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Abstract
In quantum cosmology, one has to select a specific wave function solution of the quantum
state equations under consideration in order to obtain concrete results. The simplest choices
have been already explored, in different frameworks, yielding, in many cases, quantum
bounces. As there is no consensually established boundary condition proposal in quantum
cosmology, we investigate the consequences of enlarging known sets of initial wave functions
of the universe, in the specific framework of the Wheeler-DeWitt equation interpreted
along the lines of the de Broglie-Bohm Quantum Theory, on the possible quantum bounce
solutions which emerge from them. In particular, we show that many asymmetric quantum
bounces are obtained, which may incorporate non-trivial back-reaction mechanisms, as
quantum particle production around the bounce, in the quantum background itself. In
particular, the old hypothesis that our expanding universe might have arisen from quantum
fluctuations of a fundamental quantum flat space-time is recovered, within a different and
yet unexplored perspective.

Keywords: Quantum bounces. Quantum cosmology. Back-reaction.



Resumo
Em cosmologia quântica, é necessário selecionar uma função de onda específica que seja
solução das equações de estado quântico consideradas a fim de obter resultados concretos.
As escolhas mais simples já foram exploradas, em diferentes contextos, levando, em muitos
casos, a bounces quânticos. Uma vez que não existe uma proposta de condição de contorno
consensualmente estabelecida em cosmologia quântica, nós investigamos as consequências
de generalizar conjuntos conhecidos de funções de onda iniciais do universo, espeficiamente
no contexto da equação de Wheeler-DeWitt interpretada ao longo das linhas da Teoria
Quântica de de Broglie-Bohm, nas possíveis soluções quânticas de bounce que emergem
delas. Em particular, mostramos que muitos bounces quânticos assimétricos são obtidos, os
quais podem incorporar mecanismos não triviais de contra-reação, como produção quântica
de partículas em torno do bounce, no modelo de fundo quântico em si. Em particular,
a antiga hipótese de que nosso universo em expansão pode ter surgido de flutuações
quânticas de um espaço-tempo plano quântico fundamental é recuperada, dentro de uma
perspectiva diferente e ainda inexplorada.

Palavras-chaves: Bounces quânticos. Cosmologia quântica. Contra-reação.
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Introduction

The Penrose-Hawking singularity theorems in General Relativity [1] predict a
singularity in space-time as the beginning of our universe. Since it is outside of the scope
of the theory, this singularity is understood as a pathology, which may be solved by
incorporating quantum gravitational effects. The Quantum Theory is required due to the
extremely high energy densities and curvature in this domain, leading to modifications of
General Relativity that would constitute a Quantum Theory of Gravity.

In order to combine General Relativity and Quantum Mechanics, one should account
to its practical and conceptual aspects, which represent a huge challenge. The fundamental
nature of Quantum Mechanics implies in its validity for any system, including the universe
itself. However, when considering the standard interpretation of Quantum Mechanics,
namely the Copenhagen interpretation [2, 3, 4], issues related to the measurement problem
and the postulate of the collapse of the wave function take place [5]. According to
this approach, the collapse of the wave function depends on a measurement performed
by a classical external observer. If the whole universe constitutes the system under
consideration, this external domain does not exist and the collapse cannot occur. One
important improvement in this direction was made by the concept of decoherence [6],
which explains the emergence of the classical domain through an interaction between the
system and the environment, thus independently of an observer. However, the collapse
of the wave function remains an open question, since decoherence accounts only for the
diagonalization of the reduced density matrix, but not for the selection of a single element
in the diagonal. In other words, decoherence explains why a superposition of classical
systems is not observed, but does not justify the unicity of facts [7]. Therefore, a further
improvement is still required, which is achieved, for instance, by the spontaneous collapse
approach [8], the Many-Worlds [9] and the de Broglie-Bohm [10, 11] interpretations of
Quantum Mechanics. The later is the one adopted in this work.

The de Broglie-Bohm interpretation is a deterministic theory in which trajectories in
the configuration space are completely determined by the evolution of dynamical variables.
The probabilistic character of Quantum Mechanics arises as a practical aspect related to
the initial field configurations in a statistical manner. It is not an inherent indeterminacy
of properties as in Copenhagen interpretation. In this approach, the measurement problem
is solved by an effective collapse, through which one unique branch in the wave function is
occupied, depending on the initial configuration of the system, while the other branches
remain empty and do not communicate to each other. Thus a quantization of the whole
universe is possible independently of the existence of an external observer, which brings
the conceptual coherence necessary to apply it to Cosmology [5].
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The Quantum Cosmology that arises in this approach is able to avoid the initial
singularity through the emergence of a bounce [5, 12, 13], i.e. a contracting phase of the
scale factor followed by an expanding phase, or even multiple bounces [14, 15]. This aspect
is a consequence of a de Broglie-Bohm quantum potential, which modifies the Friedmann
equations.

The aim of this work is to generalize cosmological models previously obtained
in [5, 13], which are characterized by symmetric bounces, i.e. solutions in which the
contracting phase is identical to the expanding phase reversed in time. With this purpose,
enlarged prescriptions for the wave functions of the universe are considered, which guide the
trajectory of the scale factor in the configuration space. Our aim is to obtain asymmetric
bounces, which could describe non-linear back-reactions coming from particle production
around the bounce, modifying the background evolution in the expanding phase. We
achieved a variety of asymmetric quantum bounces by enlarging the prescriptions for the
initial wave function of the universe in different contexts, which are presented in chapter 6.

The content of this dissertation is presented in the following sequence: part I
contains the Bohmian Quantum Gravity, where the Bohmian Quantum Theory and
the Wheeler-DeWitt quantization are introduced and combined. Part II presents the
minisuperspace models filled with a perfect fluid and the quantum bounces, including the
standard symmetric trajectory and the original asymmetric solutions of this work. The
standard symmetric bounces are obtained from initial Gaussian wave functions centered
at the origin and without phase velocity. In section 5.1, generalized symmetric bounces are
presented as the result of an unitary evolution of an initial Gaussian centered at the origin
with phase velocity, which adds a new parameter to the system. In section 6.1, we gave
up unitarity, since it is not a mandatory requirement for minisuperspace wave functions
in the de Broglie-Bohm theory. As a result, asymmetric quantum bounces are obtained.
In section 6.2, we consider a superposition of two Gaussians, each of them multiplied by
an exponential factor containing an extra parameter, and obtain asymmetric quantum
bounces with unitary evolution. Finally, the results and future perspectives are discussed
in Conclusion.



Part I

BOHMIAN QUANTUM GRAVITY
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1 DE BROGLIE-BOHM QUANTUM THE-
ORY

In 1952, an alternative to the Copenhagen interpretation of Quantum Mechanics
was presented by David Bohm [10] with the purpose of formulating a theory able to
deterministically describe individual systems in the quantum domain. According to this
theory, the precise behaviour of quantum systems is determined by hidden dynamical
variables 1 and the probabilistic character of the theory arises as a practical necessity, not
as an inherent inability to determine properties in the quantum level. The wave function
guides the trajectory in the configuration space and can be represented in the polar form
Ψ = ReiS/~, where the amplitude R and the phase S are real functions. The wave function
Ψ is known as pilot wave, since the theory leads to a guidance equation that determines
the trajectory on the configuration space. As long as the usual form of the Schrödinger
equation is maintained, the results of measurements in this alternative interpretation
are the same as the ones obtained by the usual interpretation, however with a broader
conceptual framework. Louis de Broglie also made contributions in this direction [16], even
before David Bohm, for the description of one particle by the theory of the Double Solution.
In this theory, every solution of the Schrödinger equation corresponds to a physical wave
v = aeiφ/~, where a and φ are real functions. The idea was given up by de Broglie due
to criticisms, especially from Wolfgang Pauli. Given these contributions and aspects, the
deterministic interpretation of Quantum Mechanics presented hereafter is known as the de
Broglie-Bohm Quantum Theory, the pilot wave Quantum Theory or Causal Interpretation.

According to this approach, an individual system is in a completely determined
state, even when unobserved, which evolves in time according to the equations of motion.
As just mentioned, the trajectory is guided by the wave function Ψ, which satisfies the
Schrödinger equation. The probabilistic character of the system in the quantum domain
arises as a practical consequence of the existence of hidden variables, i.e. the unknown
initial conditions of the system lead to a practical indeterminacy, which is not intrinsic
to the quantum nature. A good analogy can be made by considering thermodynamics
and atomic structure: many phenomena can be understood in macrophysics through
the thermodynamic description, which correctly relates averaged processes. However, an
analysis in atomic level provides deterministic reasons to them, explaining their properties
in a more detailed framework.

One could question the necessity of formulating an alternative interpretation of
1 The hidden dynamical variables are hypothetical entities, yet unobserved, which provide the determin-

istic description of quantum phenomena.
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Quantum Theory, given the efficiency of the description provided by the Copenhagen
interpretation. A simple reason relies in the fact that other equally consistent interpretations
are possible, leading to the question of which one truly corresponds to nature. In addition,
in the case of the de Broglie-Bohm theory, the ontological interpretation spares us of giving
up a detailed description of quantum systems, which in itself constitutes an advantage of
the new approach. One could then impugn the falsifiability of these different interpretations,
given that they predict the same outcomes from the experiments. However, the de Broglie-
Bohm Quantum Theory can, in principle, be tested through systems in the so called
quantum non-equilibrium [17, 18]. This possibility arises given that the Born rule is not an
assumption in this interpretation, allowing probability densities to be different from |Ψ|2.
When ρ = |Ψ|2, we say that quantum equilibrium is satisfied. Another reason to investigate
other interpretations, extremely relevant in this work, is the solution of the measurement
problem, which is present in the Copenhagen interpretation. This issue arises from the
lack of a well-established description of the collapse of the wave function. According to the
Copenhagen interpretation, the wave function is constituted by linear superpositions of
states and satisfies the Schrödinger equation. Somehow, when a measurement is performed,
the wave function collapeses into one unique state through a process that is not described
by the equation of motion. As we are going to show, the de Broglie-Bohm interpretation
solves this problem through an effective collapse, allowing an elegant correspondence
between quantum and classical realities.

In order to present the formulation of the de Brolgie-Bohm Quantum Theory, we
start by considering the one particle description and then generalize it to an arbitrary
number of particles. Consider the Schrödinger equation given by

i~
∂Ψ
∂t

= − ~2

2m∇
2Ψ + VΨ, (1.1)

where m is the mass of the particle and Ψ is a complex quantity that can be represented
as

Ψ = ReiS/~, (1.2)

where R and S are real functions. Substituting (1.2) in (1.1), we obtain the following
equations:

∂R

∂t
= − 1

2m(R∇2S + 2∇R · ∇S), (1.3)

∂S

∂t
= −

[
(∇S)2

2m + V − ~2

2m
∇2R

R

]
. (1.4)

Defining the probability density P as P = R2 = |Ψ|2, one can rewrite them as

∂P

∂t
+ ∇ ·

(
P
∇S
m

)
= 0, (1.5)

∂S

∂t
+ (∇S)2

2m + V − ~2

4m

[
∇2P

P
− 1

2
(∇P )2

P 2

]
= 0. (1.6)
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In the classical limit, i.e. when ~→ 0, the physical interpretation is clear: S is solution
of the Hamilton-Jacobi equation. From Classical Mechanics we know that, if all the
trajectories of an ensemble of the system are normal to a given surface of constant S, then
∇S/m is the velocity vector v. Taking this identification into account in equation (1.5),
we conclude that P can be in fact understood as a probability density, since (1.5) assumes
the form of a continuity equation.

In terms of R, the generalized Hamilton-Jacobi equation (1.6) can be rewritten as

∂S

∂t
+ (∇S)2

2m − ~2

2m
∇2R

R
+ V = 0, (1.7)

allowing the identification of a quantum potential Q, which becomes relevant in the
quantum domain, and an effective potential U , given respectively by

Q = − ~2

2m
∇2R

R
, (1.8)

U = V +Q = V − ~2

2m
∇2R

R
, (1.9)

where V is the classical potential. Classical mechanics is obtained when the quantum
potential Q becomes negligible. The solution of the generalized Hamilton-Jacobi equation
(1.7) represents an ensemble of possible trajectories, which are under the action of both
potentials V and Q. In its turn, R depends on S through the continuity equation (1.3).

Let us analyze the identity ∇S = mv = p. It allows us to obtain the trajectory
of the particle under consideration, since it is orthogonal to the surface S = constant,
resulting in the following differential equation:

m
dx
dt

= p(x(t), t) = ∇S. (1.10)

In its turn, the total energy of the particle, including the kinetic term p2/2m and the
effective potential U , is given by

H = −∂S
∂t
. (1.11)

Thus equations (1.7) e (1.10) determine, together with the boundary conditions,
the movement of the particle, which can be described as a Newton’s equation of the form

dp
dt

= −∇U ≡ −∇(V +Q). (1.12)

Note that the term −∇Q can be understood as a quantum force acting on the particle
in addition to the force related to the classical potential V . Thus the wave function Ψ
represents a field, being the amplitude R, which appears in the quantum potential Q,
directly related to the force on the particle. In order to determine the trajectory of the
particle univocaly, it is necessary that the initial conditions are established. In this context,
they are given by the initial wave function Ψ(x, 0) = Ψ0(x) and by the initial position of
the particle x(0) = x0.
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We now turn our attention to the continuity equation (1.5), where the probabilistic
character of Quantum Mechanics arises. In the case of quantum equilibrium, this equation
restricts the solutions of the Schrödinger equation to the ones that are compatible with the
initial probability distribution |Ψ0|2. It is important to emphasize that in this interpretation
the statistical approach is a practical necessity due to unpredictable disturbances caused
by the measurement. 2 In [10] Bohm mentions that, in extremely small scales, i.e. distances
of order of 10−13 cm (a characteristic nuclear size) or less 3, |Ψ|2 could no longer satisfy
the continuity equation and, therefore, could no longer represent the probability density.
This was not confirmed experimentally, but, as already mentioned, a similar idea is still
considered nowadays: in principle, a possible experimental verification of this interpretation
is the detection of relaxation from quantum non-equilibrium to the quantum equilibrium
configuration.

Finally, we generalize the theory to many bodies, starting with two particles of
same mass m. The correspondent Schrödinger equation is given by

i~
∂Ψ
∂t

= − ~2

2m(∇2
1Ψ +∇2

2Ψ) + V (x1,x2)Ψ. (1.13)

The wave function is again represented in the polar form Ψ = ReiS/~, but now R = R(x1,x2)
and S = S(x1,x2). As before, we define P ≡ R2 and obtain the following equations:

∂P

∂t
+ 1
m

[∇1 · P∇1S +∇2 · P∇2S] = 0, (1.14)

∂S

∂t
+ (∇1S)2 + (∇2S)2

2m + V (x1,x2)− ~2

2mR [∇2
1R +∇2

2R] = 0. (1.15)

We thus have a six-dimensional wave function Ψ and velocities ∇1S/m and ∇2S/m, each
of them related to a surface associated to a particle. The quantum potential acting on each
one of the particles is now given in terms of x1 and x2, evidencing an effective interaction:

Q(x1,x2) = −
(

~2

2mR

)
[∇2

1R +∇2
2R]. (1.16)

For n particles the generalization is straight forward. The wave function is rep-
resented as Ψ = R(x1...xn)eiS(x1...xn)/~ and the velocity of each particle is given by
vi = ∇iS(x1...xn)/m. In its turn, the quantum potential reads

Q(x1...xn) = − ~2

2mR

n∑
i=1
∇2
iR(x1...xn), (1.17)

evidencing again that the force acting on a single particle depends on the positions of all
the other particles in the system. This aspect of the theory is known as non-locality.
2 In the Copenhagen interpretation, the probabilistic character is due to an inherent limitation of

determining the state of the system.
3 In [19] Bohm reduces this critical length scale to 10−16 cm.



Chapter 1. DE BROGLIE-BOHM QUANTUM THEORY 18

After the introduction to the formalism, we are now able to detail the solution of
the measurement problem. As already mentioned, in the Copenhagen interpretation there
are two possible evolutions for the wave function: one given by the Schrödinger equation
and other given by its collapse. In principle, the collapse takes place when a measurement
is performed. However, it is not clear what kind of process is considered a measurement
and what kind of system is a measurement device. What is necessary in order to collapse
a wave function? An observation made by an human being? There is no objective reality
independent of observations? These issues do not arise in the Bohmian interpretation,
where the dynamics is always described by the dynamical equation. An effective collapse
of the wave function arises as a result of the Bohmian mechanics, which describes both
the system s and the measuring apparatus A.

In order to develop the mathematical formalism to describe a measurement process,
let us consider a one-body system s associated with a wave function φ(xs, t) and the
particle variable O(xs, t) associated with a self-adjoint operator Ô(x̂s, p̂s). This system
interacts with a measuring apparatus A described by an initial wave function ζ0(xA),
where the one-dimension coordinate xA(t, t0) defines the location of the meter needle.
Assuming an impulsive interaction between the system s and the apparatus A, one can
write the interaction Hamiltonian as H = gÔp̂A, where g is a coupling constant and p̂A is
the momentum operator conjugate to x̂A. The initial wave function of s and A is given by
Ψ0(xs, xA) = φ0(xs)ζ0(xA), since they are initially independent. During the interaction,
the dynamics is governed by the Schrödinger equation

i
∂Ψ(xs, xA, t)

∂t
= −igÔ∂Ψ(xs, xA, t)

∂xA
(1.18)

and the wave function Ψ(xs, xA, t) becomes entangled in the configuration space. Expanding
it in a complete set of eigenfunctions φα(xs) of the operator O with eigenvalue α, we have

Ψ(xs, xA, t) = Σαfα(xA, t)φα(xs). (1.19)

From the Schrödinger equation during the interaction (1.18), we obtain that the coefficients
fα satisfy

∂fα
∂t

= −gα ∂fα
∂xA

, (1.20)

which leads to the solution fα(xA, T ) = fα0(xA−gαT ), where T is the period of the impulse
and fα0(xA) are the initial values. The initial wave function φ0(xs) can be expanded in
terms of eigenfunctions φα(xs), where the coefficients of the expansion Cα are such that
fα0(xA) = Cαζ0(xA). As a result, the propagated wave function reads

Ψ(xs, xA, T ) = ΣαCαφα(xs)ζ0(xA − gαT ). (1.21)

The eigenvalues α are now correlated with the coordinate xA of the apparatus and the
packets ζ0 have macroscopically disjoint supports in configuration space. Thus the wave
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function Ψ splits up into branches that do not overlap and can be represented by only
one of them, which is selected by the initial field configuration, i.e. in which the particle
enters. In other words, Ψ can be effectively collapsed to a specific branch Ψα, without the
need of a collapse postulate. The initial field configuration determines which branch of the
wave function is occupied, while the others remain empty and do not communicate with
each other. More details on the measurement process in Bohmian Quantum Theory can
be found in [20].

For the sake of completeness, it is important to mention that an improvement to
the Copenhagen interpretation, called decoherence, allows for the emergence of classical
properties from the quantum formalism through interactions of the system with the
environment. It explains why we do not see quantum superpositions of macroscopic
objects [6]. However, it does not explain the unicity of facts, i.e. the single outcome of a
measurement, requiring a further improvement such as the Many Worlds interpretation,
where all branches of the wave function coexist, or the de Broglie-Bohm Quantum Theory,
where a single branch is selected by the initial configuration.

Detailed descriptions of the de Broglie-Bohm Quantum Theory can be found in
[10, 11, 20, 21].



20

2 CANONICAL QUANTUM GRAVITY

Quantum Mechanics and Special Relativity were successfully combined in Quantum
Electrodynamics, the most accurate physical theory nowadays. Therefore, the first attempts
to combine General Relativity with Quantum Mechanics naturally emerged, leading to
the so called Canonical Quantum Gravity.

The canonical quantization procedure considers the Hamiltonian of the system in
order to write the dynamical equation. Thus a first step to the canonical quantization
of General Relativity is the construction of its Hamiltonian formalism. Since General
Relativity is covariant under coordinate transformations, not all the components of the
metric tensor represent degrees of freedom. It leads to constraints containing components
of the metric tensor and its canonically conjugate momenta to be satisfied. In order to
account for this gauge freedom, Paul Dirac proposed a quantization of constrained systems
[22]. In this approach, terms containing the constraints and its Lagrangian multipliers are
added to the Hamiltonian.

Later on, the Hamiltonian formalism of General Relativity was described by Richard
Arnowitt, Stanley Deser and Charles Misner in [23] through geometrical quantities that
charactrize a foliation of spatial hypersurfices in the timelike direction. Thus the topology of
the manifold under consideration is restricted to be M4 = R

⊗
M3. The spatial hypersurfaces

are defined through f(xµ) = constant, while the one-forms η = ηµdx
µ = ∂µfdx

µ define
their normals. Choosing the timelike coordinate to be x0 = t, we have ηµ = −Nδ0

µ, where
N is called lapse function and is such that gµνηµην = −1. As a result, g00 = −1/N2. The
quantity hµν ≡ gµν + ηµην defines a projector onto the hypersurfaces with components
given by

h00 = 0,

h0i = 0,

hij = gij +N2gi0gj0. (2.1)

The inverse matrix, i.e. hij is the metric tensor of the spatial hypersurfaces. Note that hij
and hij are symmetric.

In its turn, the components of the contravariant metric tensor are

g00 = − 1
N2 ,

g0i = N i

N2 ,

gij = hij − N iN j

N2 , (2.2)
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where N i ≡ gi0N2 is called shift vector.

With these definitions, the line element reads

ds2 = gµνdx
µdxν

= N2dt2 + hij(N idt+ dxi)(N jdt+ dxj), (2.3)

where the covariant component of the shift vector is defined as Ni = hijN
j.

The physical interpretation of the lapse function N and the shift vector N i can
be inferred from the line element (2.3): N is the rate of change of the proper time of an
observer with four-velocity ηµ with respect to the coordinate t, while N i is the rate of
change of the shift of xi from one hyperfurface to another with respect to t.

Since we are considering three-dimensional hypersurfaces embedded in a four-
dimensional manifold, an important quantity is the extrinsic curvature. From differential
geometry, it is defined as

Kµν ≡ −hαµhβν∇(αηβ), (2.4)

leading to the following components:

Kij = −NΓ0
ij = 1

2N (2D(iNj) − ∂thij), (2.5)

where Di is the three-dimensional covariant derivative.

In order to find the Lagrangian density in terms of these quantities, we first compute
the Ricci scalar. Splitting the components, it can be written as

R = 2R0i
0i +Rij

ij. (2.6)

Using the Gauss-Codazzi equations, given by

Rm
ijk = (3)Rm

ijk + 1
ηαηα

(KijKk
m)−KikKj

m, (2.7)

R0
ijk = − 1

ηαηα
(DkKij −DjKik), (2.8)

Ri0
i0 = 1

ηαηα
(K2 −KijK

ij)− (ηαηβ ;β);α + (ηαηβ ;α);β, (2.9)

where (3) denotes the three-dimensional quantity, and the following expression obtained
from (2.7)

Rij
ij =(3) R + 1

ηαηα
(KijK

ij −K2), (2.10)

where K = Ki
i, we rewrite the Ricci scalar (2.6) as

R =(3) R + 1
ηαηα

(K2 −KijK
ij)− 2(ηαηβ ;β);α + 2(ηαηβ ;α);β. (2.11)

In its turn, the Lagrangian density of the Einstein-Hilbert action is given by

L = (−g) 1
2R, (2.12)
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where we substitute (2.11) and obtain

L = (−g) 1
2

[
(3)R + 1

ηαηα
(K2 −KijK

ij)− 2(ηαηβ ;β);α + 2(ηαηβ ;α);β

]
. (2.13)

Disregarding the boundary terms, since they will not contribute to the action after the
integration and using (−g)1/2d4x = Nh1/2dtd3x and ηαηα = −1, we find

L = Nh
1
2 ((3)R +KijKij −K2). (2.14)

Note that (2.14) does not depend on ∂tN or ∂tN i. Thus the canonically conjugate momenta
to N and N i, given by δL /δ(∂tN) and δL /δ(∂tN i), are zero. According to the formalism
presented in [22], this defines these two quantities as primary constraints and therefore the
Hamiltonian must include N and N i as Lagrangian multipliers. On the other hand, the
metric tensor of the hypersurfaces has a canonically conjugate momentum, which reads

Πij = δL

δ(∂thij)
= −h 1

2 (Kij − hijK). (2.15)

The Hamiltonian density is given by

H = Πijḣij −L . (2.16)

Substituting expressions (2.14, 2.15) we find

H = N

[
h−

1
2

(
−Π2

2 + ΠijΠij

)
− h

1
2 (3)R

]
+ 2Di(NjΠij)− 2NjDiΠij, (2.17)

where Π = Πa
a. The term of the total derivative is a boundary term and, therefore, is

neglected. Defining the DeWitt metric Gijkl ≡ h−1/2(hikhjl + hilhjk − hijhkl)/2 and noting
that

GijklΠijΠkl = h−
1
2

(
ΠklΠkl − Π2

2

)
, (2.18)

we rewrite the Hamiltonian density as

H = N
(
GijklΠijΠkl − h

1
2 (3)R

)
− 2NjDiΠij. (2.19)

Thus the gravitational action assumes the form

S = 1
16π

∫ [
Πijḣij −N

(
GijklΠijΠkl − h

1
2 (3)R

)
+Ni2DiΠij

]
dtd3x. (2.20)

Through the variational principle with respect to N and Nj , we obtain the components 00
and 0j of Einstein equations for Rµν=0, which correspond to

H = GijklΠijΠkl − h
1
2 (3)R ≈ 0, (2.21)

H j = −2DiΠij ≈ 0, (2.22)
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where ≈ denotes the weakly equal sign. It means that the equation is satisfied when the
constraints are taken into account, but not throughout the phase space. These are the
secondary constraints and are called superhamiltonian and supermomentum, respectively.

By requiring that (2.21) and (2.22) do not vary in time, we do not obtain any other
constraint. Thus we have concluded the analysis of the constraints and are able to write
the Hamiltonian as

H =
∫
d3x(NH +NjH

j). (2.23)

Note that the boundary terms disregarded when constructing the Lagrangian density
would appear in the Hamiltonian if they were different from zero. It could be the case
for spaces that are not closed. However, for closed spaces, we see that the Hamiltonian
vanishes, since it is constituted by a linear combination of the constraints. Given that H
represents the energy of the system, we conclude that the energy of a closed universe is
zero.

In possession of the Hamiltonian (2.23), we are able to apply the quantization
procedure to the theory. It starts by transforming the canonical variables into operators
such that

i~{A,B} ≡ [Â, B̂], (2.24)

where the braces represent the Poisson bracket and the brackets represent the commutator.
The metric of hypersurfaces becomes an operator ĥij(x) that acts on wave functionals
Ψ(hij, φ), where φ represents the matter degrees of freedom that can be present. Thus the
Hamiltonian (2.23) leads to the following functional Schrödinger equation:

i∂tΨ =
∫
d3x(NĤ +NiĤ

i)Ψ. (2.25)

When it comes to a constraint f(q, p) = 0, the computation of [f, A] vanishes for
any operator A. In this case, this quantity in terms of operators is given by f(q̂, p̂)Ψ = 0.
Hence the constraints of General Relativity become

Ĥ Ψ = 0, (2.26)

Ĥ jΨ = 0. (2.27)

The wave functional Ψ(hij, φ) needs to satisfy both the Schrödinger equation (2.25) and
the constraints (2.26,2.27). Equation (2.26) is known as the Wheeler-DeWitt equation.
It is related to the constraint that corresponds to the invariance of the theory under
general transformations of the time coordinate. Hence, it is expected that it establishes
the dynamics of the wave function with respect to a time encompassed in the canonical
variables. Taking into account that the time derivative in Schrödinger equation appears
linearly, we usually search for time in linear terms of a conjugate momentum. However,
Ĥ does not have a term with this behaviour in general, such that identifying the time in
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this approach becomes a complicated task. Another way to identify the called problem
of time is by remembering that the Hamiltonian (2.21) is constituted by the constraints,
which are null. Thus, substituting it in the Schrödinger equation, one obtains ∂tΨ = 0, i.e.
the wave function does not depend on time t. One possible solution is to understand time
as a classical notion [24]. Another, which we apply in this work, is to identify the time in
matter degrees of freedom, in a way that (2.26) assumes the Schrödinger form.

Another challenge is related to the probabilistic interpretation of the theory, because
this presupposes a positive definite probability density, which results in 1 when integrated
over all the possibilities. However, equation (2.26) is not always a Schrödinger equation.
In the case of a Klein-Gordon equation, for instance, the probability density is not
positive definite. One solution to this problem is to consider an interpretation of Quantum
Mechanics that does not rely in probabilities, which is the case of the de Broglie-Bohm
Quantum Theory.

In its turn, equation (2.27) is related to the invariance of the theory under changes of
hij caused by spatial coordinates transformations and is called diffeomorphism constraint.
Thus the wave function is a functional of the equivalence class of metrics hij, which
describe the same geometry. The space of the three-dimensional spacelike geometries is
called superspace.

Equation (2.26) is in general difficult to solve, which we overcome in this work by
considering symmetries in order to construct the so called minisuperspace models.

For the sake of completeness, it is worth mentioning that an important improvement
is achieved by simplifying (2.21) with the called Ashtekar variables [25], which allow us
to rewrite this constraint in well known forms with well established quantizations. This
procedure constitutes the Loop Quantum Gravity approach.
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3 BOHMIAN QUANTUM GRAVITY

We now combine the formalism of the Bohmian Quantum Theory with the formalism
of canonical quantization. We start by substituting (2.22) in the superspace constraint
(2.27), where we also considered the matter field φ described by a canonical kinetic term
and a potential V . We then obtain

−2DiΠi
j + Πφ∂jφ = 0. (3.1)

Substituting the canonically conjugate momenta by δ/δhij, we find

−2hikDj
δΨ
δhjk

+ δΨ
δφ
∂iφ = 0. (3.2)

Repeating this procedure with (2.21) and (2.26) and returning ~ and c in the expressions
for a while, we obtain[

−~2
(
κGijkl

δ

δhij

δ

δhkl
+ 1

2h
− 1

2
δ2

δφ2

)
+ V

]
Ψ = 0, (3.3)

where κ = 16πG/c4 and V is the classical potential. Equation (3.3) still needs to be
regularized, since it has products of local operators at the same point.

Writing Ψ in the form ReiS/~ and substituting it in (3.2,3.3), we obtain the following
real equations:

−2hikDj
δS

δhjk
+ δS

δφ
∂iφ = 0, (3.4)

−2hikDj
δR

δhjk
+ δR

δφ
∂iφ = 0, (3.5)

κGijkl
δS

δhij

δS

δhkl
+ 1

2h
− 1

2

(
δS

δφ

)2

+ V +Q = 0, (3.6)

κGijkl
δ

δhij

(
R2 δS

δhkl

)
+ 1

2h
− 1

2
δ

δφ

(
R2 δS

δφ

)
= 0. (3.7)

In the non-regularized form, the quantum potential Q reads

Q = −~2

R

(
κGijkl

δ2R

δhijδhkl
+ 1

2h
− 1

2
δ2R

δφ2

)
, (3.8)

where one can see its dependence on ~.

Equations (3.4) and (3.6) correspond to generalized Hamilton-Jacobi equations
in General Relativity, where the quantum potential Q brings new effects to the classical
approach.
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The guidance equations of the de Broglie-Bohm theory are given by

Πij = δS

δhij
, (3.9)

Πφ = δS

δφ
, (3.10)

and result in the following trajectories:

ḣij = 2NGijkl
δS

δhkl
+DiNj +DjNi, (3.11)

φ̇ = Nh−
1
2
δS

δφ
+N i∂iφ. (3.12)

As we have seen, the dynamics described by the Bohmian theory does not depend
on the choice of coordinates on the hypersurfaces, which is mathematically represented by
the diffeomosphism constraint related to the shift vector N i. Thus we choose N i = 0 for
simplicity. In its turn, the lapse function N describes the foliation. Two different choices
of N that only differ by a factor that depends only on time t do not describe different
foliations, but rather represent a time parameterization. Thus they do not lead to different
dynamics. However, if they differ by something that does not depend only on time t, then
the Bohmian dynamics is different. This constitutes a peculiar aspect of this theory, since
General Relativity does not depend on the choice of foliation. A brief comparison between
this situation and the case of non-locality and Lorentz invariance in Special Relativity is
mentioned in [26] and more details on these calculations are given in [27].

Equation (3.11) plays an important role in the solution of the problem of time.
Although ∂tΨ = 0, ḣij is not zero, allowing us to obtain information about the evolution
of the scale factor of the universe. As mentioned before, in this work we also incorporate
matter degrees of freedom that will account for the time dependence of the wave function
Ψ.

Writing the components of the metric tensor in the ADM formalism, the Bohmian
trajectory of hij given by (3.11) results in

Gµν = 8πGTQµν , (3.13)

where T µνQ reads

T µνQ = − 2√
−g

δ

δgµν

∫
d4x′N(x′)Q(x′) (3.14)

and
Q = −8πGGijkl

|Ψ|
δ2|Ψ|
δhijδhkl

(3.15)

is the quantum potential. Thus T µνQ appears due to quantum effects and not due to the
presence of matter. In the classical domain, T µνQ vanishes and (3.13) returns to the classical
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Einstein equations. The quantum potential (3.15) is responsible for the emergence of the
bounce in cosmological scenarios, solving the singularity problem.

Now let us briefly mention a particularity about the probability interpretation in
this context. As we have seen in chapter 1, |Ψ|2 satisfies the continuity equation (1.5),
hence its interpretation as a probability density is consistent from this point of view.
However, when applied to Quantum Cosmology in order to describe the entire universe,
Bohmian Quantum Gravity does not imply in an ensemble of universes (it is the case
in the Many-Worlds interpretation). Thus a probabilistic procedure does not apply. The
statistical approach plays an important role only when dealing with subsystems of the
universe. It is an important aspect that allow us to consider non-unitary evolutions of the
wave function of the universe, which is developed in section 6.1.



Part II

BOHMIAN QUANTUM COSMOLOGY
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4 MINISUPERSPACE MODELS WITH PER-
FECT FLUID

As mentioned in chapter 2, the Wheeler-DeWitt equation (2.26) and the diffeomor-
phism constraint (2.27) are not easily solved in general. In order to reduce the degrees of
freedom and make them simpler, we resort to symmetries, which is physically justified
by the homogeneity and isotropy of the universe. Mathematically, this simplification is
made by freezing degrees of freedom, reducing the superspace to a minisuperspace. We
first perform expansions of the metric of the hypersurfaces hij, the matter degrees of
freedom, which we denote by φA, and their canonically conjugate momenta, Πij and ΠA ,
in a complete set fn, which represents space dependent modes. These expansions read

hij(x, t) = hij(0)(t) + Σ∞n=1h
ij
(n)(t)fn(x), (4.1)

φA(x, t) = φA(0)(t) + Σ∞n=1φ
A
(n)(t)fn(x), (4.2)

Πij(x, t) = Π(0)
ij (t) + Σ∞n=1Π(n)

ij (t)fn(x), (4.3)

ΠA(x, t) = Π(0)
A (t) + Σ∞n=1Π(n)

A (t)fn(x). (4.4)

We then equal some of the hij(n), φA(n), Π(n)ij and Π(n)
A to zero. The finite amount of them

that remain constitutes the minisuperspace.

Let us see how the symmetries are incorporated in the classical action. Consider
the line-element (2.3) written in the ADM formalism with N i = 0:

ds2 = −N2(t)dt2 + hij(x, t)dxidxj. (4.5)

The degrees of freedom that remain after the freezing of the other modes are represented
by qa, where a = 1, ..., n enumerates them. The metric hij can be restricted in the following
manner: we start by writing it in the form

hij(x, t)dxidxj = a2(t)dΩ2
3, (4.6)

where Ω2
3 represents the three-sphere and q1 = a.

The Einstein-Hilbert action in the ADM formalism is given by the Lagrangian den-
sity (2.14). Considering the three-dimensional Ricci scalar from (2.10) and the expression
for the extrinsic curvature (2.5) and substituting hij by (4.6), we obtain a Lagrangian of
the form

L = N
[ 1
2N2fab(q)q̇

aq̇b − V (q)
]
, (4.7)

where fab(q) is the reduced DeWitt metric Gijkl and V (q) is a potential.
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In order to obtain the Hamiltonian we first compute the conjugate momentum to
a, which reads

pa = ∂L

∂q̇a
= fab(q)

q̇b

N
. (4.8)

Substituting it in the Hamiltonian, we find

H = paq̇
a − L = N

[1
2f

ab(q)papb + V (q)
]
. (4.9)

The classical equations of motion that result from the Hamiltonian (4.9) are

q̇a = Nfab(q)pb, (4.10)

ṗa = −N
[

1
2
∂f bc(q)
∂qa

pbpc + ∂V (q)
∂qa

]
, (4.11)

while the constraint H ≈ 0 yields
1
2f

ab(q)papb + V (q) ≈ 0. (4.12)

As we show in chapter 5, the canonical quantization of this model is made with a
specific choice of operator ordering, leading to the following operator corresponding to the
Hamiltonian (4.9):

Ĥ = −1
2

1√
f

∂

∂qa

[
fab(q)

√
f
∂

∂qb

]
+ V (q), (4.13)

where f ≡ det(fab−1). The Wheeler-DeWitt equation becomes Ĥ = 0 and the guidance
equations related to Ψ = ReiS/~ are given by

q̇a = Nfab(q) ∂S
∂qb

. (4.14)

The classical equations of motion (4.10,4.11) are recovered by identifying ∂S/∂qa ≡
pa and making Q→ 0, where the quantum potential Q is given by

Q = − 1
2
√
f |Ψ|

∂

∂qa

(
fab(q)

√
f
∂

∂qb
|Ψ|
)
. (4.15)

Note that the minisuperspace models do not encompass a full Quantum Theory of
Gravity and neither represent a systematic approximation to it. However, it seems that
the results obtained through this approach are consistent within the formalism and are
reasonable enough in order to justify investigations of their physical content. We then
assume the conjecture that these models bring some information from the full theory.
More details and other possibilities of minisuperspace models can be found in [28].

The quantization procedure is detailed in the next chapter. For now we consider
a classical cosmological model where the universe is filled with a perfect fluid, which is
represented by the following Lagrangian:

LM =
√
−g

(1
2g

µν∂µφ∂νφ
)n
, (4.16)
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where φ is the potential related to the four-velocity of the fluid, which reads

Uµ = ∂µφ√
gµν∂µφ∂νφ

. (4.17)

From the definition of the energy-momentum tensor, we obtain

Tµν = 2√
−g

∂LM
∂gµν

= 2n
(1

2g
µν∂µφ∂νφ

)n
UµUν − gµν

(1
2g

µν∂µφ∂νφ
)n
. (4.18)

From the expression of the energy-momentum tensor for a perfect fluid with equation of
state P = ωρ, given by

Tµν = (ρ+ P )UµUν − Pgµν , (4.19)

where ρ is the energy density and P is the pressure, we identify

P =
(1

2g
µν∂µφ∂νφ

)n
, (4.20)

ω = 1
2n− 1 . (4.21)

Defining the canonically conjugate momentum to φ as pφ and using expressions
(4.20, 4.21), we obtain the Hamiltonian

HM = 1
ω(
√

2n)1+ω
N
p1+ω
φ

a3ω . (4.22)

In order to simplify expression (4.22), we perform a canonical transformation given by

T = ω(
√

2n)1+ω

1 + ω

φ

p1+ω
φ

, (4.23)

PT = 1
ω

(
pφ√
2n

)1+ω

, (4.24)

which leads to
HM = N

PT
a3ω . (4.25)

The same result can be achieved through the Schutz formalism, which is detailed in [29].

For the gravitational part of the action we consider the Friedmann-Lemaître-
Robertson-Walker line-element

ds2 = −N2dt2 + a2
(

dr2

1− kr2 + r2dθ2 + r2 sin2 θdφ2
)
, (4.26)

where k is the spatial curvature.

The Lagrangian density (2.14) constitutes the gravitational part of the Einstein-
Hilbert action, which, considering (4.26), reads

SG =
∫
dtd3x

(
äa2

N
− ȧṄa2

N2 + 6ȧ2a

N
+ kNa

)
. (4.27)



Chapter 4. MINISUPERSPACE MODELS WITH PERFECT FLUID 32

Integrating by parts and disregarding the boundary terms, we obtain

SG =
∫
dtd3x

(
−aä

2

N
+ kaN

)
. (4.28)

The canonically conjugate momentum to a is

Pa = ∂LG

∂ȧ
= −2aȧ

N
, (4.29)

yielding the following Hamiltonian:

HG = N

(
−P

2
a

4a − 6ka
)
. (4.30)

Joining the gravitational part to the matter part in an universe with k = 0, which
seems to be favored by observations, we obtain the following minisuperspace Hamiltonian:

H = N

(
−P

2
a

4a + PT
a3ω

)
, (4.31)

which leads to the superhamiltonian constraint (2.21) of the form

N

(
−P

2
a

4a + PT
a3ω

)
= 0. (4.32)

This procedure yields a configuration space constituted by the dinamical variables a and
T , together with their conjugate momenta Pa and PT .

Note that the Hamiltonian (4.31) has a momentum appearing linearly, which
corresponds to the expected behavior of a time variable in Schrödinger equation. Thus
this variable related to the perfect fluid plays the role of time in this model. Beyond
that, Ṫ = N/a3ω, which means that T changes monotonically, being consistent with the
interpretation of a time variable.

In this classical approach, we have a ∝ T 2/3(1−ω) for ω 6= 1, which represents a
singularity at T = 0. In the next chapter we perform the quantization of this model and
show how the bounce solutions are obtained. Chapters 5 and 6 correspond to the paper
[30].
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5 SYMMETRIC QUANTUM BOUNCES

As derived in chapter 4, leading to equation (4.31), for a flat, homogeneous and
isotropic universe filled with a perfect fluid with equation of state P = ωρ, where P is the
pressure, ρ is the energy density and ω is the equation of state parameter, the ADM [23]
formalism leads to the following Hamiltonian

H =
L2
p

V
NH0, (5.1)

where N is the lapse function, Lp is the Planck length and V is the volume of the co-moving
homogeneous three-dimensional hypersurface, which we are supposing to be compact. The
factor L2

p/V was reinserted in order to make the Hamiltonian’s dimension explicit. Since
we are using natural units, ~ = c = 1, all canonical variables contained in NH0 are
dimensionless, and the Hamiltonian has dimension of energy = 1/length, as it should be.
As we have shown, H0 is given by

H0 ≡
PT
a3ω −

P 2
a

4a , (5.2)

where a is the scale factor of the universe, T is the parameter related to the degree of
freedom of the fluid, which plays the role of time, Pa and PT are their respective canonically
conjugate momenta. The constant L2

p/V will be absorbed in the definition of time later on,
yielding a dimensionless cosmic time. The Friedmann equations can be readily obtained
from the Hamiltonian

H = NH0. (5.3)

Applying the Dirac quantization procedure for constrained systems, where the wave
function is annihilated by the the constraint operator, Ĥ0Ψ = 0, and taking into account
a particular choice of the factor ordering [31], which leads to a Schrödinger equation with
a covariant Laplacian under redefinitions of a, we arrive at the following Wheeler-DeWitt
equation:

i
∂

∂T
Ψ(a, T ) = a(3ω−1)/2

4
∂

∂a

[
a(3ω−1)/2 ∂

∂a

]
Ψ(a, T ). (5.4)

Performing the variable transformation given by

χ = 2
3(1− ω)a

3(1−ω)/2, (5.5)

we obtain
i
∂Ψ(χ, T )

∂T
= 1

4
∂2Ψ(χ, T )

∂χ2 , (5.6)

which can be identified as a Schödinger equation for a free particle of mass m = 2 and
negative kinetic energy in one dimension. The solutions of equation (5.6) are the wave
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functions of the universe. With the choice N = a3ω for the lapse function, the parameter
T relates to the dimensionless cosmic time t = (L2

p/V )tc through dt = a3ωdT , where tc is
the usual cosmic time, with dimension of length.

Since the scale factor a and, consequently, the variable χ must assume positive
values, we are dealing with a Schrödinger equation for a particle with negative kinetic
energy in the half axis [32]. In order to obtain unitary solutions and, as a consequence, a
consistent probabilistic interpretation, it is necessary to perform a self-adjoint extension,
that is, to consider the perfectly reflecting boundaries, which are given by the following
condition: (

Ψ∗∂Ψ
∂χ
−Ψ∂Ψ∗

∂χ

)∣∣∣∣∣∣
χ=0

= 0. (5.7)

Note, however, that the de Broglie-Bohm Quantum Theory is a dynamical fundamental
theory, where probabilities arise in a secondary step, as in Classical Mechanics. And
indeed, a probabilistic interpretation of the wave function of the Universe may not make
sense, since there is only one universe in this approach. A probabilistic interpretation is
required only for subsystems in the Universe, where we can perform measurements. In this
situation, one can use the so called conditional wave functions for subsystems, in which
the Wheeler-DeWitt equation reduces to an unitary Schrödinger form, and a probabilistic
interpretation where the Born rule is valid can be recovered, which is called quantum
equilibrium, see [33, 34] for details. Of course this opens the possibility that during this
process violations of standard Quantum Mechanics might occur. Unfortunately, almost all
systems in Nature have evolved to the quantum equilibrium phase, where the probability
distribution is described by ρ, see [35, 36] for detailed investigations about this process,
and possible exceptions. Concluding, in what follows, we will not require unitary evolution
as necessary feature of the minisuperspace wave function.

Writing the wave function as Ψ = ReiS, and substituting into equation (5.4), we
obtain two real equations,

∂ρ

∂T
− ∂

∂a

[
a(3ω−1)

2
∂S

∂a
ρ

]
= 0, (5.8)

∂S

∂T
− a(3ω−1)

4

(
∂S

∂a

)2

+ a(3ω−1)/2

4R
∂

∂a

[
a(3ω−1)/2∂R

∂a

]
= 0, (5.9)

where ρ(a, T ) = a(1−3ω)/2|Ψ|2.

The key feature of the de Broglie-Bohm Quantum Theory is to assume that
positions in configuration space (in our case a) have objective reality, independently of
any observation, and satisfy the guidance equation

ȧ = −a
(3ω−1)

2
∂S

∂a
, (5.10)
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or
dχ

dT
= −1

2
∂S

∂χ
. (5.11)

With equation (5.10), one can interpret (5.8) as a continuity equation for the
distribution ρ and (5.9) as a generalized Hamilton-Jacobi equation supplemented by the
quantum potential

Q ≡ −a
(3ω−1)/2

4R
∂

∂a

[
a(3ω−1)/2∂R

∂a

]
. (5.12)

If one wants to recover the physical dimensions of equations (5.8, 5.9), one can easily verify
that Planck constant ~ re-appears only multiplying the quantum potential, Q → ~2Q.
Hence Q brings the quantum effects to the dynamics. Since the total energy given by (5.9)
includes also the quantum potential Q, the trajectory given by (5.10) will not be the same
as the classical one, unless Q is negligible with respect to the other terms. This effect
is responsible for the emergence of the quantum bounce, avoiding the standard classical
initial singularity.

Let us consider an initial wave function of the universe given by

Ψ0(χ) =
( 8
πσ2

) 1
4

exp
(
−χ

2

σ2

)
, (5.13)

which satisfies the boundary condition (5.7). In order to obtain a unitary evolution, we must
apply the correspondent propagator to the Wheeler-DeWitt equation (5.6) considering the
boundary condition (5.7). It means that we must sum two propagators of a Schrödinger
equation with negative kinetic energy and mass m = 2 (which corresponds to the obtained
Wheeler-DeWitt equation), one to χ0 and another to −χ0. The propagator of a Schrödinger
equation for a free particle with mass m = 2 is given by

G(χ, χ0, T ) =
√
− i

πT
exp

[
i(χ− χ0)2

T

]
. (5.14)

In order to account for the negative kinetic term in the Wheeler-DeWitt equation, we
must take the complex conjugate of the argument in the exponential. The overall factor√
−i/πT does not need to be changed, since it simply multiplies the both sides of the

Wheeler-DeWitt equation. Therefore, summing the propagator to χ0 and the propagator
to −χ0, we obtain

G(χ, χ0, T ) =
√
− i

πT
exp

[
−i(χ− χ0)2

T

]
+
√
− i

πT
exp

[
−i(χ+ χ0)2

T

]
. (5.15)

The propagator (5.15) is not the most general one that satisfies the boundary condition (5.7).
One could, for instance, change the relative sign to minus in order to obtain G(χ = 0) = 0.
However, this propagator leads to a trivial solution for the propagated wave function of the
universe. Thus, in practice, the propagator that results in a non-trivial solution satisfies
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a more restrictive boundary condition, which is given by the von Neumann condition
∂χG|χ=0 = 0. Superpositions of the propagators with relative signs plus and minus with a
phase difference of ±π/2 are also allowed. However, the only difference in the propagated
wave function is a factor that does not modify the Bohmian trajectories.

Applying (5.15) to the initial wave function (5.13), i.e. performing the integration

Ψ(χ, T ) =
∫ ∞

0
G(χ, χ0, T )Ψ0(χ0, T )dχ0, (5.16)

we arrive at the wave function for all times

Ψ(χ, T ) =
[

8σ2

π(σ4 + T 2)

] 1
4

exp
[
− σ2χ2

σ4 + T 2

]

× exp
[
−i
(

Tχ2

σ4 + T 2 + 1
2 arctan

(
σ2

T

)
− π

4

)]
, (5.17)

which also satisfies equation (5.7). Using the phase S of the above wave function, we are
able to obtain the trajectory of the parameter χ through equation (5.11). It reads

χ(T ) = χb

[
1 +

(
T

σ2

)2] 1
2

, (5.18)

where χb is the value of χ at the bounce, which occurs at T = 0. One can recover the
classical solution by taking a Gaussian infinitely peaked. In order to do that, one should
consider the differential equation with initial condition χ0 = χ(T0), which leads to the
solution

χ(T ) = χ0

√
T 2 + σ4√
T 2

0 + σ4
. (5.19)

Then, by making σ2 → 0, the classical cosmology given by χ(T ) = χ0T/T0 is obtained.

In terms of the scale factor a one gets

a(T ) = ab

[
1 +

(
T

σ2

)2] 1
3(1−ω)

, (5.20)

where ab and χb are related also through equation (5.5). Equation (5.20) describes a
symmetric bounce, which is plotted in figure 1. It tends to the classical solution for large
values of T : a ∝ t1/2 for radiation fluid (ω = 1/3) and a ∝ t2/3 for dust fluid (ω = 0).

A good model for the perfect hydrodynamical fluid in the early universe, where all
particles are highly relativistic, is a radiation fluid with w = 1/3, which will be considered
from now on. Note that, in this case, T = η, the conformal time (remember the relation of
T with cosmic time t, dt = a3wdT ).

It is convenient to express the bounce solution in terms of cosmological quantities,
which is achieved by relating the parameters of the wave function to observables. With
this purpose, we will follow the same procedure developed in [37]. We first obtain the
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Figure 1 – a vs T for ω = 1
3 .

Hubble function, given by H = ȧ
a
, where dot denotes the derivative with respect to the

physical cosmic time1. We then take an expansion of the Hubble function squared for large
times T , which reads

H2 = a2
b

a4σ4 = H2
0 Ωr0

a4
0
a4 , (5.21)

where in the last equality we used the classical Friedmann equation, yielding

Ωr0 = a2
b

a4
0H

2
0σ

4 , (5.22)

where Ωr0 = ρr0/ρc0 is the dimensionless density parameter for radiation today. The
subscript 0 in all quantities indicates their current values. The quantities ρr0 and ρc0 =
3H2

0/8πG are, respectively, the current energy density of radiation and the current critical
density.

Performing the following transformation of variables

xb = a0

ab
, (5.23)

σ = σ
√
a0H0, (5.24)

we obtain
σ2 = 1

xb
√

Ωr0
. (5.25)

1 When relating the parameters with cosmological observables, one must go back to the physical cosmic
time, tc = (V/L2

p)t. The constant V/L2
p can be absorbed in the dimensionless variance σ, see equation

(5.18), yielding a variance with dimensions of length1/2. This turns the subsequent equations with the
correct physical dimensions.



Chapter 5. SYMMETRIC QUANTUM BOUNCES 38

The Ricci scalar R in the case of a flat Friedmann-Lemaître-Robertson-Walker
space-time reads

R = 6
(
ä

a
+ ȧ2

a2

)
. (5.26)

In its turn, the curvature scale at the bounce is given by

Lb = 1√
R

∣∣∣∣∣
T=0

= σ2
√

6xbH0
= 1
x2
bH0
√

6Ωr0
. (5.27)

To ensure that the Wheeler-DeWitt equation is a valid approximation for a more
fundamental theory of Quantum Gravity [38], we must require that the bounce scale is
larger than the Planck scale, i.e. Lb > Lp. Taking H0 ≈ 70 km× s−1 ×Mpc−1, Ωr0 ≈ 10−4

and given that Lp/RH0 ≈ 1.25× 10−61, where RH0 = 1/H0 is the Hubble radius today, we
obtain the upper bound for xb

xb < 1.8× 1031. (5.28)

The lower limit can be obtained by requiring that the bounce occurs at energy
scales much larger than the nucleosynthesis energy scale, i.e. TBBN = 10 MeV. Using the
CMB temperature equal to Tγ0 = 2.7 K in Mev and the inverse linear relation between
the temperature and the scale factor, i.e. T ∝ a−1, which allows us to write

Tγ0

TBBN
= aBBN

a0
= x−1

BBN, (5.29)

we obtain
xb � 1011, (5.30)

where BBN stands for Big Bang nucleosynthesis.

5.1 Generalized symmetric quantum bounces
Although the simplicity of the previous symmetric bounce, it represents a fine-

tuning in the theory, since the contracting phase is restricted to be the same as the
expansion reversed in time. For this reason, we aim to obtain cosmological models with
asymmetric trajectories for the scale factor a.

Our initial proposal to obtain asymmetric solutions was to include a factor of the
form exp(ipχ) in the initial wave function, which represents a velocity for the Gaussian
proposed in equation (5.13). Thus we have

Ψ0(χ) =
( 8
πσ2

) 1
4

exp
(
−χ

2

σ2 + ipχ

)
. (5.31)

Note that this initial wave function does not satisfy the boundary condition (5.7), which
means that unitarity is not satisfied at T = 0. However, implementing a convolution
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between this initial wave function and a propagator that satisfies condition (5.7), we
are, in practice, dealing with the projection of Ψ0 onto the subspace of square-integrable
functions on the χ half-line satisfying the von Neumann boundary condition. As a result,
the propagated wave function that results from this convolution satisfies (5.7).

Propagating this initial wave function (5.31) with the propagator (5.15) from 0 to
+∞, that is, performing an unitary evolution, we obtain the following wave function for
all times:

Ψ(χ, T ) = (2πσ2)− 1
4

(
−1 + iT

σ2

)− 1
2
[
φ(χ, T ) + φ(−χ, T )

]
, (5.32)

where

φ(χ, T ) ≡ exp
[
− σ2χ2

T 2 + σ4 −
T (p2Tσ2 − 4pσ2χ)

4(T 2 + σ4)

+ i

(
− Tχ2

T 2 + σ4 + σ2(p2Tσ2 − 4pσ2χ)
4(T 2 + σ4)

)](
1− Erf [ε(χ, T )]

)
(5.33)

and

ε(χ, T ) ≡
(
pT

2 + χ

)[
iT

(
−1 + iT

σ2

)]− 1
2

. (5.34)

The wave function (5.32) satisfies the boundary condition (5.7). Thus, as mentioned before,
the non-unitarity at the point T = 0 for the initial wave function (5.31) does not spoil the
unitarity after the convolution with the propagator (5.15).

We can see from equation (5.32) that the wave function was propagated equally
to χ and to −χ. Thus terms and arguments that are linear in χ are symmetrized with
respect to χ = 0 by the unitary evolution with the propagator (5.15).

In order to exemplify a Bohmian trajectory for the scale factor a related to an
unitary wave function with factors of the form exp(ipχ), we are going to consider only the
terms

Ψ(χ, T ) = (2πσ2)− 1
4

(
−1 + iT

σ2

)− 1
2
[
φ(χ, T ) + φ(−χ, T )

]
,

where

φ(χ, T ) ≡ exp
[
− σ2χ2

T 2 + σ4 −
T (p2Tσ2 − 4pσ2χ)

4(T 2 + σ4)

+ i

(
− Tχ2

T 2 + σ4 + σ2(p2Tσ2 − 4pσ2χ)
4(T 2 + σ4)

)]
, (5.35)

which also constitutes an unitary solution of the Wheeler-DeWitt equation (5.6). The
choice to disregard the Gauss’s error functions is for the sake of simplicity.
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Inserting the global phase S of the wave function (5.35) into equation (5.11), it is
possible to obtain a differential equation for the parameter χ. It reads

dχ

dT
=

2Tχ cos
(

2pσ4χ
T 2+σ4

)
+ 2Tχ cosh

(
2pTσ2χ
T 2+σ4

)
+ pTσ2 sin

(
2pσ4χ
T 2+σ4

)
+ pσ4 sinh

(
2pTσ2χ
T 2+σ4

)

2(T 2 + σ4)
[
cos
(

2pσ4χ
T 2+σ4

)
+ cosh

(
2pTσ2χ
T 2+σ4

)] .

(5.36)

Using equation (5.5) in (5.36) and solving it numerically with initial condition
ai = a(Ti), we obtain the trajectory of the scale factor a(T ), which is plotted in figure 2.
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Figure 2 – a vs T for σ = 1.0, ai = 1.0, Ti = 1.0, ω = 1
3 .

The result is a symmetric bounce, regardless of the value of the parameter p related
to the asymmetry. It happens when the unitary evolution for factors of the form exp(ipχ)
is maintained. As explained before, since these factors are linear in χ inside the exponential,
they are going to be propagated equally to χ and to −χ, resulting in a symmetrization of
the propagated wave function and, as a consequence, of the trajectory of the scale factor a.

Note that different symmetric bounces can be obtained in other approaches to
quantum cosmology. For instance, in references [39, 40], a relational quantization method
was implemented, where unitarity is a necessary requirement in order to obtain a consistent
probabilistic interpretation, and bouncing models were also found. On the other hand, our
work relies on a deterministic interpretation of Quantum Mechanics, where probabilities are
not fundamental, allowing to explore the consequences of wave functions of the Universe
which are not restricted to evolve satisfying unitarity requirements.
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6 ASYMMETRIC QUANTUM BOUNCES

6.1 Non-unitary asymmetric quantum bounces
An alternative to this hindrance is to give up unitarity, which is allowed according

to the discussion previously made. In practise, it means to disconsider the boundary
condition (5.7). The correspondent propagator is then only the first term of the propagator
(5.15), given by

GNU(χ, χ0, T ) =
√
− i

πT
exp

[
−i(χ− χ0)2

T

]
, (6.1)

where NU stands for non-unitary. Applying the propagator (6.1) to the initial wave
function (5.31) without the normalization factor from −∞ to +∞, we obtain the following
wave function for all times:

Ψ(χ, T ) =
(
−1 + iT

σ2

)− 1
2

exp

 ip2T
4 + ipχ− χ2

σ2

1− iT
σ2

 . (6.2)

We take the integration from −∞ to ∞ in (6.1) in order to avoid terms containing Gauss
error functions that arise if the integration is performed from 0 to ∞. In the end we must
check that the restriction χ > 0 is still staisfied.

Writing equation (6.2) as Ψ(χ, T ) = R(χ, T )eiS(χ,T ), we obtain

Ψ(χ, T ) =
(
− 1 + iT

σ2

)− 1
2

φ(−χ, T ), (6.3)

where φ(χ, T ) is given by equation (5.35) (the first factor in the above equation does not
depend on χ, hence it does not affect the calculation of the Bohmian trajectories). Then,
by inserting S into (5.11), it is possible to obtain the trajectory in terms of χ. It reads

χ(T ) = χb

[
1 +

(
T

σ2

)2
+
(
p

2χb

)2

(T 2 + σ4)
] 1

2

− pT

2 , (6.4)

where χb = χ(Tb) is the value of the variable χ at the moment of the bounce Tb = pσ4

2χb
,

which is not equal to zero as in the symmetric case. In terms of the scale factor, the
trajectory reads

a(T ) =

− 3p(1− ω)
4 T + a

3(1−ω)
2

b

1 +
(
T

σ2

)2
+
(

3p(1− ω)
4

)2 (T 2 + σ4)
a

3(1−ω)
b

 1
2


2
3(1−ω)

, (6.5)

where ab relates to χb through equation (5.5). The trajectory (6.5) is shown in figure 3 for
w = 1/3, where it is evidenced that the value of the parameter p is directly related to the
intensity of the asymmetry.
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Note that equation (6.5) does not admit a singularity or negative values for a(T ),
since we always have

3p(1− ω)
4 T < a

3(1−ω)
2

b

1 +
(
T

σ2

)2
+
(

3p(1− ω)
4

)2 (T 2 + σ4)
a

3(1−ω)
b

 1
2

. (6.6)

This ensures that the restrictions χ > 0 and a > 0 are satisfied, although we have
disregarded the boundary condition (5.7) and propagated the wave function from −∞ to
∞. A bounce solution is naturally obtained, without the need to impose restrictions to
recover the positivity of the scale factor.

For p = 0 we re-obtain the symmetric bounce (5.20), which makes explicit the
relation between the asymmetry and the factor exp(ipχ).

As in the symmetric case, the classical solution arises for large values of T .
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Figure 3 – a vs T for σ = 1.0, ab = 1.0, ω = 1
3 .

In order to obtain a slope in the contracting phase lower than the slope in the
expanding phase, one has to take p < 0, or, equivalently, to change the factor from exp(ipχ)
to exp(−ipχ) in the initial wave function (5.31) keeping p > 0. This case is particularly
interesting, since the contracting phase may consist of an almost Minkowski universe.
Applying the same procedure to obtain the Bohmian trajectory, we obtain a, which is
plotted in figure 4.

Just as we did for the symmetric case, let us express the wave function parameters
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Figure 4 – a vs T for σ = 1.0, ab = 0.1, ω = 1
3 .

in terms of cosmological quantities for the case w = 1/3. Defining the parameters

xb = a0

ab
, (6.7)

σ = σ
√
a0H0, (6.8)

p = p

a2
0H0

, (6.9)

η = η

σ2 , (6.10)

y2 = xbpσ
2

2 , (6.11)

one can write
a = ab

(
±y2η +

√
1 + y4

√
1 + η2

)
, (6.12)

where the ± signs correspond to wave function phases exp(∓ipχ), with p ≥ 0. In the limit
|η| >> 1, we get for the Hubble function,

H2 =

(
±y2 +

√
1 + y4

)2

a2
bH

2
0a

2
0

σ4a4 = H2
0 Ωr0

a4
0
a4 , (6.13)

in the expanding phase, and

H2 =

(
∓y2 +

√
1 + y4

)2

a2
bH

2
0a

2
0

σ4a4 = H2
0 Ωrc

a4
0
a4 , (6.14)

in the contracting phase, where Ωrc is the radiation energy density when the Universe has
H = H0 in the contracting phase divided by the critical density ρc. These equations imply
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that

Ωr0 =

(
±y2 +

√
1 + y4

)2

σ4x2
b

, (6.15)

σ2 =
[
x2
bΩr0

(
1∓ p√

Ωr0

)]−1/2

, (6.16)

and

Ωrc = Ωr0

(
1∓ p√

Ωr0

)2

. (6.17)

Note that the + sign in equation (6.12) implies, from equation (6.16), that 0 ≤
p <
√

Ωr0. From equation (6.17), one can see that Ωrc ≤ Ωr0, and in the limit p→
√

Ωr0

one has Ωrc → 0. Hence, the contracting universe can be made arbitrarily flat, and the
radiation fluid is created around the quantum phase, during the bounce.

In the − sign case in equation (6.12), there is no constraint in p, 0 ≤ p <∞, and
Ωrc ≥ Ωr0.

In this asymmetric case, the maximum curvature does not occur at the bounce,

ηbounce = ∓y2, but at the conformal time ηmax = ∓
√√

1+y4−1
2 . Hence, the minimum

curvature scale reads

Lmin = 1√
R

∣∣∣∣∣
ηmax

=
RH0

(
1 +

√
1∓ p√

Ωr0

)3

8
√

3Ωr0x2
b

(
1∓ p√

Ωr0

)2
√(

2∓ p√
Ωr0

) . (6.18)

Note that equations (6.16, 6.18) reduce to their correspondents in the symmetric case
given by (5.25, 5.27) for p = 0.

As in the symmetric case, we require that the bounce scale is larger than the Planck
scale, that is Lmin > Lp, and smaller then the curvature scale at nucleosynthesis. Hence,
we demand

10−58 <<
Lmin

RH0
< 10−20. (6.19)

Note that, in the asymmetric case, there is no direct relation between xb and Lmin

due to the presence of p in equation (6.18). Hence, neither xb nor p have independent
physical significance, just when combined to give Lmin. That is why, in this case, the
condition must be put in terms of (6.19).

6.2 Unitary asymmetric quantum bounces
Another alternative to obtain asymmetric solutions is to perform superpositions

of Gaussian wave functions multiplied by factors of the form exp[i(pχ)2]. Since the term
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inside the exponential is not linear in χ, it is possible to generate asymmetry maintaining
unitarity. Note that the asymmetry is achieved only when we perform superpositions. A
single Gaussian in this format would lead to a symmetric bounce.

Considering the following superposition for the initial wave function

Ψ0(χ) = C

[
exp

(
−χ

2

σ2 + ip2
1χ

2
)

+ exp
(
−χ

2

σ2 − ip
2
2χ

2
)]
, (6.20)

where

C =
√

2
π

1
4

{[
−i(p2

1 + p2
2) + 2

σ2

]− 1
2

+
[
i(p2

1 + p2
2) + 2

σ2

]− 1
2

+
√

2σ
}−1/2

, (6.21)

and applying the unitary propagator (5.15), we obtain a wave function for all times given
by

Ψ(χ, T ) =
C exp

(
−iχ2

T

)
[
iT
(
−ip2

1 + i
T

+ 1
σ2

) (
ip2

2 + i
T

+ 1
σ2

)] 1
2

×
{

exp
[

iχ2

T − iT 2( 1
σ2 + ip2

2)

](
− ip2

1 + i

T
+ 1
σ2

) 1
2

+ exp
[

iχ2

T − iT 2( 1
σ2 − ip2

1)

](
ip2

2 + i

T
+ 1
σ2

) 1
2
}
. (6.22)

Note that both (6.20) and (6.22) satisfy the boundary condition (5.7). Thus this
case is unitary for all times.

Defining

γi = (−1)ip2
i + 1

T
, βi = γ2

i + 1
σ4 , (6.23)

α = γ1

β1

χ2

T 2 −
γ2

β2

χ2

T 2 −
1
2 arctan

(
γ1σ

2
)

+ 1
2 arctan

(
γ2σ

2
)

(6.24)

and writing equation (6.22) as Ψ(χ, T ) = R(χ, T )eiS(χ,T ), we can insert the phase S into
(5.11) to obtain the differential equation for the parameter χ, given by
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dχ

dT
= −

{
exp

(
− 2χ2

σ2β1T 2

)(
−T + γ1

β1

)
2β

1
2
2
χ

T 2 + exp
[
−
(

1
β1T 2 + 1

β2T 2

)
χ2

σ2

]

× (β1β2)
1
4

[
2 cos(α)χ

T 2

(
−2T + γ1

β1
+ γ2

β2

)
+ 2 sin(α)χ

σ2β2T 2

]
+ exp

[
− 2χ2

σ2β2T 2

]

×

−2β
1
2
1

(
β2 − γ2

T

)
χ

β2T
− exp

[
−
(

1
β1T 2 −

1
β2T 2

)
χ2

σ2

]
2β

1
4
2 sin(α)χ
σ2β

3
4
1 T

2

}

×
{

2 exp
(
− 2χ2

σ2β2T 2

)
β

1
2
1 + 2 exp

(
− 2χ2

σ2β1T 2

)
β

1
2
2 + 4 exp

[
−
(

1
β1T 2 + 1

β2T 2

)
χ2

σ2

]

× (β1β2) 1
4 cos(α)

}−1

. (6.25)

For p1 = 0 and p2 = 0, i.e. γ1 = γ2 = 1/T and β1 = β2 = 1/T 2 + 1/σ4, we obtain

dχ

dT
= Tχ

T 2 + σ4 , (6.26)

which can be solved analytically and results in the trajectory (5.18) obtained before for
the symmetric case.

Solving equation (6.25) numerically with initial condition ai = a(Ti), we obtain the
trajectory for the parameter χ and then, using equation (5.5), for the scale factor a. The
result is plotted in figure 5. Note that symmetric bounces are also obtained if p1 = p2.
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p1=1.0, p2=1.0

-2 -1 1 2
T

1

2

3

4

a

Figure 5 – a vs T for σ = 1.0, ai = 1.0, Ti = 1.0 ω = 1
3 .

The numerical solution of (6.25) also encompasses multiple bounces for certain
values of the parameters σ, p1 and p2 and of the initial values ai and Ti. See figure 6.
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p1=5.0, p2=2.0

p1=6.0, p2=2.0
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Figure 6 – a vs T for σ = 1.5, ai = 5.0, Ti = 1.0, ω = 1
3 .

As we did for the other bounce solutions, we express the wave function parameters
in terms of cosmological quantities. Expanding the square of the correspondent Hubble
function for large times T , we obtain

H2 = a2
i

a4(T 2
i + σ4) . (6.27)

Identifying the dimensionless density parameter for radiation today Ωr0 = ρr0/ρc0 as the
coefficient of (a0/a)4, we obtain

Ωr0 = a2
i

a4
0H

2
0 (T 2

i + σ4) . (6.28)

In order to rewrite (6.28) in terms of ab and Tb, we expand (6.25) for p1σ � 1 and
p2σ � 1 up to the second order. Under these conditions, i.e. with small parameters related
to asymmetry, we obtain a solution with a single bounce, given by

a(T ) = ab

1− (p2
1 − p2

2)T
2
(
1 + T 2

σ4

)
√1 + T 2

σ4 , (6.29)

where it is possible to relate Tb, p1 and p2 in the limit T/σ2 � 1 up to first order by
making da/dT = 0. As a result we obtain

Tb = (p2
1 − p2

2)σ4

2 . (6.30)

Substituting (6.30) in (6.28), we note that the term (p2
1 − p2

2)σ4 appears in Ωr0 squared.
Thus p1σ and p2σ appear in fourth order and, according to our approach, should be
disregarded. It means that the relations between the wave function parameters and the
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observables in this limit reduce to the relations of the symmetric case. We keep the term
containing p1 and p2 in the expressions from now on in order to see where the corrections
from the parameters related to asymmetry appear.

Performing the following transformation of variables

xb = a0

ab
, (6.31)

σ = σ
√
a0H0, (6.32)

p2
i = p2

i

a0H0
, (6.33)

where i = 1, 2, we obtain

σ2 =
√√√√ 2
x2
bΩr0 +

√
x2
bΩr0[(p2

1 − p2
2)2 + x2

bΩr0]
. (6.34)

Note that equations (6.27, 6.28, 6.34) reduce to their correspondents in the symmetric
case given by (5.21, 5.22, 5.25) if we disregard the terms p1σ and p2σ in fourth order.
Obviously, the same applies for p1 = p2 = 0, which implies Ti = Tb = 0.

For this particular case, i.e. T/σ2 � 1 up to first order and for p1σ � 1 and
p2σ � 1 up to second order, the curvature scale at the bounce Lb assumes the same form
of the symmetric case given by equation (5.27) with σ2 given by (6.34).

We now go back to the general case given by equation (6.25) and verify for which
values of the parameters the bounce scale is larger than the Planck scale and smaller
than the nucleosynthesis scale. We find Lb numerically for some non-multiple asymmetric
bounces, and we obtain the correspondent bounce energy Eb = L

−1/2
b for each case. The

results are shown in table 1.

p1σ p2σ Lb (s) Eb (MeV)
2.5 1.0 3.59934× 10−3 16.66820
3.5 1.0 5.95604× 10−4 40.97522
4.5 1.0 1.61263× 10−4 78.74681
5.5 1.0 5.75934× 10−5 131.76909
6.5 1.0 1.19055× 10−5 201.63933
7.5 1.0 4.78629× 10−5 289.81846
8.5 1.0 6.32385× 10−6 397.65741
9.5 1.0 3.60849× 10−6 526.42560
10.5 1.0 2.17979× 10−6 677.31783
1.0 2.5 5.64555× 10−3 13.30904
1.0 3.5 1.00531× 10−3 31.53917
1.0 4.5 2.75388× 10−4 60.25975
1.0 5.5 9.80995× 10−5 100.96402

Table 1 – Lb and Eb for σ = 1.0, ai = 1.0, Ti = 1.0, ω = 1
3 .
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Since Lp ≈ 5 × 10−44 s, we see that Lb >> Lp for all bounces considered. As
mentioned before, this means that the validity of the Wheeler-DeWitt equation as an
approximation to a more fundamental Theory of Gravity is well established. Beyond that,
the bounce must occur at energy scales much larger than the nucleosynthesis scale, i.e.
10 MeV, which is not achieved by all cases considered. Indeed, as one can see from table
I, the energy scale of such bounces are not much bigger than the nucleosynthesis energy
scale, but they are many orders of magnitude smaller than the Planck energy scale. Hence,
the physically relevant consistency check of such bouncing models is the upper limit of Lb,
not its lower limit, which makes the distinction between Lb and Lmin irrelevant.

The cases p1σ > 10.9, p2σ = 1.0 and p1σ = 1.0, p2σ > 5.8 represent multiple
bounces. Consecutive bounces are also encountered in Quantum Reduced Loop Cosmology,
in a scenario called emergent bounce [41]. It describes a series of bounces with successive
increasing amplitudes. In our work, the multiple bounces do not necessarily present this
behaviour. The solutions we found also allow for more than one bounce, but with similar
amplitudes, before being launched to the expanding phase.
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Conclusion

We have obtained generalizations of the quantum bounce solutions presented in
references [5, 13], which are asymmetric with respect to the bounce and even possessing
multiple bounces. These generalizations represent a key feature that allows for cosmological
solutions where the contracting phase differs from the expansion.

In the case where the evolution of the wave function is non-unitary, the asymmetry
is achieved through a phase velocity provided to the gaussian. We have shown that the
unitary propagation in this case results in a symmetrization of the trajectory of the scale
factor with respect to the bounce. This obstacle is overcome by disregarding the boundary
condition (5.7), which is allowed by the de Broglie-Bohm Quantum Cosmology, since it
does not lead to an ensemble of universes. Analytical asymmetric solutions are obtained
and related to observables, which allows us to bound the minimum curvature scale. One
particular class of interesting solutions for this case is the one exhibited in figure 4. It
describes expanding cosmological solutions arising from an almost flat space-time. As
discussed in section 6.1, the energy density at contraction can be made arbitrarily small,
depending on the new quantum parameter p, related to the phase velocity of the initial
wave function of the universe. The emerging picture is of an arbitrarily flat and almost
empty space-time, which is launched through a bounce into the standard Friedmann
expanding phase, containing the usual hot and dense radiation field. This fact open new
windows to an old speculation, that our Universe arose from quantum fluctuations of a
fundamental quantum vacuum. The de Broglie-Bohm theory allows a different regard to
this hypothesis and the concrete possibility to extend this particular minisuperspace model
by incorporating quantum cosmological perturbations to the system and quantitatively
study their observational effects. This is subject for future work.

In the case where the asymmetry is a result of the superposition (6.20), unitary
evolution is satisfied, although not required. The resulting differential equation for the
trajectory of the scale factor can be solved numerically, opening possibilities for single
or multiple asymmetric bounces, depending on the values of the parameters of the wave
function and on the initial condition. A numerical computation of the curvature scale
of these bounces is performed, pointing a proximity to the nucleosynthesis energy scale.
An approximate solution for the limit p1σ � 1 and p2σ � 1 up to second order can be
obtained, allowing us to relate the parameters of the wave function to observables. The
resulting relations reduce to the ones of the symmetric case, which is expected given the
smallness of the parameters related to asymmetry.

The asymmetric trajectories of the scale factor obtained in this work may be used to
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take into account significant back-reaction due to quantum particle production around the
bounce, see references [37, 42]. As an example, we investigated, together with collaborators,
a gravitational baryogenesis mechanism [44, 43] in those asymmetric solutions, which is
encompassed in a broad work on baryogenesis in bouncing cosmologies, which we present
soon.

In brief, our aim of finding asymmetric quantum bounces in the context of the
Wheeler-DeWitt quantization with the de Broglie-Bohm interpretation of Quantum Me-
chanics was successfully achieved. Classes of asymmetric bounces were obtained both
numerically and analytically, allowing for the emergence of our classical universe for large
times. Interesting findings arose by investigating unitarity in these models, leading to
different scenarios created by distinct formats of the initial wave function of the universe,
including a bounce model with an almost Minkowski contracting phase.
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