurement of compatible POVMs.

2.3.1 Formulating Measurement Uncertainty Relations

Now, we can use relative entropies to build entropic measurement uncertainty relations, following [10].
We know that A and B are generally incompatible, meaning only an approximate joint measurement is
possible. Moreover, A will generally disturb B, and A′ and B′ can be very far from A and B. Hence,
we need to account for two different aspects of measurement uncertainty: how incompatible A and B
are, and how distant A′ and B′ are from A and B. To evaluate the first case, we will use the entropic
incompatibility degree, and the second case will be addressed by an error-disturbance trade off. In both
cases we will eventually look for the optimal parent POVM M ∈ M(X × Y) whose marginals M [1] and
M [2] best approximate A and B.

We start by defining the error function of the approximation (A,B) u (M [1],M [2]) as

H [A,B||M ] (ρ) = H(A(ρ)||M
[1]
(ρ)) +H(B(ρ)||M

[2]
(ρ)),

where Q(ρ) is {Tr(ρQx)|x ∈ X} , the probability distribution for Q on the state ρ. We know that if A

and B are compatible, by definition A(ρ) = M
[1]
(ρ) and B(ρ) = M

[2]
(ρ), meaning H [A,B||M ] (ρ) = 0.

From that, we define the entropic divergence, that is the worst total loss of information due to assuming
(A,B) u (M [1],M [2])

D[A,B||M ] = sup
ρ
H [A,B||M ] (ρ) = sup

ρ
{H(A(ρ)||M

[1]
(ρ)) +H(B(ρ)||M

[2]
(ρ))}.

Clearly, if A and B are compatible, D[A,B||M ] = 0.
Now, what if we take the best case scenario and choose the approximations M [1],M [2] so that they

are as similar to A and B as possible? To evaluate the incompatibility of A and B we want to assess
the minimum loss of information that cannot be avoided no matter which approximations M [1],M [2] we
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use. We do that by taking the minimum entropic divergence over all possible M . We define the entropic
incompatibility degree as

cinc(A,B) = inf
M∈M(X×Y)

D[A,B||M ].

Alternatively, to evaluate the error/disturbance trade off, we investigate the particular cases of se-
quential measurements. The measurement of A followed by an approximate measurement of B is the
POVM described by instruments as

M(X ;B) = {M ∈M(X × Y) : M(x, y) = J †x [B(y)]∀x, y}.
In general, its marginals A 6= A′ and B 6= B′, unless A and B are sequentially compatible.

In an analogous way with the entropic incompatibility degree, we define the entropic error/disturbance
coefficient by minimizing the entropic divergence over all possible M that are sequential measurements
of A and B:

ced(A,B) = inf
M∈M(X ;B)

D[A,B||M ].

We point out that, in general, ced(A,B) 6= ced(B,A), which correctly depicts our expectations, since
a measurement of A followed by B isn’t generally the same as a measurement of B followed by A. Also,
since sequential measurements are a special case of joint measurements (or, in other words, M(X ;B) ⊆
M(X ;Y) ), it follows naturally that cinc(A,B) ≤ ced(A,B). They will generally be different, except in
the special case where B is a sharp observable, as proved in [10].

Finally, we can find an upper bound for cinc(A,B) and ced(A,B). We already know that 0 ≤
cinc(A,B) ≤ ced(A,B). In [10], Theorem 2 item (iii), it is proved that

0 ≤ cinc(A,B) ≤ ced(A,B) ≤ log|X |− inf
ρ
H(A(ρ)),

cinc(A,B) ≤ log|Y|− inf
ρ
H(B(ρ)),

where |X | and |Y| are the cardinalities of X and Y, the number of outcomes of A and B. These bounds
can be investigated exploring different systems and setups, and we can evaluate under which conditions
we get the lowest upper bound and how that can be useful to recover classical features.

Computing the bounds cinc and ced can be quite challenging. For a pair of measurements A and B,
we must find all possible “parent” POVMs M(x, y) ∈M(X ×Y) that yield A′ and B′ as marginals, and
perform the minimizations on this set of POVMs. This is a problem that can de solved via a semidefinite
program [34], but can be a bit overwhelming and time consuming for a first approach.

Alternatively, what we are actually going to use to evaluate measurement uncertainty relations is
another tool listed by Busch, Lahti and Werner [27] as possible options. When B and B′ are not the
same, each will yield a different probability distribution, and the distance between them can be used as
a measure for their incompatibility.

We must perform two sets of experiments: in one we will obtain the probability distributions of an
ideal observable B; in the other we will obtain the probability distributions of the approximate observable
B′ after an ideal measurement A that will potentially disturb it. With these two distributions at hand,
we can compare them and quantify how different they are from each other.

Figure 2.3: One set of experiments will estimate the statistics of B, while another set of experiments will
estimate de statistics of B′, so we can compare them afterwards. Figure adapted from [24]
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To compare the two statistics obtained from the experiments, we can choose to use the Euclidean
distance between two points in the outcome space.

D(p,p′) =

√√√√ N∑
i=1

(pi − p′i), (2.4)

where p = (p1, p2, . . . , pN ) is the probability vector of the undisturbed measurement of B and p′ =
(p′1, p

′
2, . . . , p

′
N ) is the probability vector of B′ after an ideal measurement A.

This way, the result of D(p,p′) works as a measure for the disturbance caused by A on the measure-
ment of B. Ideally, if A and B are compatible this distance will be zero because the probability of B will
not be affected by A. However, the converse is not true: the Euclidean distance between p and p′ being
null does not imply on them being compatible, since it can be a state dependent coincidence. Moreover,
we would be doing this analysis on a specific state, which by no means can be extended to a generic state
and let us conclude that A and B are compatible. Any favorable result obtained from this analysis can
only serve as a hint, for not prohibiting A and B to be compatible.

Now that we already have these concepts, we can move on to investigate another prerequisite to
develop the work concerned in this dissertation.

16



Chapter 3

Macroscopic Measurements

In nuclear magnetic resonance (NMR), a sample containing N ≈ 1020 molecules is probed through
successive radio-frequency pulses controlled by an external source, inducing state transitions [28]. Com-
putation is conducted using the nuclear spins of the molecule’s atoms, for instance carbon and hydrogen
atoms in a chloroform (CHCl3) molecule. Since the sample is very diluted (with typical dilution around
98%), the molecules are taken to be non-interacting, meaning that the system’s Hamiltonian is simply
the sum of each molecule’s individual Hamiltonian over all N molecules.

When in the presence of a magnetic field B, spins will precess with a given frequency. We can tune
the radio-frequency source to be in resonance with it and use it to control the quantum states. This
interaction is given by the Hamiltonian

H = −µ ·B,

where µ is the magnetic nuclear moment, given by µ = γI. I is the nuclear angular momentum, and γ is
the gyromagnetic constant. We take the direction of B to be z-direction, B = B0k

H = −γB0Iz,

Iz is the projection of I in the z-direction, with eigenvalues h̄mz. The energy levels are given by

E = −γh̄B0mz.

The energy gap between levels is given by ∆E = −γh̄B0∆mz, associated with an angular frequency
through Planck’s energy-frequency relation ω = 2π∆E/h = ∆E/h̄. This is the Larmor frequency, to
which we tune the source to induce the state transitions.

The spins are accessed with the aid of a coiled wire surrounding the sample, set in resonance with
their specific Larmor frequency, different for the carbon and the hydrogen atom. Since the Larmor
frequencies are different for each spin in a molecule but the same for equivalent atoms, we can tune the
radio-frequency source and collectively target all spins with the same Larmor frequency only, namely all
carbon spins or hydrogen spins.

To manipulate the sample nuclear spins, we first set the magnetic field B in the z-direction, causing
the energy levels to split because of the Zeeman effect. Now, by applying a pulsed magnetic field B1

in a perpendicular direction, we can make the spins precess around B1, and the duration of the pulse
determines the final angle of precession, given by θ = γB1t. To get information about the system, we
evaluate the relaxation times T1, referring to the amount of time it takes the spin to realign with B once
the pulse is over, and T2, referring to the loss of coherence among nuclei.

Measurements are performed through spectroscopy of the nuclei magnetic fields, aided by a set of coils
that can measure very weak magnetic fields through induction, and one can obtain for instance the total
magnetization of the sample in a certain direction. When carrying out this measurement, the precise
position of a certain spin is irrelevant, and we don’t have access to the state of an individual molecule.

The reason why measurements in NMR will play a significant role throughout this dissertation, serving
often as a kindle for inspirations to our models, is that we are able to measure the total magnetization in
the x-direction and the y-direction simultaneously. This is a trait we expect to see in classical measure-
ments, but are typically inviable in quantum measurements due to incompatibility of the two observables
being measured. This means that measurements carried out in NMR, as well as the states used in their
samples, should be further investigated.
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As we are going to see, this category of measurements implemented in NMR can be described using
the method of types, consisting of an approach in which we can overlook the total knowledge of every
aspect of a system and only care about a specific characterization of it. This concept has of course
been around for a while, appearing in probability theory in works from Sanov[17] and Hoeffding[18] on
large deviations, statistical physics from Boltzmann, as well as others [21] [22] [23]. It was systematically
developed into a general method for information theory by Csiszár and Körner[20].

3.1 The Method of Types

Let X = χ1χ2...χN ∈ χN be a string of N letters drawn for a d-letter alphabet χ = {α1, α2, ..., αd}.
The type of X is a vector of positive numbers summing to one defined by

L(X) = (L1(X), L2(X), ...Ld(X)),

where Lj(X) is the relative frequency of the letter αj in the string X, the number of occurrences of αj
divided by the total number of entries on the X:

Lj(X) =
1

N

N∑
k=1

δαjχk
.

Furthermore, one can see that

d∑
j=1

Lj(X) = 1.

For example, if the alphabet is χ = {0, 1} and N = 3, we can take the string X = 001 and obtain its type

L(X) = (
2

3
,

1

3
).

It’s clear that the same type may apply to different strings, all of them being the result of a permutation
of its elements. We can define a type class T as being the set of strings that have the same type:

T [L] = {X ∈ χN |L(X) = L}.

In the preceding example, the type class of L = ( 2
3 ,

1
3 ) would be

T [L] = {001, 010, 100}.

We point out that in the case of two-letter alphabets, a single number L ∈ [0, 1] is enough to indicate the
type of a string, since in these cases L = (1− L,L).

We can now use this formalism to construct the measurement operator that describes a type mea-
surement. We define the element of POVM corresponding to the projector on a subspace of a given type
as:

QNL =
∑

X∈T [L]

|X〉 〈X| .

It is simply the sum of all projectors belonging to the same type.

3.1.1 An example: total magnetization

In NMR, when determining the total magnetization of a spin- 1
2 sample along a direction we are

measuring the observable

MN
s =

N∑
i=1

σ(i)
s , (3.1)

where σs is the Pauli vector in this direction, whose Cartesian components are the Pauli matrices σx =(
0 1
1 0

)
, σy =

(
0 −i
1 0

)
, and σz =

(
1 0
0 −1

)
. The index (i) in σ

(i)
s means that the observable acts
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on the i-th system and doesn’t affect the other systems. Notice that, since eigenvalues are irrelevant to
entropic uncertainties, we are neglecting a factor multiplying equation 3.1 for simplicity.

For clarity, take the example of total magnetization along the z-direction. The observable, then, is

MN
z =

N∑
i=1

σ(i)
z .

To measure this observable, it seems necessary to know exactly the spin configuration of every local sys-
tem, which is a very strict demand. Moreover, it is not a realist requirement, since in these measurements
the only relevant quantity is the total magnetization and we do not even have access to each individual
spin. If we use type observables instead, we can still evaluate the total magnetization of the sample,
without being mandatory to know all this microscopic information.

In addition to these motivations, there is another argument against the usage of total magnetization
as in equation 3.1. As pointed out by Poulin[9], we can describe the normalized macroscopic observables
of total magnetization:

M̃N
x =

1

N
MN
x ,

M̃N
z =

1

N
MN
z ,

If we evaluate their commutator, we get[
M̃N
x , M̃

N
z

]
=

1

N2

[
MN
x ,M

N
z

]
=
−2i

N
MN
y

This means that on the limit of infinite size systems, total magnetization in the x and z directions
commute, as we would expect from ”classical” measurements. From the point of view of Heisenberg-like
uncertainty principles, this would be enough to say a system could be prepared in a way to display both
these quantities simultaneously well defined.

If we investigate these quantities from the perspective of entropic uncertainty relations, however, we
see that their description still doesn’t suffice to understand how classical features can emerge. Let us
analyze these observables using the preparation uncertainty relation in equation 2.3.

Let MN
x =

∑N
j=1

h̄
2σ

(j)
x be the total magnetization along the x-direction. We want to evaluate how

H(MN
x |Ψ) +H(MN

z |Ψ) ≥ −2 log c

scales with N , since we would expect that as N grows we would reach a classical scenario and this lower
bound would approach zero. The maximum overlap between eigenvectors of MN

x and MN
z is 1√

2
N , so

that we have

H(MN
x |Ψ) +H(MN

z |Ψ) ≥ N log 2. (3.2)

We see from this inequality that total magnetization as it was modeled above fails to yield the
expected entropic uncertainty relation bounds. We can look at the distribution of random states on a
H(MN

x |Ψ)×H(MN
z |Ψ) graphic, and see that indeed the bound given 2.3 does not decrease with N :

H(MN
x |Ψ) +H(MN

z |Ψ) ≥ N log 2. (3.3)

We see from this inequality that total magnetization as it was modeled above fails to yield the
expected entropic uncertainty relation bounds. We can look at the distribution of random states on a
H(MN

x |Ψ)×H(MN
z |Ψ) graphic, and see that indeed the bound given 2.3 does not decrease with N :
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(a) Each point corresponds to a random pure state Ψ
whose calculated entropies H(MN

x |Ψ) and H(MN
z |Ψ) are

given in the abscissa and ordinate, respectively. In red,
we have the bound given in equation 3.3. This is the case
N = 1.

(b) Similarly for N = 2.

(c) Similarly for N = 3. (d) Similarly for N = 6.

Figure 3.1: Numerical results for the distribution of random pure states

Figure 3.2: Average H(MN
x |Ψ) +H(MN

z |Ψ), plotted as a function of N . We see here that, numerically,
this sum grows with N , against our expectations for the emergence of classical features (but in accordance
with equation 3.3).
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Because of this and the motivation presented previously in this subsection, we will incorporate type
measurements in our model.

Take the alphabet χ = {0, 1}. The states |0〉 and |1〉 correspond to the eigenvectors of σz. The POVM
elements representing the total magnetization on the z-direction will be projectors on subspaces of the
same total magnetization. In this situation, we can work with the scalar L rather than the vector L. In
the case for N = 4 we’ll have

Z4
L =

∑
X∈T [L]

|X〉 〈X| .

The first element of POVM will cover the type L = 0, or no 1s in the string:

Z4
0 = |0000〉 〈0000| .

The second element of POVM will cover the type L = 1/4, or one 1 out of four entries in the string:

Z4
1/4 = |0001〉 〈0001|+ |0010〉 〈0010|+ |0100〉 〈0100|+ |1000〉 〈1000| .

The third element of POVM will cover the type L = 1/2, or two 1s out of four entries in the string:

Z4
1/2 = |0011〉 〈0011|+ |0101〉 〈0101|+ |0110〉 〈0110|+ |1001〉 〈1001|+ |1010〉 〈1010|+ |1100〉 〈1100| .

The forth element of POVM will cover the type L = 3/4, or three 1s out of four entries in the string:

Z4
3/4 = |0111〉 〈0111|+ |1011〉 〈1011|+ |1101〉 〈1101|+ |1110〉 〈1110| .

And finally, the fifth element of POVM will cover the type L = 1, where all entries are 1s:

Z4
1 = |1111〉 〈1111| .

This defines the POVM of total magnetization in the z-direction for 4 qubits:

Z4 = {Z4
0 , Z

4
1/4, Z

4
1/2, Z

4
3/4, Z

4
1}

In other words, we are putting together the projectors on subspaces that yield the same total mag-
netization in the z-direction. As a result, we go from MN

z having 2N outcomes to ZN having N + 1
outcomes.

It goes in a completely analogous way for the x-direction. Using the base of eigenvectors of the spin
operator in the x-direction,

|+〉 =
|0〉+ |1〉√

2
,

|−〉 =
|0〉 − |1〉√

2
,

we can follow the construction process in a completely analogous way and get

X4
0 = |++++〉〈++++| ,

X4
1/4 = |+++−〉〈+++−| + |++−+〉〈++−+| + |+−++〉〈+−++| + |−+++〉〈−+++| ,

X4
1/2 = |++−−〉〈++−−| + |+−+−〉〈+−+−| + |+−−+〉〈+−−+|+ |−++−〉〈−++−| +

|−+−+〉〈−+−+| + |−−++〉〈−−++| ,

X4
3/4 = |+−−−〉〈+−−−| + |−+−−〉〈−+−−| + |− −+−〉〈− −+−| + |− − −+〉〈− − −+| ,

X4
1 = |− − −−〉〈− −−−| ,
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X4 = {X4
0 , X

4
1/4, X

4
1/2, X

4
3/4, X

4
1}.

We can now revisit the graphics shown previously in the beginning of this section, with the adjustment
of using type measurements to describe total magnetization. We see clearly that the sum H(XN

L |Ψ) +
H(ZNL |Ψ) often goes below the bound provided by equation 3.3, meaning that using type measurements
may be an improvement on our task. However, the average sum of entropies still grows with N , as seen
in figure 3.4.

(a) Each point corresponds to a random pure state Ψ
whose calculated entropies H(XN

L |Ψ) and H(ZN
L |Ψ) are

given in the abscissa and ordinate, respectively. In red,
we have the bound given by equation 3.3. This is the
case N = 1.

(b) Similarly for N = 2.

(c) Similarly for N = 3. (d) Similarly for N = 4.

Figure 3.3: Numerical results for the distribution of random pure states using type measurements
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Figure 3.4: Average H(MN
x |Ψ) +H(MN

z |Ψ), plotted as a function of N . We see here that, numerically,
this sum still grows with N , although at a smaller rate. The error bars here are given by standard
deviation of the sample

Having studied the method of types, we may now go on and make further suppositions and refinements
to our model.

3.2 Product States

In NMR, the molecules are so diluted in water and are so far apart from each other that their inter-
actions can be over-sighted. Furthermore, all molecules are identical, so every state should be the same
on a local level. Because we start with a thermal state, and since the interactions between the molecules
in the sample can be neglected to good approximation, we say our initial state is a product of locally
identical states. We take this inspiration from NMR, and attempt to comprehend these peculiarities
and come up with a model for macroscopic measurements. We will intentionally attain ourselves to the
limited case of product pure states, which are such as

|ΨN 〉 = |Ψ〉 ⊗ |Ψ〉 ⊗ |Ψ〉 ... |Ψ〉︸ ︷︷ ︸
N times

,

for a pure single qubit state |Ψ〉 ∈ C2.
We want to derive the probability distribution of the POVM elements ZNL on ΨN = |ΨN 〉 〈ΨN |. This

means

Pr(ZNL |ΨN ) = Tr
[
ΨNZNL

]
.

We start by parameterizing |Ψ〉 as

|Ψ〉 =
√
p |0〉+

√
1− peiφ |1〉 ,

with p ∈ [0, 1] and φ ∈ [0, 2π[, so that Pr(ZNL | ΨN ) equals

= Tr

(√p |0〉+
√

1− peiφ |1〉
)
...
(√

p |0〉+
√

1− peiφ |1〉
)

︸ ︷︷ ︸
N times

(√
p 〈0|+

√
1− peiφ 〈1|

)
...
(√

p 〈0|+
√

1− peiφ 〈1|
)

︸ ︷︷ ︸
N times

ZNL

 .
Now, ZNL will select only terms corresponding to states of the same type. Within a string with type

L, the number of 1 entries is NL (the relative frequency of 1 multiplied by the size of the string). On
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the other hand, the number of 0 entries is N −NL (the total number of entries minus the number of 1s).
Each state |1〉 is multiplied by

√
1− peiφ, while each state |0〉 is multiplied by

√
p. Besides that, each

type L will have as many states as the number of ways we can arrange N states to have NL |1〉 entries.
More concretely,

Pr(ZNL | ΨN ) = Tr


pN |000 . . . 0〉 〈000 . . . 0|+ pN−1 (1− p)1

(|000 . . . 01〉 〈000 . . . 01|+ |000 . . . 10〉 〈000 . . . 10|)︸ ︷︷ ︸
states of type 1/N

+

pN−2 (1− p)2
(|000 . . . 11〉 〈000 . . . 11|+ |000 . . . 110〉 〈000 . . . 110|)︸ ︷︷ ︸

states of type 2/N

+ · · ·+

(1− p)NL |111 . . . 1〉 〈111 . . . 1|
)
ZNL

]
. (3.4)

With that, we arrive at the general formula for these probabilities

Pr(ZNL | ΨN ) =

(
N

NL

)
pN−NL (1− p)NL .

This is a binomial distribution. It has mean µ = (1 − p)N and standard deviation ∆2 = Np(1 − p).
If we explicitly calculate the entropy associated with this probability distribution.

H(ZNL |ΨN ) = −
1∑

L=0

(
N

NL

)
pN−NL (1− p)NL log

(
N

NL

)
pN−NL (1− p)NL .

If N → ∞, we can use the de Moivre/Laplace theorem and approximate the binomial distribution with
a Gaussian distribution:

H(ZNL |ΨN ) u −
∫ +∞

−∞
dx

1√
2π∆2

exp

[
− (x− µ)2

2∆2

]
log{ 1√

2π∆2
exp

[
− (x− µ)2

2∆2

]
}

= −
∫ +∞

−∞
dx

1√
2π∆2

exp

[
− (x− µ)2

2∆2

]
{log
√

2π∆2 +
(x− µ)2

2∆2
log e}

= log
√

2π∆2 +
log e

2

H(ZNL |ΨN ) u
1

2
log 2πeNp(1− p) (3.5)

and similarly for H(XN
L |ΨN ).

We can evaluate H(XN
L |ΨN ) + H(ZNL |ΨN ) numerically, randomly picking states like ΨN and calcu-

lating their average, minimum and maximum sum of entropies.
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Figure 3.5: Here we have H(XN
L |ΨN )+H(ZNL |ΨN ) plotted as a function of N . For each N , we randomly

picked between 10000 and 1000 ΨN states and calculated this sum of entropies. In green we have the
maximum sum of entropies out of all trials for a given N . Similarly, in orange we have the average sum
of entropies for all trials, and in blue we have the minimum sum of entropies out of all trials.

Even though it is only valid for large N , these numerical results can be recovered to some precision
by equation 3.5, if we calculate their average over all possible states ΨN . The numerical and analytical
results are so close that plotting them together in figure 3.5 would be purposeless. Against what we
would expect from a classical description of a measurement, we see from both this graphic and equation
3.5 that the sum of entropies actually still grows with N , though at the lower rate of logN . This is a
hint that the method of types alone may not be enough to portray the macroscopic world.

Now that we have discussed all the theoretical requirements to develop this dissertation, we can move
on to present and discuss our results
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Chapter 4

Division into Bins: Allowing for
Imprecision

In actual measurements, no device is infinitely precise. After many runs of an experiment, even a
classical measurement will yield results with a certain spread. Whatever the source of the imprecision
might be, we should be able to incorporate it on our model. In the example of total magnetization, for
instance, it is not realistic to expect the apparatus to distinguish states with similar types. For the sake
of verisimilitude, we would like to integrate the notion of imprecision in our description of macroscopic
measurements.

Aside from making type measurements, a possible reasonable solution is to arrange neighboring types
in bins. Instead of determining whether a state has a certain probability of belonging to a type L, we
evaluate their probability of belonging to a type interval, grouping them into bins of size ∆. This way,
in place of calculating the probability distribution by types, we do so in a distribution by bins. Since the
type L ranges from 0 to 1, the number of bins Nb is related to their size ∆ by

Nb = 1/∆.

The first bin will cover the interval [0,∆[. The second bin will cover [∆, 2∆[, and so on, until the last
bin covering [1−∆, 1]. The n-th bin will cover the interval [(n − 1)∆, n∆[. The new POVM elements
will now be, for the n-th bin

Q′
N
n =

∑
L∈[(n−1)∆,n∆[

QNL ,

with n ∈ {1, . . . , Nb}.
The probability associated with the n-th bin is the sum of all probabilities related to types that lie

within that bin, in terms of the number of bins, is

Pr(Z ′
N
n |ΨN ) =

Nb∑
L∈[(n−1)/Nb,n/Nb[

(
N

NL

)
pN−NL (1− p)NL .

For instance, if we take p = 0.8, φ = 0 and N = 8, the probability distribution of total magnetization
by types in the z-direction of ΨN is
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Figure 4.1: The probability distribution Pr(Z8
L|Ψ8) by types.

If we choose to group the types in 4 bins, we get the probability distribution

Figure 4.2: The probability distribution Pr(Z ′
8
L|Ψ8) by bins. Since Nb = 4, each bin will cover L ∈

[(n− 1)/4, n/4[

We can now work on a simple example to make this process clearer.

4.1 An example: imprecision in total magnetization

Take the POVM of total magnetization along the z-direction previously constructed in section 3.1.1.
We first divide them in bins, following chapter 4. We chose the number of bins to be Nb = 3. The bins
POVMs will be

Z ′
4
n =

∑
L∈[(n−1)/3,n/3[

Z4
L.

The first bin will contain types ranging from 0 to 1/3:

Z ′
4
1 = Z4

0 + Z4
1/4 = |0000〉 〈0000|+ |0001〉 〈0001|+ |0010〉 〈0010|+ |0100〉 〈0100|+ |1000〉 〈1000| .

The second bin will contain types ranging from 1/3 to 2/3:

Z ′
4
2 = Z4

1/2 = |0011〉 〈0011|+ |0101〉 〈0101|+ |0110〉 〈0110|+ |1001〉 〈1001|+ |1010〉 〈1010|+ |1100〉 〈1100| .

The third bin will contain types ranging from 2/3 to 1:
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Z ′
4
3 = Z4

3/4 + Z4
1 = |0111〉 〈0111|+ |1011〉 〈1011|+ |1101〉 〈1101|+ |1110〉 〈1110|+ |1111〉 〈1111| .

This defines the POVMs divided in bins Z ′
4

= {Z ′41, Z ′
4
2, Z

′4
3}.

4.2 Results

4.2.1 Preparation

In this stage of our research, we want to check if type measurements associated with division into
bins can provide any insight on understanding the emergence of classical features. We also have some
motivation to work with product states, so all the work developed from now on will be dealing with states
like ΨN , unless stated otherwise.

We know that, as N grows, the probability distribution of ΨN tends to concentrate around its mean
value. As a consequence, when we use divisions into bins, the bin containing the mean value will tend
to be increasingly probable. In this case, when calculating H(Q′

N
n |ΨN ), the only relevant term will be

that whose probability is not increasingly small, namely the term corresponding to the bin containing
the mean value nµ. Eventually, we expect H(Q′

N
n |ΨN ) to coincide with H∞(Q′

N
n |ΨN ), since that is the

case where we only take the maximum probability into account.
Moreover, since the probability associated with nµ will approach 1, we also expect both entropies

H(Q′
N
n |ΨN ) and H∞(Q′

N
n |ΨN ) to decrease as N grows. We want to analyze the specific case of total

magnetization along directions x and z. For the z-direction, we have Q′
N
n = Z ′

N
n . Since for ZNL µ =

N(1 − p), the bin containing the mean value will be nµ = 1 + bN(1 − p)c, meaning we take the floor of

µ and add 1, because the bin numbering starts at 1. The same reasoning goes for Q′
N
n = X ′

N
n .

We have evaluated and compared H(X ′
N
n |ΨN ) +H(Z ′

N
n |ΨN ) and H∞(X ′

N
n |ΨN ) +H∞(Z ′

N
n |ΨN ) as

N grows for different states ΨN and for various numbers of bins Nb.

Figure 4.3: In orange, we plotted H∞(X ′
N
n |ΨN ) + H∞(Z ′

N
n |ΨN ), while in blue we have H(X ′

N
n |ΨN ) +

H(Z ′
N
n |ΨN ), both as a function of N . In this case, p = 0.29, φ = 0, and Nb = 5. We see here a particular

case where both sums of entropies tend to zero.
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Figure 4.4: Similarly for p = 0.512, φ = 0, and Nb = 5. Here is another particular case where both sums
of entropies tend to zero.

Figure 4.5: Similarly for p = 0.634, φ = 0, and Nb = 5. In this case, even though the number of bins is
the same as before, we can no longer say the sums of entropies tend to zero, at least within N ≤ 200.

29



Figure 4.6: Similarly for p = 0.512, φ = 0, and Nb = 18. Even though we have other situations where
the sums of entropies tend to zero with p = 0.512, this is not the case, at least within N ≤ 200.

We see from these numerical results that, for some particular cases, type measurements combined with
division into bins allow the two properties total magnetization in directions x and z to be simultaneously
well defined, while not being possible at first. As we already stated, the fact that these entropies become
increasingly low as N grows is a necessary but not sufficient condition for the preparation of a system
with total magnetizations in the x and z directions simultaneously defined. This result is, thus, very
particular and has no general value, but it still is an evidence that this may be a promising path to
follow.

What is left now is to check if this arrangement is enough to also allow (sequential) compatibility.

4.2.2 Measurement

We want now to find out if using this model we can also explain measurement compatibility of
otherwise incompatible observables. We know so far that some particular states can specifically have
the quantities X ′

N
n and Z ′

N
n simultaneously well defined, but in order to try to clarify the emergence of

classical features we must also be able to improve our understanding of measurement incompatibility.
According to the discussion in section 2.3.1, we must compare the two probabilities yielded by two

different sets of experiments, one establishing the statistics relative to measuring an ideal observable B,
and another one estimating the probability distribution of B′ after measuring A. We carried out these
comparisons for two different distributions: the one yielded by an ideal measurement of Z ′

N
n (to which

we will refer as pz), and another one yielded by a measurement of X ′
N
n followed by a measurement of

Z ′
N
n (referred as p′z). If there is a number of bins where X ′

N
n doesn’t disturb Z ′

N
n , we expect these

probabilities to be very close.
That is not, however, the result obtained from numerical analysis. The Euclidean distance between

pz and p′z does not seem to follow any trend, and is not particularly low at any point, considering that
the maximum possible distance between pz and p′z is 2.
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Figure 4.7: The Euclidean distance between pz and p′z, for N = 6, as a function of the number of bins.
We are analyzing the particular state ΨN with p = 0.8 and φ = 0. We see here that the two probabilities
do not seem to become closer in any case.

Figure 4.8: The Euclidean distance between pz and p′z, now as a function of N , for a given number of
bins (in this case, Nb = 3). Once again, we are analyzing the particular state ΨN with p = 0.8 and φ = 0.
As before, the probabilities do not seem to become any closer.

From these numerical results, we do not see any pattern that can lead us to conclude that there will
be a special case where pz and p′z are very close to each other. This is in accordance with [7], chapter III,
part 3, section (6:a), which concludes that non-commuting observables cannot yield probabilities such

that A and B are compatible for an arbitrary state. Since X ′
N
n and Z ′

N
n still do not commute, we have

no reason to expect pz and p′z to be the same, even though the proof carried out in [7] does not make
the particular assumption of product states as we do. We haven’t, however, checked any cases where
N >> Nb due to the computational burden it can be. There is still a chance that these cases can yield
a decreasing pattern for D(pz,p

′
z).

Division into bins, combined with type measurements, can provide some insights on preparation of
states with well defined properties that were otherwise impossible, but cannot improve our understanding
of measurement of incompatible observables. To investigate further, we must add new features to our
model.
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Chapter 5

Mixing Bins: Allowing for
Inaccuracy

So far, guided by the notion that one cannot distinguish between nearby types, we have decided to
group types by bins. This is the reasonable assumption that we are only capable of limited precision.
However, when look closer at the types that lie at the edge of a bin we see that our model is actually
infinitely precise in that region. We may not be able to tell the difference between types that happened
to be grouped together under the same bin, but when comparing the last type of a certain bin and the
first type on the following bin we seem to be able to perfectly tell them apart.

A way to fix this infinite precision on the borders is to “blend” that region, blur the limits between
bins. By doing so, we include the notion of inaccuracy in our model, incorporating the possibility of
errors, so that a state with a well defined type has a chance of being assigned to a wrong bin, since in
the lab no measurement can be perfectly accurate.

Thus, our main goal in this section is to devise a method of mixing bins, in a way that we are able
to model the probability of committing mistakes when measuring the state’s type, while assimilating
inaccuracy in our description of macroscopic measurements.

We want to take the POVM elements Q′
N
n that have been established on the previous section and

mix them in a way that allows for inaccuracy. To do that, we want to construct matrices that will act
on Q′

N
n and yield the mixed bins POVM elements Q̃Nn

Q̃N1
Q̃N2

...

Q̃NNb

 =


a11 a12 ... a1Nb

a21
. . .

...
aNb1



Q′

N
1

Q′
N
2

...

Q′
N
Nb

 . (5.1)

Since we want {Q̃Nn } to be a POVM, we must require that aij ≥ 0 and
∑Nb

j=1 aij = 1 for all i. This

way, each POVM element Q̃Nn will be a convex sum of Q′
N
n . Also, in order to obtain

∑Nb

n=1 Q̃
N
n = 1

we must have
∑Nb

i=1 aij = 1 for all j. In other words, the matrix we want to construct must be doubly
stochastic. To do so, we first look at Birkhoff’s theorem[26]:

Birkhoff’s Theorem. Every doubly stochastic matrix is a convex combination of permutation matrices.

We won’t prove this theorem, but the intuition behind it is that permutation matrices are square
matrices with exactly one entry 1 in each row and column and 0s elsewhere, themselves being doubly
stochastic. Permutations are, then, the extremal points of the convex set of doubly stochastic matrices.

To build the matrix that will mix the bins according to our model, we adopt the following steps: we
first construct N − 1 matrices connecting nearest neighboring bins. They will be the convex combination
of the identity matrix and the permutation matrix of elements k and k + 1, adjusted by a parameter
m ∈ [0, 1]. After having repeated this process for all neighboring pairs, we sum all of them and divide it
by Nb − 1. Let’s look into an example, for clarity.
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5.1 An example: inaccuracy in total magnetization

As an example, we will apply our method of mixing bins on the observables obtained in 4.1, where
we constructed the POVM total magnetization in the z direction divided by bins Z ′

4
with N = 4 and

Nb = 3. We start by building the matrices connecting neighboring bins. The first matrix, connecting
the first and the second bins, is the convex sum of the identity matrix and the permutation matrix of
elements 1 and 2, with m ∈ [0, 1]:

(1−m)

1 0 0
0 1 0
0 0 1

+m

0 1 0
1 0 0
0 0 1

 =

1−m m 0
m 1−m 0
0 0 1

 .

The second matrix, connecting the second and the third bins, is the convex sum of the identity matrix
and the permutation matrix of elements 2 and 3:

(1−m)

1 0 0
0 1 0
0 0 1

+m

1 0 0
0 0 1
0 1 0

 =

1 0 0
0 1−m m
0 m 1−m

 .

We now sum them, and divide the result by Nb − 1 = 2 to make them evenly weighted

1

2

1−m m 0
m 1−m 0
0 0 1

+
1

2

1 0 0
0 1−m m
0 m 1−m

 =
1

2

2−m m 0
m 2(1−m) m
0 m 2−m

 .

Finally, we multiply {Z ′4n} by this matrixZ̃4
1

Z̃4
2

Z̃4
3

 =
1

2

2−m m 0
m 2(1−m) m
0 m 2−m

Z ′41Z ′
4
2

Z ′
4
3

 =
1

2

 (2−m)Z ′
4
1 +mZ ′

4
2

mZ ′
4
1 + 2(1−m)Z ′

4
2 +mZ ′

4
3

mZ ′
4
2 + (2−m)Z ′

4
3

 .

The mixed bins POVMs we get are

Z̃4
1 =

(
(2−m)Z ′

4
1 +mZ ′

4
2

)
/2,

Z̃4
2 =

(
mZ ′

4
1 + 2(1−m)Z ′

4
2 +mZ ′

4
3

)
/2,

Z̃4
3 =

(
mZ ′

4
2 + (2−m)Z ′

4
3

)
/2.

We see that Z̃4
n is a mix of other Z ′

4
j , and we can use m to control the contribution from other bins.

This means that a state with a well defined type can be assigned to mostly any bin, and may have a
greater chance of being designated to the bin containing their type (and its nearest neighbors) if m is
small enough.

This rather simple procedure reproduces one characteristic we expect from realistic measurements:
you are more likely to mislabel a string for a type belonging to a neighboring bin than for a far away one,
the closer the bins the easier they are to be mistaken one for another. Far from being ideal, this method
is only a first approach on mixing bins and allowing inaccuracy on our model, specially because it lacks a
more natural and intuitive justification, having been forcibly constructed instead of arising more naturally.
A more organic method is developed in [9], though it poses additional operational complications.

5.2 Results

5.2.1 Preparation

We want now to ensure that, following the description of macroscopic measurements formulated in
this chapter, our system can be prepared in a way to have two properties simultaneously well defined,
even though it would not be possible in the typical scenario. Particularly, we want to check if this way
we can prepare a state ΨN and have the total magnetizations in the x and z directions well defined, when
modeling them as type measurements grouped by bins that are mixed. As in section 4.2.1, we want to
understand the behavior of the lower bound in the sum H(X̃N

n |ΨN ) +H(Z̃Nn |ΨN ).
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In section 4.2.1, we used the argument that probability distributions would end up concentrating on
particular bins to justify the sum of entropies approaching zero as N grows. However, the same argument
cannot be employed here. Even though probability distributions would still concentrate, at first, on some
bin, this concentration would be dissolved after we mixed them. A particular bin might have held a
very high probability of containing the type to which a state would be assigned, but after mixing all
bins this probability would decrease while the probabilities of neighboring bins would increase, causing
probability distributions to spread. Because of this effect, we can no longer use this argument to sustain
that H(X ′

N
n |ΨN )+H(Z ′

N
n |ΨN ) decreases with N . The only exception is, of course, the case where m = 0

and we recover the scenario described in section 4.2.1.
We no longer have a motivation to pursue the - often heavy - numerical results that would ensure that

some macroscopic measurements as described in chapter 5 can be simultaneously well defined for ΨN .
We point out, however, that this result is not unexpected. Even when performing classical measurements,
there is a certain spread on the results that is inherent of statistical nature, since no measurement can
ever be perfectly precise. By using the method devised in this chapter, we end up recovering this essential
feature of classical measurements.

5.2.2 Measurement

As in section 4.2.2, we now want to check if the scenario constructed throughout this last chapter
allow the compatibility of two POVMs who were otherwise incompatible. Because of all the reasoning
previously developed in this dissertation, we will test sequential compatibility of POVMs X̃N

n and Z̃Nn ,
the total magnetization along the directions x and z using type measurements grouped in bins, that were
additionally mixed among themselves.

Following the scenario described by figure 2.3, we want to compare the statistics yielded by B and
B′. In our case, this corresponds to comparing the probabilities yielded from measuring Z̃Nn and those
yielded from measuring Z̃Nn after having measured X̃N

n first.
Using the Euclidean distance in equation 2.4, as explained in section 2.3.1, we compare numerically

how different m affect the distance between probabilities. We want to evaluate how mixing bins in a
greater or smaller amount can affect the statistics of the measurements.

Our expectation is that the probabilities relative to the ideal measurement Z̃Nn and that of Z̃Nn after

X̃N
n , to which we will refer as Z̃ ′

N

n will become more similar the more we allow inaccuracy in our system,

namely the more m grows. We must point out, however, that seeing the probabilities of Z̃Nn and Z̃ ′
N

n

getting increasingly closer as m grows in no way proves that our model can explain compatibility between
otherwise incompatible POVMs. First of all, because our case study is too particular in many ways: we are
testing the compatibility of two particular POVMs X̃N

n and Z̃Nn , and analyzing the case of some specific
product state. Second, because having the Euclidean distance between these probabilities decrease is only
an aspect of sequential compatibility: it is a necessary but not sufficient condition. What we present here
is only some evidence and support in the sense that our model may be able to explain the phenomena
we are interested in.

Figure 5.1: The Euclidean distance D(pz,p
′
z) between the probability distributions of Z̃Nn and Z̃ ′

N

n

relative to the state ΨN with p = 0.8 and φ = 0, as a function of m. In this case, N = 2 and Nb = 2. We
see that the distance starts growing again after m = 0.5. This can be explained by the fact that in the
particular case of Nb = 2, m ≥ 0.5 corresponds to actually swapping the first and the second bins.
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Figure 5.2: Similarly for N = 4 and Nb = 4. In this case, the distance between the probabilities pz, p
′
z

decreases, allowing the possibility of compatibility.

Figure 5.3: Similarly for N = 4 and Nb = 2. Here, we see the same effect as in figure 5.1.

Figure 5.4: Similarly for N = 5 and Nb = 4. Here is another case where the distance between the
probabilities pz, p

′
z decreases, allowing the possibility of compatibility.
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Figure 5.5: Similarly for N = 6 and Nb = 4. Here is another case where the distance between the
probabilities pz, p

′
z decreases, allowing the possibility of compatibility.

We see that, at least when applied to these particular cases, our model allows for the sequential
measurement of X̃N

n and Z̃Nn . We already know that it is not enough to explain how compatibility
can become possible for otherwise incompatible POVMs, since it only clarifies a necessary condition to
sequential measurability. We do, however, get some support from specific settings and states, where the
number of bins Nb, molecules N and the amount of mixing m end up making the Euclidean distance
between pz and p′z decrease. At least when applied to these particular cases, our model points out that
this necessary condition is satisfied. These are cases where sequential compatibility is a possibility.
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Chapter 6

Conclusion

In this work, we wanted to get a better understanding of how some typically classical features can
emerge from fundamentally quantum systems. More specifically, this dissertation aimed to explain how
can a quantum state display two different features: having two quantities A and B simultaneously well
defined, even though they do not commute; and being able to jointly measure A and B, though they
might be typically incompatible. These two characteristics are closely associated with classicality, since,
while it may be tricky to understand this from a quantum point of view, classical systems automatically
obey these requirements. If we take the most famous case, we can prepare a classical system with both
position and momentum simultaneously well defined, as well as measure them without one disturbing the
other. To better understand theses features emerging from a system described by quantum mechanics,
we need a few refinements on our description of the system itself, as well as on the description of the
measurements we are going to perform.

Motivated by a series of advantages over the more widely known Heisenberg uncertainty principle,
we studied entropic uncertainty relations, both in the context of preparation and measurement. When
investigating preparation uncertainty relations, we devised a lower bound to the sum of entropies relative
to the measurements of A and B on a state Ψ. In order to make the preparation of a state with both
A and B simultaneously well defined possible, this lower bound must decrease as the size of our system
increases. In other words, as our systems approaches a macroscopic size we expect the preparation of
such states to become possible.

When investigating measurement uncertainty relations, we wanted to better understand the effects of
measuring the POVM B, that would yield a probability distribution pB , when compared to measuring
the approximate POVM B′ preceded by a measurement of A, that would yield a probability distribution
p′B . In order to do that, we devised a lower bound for the loss of information on sequential and joint
measurements of POVMs A and B (cinc and ced). If these lower bounds approach zero in a certain
circumstance, we can say A and B are compatible. We have, however, when dealing with measurement
uncertainty relations, chosen to use the Euclidean distance between pB and p′B instead of the relative
entropy formulation. We did it for an operational advantage, but had to pay the price of not having
a definite test anymore: if the system satisfied the requirement that the bounds cinc or ced approach
zero, we could be sure that A and B are jointly measurable; on the other hand, having the Euclidean
distance between pB and p′B decrease is only a necessary but not sufficient condition to joint/sequential
measurability.

We, then, introduced the concept of type measurements, relying on the fact that we do not have access
to microscopic knowledge of our system. This way, we hoped to reproduce with more verisimilitude the
characteristics of actual measurement, particularly total magnetization measurements in NMR.

Through the specific investigation of product states, and once again motivated by the setup of NMR
experiments, we evaluated how total magnetization in the x and z directions behaved when studied from
the point of view of entropic uncertainty relations. Since a series of tests showed that this formula-
tion so far was not enough to explain classicality, we moved on to construct our model of macroscopic
measurements.

Firstly, to reproduce the limited precision in real life experiments, we introduced a division by bins:
instead of measuring the type of states, we measure the type interval to which they belong on average.
This incorporated the notion that we cannot tell nearby bins apart. With this construction, we were
able to better understand preparation entropic uncertainties, motivated by a logical reasoning but mostly
from a numerical point of view. We could not, however, explain joint measurability from this construction
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alone.
Secondly, to make measurements imprecise near the edges of a bin and to include inaccuracy in our

model, we went on to mixing bins. This way, we blur the limits between them and allow errors to be
made. In this scenario, we recover a classical feature of measurements, the unavoidable statistical spread
of probability distributions. In the measurement context we improved our understanding of compatibility:
some particular states and setups satisfy the requirement of compatibility that the Euclidean distance
between pz and p′z must approach zero. Even though it is only a necessary but not sufficient feature,
evidence encourages us to follow these steps.

Being a first approach, our model is still too simple and artificial. The next step in our research is to
improve our description of macroscopic measurements by working on a more natural (and complex) way
of allowing inaccuracy, following particularly the steps set by Poulin in [9]. Moreover, with more time
and skill, we want to compute the bounds cinc and ced, instead of recurring to the more simple Euclidean
distance.
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