
M
ar

ch
2
, 2

0
2
1

at
2
3
:16

R A D I AT I V E P R O C E S S E S O F E N TA N G L E D D E T E C T O R S I N
R O TAT I N G F R A M E S

gabriel picanço costa

Centro Brasileiro de Pesquisas Físicas (CBPF)

June 2020





Ju
ne 2

0
, 2

0
2
0

at
8
:08

gabriel picanço costa

R A D I AT I V E P R O C E S S E S O F E N TA N G L E D
D E T E C T O R S I N R O TAT I N G F R A M E S



M
ar

ch
2
, 2

0
2
1

at
2
3
:16

Gabriel Picanço Costa: Radiative Processes of Entangled Detectors in Ro-
tating Frames, June 2020

Advisor: Nami Fux Svaiter



M
ar

ch
2
, 2

0
2
1

at
2
3
:16

A B S T R A C T

In this thesis, we investigate the radiative processes of accelerated
entangled two-level systems. First, we make a historical review of
approaches for relativistic rotation. After that, we summarize impor-
tant results of Quantum Field Theory in both Minkowski and general
spacetimes, and we quantize a scalar field in a non-inertial, rotating
frame. Using first-order perturbation theory, we then evaluate tran-
sition rates of two entangled Unruh-DeWitt detectors rotating with
the same angular velocity and interacting with a massive scalar field.
Decay processes for arbitrary radius, angular velocities, and energy
gaps are analyzed. We discuss the mean-life of entangled states and en-
tanglement harvesting and degradation. We found out that for similar
radial coordinates, that is, r1 ≈ r2, the system of detectors prepared in
the common excited state shows entanglement harvesting, as it decays
preferentially to the symmetric Bell state. In this regime, we also find
that a system prepared in the anti-symmetric Bell state tends to be
stable. In any other situation, systems prepared in an entangled state
show entanglement degradation, as they decay to the non-entangled
common ground state of the detectors.

Keywords: Rotating Frames, Unruh-DeWitt Detectors, Entanglement
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R E S U M O

Nessa tese, investigamos processos radiativos de sistemas de dois ní-
veis acelerados e emaranhados. Primeiramente, fazemos uma revisão
histórica de abordagens para rotações relativísticas. Depois disso, re-
sumimos resultados importantes de Teoria Quântica de Campos, tanto
para espaços-tempo de Minkowski quanto mais gerais, e quantizamos
um campo escalar em um referencial girante, não-inercial. Usando teo-
ria de perturbação de primeira ordem, nós então calculamos taxas de
transição de dois detectores de Unruh-DeWitt emaranhados, girando
com a mesma velocidade angular e interagindo com um campo escalar
massivo. Processos de decaimento são analisados para diferentes raios,
velocidades angulares e diferenças de energia. Também discutimos
meias-vidas de estados emaranhados, assim como coleta e degradação
de emaranhamento. Para coordenadas radiais similares, isto é, r1 ≈ r2,
verificamos que um sistema de dois detectores, ambos preparados
no estado excitado, apresenta coleta de emaranhamento, pois o siste-
ma decai preferencialmente para o estado emaranhado simétrico de
Bell. Também nesse regime, verificamos que um sistema preparado
no estado emaranhado anti-simétrico de Bell tende à estabilidade.
Em qualquer outro caso, sistemas preparados em um estado inicial
emaranhado apresentam degradação de emaranhamento ao decair
para o estado fundamental comum dos detectores, não-emaranhado.

Palavras-chave: Referenciais Girantes, Detectores de Unruh-DeWitt,
Emaranhamento
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1
I N T R O D U C T I O N

Quantum information is a very important topic of research in physics
nowadays, whether for studying fundamental theories, experiments,
or even applications, such as in quantum computers or quantum
cryptography [1]. Specifically, relativistic quantum information is be-
coming increasingly more relevant [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
The description of detectors coupled to quantum fields claims for
the relativistic approach, with measurable effects. One of them is
entanglement degradation [13, 14], where correlated states turn into
uncorrelated ones, for example by an interaction with a quantum field.
This is very relevant since we never entirely control the coupling of
a system to the environment in realistic experiments. Another effect
is the entanglement harvesting [15, 16, 17], where uncorrelated ob-
jects turn into correlated ones by some other interaction, for example
with a quantum field. The interpretation of this phenomenon is that
correlations between different points in space-time are shown by a
quantum field in the vacuum state, and a system coupled with this
field can extract entanglement from that. We will show later that we
can use the framework of quantum field theory to show that both
effects should happen in a pair of coupled Unruh-DeWitt detectors in
a rotating frame.

The possibilities of applications of field theory in our understand-
ing of nature are enlarged by developments in the general theory of
quantization of fields in curved space-times. In canonical quantization,
the original construction where quantum states support an irreducible
unitary representation of the Poincaré group must be modified. In this
scenario, we may use arbitrary frames for quantization, even in flat
space-time, as laboratories of investigations, as the vacuum states of
quantum fields can be observer-dependent [18]. The quantization per-
formed by uniformly accelerated observers in Minkowski spacetime is
quite an instructive situation. The usual approach for this problem is to
quantize a scalar field using Rindler’s coordinate system, that is, in the
Rindler frame. Both quantizations, in a Rindler frame and an inertial
frame, are unitarily non-equivalents. This can be deduced by analyzing
the Bogoliubov’s β coefficients between Rindler and Minkowski field
modes. One can also state that the definition of elementary particles
and vacuum states for inertial and accelerated observers are distinct
by computing the response function of a particle detector [19, 20, 21,
22]. If one prepares a uniformly accelerated detector interacting with a
scalar field prepared in the Poincaré invariant (Minkowski) vacuum it
will measure a thermal bath, with the temperature being proportional

1
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2 introduction

to its proper acceleration. This is known as the Unruh-Davies effect.
Some results of quantum field theories in curved space-times, such
as the Hawking effect [23], are thus anticipated by the Unruh-Davies
effect.

Treatments for radiative processes of detectors in a non-inertial rotat-
ing frame [24] can be found in references [25, 26, 27, 28, 29]. Letaw and
Pfausch indicated that physical content coming from the Bogoliubov’s
β coefficients between the rotating and the inertial modes and the
response function of the detector would be in disagreement. The rotat-
ing vacuum and the Minkowski vacuum are unitarily equivalent since
the Bogoliubov’s β coefficients between the rotating and the inertial
modes are zero. Notwithstanding, the rotating detector interacting
with a scalar field in the Minkowski vacuum presents a non-zero
response function for excitations. This issue was solved by Davies et
al [30], as we discuss later. In addition to this incompatibility between
the Bogoliubov coefficients and the response function approaches,
other more fundamental problem arises. How to address rotation in a
relativistic scenario?

Since the birth of Einstein’s Special Relativity, the problems of ro-
tation in a relativistic scenario have been attracted many physicists,
as Ehrenfest, Born, Planck, Kaluza, Einstein, and others [31, 32, 33,
34, 35]. A very important experimental result to guide this discus-
sion is the so-called Sagnac effect [36, 37], which is similar to the
Michaelson-Morley experiment, but with light rays going through an
approximated circular path instead of linear ones. Although it was
discovered in 1913, it is usually evoked in the context of interferometry,
while the discussion of a fundamental theory of relativistic rotation
remains an unsolved issue.

In this work, we study two Unruh-DeWitt detectors [38] rotating
around the origin with the same angular velocity and interacting with
a massive scalar field. Radiative processes and quantum entanglement
for rotating systems are discussed. Using first-order perturbation
theory, the response functions of the detectors are computed, looking
for the transition rate of excitations or de-excitations between any two
arbitrary states. In addition, we compute the mean life of entangled
states of the two detectors. Quantum entanglement and quantum
harvesting are also discussed in the analysis. We also try to unravel
the relevance of all the different parameters in the response function.

This thesis is organized as follows. In chapter 2 we make a brief
historical review of different approaches for relativistic rotation and
we discuss a specific approach to be used later. In chapter 3 we sum-
marize important results of Quantum Field Theory in both Minkowski
and general spacetimes, and we quantize a massive scalar field in
the radially-bounded spacetime, in rotating cylindrical coordinates.
In chapter 4 we discuss Unruh-DeWitt detectors and calculate transi-
tion rates of two entangled rotating detectors. In chapter 5, we study
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introduction 3

the transition rates, stressing the importance of all relevant parame-
ters, and derive the expression for the mean life of entangled states,
discussing its stability. In chapter 6 we present the conclusions and
present possible continuations for this work.

Throughout the text, we use h̄ = c = 1, unless in chapter 2, where we
keep c for the sake of the discussion. The signature of the Minkowski
metric ηµν in this work is (+−−−).
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2
R E L AT I V I T Y I N R O TAT I N G F R A M E S

In this chapter, we will briefly discuss some of the most used ap-
proaches to tackle relativistic rotation. This chapter has no intention
of exhausting the subject. For this purpose, we refer the reader to
reference [24].

2.1 historical review

In Einstein’s discussions about relativistic rotation [39], he assumed
the surrogate rods postulate [40] to analyze a rotating disk, such that
its rim would be Lorentz contracted. In this situation, the value of its
circumference divided by the diameter would not be equal to π, so
he concluded that the geometry of the rotating disk should be non-
Euclidian. As we will see, the problem here lies within the validity of
the surrogate rods postulate in a non-time orthogonal frame.

Landau and Lifshitz [41] used the transformation law between the
cylindrical coordinate system adapted to an inertial frame, and another
coordinate system adapted to a rotating one, which is valid only for
r < c/ω. In order to extend this coordinate system to any radius, that
is, trying to solve the problem of tangential velocity being greater
than c for radius r > c/ω, Trocheries and Takeno [42, 43] define a
coordinate system adapted to the rotating frame where the tangential
velocity is v/c = tanh (ωr/c), which only tends asymptotically to c.
Consequences of this transformation in field theory are discussed in
[44, 45, 46]. This choice is not able to reproduce experimental results,
for instance, the Sagnac’s effect [36, 37].

Another proposal was discussed by Grøn [47, 48]. It is able to
reproduce Sagnac’s effect, but it also has a discontinuity in the time
coordinate, for closed circuits around the origin. Grøn also argues
that the Riemann tensor associated with the spatial metric [41] in
rotating coordinates is not identically zero, that is, the rotating disk
should not be flat. But the construction of the spatial metric depends
on exchanging light rays between two worldlines and assumes that c
is invariant, which is not compatible with Sagnac’s effect.

Adler, Bazin, and Schiffer [49] proposed, in their book, an infinitesi-
mal time coordinate transformation that would transform the metric
into a time orthogonal form. As stated by the authors themselves, the
differential of the new time coordinate is not exact, that is, one would
not be able to correctly define the time coordinate. An alternative
extension of special relativity for rotating frames was developed by
Klauber [50].

5
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6 relativity in rotating frames

2.2 klauber’s theory

It is common to assume that c is invariant under any kind of transfor-
mation, based on experimental evidence such as Michaelson-Morley
experiments, and the success of Einstein’s special relativity. Although,
as Sagnac showed in 1913, this invariance does not remain in rotat-
ing frames. In a disk with radius r and angular velocity ω, Sagnac
measured the speed of light in a rotating frame to be equal to crot =

c(1±ωr/c), up to first order in ωr/c. The signal depends if the light
ray is emitted in the same direction as the velocity of the rim, or in
the opposite direction.

If one assumes the previous formula for the speed of light in a
rotating frame as a postulate instead of assuming its invariance, one
is able to construct a theory of relativity for rotations that will be
consistent with the usual approach of quantum field theory to rotating
systems, as we will see. Let us write Klauber’s postulates [50]:

• Postulate 1) For a disk of radius r rotating with angular velocity
ω, and as many mirrors as necessary in its rim, the speed of
light in the rotating frame tends to crot = c±ωr as the trajectory
of the light ray tends to a circunference.

• Postulate 2) There is a privileged frame, the non-rotating one.
Every rotating frame can perform local experiments to detect that
it is in fact rotating, and they all can distinguish the non-rotating
frame univocally.

• Postulate 3) The line element ds2 is invariant, regardless of any
transformation of coordinates performed.

The second postulate is similar in some sense to Newton’s bucket
argument, which establishes that rotation is absolute, unlike transla-
tion. The third postulate is necessary if the spacetime should be able
to be described by differential geometric methods. From the above
postulates, we can draw the following conclusions:

• Simultaneity: we can analyze Einstein’s Gedankenexperiment on
the simultaneity of events under the light of the above postulates.
Instead of thinking in an observer in the ground and other inside
a moving train, let us imagine an observer fixed on the center
of the disk and other one fixed on its rim. As we now have
a Galilean-like composition of velocity for light, one reaches
the trivial conclusion that the simultaneity is the same for both
observers.

• (Lack of) Lorentz contraction: by the third postulate, ds2 is
the same for an inertial frame, with cylindrical coordinates
(T, R, Φ, Z), and for a rotating frame, with cylindrical coordi-
nates (t, r, ϕ, z). So, we get ds2 = c2dT2 − dL2 = c2dt2 − dl2,
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2.2 klauber’s theory 7

where dL and dl are the spatial differential coordinates in the
inertial and rotating frames, respectively. As both frames share
simultaneity, dT = 0 → dt = 0, and we get dL = dl. There-
fore, there is no Lorentz contraction as we change from the
non-rotating to the rotating frame.

• Proper time: since there is no spatial contraction, a rotating and
a non-rotating observers will both see the rim of the disk with
equal length 2πr, and both of them can detect that the disk
rotates with angular velocity ω. Let us calculate the proper time
of an observer on the rim:

c2∆τ2 = ∆s2 = c2∆T2 − (ωr∆T)2 → (2.1)

c2∆τ2 = c2(1− ω2r2

c2 )∆T2 → ∆τ =

√
(1− ω2r2

c2 )∆T. (2.2)

Inspired by Einstein’s relativity, let us define γ = 1/
√

1−ω2r2/c2.
One can see that, despite the proper time showing a 1/γ factor,
Lorentz time transformation is not symmetric as it is in special
relativity. The time for an observer with greater radial coordinate
runs necessarily slower, as in the twins’ paradox. It relates to the
fact that observers in the rotating frame experience acceleration.
An observer on the rim of the disk experiences a centripetal
acceleration, as well as, in the twins’ paradox, the person in the
spaceship experiences accelerations.

Assuming the third postulate, the invariance of ds2 under gen-
eral coordinate transformations, one can show that the other two
postulates are equivalent to a certain rule for changing coordi-
nates between inertial and rotating cylindrical coordinates, as
follows:

T = t, (2.3)

R = r, (2.4)

Φ = ϕ + ωt, (2.5)

Z = z, (2.6)

The line element in inertial cylindrical coordinates reads

ds2 = c2dT2 − dR2 − R2dΦ2 − dZ2. (2.7)

We can now substitute the inertial coordinates for the rotating
ones, and then we get the metric

ds2 = c2 (1−ω2r2/c2) dt2− dr2− r2dϕ2− dz2− 2ωr2dϕdt. (2.8)

These coordinate transformations are exactly the ones assumed
in papers that work with quantum field theories in rotating
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8 relativity in rotating frames

coordinates, as [25, 26, 30]. It’s worth noticing that, until now,
Klauber’s theory remains consistent with electrodynamics’ re-
sults [51], and with other experiments related to relativistic
rotation, such as Phipps’ [52], Brillet and Hall’s [53, 54] and
cyclotron experiments [50]. One obvious downside of Klauber’s
theory is that it contains supra-luminal velocities for r > c/ω,
where the sign of the g00 element of the metric changes. We will
discuss this issue in section 3.3.

For completeness, let us derive the speed of light in the rotating
frames, from the metric (2.8). As we are only interested in the
speed of light across the rim of the disk, we will impose dr2 =

dz2 = 0. Now, in a lightlike path, ds2 = 0. Substituting these
conditions into (2.8), we get

0 =
(
c2 −ω2r2) dt2− r2dϕ2− 2ωr2dϕdt → rdϕ

dt
= c±ωr. (2.9)

One can call this expression the coordinate speed of light. Using
equation (2.1), one can use the proper time to define the physical
speed of light on the rim of the disk to be

rdϕ

dτ
=

c±ωr√
1− ω2r2

c2

= c±ωr +O
(ωr

c

)2
. (2.10)

It is interesting to notice that it is the g0i term in the metric
which is responsible for the non-invariance of the speed of light.
If we had a stationary spacetime, even with g00 6= 1, the physical
speed of light would be invariant and equal to c.
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3
Q UA N T U M F I E L D T H E O RY I N C U RV E D S PA C E S

Quantum Field Theory is the suitable formalism to calculate the radia-
tive processes of particle detectors. In particular, as we will study a
system in a non-inertial frame, we have to take into account the effects
of the non-Minkowskian metric tensor in the formalism, that is, we
are going to use the formalism developed to study Quantum Field
Theory in Curved Spaces (QFTCS). Before going into the problem of
detectors in circular uniform motions, let us make a short passage
from QFT to QFTCS. This chapter follows reference [21]. See also [55,
56, 57, 58, 59].

3.1 qft with minkowski metric

In this section, we will discuss QFT in cartesian coordinates of an
inertial frame, with Minkowski metric. Let ϕ(t, x) = ϕ(x) be a free
real scalar field in Rn+1, where t is the time coordinate, x is the spatial
n-dimensional vector and xµ is the spacetime (n + 1)-dimensional
vector. In other words, Rn+1 is a flat Lorentzian manifold. The usual
free Lagrangian density L and the action S read

L(ϕ)(x) =
1
2

∂µ ϕ∂µ ϕ−m2ϕ2; S [ϕ] =
∫

dn+1x L(ϕ)(x), (3.1)

where ∂µ ϕ = ∂ϕ/∂xµ, ∂µ ϕ = ηµν∂ν ϕ, and m is the mass of the field.
In the above expression L(ϕ)(x) depends on the Taylor expansion
of ϕ at x. Let us impose that the action is extremized to obtain the
equation of motion for the field:

δS
δϕ(x)

= 0 →
(
�+ m2) ϕ(x) = 0, (3.2)

where � = ∂µ∂µ. The last equation is called the Klein-Gordon equation.
A set of solutions (also called modes) uk indexed by n-dimensional
vectors k can be given by

uk = e−iωt+ik·x, (3.3)

where ω2
k = k2 + m2. If we define the (n + 1)-dimensional vector

kµ = (ωk, k), the solutions can be written as

uk = e−ikx. (3.4)

We can define a scalar product between fields in a similar way as
we define it between wave functions in quantum mechanics, that is:

〈ϕ, φ〉 = i
∫

dnx [(∂t ϕ(x))φ∗(x)− ϕ(x)(∂tφ
∗(x))]. (3.5)

9
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10 quantum field theory in curved spaces

Note that we are integrating in an hyperplane of simultaneity at some
fixed time t. With this scalar product, the uk modes are orthogonal:

〈uk, uk′〉 = 0, for k 6= k′. (3.6)

Rescaling the modes as

uk =
e−ikx√

2ωk(2π)n
(3.7)

we finally obtain

〈uk, uk′〉 = δ(n)(k− k′), 〈u∗k, u∗k′〉 = −δ(n)(k− k′)

and 〈uk, u∗k′〉 = 〈u∗k, uk′〉 = 0. (3.8)

Now, we define positive (negative) frequency modes with respect to
the time t solutions of the equation of motion that are eigenfunctions of
the operator ∂/∂t, with a purely imaginary eigenvalue, with negative
(positive) imaginary part. That is, if

∂u(x)
∂t

= −i ω u(x), (3.9)

u(x) is called a positive frequency mode if ω > 0, and a negative
frequency mode if ω < 0. It is immediate to see that the modes uk
are positive frequency modes with respect to t, and u∗k are negative
frequency modes with respect to t.

It is useful to expand the field φ(x) in a basis of normal modes, as
follows:

φ(x) = ∑
k
[akuk(x) + a∗ku∗k(x)] . (3.10)

Defining Π(x) as the canonical conjugated field given by Π := ∂L/∂(∂tφ),
we can now proceed with the second quantization by promoting φ and
Π to operators and imposing the following equal-time commutation
relations

[φ(t, x), φ(t, x′)] = 0,

[Π(t, x), Π(t, x′)] = 0, (3.11)

[φ(t, x), Π(t, x′)] = iδ(n)(x− x′).

Promoting the fields to operators is equivalent to promoting ak and
a†

k to operators in (3.10). We can also use this expansion to show that
the above commutation relations are respectively equivalent to

[ak, ak′ ] = 0,

[a†
k, a†

k′ ] = 0, (3.12)

[ak, a†
k′ ] = δ(n)(k− k′).
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3.1 qft with minkowski metric 11

The operators a†
k and ak are called creation and annihilation operators,

respectively. We define the vacuum state associated with the decom-
position (3.10), denoted as |0〉, such that

ak|0〉 = 0, ∀k. (3.13)

We can use the creation operators to generate the so-called one-particle
states:

|1k〉 = a†
k|0〉. (3.14)

We can continue applying the creation operator to generate states with
more particles with the same momentum k, as

|nk〉 =
(a†

k)
n

(n!)1/2 |0〉. (3.15)

By using the third commutator of (3.12) and imposing that particle
states are normalized to unity, we get

a†
k|nk〉 = (n + 1)1/2|(n + 1)k〉 (3.16)

ak|nk〉 = n1/2|(n− 1)k〉 (3.17)

Similarly, we generate many-particle states, with f different momenta,
as

|n1,k1 , n2,k2 , ..., n f ,k f 〉 =

(n1!n2!...n f !)−1/2
[
(a†

k1
)n1(a†

k2
)n2 ...(a†

k f
)n f
]
|0〉. (3.18)

If one defines Nk := a†
kak, it is easy to see from (3.16) and (3.17) that

〈n1,k1 , n2,k2 , ..., n f ,k f |Nki |n1,k1 , n2,k2 , ..., n f ,k f 〉 = ni, (3.19)

so it is called the “number operator for mode k”. One can define the
“total number operator” as

N = ∑
k

Nk. (3.20)

All the steps in this section were taken in a coordinate system
adapted to an inertial frame, in Minkowski spacetime. The internal
product (3.5) was defined using a derivative with respect to the time t
of this coordinate system. That means that the normal modes, creation
and annihilation operator, vacuum state, particle states, and number
operators are all related to the Minkowski metric tensor, or, more
specifically, to this coordinate system. So, we will add a M (from
Minkowski) label to them, as other frames and metrics tensors would
define different modes, states, and operators, as we will see explicitly
in the next section. It is usual to say for instance that NM is the total
number operator associated with the Minkowski vacuum |0〉M. Now, let
us discuss fields and second quantization in the coordinate systems of
more general frames.
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12 quantum field theory in curved spaces

3.2 qft with general metrics

In this section, we will develop the second quantization in a space
with a general metric tensor. That can be the metric of a curved space-
time (from General Relativity, for example), or just a flat spacetime
equivalent to Minkowski, but with a coordinate system adapted to
a non-inertial frame. The formalism that we shall develop applies to
both situations. We assume that the reader is acquainted with General
Relativity, and refer to reference [60] and [61] for more details.

Take the spacetime to be a smooth (C∞) globally hyperbolic pseudo-
Riemannian (n + 1)-dimensional manifold M. The line element in this
manifold reads

ds2 = gµν(x)dxµdxν, (µ, ν ∈ 0, 1, ..., n) (3.21)

where the metric gµν has 1 positive and n negative eigenvalues.
Let us define, as usual, g = det gµν, and ∇µφ to be the µ-th compo-

nent of the covariant derivative of φ. Since we are only going to use
scalar fields, their covariant derivative equals their partial derivative,
that is, ∇µφ = ∂µφ.

Using the Principle of General Covariance, we can generalize the
Minkowskian free Lagrangian, such that the most complete scalar
Lagrangian density without interaction terms in φ reads

L(ϕ)(x) =
1
2

gµν(x)∂µ ϕ(x)∂ν ϕ(x)− 1
2
[m2 + ξR(x)]ϕ2(x), (3.22)

where R(x) is Ricci’s scalar and ξ is its coupling with the field. In this
work, we will assume the minimally coupled situation, that is, ξ = 0.

We need the action to also be an invariant by coordinate transfor-
mations, so we cannot just integrate the Lagrangian density, since the
volume element is not a scalar. But the product

√−g d4x is, so we
define the action to be

S[ϕ] =
∫

d4x
√
−gL(ϕ)(x). (3.23)

By extremizing the action with respect to the field φ, we get its equa-
tion of motion in the minimally coupled case:

[�+ m2]φ(x) = 0, (3.24)

where � is now given by gµν∇µ∇ν and ∇ is the covariant derivative
operator. We can write �φ as

�φ = (−g)−1/2∂µ[(−g)1/2gµν∂νφ], (3.25)

that is the expression that we are going to use later to solve the
equation of motion.
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3.2 qft with general metrics 13

In a spacetime with a general metric, to define the internal product
we need to choose a Cauchy hypersurface Σ, with an orthogonal vector
field nµ. Thus, we can define

〈ψ, φ〉 = i
∫ √

|h|dΣ nµ[ψ
∗∂µφ− φ ∂µψ∗], (3.26)

where dΣ is the volume element of Σ and h is the determinant of the
metric induced in the hypersurface. We can now solve the equation of
motion to find a complete set of modes satisfying

〈ui, uj〉 = δij, 〈u∗i , u∗j 〉 = −δij and 〈ui, u∗j 〉 = 〈u∗i , uj〉 = 0, (3.27)

where i and j are sets of relevant indices specifying the modes. The
modes ui and u∗i are called positive and negative norm modes, respec-
tivelly, with respect to this the internal product (3.26).

We are now able to expand the field in the basis of normal modes,
as

φ(x) = ∑
i
[aiui(x) + a∗i u∗i (x)] . (3.28)

We can again perform the second quantization by promoting φ, and
equally ai and a∗i , to operators, and imposing commutation relations
similar to (3.12):

[ai, aj] = 0,

[a†
i , a†

j ] = 0, (3.29)

[ai, a†
j ] = δij.

As we will only be restricted to this situation, let us assume that the
metric is static. We can then define the vacuum state |0〉u associated
with the u modes as in the Minkowski metric case, such that

ai|0〉u = 0, ∀i, (3.30)

and construct the Fock space by acting creation operators in the
vacuum state, creating what we will call a-particle states.

If we have solved the equation of motion in other set of coordinates,
for instance, we would have find a second set of normal modes vi with
which we could expand the field. Therefore, we would have other
coefficients bi, as follows

φ(x) = ∑
i
[bivi(x) + b∗i v∗i (x)] . (3.31)

We could now have defined the vacuum state |0〉v associated with the
new modes, such that

bi|0〉v = 0, ∀i, (3.32)

and other basis for the Fock space, using b†
i to create b-particle states.
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14 quantum field theory in curved spaces

One question that naturally arises is the relation between a- and
b-particle states. Are both vacua equivalent in some sense? Does the
total number operator associated with the a operators measures the
number of b-particles correctly?

In a Minkowskian space, we have privileged sets of coordinates:
the ones adapted to inertial frames. They are taken into each other
by Poincaré group transformations, which leaves the metric tensor
invariant. The vacuum and the Fock space basis elements are also
invariant [21]. Remember that in quantum field theory we are dealing
with countable infinite degrees of freedom. In this situation, there are
many inequivalent representations of the operator algebra. Therefore
the definition of vacuum state and the set of its annihilation operators
are not unique. We can say that there is an infinite number of choices
for the vacuum [62]. In the following, we will discuss an example that
illustrates this general statement of different Fock spaces.

Following the spirit of general relativity, we should be able to
equally describe physical properties in any coordinate system, includ-
ing coordinates of non-inertial frames. And, under general coordinate
transformations, the Fock space is in general not invariant. If one
chooses another coordinate system to solve (3.24) and get another
basis of normal modes, in general, this leads to a different vacuum
and a different Fock space. Therefore, the particle concept in quantum
field theory in curved spaces is intrinsically frame-dependent. Let us
now establish relations between different Fock spaces.

One can expand the v-modes into the base of u-modes since it is
complete:

vj = ∑
i

αjiui + β jiu∗i . (3.33)

Inverting the above equation, we find

ui = ∑
j

α∗jivj − β jiv∗j . (3.34)

Equations (3.33) and (3.34) and called Bogoliubov transformations,
and αji and β ji are called Bogoliubov coefficients. We can then take the
internal product between the modes to explicitly find the coefficients
in terms of the modes:

αji = 〈ui, vj〉, and β ji = −〈u∗i , vj〉. (3.35)

We can now use equations (3.28), (3.31), (3.33) and (3.34) to find
relations between the creation and annihilation operators, as follows

ai = ∑
j

αjibj + β∗jib
†
j (3.36)

and

bj = ∑ α∗jiai − β∗jia
†
i (3.37)
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3.3 canonical quantization in rotating coordinates 15

It is easy to show that the Bogoliubov coefficients always satisfy the
following relations:

∑
k

αikα∗jk − βikβ∗jk = δij (3.38)

and

∑
k

αikβ jk − βikαjk = 0. (3.39)

From (3.36) and (3.37), it is immediate that the vacua states are
equivalent, that is,

ai|0〉v = 0 and bi|0〉u, ∀i, (3.40)

if and only if βij = 0, for all i and j.
To answer the question posed in the beginning of the discussion of

Bogoliubov transformations, we can now use (3.36) to compute the
expectation value of the number operator of a-particles in some mode
ui in the vacuum of v particles:

v〈0|a†
i ai|0〉v = ∑

j
|β ji|2, (3.41)

that is, the vacuum of b-particles contains ∑j |β ji|2 particles in the ui
mode, and a total of ∑i,j |β ji|2 a-particles.

3.3 canonical quantization in rotating coordinates

The discussion in this section is similar to the section 2 of reference
[63]. In this section, we use cylindrical coordinates (t, r, ϕ, z) adapted
to a rotating frame and the procedures discussed in the last section
to quantize a massive scalar field in this non-inertial frame. First, as
discussed in chapter 2:

T = t, (3.42)

R = r, (3.43)

Φ = ϕ + ωt, (3.44)

Z = z, (3.45)

where (T, R, Φ, Z) are the cylindrical coordinates of an inertial frame.
The line element in the rotating frame then reads (from now on, c=1)

ds2 =
(
1−ω2r2) dt2 − dr2 − r2dϕ2 − dz2 − 2ωr2dϕdt. (3.46)

From the metric (3.46), we get, as trivial Killing vectors, ∂t = (1, 0, 0, 0),
∂ϕ = (0, 0, 1, 0) e ∂z = (0, 0, 0, 1), the generators of translations on
their respective directions. Since the vector ∂t is not time-like in all
spacetime, we cannot define positive and negative modes for all radial
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16 quantum field theory in curved spaces

coordinate. This definition will be discussed later. This problem was
solved imposing Dirichlet’s boundary conditions for r = ω−1 [30].
Another Killing vector, time-like in all spacetime, ∂T = (1, 0,−ω, 0),
which is the generator of translation in the time coordinate adapted to
inertial frames, will be useful in our discussions. In this scenario, it is
natural to define an inner product for each of the possible time-like
Killing vectors, Kµ, according to (3.26).

To find normal modes to expand the field, before proceeding with
the quantization, we need to solve the equation of motion for the field.
Substituting (3.25) and the metric (3.46) into (3.24) we get(

∂2
t −

1
r

∂r(r∂r)−
(

1
r2 −ω2

)
∂2

ϕ − ∂2
z − 2ω∂t∂ϕ + µ2

)
φ = 0, (3.47)

where µ is the mass of the scalar field. To proceed, let us make an
ansatz for the complete set of modes uεmk

uεmk(t, r, ϕ, z) ∝ exp
(
−iεt + imϕ + ikz

)
R(r), (3.48)

where ε, m, and k are arbitrary constants that label the field modes
(with m being integer). Substituting equation (3.48) into equation (3.47),
we obtain the radial equation

1
r

d
dr

(
r

dR(r)
dr

)
+

(
(ε + mω)2 − k2 − µ2 − m2

r2

)
R(r) = 0. (3.49)

The physical acceptable solutions for the above equation are Bessel
functions of first kind, Jm. Defining (ε + mω)2 − k2 − µ2 = χ2, the
radial solution can be written as

Jm(χr) =
∞

∑
n=0

(−1)n

n!Γ(n + m + 1)

(χr
2

)m+2n
, n ε Z. (3.50)

Imposing the Dirichlet’s boundary condition on some radial coordi-
nate a, we have

Jm(χa) = 0. (3.51)

Therefore, χ = αmn/a = kmn, where αmn is the n-th root of the m-th
Bessel function of the first kind. In this case, the normalization of the
radial mode is given by:∫ a

0
dr rJm(kmnr)Jm(kmlr) =

a2

2
[J′m(kmna)]2δnl , (3.52)

where J′m(kmna) = dJm(kmnr)
dr

∣∣∣
r=a

. The normalized cylindrical modes in
the rotating frame are written as

ukmn(t, r, ϕ, z) =
exp[−iεt + imϕ + ikz]Jm(kmnr)

2πa[J′m(kmna)]Nkmn
, (3.53)
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3.3 canonical quantization in rotating coordinates 17

where Nkmn refers to the different possible normalizations given by
the two time-like Killing vectors. It reads

Nkmn =
√

ε, if Kµ = ∂
µ
T, and Nkmn =

√
ε + mω, if Kµ = ∂

µ
t . (3.54)

Since the inner products between arbitrary field modes are

〈ukmn, u∗k′m′n′〉 = 〈u∗kmn, uk′m′n′〉 = 0 (3.55)

and

〈ukmn, uk′m′n′〉 = −〈u∗kmn, u∗k′m′n′〉 = δ(k− k′)δmm′δnn′ , (3.56)

we say that u and u∗ are positive and negative norm modes, respec-
tively. Notice that they are also respectively positive and negative
frequency modes with respect to the time coordinate adapted to the ro-
tating frame. Introducing E such that E2 := (ε+mω)2 = k2

mn + k2 + µ2,
we get

−iεt + imϕ = −i(E−mω)t + imϕ = −iEt + im(ϕ + ωt)

→ −iεt + imϕ = −iET + imΦ. (3.57)

In order to compare both quantizations using the inertial modes
and the rotating modes, one can compute the Bogoliubov coefficients
between these modes, as discussed in section 3.2. One shows that the
Bogoliubov’s β coefficients are zero, since

ukmn(t, r, ϕ, z) ∝ exp[−iεt + imϕ + ikz]Jm(kmnr) (3.58)

and

Ukmn(T, R, Φ, Z) ∝ exp[−iET + imΦ + ikZ]Jm(kmnR), (3.59)

where Ukmn are positive frequency modes with respect to the time T
of the inertial frame, in cylindrical coordinates. Therefore, the vacuum
expectation value of one frame’s number operator calculated in the
other frame’s vacuum state is always zero.

In the following, it is important to define the positive Wightman
function, given by

G+(x, x′) = 〈0|φ(x)φ(x′)|0〉. (3.60)

For two detectors, there are going to be four positive Wightman
functions, since each coordinate can be evaluated in one of the two
worldlines. In a rotating frame, we can use the expansion (3.28) with
modes given by (3.53) to compute

G+
jk (xj, xk) =

∞

∑
m=−∞,

n=1

∫ ∞

−∞
dk

Jm(kmnrj)Jm(kmnrk)e−i[ε∆t−m∆ϕ−k∆z]

4π2a2[J′m(kmna)]2N2
kmn

, (3.61)

where ∆xµ = xµ
j − xµ

k .
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4
R A D I AT I V E P R O C E S S E S O F U N R U H - D E W I T T
D E T E C T O R S

The aim of this chapter is to discuss the Unruh-DeWitt model for
particle detectors [64] and its radiative properties in rotating frames.
For a didactic digression about this model for particle detectors, we
refer the reader to reference [65]. Unruh-DeWitt detectors are point-
like two-level systems that are coupled to a scalar field through a
monopole interaction. It is a very simple model of a detector, but it
is enough for many applications, as computing the Unruh effect [20].
Particle detectors are also often called “atoms”, despite not having
an internal structure or interacting with an electromagnetic field. In
general, adding more levels to Unruh-DeWitt detectors is not going
to reveal any new important features of different situations. One
interesting generalization being discussed nowadays is the use of
extense detectors. For this discussion, we refer the reader to [66, 67].

4.1 one detector

Let us begin the discussion with one detector interacting with a scalar
field. The total Hamiltonian of the system is given by

H = Hd + H f + Hint, (4.1)

where Hd and H f are the free detectors and field Hamiltonians, respec-
tively. The Hint is the interaction Hamiltonian between the two-level
system and the scalar field. The free Hamiltonian of the detector in its
proper time is given by

Hd =
E
2
(
|e〉〈e| − |g〉〈g|

)
=:

E
2

Sz, (4.2)

where |g〉 is the ground state of the detector, and |e〉 is its excited
state. These states are the eigenstates of the free Hamiltonian, with
eigenvalues −E/2 and E/2, respectively. Now, the free Hamiltonian
of the massive scalar field φ is given by

H f =
1
2

∫
d3x

[(
φ̇(x)

)2
+
(
∇φ(x)

)2
+ µ2φ2(x)

]
, (4.3)

where µ is the mass of the field, the dot represents derivative with
respect to t and ∇ is the gradient operator. Finally, the interaction
Hamiltonian is written as

Hint(t) = λχ
(
τ(t)

)
m
(
τ(t)

)
φ
(
xµ (τ(t))

)dτ(t)
dt

, (4.4)

19
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20 radiative processes of unruh-dewitt detectors

where λ is the dimensionless coupling constant of the interaction, χ is
a real-valued switch-function for the interaction of the detectors with
the scalar field, and m(τ(t)) is the monopole operator, with τ being
the proper time of the detector. The field φ(xµ(τ)) is evaluated in the
classical trajectory of each of the detectors, and the factor dτ/dt is the
Jacobian to correct the time integration to its proper time value.

Using S+ = |e〉〈g| and S− = |g〉〈e|, we can describe the monopole
operator as

m(τ) = m12(τ) S+ + m21(τ) S−. (4.5)

For simplicity, we will take m12 = m21 =: m. In the interaction pic-
ture, for arbitrary initial and final states |i〉 and | f 〉 of the detectors,
respectively, we have

〈 f |m(τ)|i〉 = ei(E f−Ei)τ〈 f |m(0)|i〉 = ei(E f−Ei)τm f i, (4.6)

where we defined m f i := 〈 f |m(0)|i〉, and Ei and E f are respectively
the energies of the initial and final states of the detector.

To calculate the probability of transition between states, we use the
Schrödinger equation of the interaction picture,

i
dU(t, ti)

dt
= Hint(t)U(t, ti), (4.7)

such that

U(t, ti) = T
{

exp
(
−i
∫ t

ti

Hint(t′)dt′
)}
→

U(t, ti) = 1− iλ
∫ t f

ti

dtHint(t) +O(λ2), (4.8)

where ti is an arbitrary initial time, and T is the usual time-ordering
operator. With the evolution operator, one can compute the transition
amplitude between arbitrary states |i〉 and | f 〉. We get

A(ti, t f , φi, φ f ) = (〈 f | ⊗ 〈φ f |)U(t f , ti)(|i〉 ⊗ |φi〉), (4.9)

where |φi〉 and |φ f 〉 are the initial and final states of the scalar field.
Assuming the initial state of the field as the vacuum state, |φi〉 = |0〉,
and tracing out |φ f 〉, we get that the probability of transition can be
written as

P|0〉;i→ f (t f , ti) = λ2
∫ t f

ti

dt
∫ t f

ti

dt′|m f i|2〈0|φ
(
xµ(τ)

)
φ
(
x′µ(τ′)

)
|0〉

× dτ(t)
dt

dτ(t′)
dt′

e−i(E f−Ei)(τ−τ)χ(τ)χ(τ′). (4.10)

This probability of transition is the product of the coupling constant
with two factors: the selectivity |m f i|2, only involving detectors’ inter-
nal structure, and the response function F, describing the interaction
with the field, such that

F(∆E, χ, ti, t f ) =
∫ t f

ti

dtdt′G+(t, t′)
dτ

dt
dτ′

dt′
e[−i∆E(τ−τ′)]χ(τ)χ(τ′), (4.11)
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where G+(x, x′) = 〈0|φ(x)φ(x′)|0〉 is the positive Wightman function,
and τ′ and the primed coordinates refer to the time t′, while τ and the
non-primed coordinates refer to the time t. With the above definitions,
the probability of transition between two arbitrary states is given by

P|0〉;i→ f = λ2|m f i|2F(∆E, χ, ti, t f ). (4.12)

Let us make some simplifications to re-obtain a well-known result.
Taking χ = 1, ti → −∞ and t f → +∞, and changing the variables of
integration in (4.11), from t and t′ to τ and ∆τ := τ − τ′ [30], we get

F(∆E) =
∫ ∞

−∞
dτ
∫ ∞

−∞
d(∆τ) G+(∆τ) e−i∆E ∆τ. (4.13)

This is a widely known result in the literature of particle detectors
([21, 22]), which says that the response function, and then also the
probability of transition, is proportional to the Fourier transform of
the positive Wightman function, as long as we can write it as G+(∆τ).

4.2 two detectors

Now, let us discuss the theory for two Unruh-DeWitt detectors, and
finally apply it to rotating frames. The developments in this section are
similar to the ones in section 3 of reference [63]. The total Hamiltonian
and the free Hamiltonian of the field are still given by (4.1) and (4.3),
respectively. With |gj〉 and |ej〉 being respectively the ground state and
the excited state of the j-th detector, the two detectors free Hamiltonian
is now given by

Hd =
E
2
[Sz

1 ⊗ 12 + 11 ⊗ Sz
2] + Ω(S+

1 S−2 + S−1 S+
2 ), (4.14)

where Sz
j = |ej〉〈ej| − |gj〉〈gj|, S+

j = |ej〉〈gj| and S−j = |gj〉〈ej|, for j = 1,
2. The operator multiplying Ω is a dipole interaction between detectors.
Using Bell (maximally entangled) states, the above Hamiltonian can
be diagonalized [13]. The four eigenstates are given by

|g〉 = |g1〉|g2〉; (4.15)

|a〉 = 1√
2
(|g1〉|e2〉 − |e1〉|g2〉) ; (4.16)

|s〉 = 1√
2
(|g1〉|e2〉+ |e1〉|g2〉) ; (4.17)

|e〉 = |e1〉|e2〉, (4.18)

with eigenvalues −E, −Ω, +Ω and +E, respectively. A tensor product
is implicit in the above notation. The ground state of both detectors is
denoted as |g〉, |s〉 and |a〉 are the symmetric and anti-symmetric Bell
states, respectively, and |e〉 denotes the state where both detectors are
excited. Now, the interaction Hamiltonian is written as

Hint(t) = λ
2

∑
j=1

χj
(
τj(t)

)
m(j)(τj(t)

)
φ
(
xµ
(
τj(t)

))dτj(t)
dt

, (4.19)
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where λ is again the dimensionless coupling constant of the interaction,
χ is the real-valued switch-function for the interaction of the detectors
with the scalar field, and m(j)(τj(t)) is the monopole operator of the j-
th detector. The field φ(xµ(τj)) is evaluated in the classical trajectory of
each of the detectors, and the factor dτj/dt is the Jacobian to correct the
time integration. The operators, m(1)(0) and m(2)(0), for two detectors
in the basis {|g〉, |s〉, |a〉, |e〉} are

m(1)(0) = m(0)⊗ 1 =
1√
2


0 m m 0

m 0 0 m

m 0 0 −m

0 m −m 0

 , (4.20)

m(2)(0) = 1⊗m(0) =
1√
2


0 m −m 0

m 0 0 m

−m 0 0 m

0 m m 0

 . (4.21)

In the interaction picture, for arbitrary initial and final states |i〉 and
| f 〉 of the detectors, respectively, we have

〈 f |m(j)(τj)|i〉 = ei(E f−Ei)τ
′
j 〈 f |m(j)(0)|i〉 = ei(E f−Ei)τj m(j)

f i . (4.22)

where Ei and E f are the energies of the initial and final detector states,
respectively. The only possible transitions are the ones shown in figure
4.1, where both m(j)

f i 6= 0. For simplicity, we take Ω = 0, such that the
Bell states are degenerated. The energy levels are also illustrated in
figure 4.1.

To calculate the probability of transition between arbitrary states,
we again use (4.7), the Schrödinger equation in the interaction picture,
solved to first order as

U(t, ti) = T
{

exp
(
−i
∫ t

ti

Hint(t′)dt′
)}

=

U(t, ti) = 1− iλ
∫ t f

ti

dtHint(t) +O(λ2). (4.23)

Again, ti is an arbitrary initial time, and T is the usual time-ordering
operator. With the evolution operator, one can proceed with the steps
in previous section to compute the probability of transition between
arbitrary states |i〉 and | f 〉 of the detectors, as

P|0R〉;i→ f (t f , ti) = λ2
∫ t f

ti

dtdt′
2

∑
j,k=1

m(j)∗
f i m(k)

f i
dτj(t)

dt
dτk(t′)

dt′
χ(τj)χ(τk)

× 〈0R|φ
(
xµ

j (τj(t))
)
φ
(
x′µk (τk(t′))

)
|0R〉e−i(E f−Ei)(τj−τk), (4.24)



M
ar

ch
2
, 2

0
2
1

at
2
3
:16

4.2 two detectors 23

|g〉

|a〉 |s〉

|e〉

E
2

E
2

0

E

Figure 4.1: Energy levels and possible transitions between the eigenstates
of the detectors’ Hamiltonian (4.14), with Ω = 0. Adapted from
Ficek et al [13].

where j and k label both detectors. Now there are four selectivity
factors, m(j)∗

f i m(k)
f i , and four response function, as follows:

Fjk(∆E, χ, ti, t f ) =
∫ t f

ti

dt
∫ t f

ti

dt′G+
jk (t, t′)

dτj(t)
dt

dτk(t′)
dt′

×

exp
[
−i∆E(τj − τk) + im(ϕj − ϕk) + ik(zj − zk)

]
χ(τj)χ(τk),

(4.25)

where G+
jk (xj, x′k) = 〈0R|φ(xj)φ(x′k)|0R〉 are the four positive Wight-

man functions. With the above definitions the probability of transition
between two arbitrary states is given by

P|0R〉;i→ f = λ2
2

∑
j,k=1

m(j)∗
f i m(k)

f i Fjk(∆E, χ, ti, t f ). (4.26)

From now, we will apply the theory of detectors to two Unruh-DeWitt
detectors in a rotating frame, generalizing the results obtained by
Cai, Li and Ren [68]. See also reference [29] for a rotating Unruh-
DeWitt detector under non-equilibrium conditions and reference [69]
for a discussion of a finite-time response function. To simplify our
computations, we can use z1 = z2 and ϕ1 = ϕ2. From chapter 2, we

get the proper times τj =
(

1− w2r2
j

)1/2
t = t/γj. The terms dτj/dt are

constant in a circular motion, and can be factored out of time integrals.
Now, using equation (3.61), into the response function, we get:

Fjk =
∫ t f

ti

dtdt′
∞

∑
m=−∞,

n=1

∫ ∞

−∞
dk

Jm(kmnrj)Jm(kmnrk)e−i(∆E+ε)(τj−τ′k)

4π2a2γjγk[J′m(kmna)]2N2
kmn

. (4.27)
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Let us change variables of integration from t and t′ to t and ∆t = t− t′.
The modulus of the Jacobian for this coordinate transformation is one.
Let us define ∆Ē = ∆E(1/γj − 1/γk) and ∆E′ = ∆E/γk, and rewrite
the exponential argument as follows:

exp
[
− iε(t− t′)− i∆E

(
t

γj
− t′

γk

)]
=

exp
[
− i(ε + ∆E′)(t− t′)− i∆Ēt

]
. (4.28)

We will work with the asymptotic limits ti → −∞ and t f → ∞.
Now, the response function per unit time t, the rate Rjk(t) = ∂Fjk/∂t

can be computed

Rjk = e−i∆Ēt
∫ ∞

−∞
d(∆t)e−i(∆t)(ε+∆E′) ∑

m,n

∫ ∞

−∞
dk

Jm(kmnrj)Jm(kmnrk)

4π2a2γjγk[J′m(kmna)]2N2
kmn

= e−i∆Ēt [2πδ(ε + ∆E′)
]
∑
m,n

∫ ∞

−∞
dk

Jm(kmnrj)Jm(kmnrk)

4π2a2γjγk[J′m(kmna)]2N2
kmn

,

(4.29)

where the delta function on the last equality was obtained by perform-
ing the integral on ∆t, resulting in a factor δ[∆E′ + (

√
k2 + k2

mn + µ2−
mω)] after substituting ε.

The roots of the Bessel function are such that αmn > m, so, as
ωa ≤ 1, the argument of the delta function is always positive, and the
corresponding response function will be zero [30]. We will have non-
zero response function and non-zero contribution to the transition rate
if and only if ∆E′ ≤ 0 ≤ mω−

√
k2

mn + µ2. This means that there is no
excitation of an inertial detector in the rotating vacuum, it can only de-
excite. It is consistent with the fact that all Bogoliubov’s β coefficients
are zero between the rotating and inertial modes. So inertial detectors
can not detect particles in the rotating vacuum.

Assuming that ∆E′ ≤ mω −
√

k2
mn + µ2, we can expand the delta

function in its roots, δ
(

f (k)
)
= ∑i−th root

(
δ(k−ki)
| f ′(ki)|

)
, with

f ′(k) =
k√

k2 + k2
mn + µ2

=

√
(mω− ∆E′)2 − k2

mn − µ2

mω− ∆E′
. (4.30)

Integrating the expanded delta function, the response function be-
comes:

Rjk =
e−i∆Ēt

2πa2γjγk
∑
m,n

Jm(kmnrj)Jm(kmnrk)|mω− ∆E′|
[Jm+1(kmna)]2N2

kmn

√
|(mω− ∆E′)2 − k2

mn − µ2|
→ Rjk =: e−i∆ĒtCjk, (4.31)

where we defined the numerical factor Cjk as all the terms in the above
equation that does not depend on the time t. In the following, we
show that Rjk is real, as expected. This will be discussed later.
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We can express, in first-order perturbation theory, the transition rate
Ṗ = dP/dt as

Γ|i〉→| f 〉 = Ṗ|i〉→| f 〉 = λ2
2

∑
j,k=1

m(j)∗
f i m(k)

f i Rjk. (4.32)

If we compute the Cjk numerical factor, we are able to study the
allowed radiative processes in this system and its transition rates.
But this factor is not fully determined yet in (4.31), we still need
to specify the normalization used. We will compute it using both
possible normalizations Nkmn (3.54) discussed in the previous section,
for which the factor Cjk reads:

K = ∂T :

CTjk =
1

γjγk
∑
m,n

Jm(kmnrj)Jm(kmnrk)Θ[mω−
√

k2
mn + µ2 − ∆E′]

2πa2[Jm+1(kmna)]2
√
(mω− ∆E′)2 − k2

mn − µ2
.

(4.33)

K = ∂t :

Ctjk =
1

γjγk
∑
m,n

Jm(kmnrj)Jm(kmnrk)|mω− ∆E′|Θ[mω−
√

k2
mn + µ2 − ∆E′]

2πa2[Jm+1(kmna)]2(−∆E′)
√
(mω− ∆E′)2 − k2

mn − µ2
.

(4.34)
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5
A N A LY S I S O F T H E R A D I AT I V E P R O C E S S E S

The discussion in this chapter is an identical transcription of section 4

of reference [63]. In this chapter, we will discuss the radiative processes
of two Unruh-DeWitt detectors in a rotating frame. Our objective is
to analyze and numerically calculate the transition rates for different
initial conditions, stressing the relevance of each parameter. The stabil-
ity of entangled states and the effects of entanglement harvesting and
entanglement degradation are also discussed. For a more complete
approach to tackle entanglement dynamics, we refer the reader to [70].

5.1 discussion of the response function

The response function presented in equations (4.33) and (4.34) is a
product of the integral of an oscillatory term in t with a numerical
factor called Cjk. Defining the rate Rjk(t) as usual, being the derivative
dFjk(t)/dt of the response function, the first term becomes only a
phase. Notice that the phase ∆Ē t = 0 for both R11 and R22, such that
these terms will never become negative when calculating the transition
rate Γ, as ∆Ē = ∆E(1/γj − 1/γk). The phase of the crossed terms, R12

and R21, are complex conjugates, so, when summed, they will only
result in a real factor times a trivial oscillatory term. In fact, there is
no origin defined for the time coordinate, so we can specify it stating
that we are performing the calculations to t = 0, which is equivalent
to taking the absolute value of each Rjk.

It is worth to note that, when we changed variables in equation
(4.28), we chose the time t of the first detector as the variable for the
response function. We could have chosen the time t′ of the second
detector, and the only effect would be that ∆E′ would be equal to
∆E/γj instead of ∆E/γk. That is, the choice of the time coordinate to
describe the system only implies in which gamma factor will Doppler
shift the gap of the detector in our description of the system.

We have two possible Killing vectors defining our internal prod-
uct, ∂T and ∂t, being the generator of temporal displacements in the
non-rotating and in the rotating frames, respectively. Using suitable
boundary conditions, both are time-like in all of the radially-bounded
spacetime. The difference between those normalizations is given by a
term |mω−∆E′|/|∆E′| = |1−mω/∆E′| inside the sums. It can only be
significant for mω ≈ ∆E′. According to the convergence criterion de-
scribed in the next subsection, we always had mmax ≤ 200, so we need
ω ≈ 0.1 for this term to be relevant. We will call it a “non-relativistic
regime" when ω � 0.1, and a “relativistic regime" otherwise. In fact,

27
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when we compare the numerical results for the transition rates, we
confirm the values of the transition rates with both normalizations be-
gin to differ only in the relativistic regime, but none of the qualitative
features will differ between them (cf. figure 5.2).

Despite having eight possible transitions shown in figure 4.1, we
will find that we have only three different transition rates. The first one
is related to de-excitations involving the symmetric entangled state(

Γ|e〉→|s〉 = Γ|s〉→|g〉
)

; the second, to de-excitations involving the anti-

symmetric entangled state
(

Γ|e〉→|a〉 = Γ|a〉→|g〉〉
)

, and, lastly, the third

one, involving any excitation
(

Γ|g〉→|s〉 = Γ|s〉→|e〉 = Γ|g〉→|a〉 = Γ|a〉→|e〉
)

.
As any of the possible transitions necessarily involve one pure state
and one entangled state, any of them by themselves represent either
entanglement degradation or entanglement harvesting.

In order to compute transition rates, we have to combine the rates
(individual rates R11 and R22 and crossed rates R12 and R21) with
the selectivity factors. Both kinds of response functions have sums of
products of Bessel cylindrical functions, which have strong oscillatory
behavior. The individual rates show products of those functions taken
at the same point, so, as they are squared, these terms will never be
negative. Only the crossed rates can be negative. Therefore, when we
take both detectors to the same radial coordinate, r1 = r2, the crossed
response functions will also be necessarily positive. It is expected
that in this situation we would get at least a local maximum in the
transition rate, for any equal radial coordinates. We found it to be
evidently a global maximum in all explicitly calculated cases, and
one of them is exhibited in the next subsection. This behavior has
been widely discussed in the literature [71]. When the detectors are
too close, they interfere stronger with each other. In fact, as we will
see (cf. figure 5.1), the crossed response functions is only significantly
different from zero when r1 ≈ r2.

Due to the dependence 1/
√
(mω− ∆E′)2 − k2

mn − µ2 in the response
function, divergences can appear. In the next subsection, we see them
clearly as peaks in the plot of the transition rate by ωa when it ap-
proaches one, as we see in figure 5.6(c), with |∆E|a = 200. Analyzing
the denominator of Cjk, we see that these singularities only happen
when mω ≈ ∆E′ → maω ≈ |∆E′|a, or when kmn ≈ ∆E′ → αmn ≈
|∆E′|a. Since in the sums mmax and nmax < 200, let us take α200,200 as su-
perior limit for αmn. We have α200,200 ≈ 920 > 200. So, for |∆E′|a = 200,
we have m and n such that αmn ≈ |∆E′|a ≈ maω. In this case, we will
have singularities from both terms, in many of (m, n) pairs. If we had
chosen a one order of magnitude bigger, we would not expect any
singularity. If we fix a, but reduce ω, we will not have divergences
caused by the factor mω, but we may still have some singularities
coming from kmn. Since the only place where µ appears is in this
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factor, we can say that its main effect is to change the regime when we
start having singularities.

For γ1, γ2 ≈ 1, we can go back into equation (4.33) and take the
approximation ∆E′ ≈ ∆E, such that the only dependence on the radial
coordinates will be in the Bessel functions. We will specify the details
of this approximation for the normalization using the ∂T Killing vector,
but for ∂t it would be basically the same, just including the factor
|1−mω/∆E| in the normalization. We approximate the CT-factor as

CTjk ≈ ∑
m,n

Tmn Jmn
j Jmn

k , (5.1)

where

Tmn =
Θ[mω−

√
k2

mn + µ2 − ∆E]
2πa2[Jm+1(kmna)]2

√
(mω− ∆E)2 − k2

mn − µ2
(5.2)

and

Jmn
j =

Jm(kmnrj)

γj
. (5.3)

Now, the rate can be written in a much simpler way. Using the matrix
elements of (4.20) and (4.21) in equation (4.32), we get two main cases,
transitions involving the symmetric entangled state, and transitions
involving the anti-symmetric entangled state:

Γ′symm = λ2 ∑
m,n

Tmn(Jmn
1 + Jmn

2 )2;

Γ′anti−symm = λ2 ∑
m,n

Tmn(Jmn
1 − Jmn

2 )2, (5.4)

where the Γ′ represents an approximated transition rate. It is clear,
from these equations, that transition rates involving the anti-symmetric
entangled state are zero when r1 = r2. Moreover, only for r1 = r2 we
know that Jmn

1 and Jmn
2 have the same signal for all m’s and n’s. So, it

can also be expected that this point is the maximum of transition rates
involving the symmetric entangled state. In the next sub-section, we
compare numerical analysis using the approximated transition rates in
equation (5.4), and the ones calculated using the functions in equation
(4.33).

5.2 numerical analysis of radiative processes

This section is devoted to the study of numerical values for the tran-
sition rates of some interesting cases, revealing the behavior of the
system. Our convergence criterion for the sums in m and n was that
the relative difference between the following terms of the sum should
be less than 10−7, 10 times in a row. Although there are sums that do
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not converge for m, n ≤ 100, for m, n ≤ 200 all of them converged for
the chosen parameters. All of the following plots have dimensionless
quantities in both axes. Unless we explicitly say otherwise, the de-
fault values for the parameters are such that |∆E|a = 20000, aω = 1,
µ/|∆E| = 0.035 and ∆E = −20 (in arbitrary units of energy). For
simplicity, we also took λ = 1, and the monopole operator constant
m(1) = m(2) =

√
2.

First, let us study the behavior of the individual terms C11 and C22

as a function of r2. There is no dependence on r2 in C11, so it will be a
constant. The C22 term is shown in figure 5.1(b), and it has a Bessel
dependence on r2, but it is always squared, so it can never be negative.
The crossed terms C12 and C21, on the other hand, has the argument
of only one of the Bessel functions varying with r2. As this function
has an oscillatory behavior, we also expect the crossed C factors to be
oscillatory, as in figures 5.1(c) and 5.1(d). They should have a local (at
least) maximum when r1 = r2 because that’s the only point where all
the terms in the m and n sums are positive.

Although its difficult to infer the main properties the transition
rate Γ, in section 4.1 we make an approximation (γ1 ≈ γ2 ≈ 1) to
make its behavior more clear and to conclude the existence of a global
maximum or a global minimum in the symmetric and anti-symmetric
transitions, respectively. This happens because, in the computation
of the transition rate, C11 and C22 are always positive, however, the
crossed terms C12 and C21 contributes positively for transitions in-
volving the symmetric state and negatively for transitions involving
the anti-symmetric state. In fact, we see in figures 5.4 and 5.7 that
there is a global maximum for transitions involving the symmetric
entangled state, and a global minimum for transitions involving the
anti-symmetric entangled state.

Now, let us calculate the transition rates of the system. First, we need
to discuss the normalization used in these calculations. The physical
meaning of this choice is the time-like Killing vector used to quantize
the massive scalar field, giving the two different normalizations in
equation (3.54). As discussed in subsection 5.1, they only differ by a
factor |1−mω/∆E′|, which in general is very close to one. In figure
5.2 we show the transition rate from |s〉 to |g〉 as a function of r2,
calculated with both normalizations. We can see that they begin to
visually differ for r2/a > 0.1, but there is no qualitative relevant
difference. So, in the discussions concerning the dependence on other
parameters, we will omit plots using ∂t as the Killing vector, since they
will not provide any further information.

Besides that, we can calculate the transitions using the equation
(4.34) for the CT’s and plugging into the transition rate, or by using
directly (5.4). In figure 5.3, we compare a de-excitation involving the
symmetric entangled state computed in both ways, with or without
the approximation, respectively. In the non-relativistic regime, the
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(a) C11(r2) (b) C22(r2)

(c) C12(r2) (d) C21(r2)

Figure 5.1: Individual Cjk factors as a function of r2, using ∂T to define the
normalization. Figures (a) and (b) are the numerical factors of the
individual response functions of the first and second detectors,
respectively. Figures (c) and (d) are the numerical factors of the
crossed response functions F12 and F21, respectively. Here, r1/a =
0, |∆E|a = 20000, aω = 1, µ/|∆E| = 0.035 and ∆E = −20 in
arbitrary units of energy.

graphs are visually identical, but, in the relativistic one, we see that
they differ significantly. It was also expected that the peaks were to
change, since we also changed the denominator, ignoring a γ factor,
to get in (5.4).

Let us analyze the different possible transitions and transition rates.
We will first study the de-excitations involving the symmetric entan-
gled state. Now, using figure 5.4, we compare the rate as a function
of r2 in two different situations, when r1 is in or out of the origin,
respectively. As expected by the discussion in subsection 5.1 and by
the individual terms in figure 5.1, in both cases we have a maximum
when r1 = r2.

The behavior of the rate from figure 5.4(a) is very similar to other
situations studied in the literature [71], with the response function
oscillating, with a large amplitude only in the first few oscillations. In
our problem, the response function does not go to zero when r2 in-
creases. This behavior could be expected since the “gravitational field"
increases at larger distances [72]. Even that the detectors get far away
from each other, we still have a growing effect of the “gravitational
field" affecting the system.
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(a) Non-relativistic regime (|∆E|a = 200).

(b) Relativistic regime (|∆E|a = 200).

Figure 5.2: Transition rate involving the symmetric entangled state calculated
for different normalization constants, as a function of r2. The
continuous blue graph was computed using the ∂T Killing vector,
and the dotted green graph was computed using the ∂t one. The
first graph shows the non-relativistic regime, and the second one
shows the relativistic regime. In both cases, r1/a = 0, aω = 1,
µ/|∆E| = 0.035 and ∆E = −20 in arbitrary units of energy.

Let us discuss the dependence in ω in a non-relativistic regime
of the system, fixing |∆E|a = 20000. With other parameters having
the same values as in the previous analysis, and now fixing r1 = 0
and r2/a = 0.1, we will take small values of ω, as shown in figure
5.5. All the three graphs gives us the same normalized (and very
small) transition rate between 8× 10−5 and 9× 10−5, coinciding with
the value for r2/a = 0.1 in figure 5.4(a). Taking aω ≤ 10−2 and 1,
the fluctuations in the rate when ω changes are respectively 7 and 3

orders of magnitude smaller than the actual value of the rate. So, in
this regime, changing ω basically does not change the rate.

Now, let us discuss the same dependence in a relativistic regime.
Let us fix |∆E|a = 200, keeping r1 = 0 and r2/a = 0.1. In this case,



M
ar

ch
2
, 2

0
2
1

at
2
3
:16

5.2 numerical analysis of radiative processes 33

(a) Non-Relativistic regime (|∆E|a = 20000).

(b) Relativistic regime (|∆E|a = 200).

Figure 5.3: Comparison between the transition rates of a de-excitation in-
volving the symmetric entangled state calculated from CT , or
using the approximation Γ′symm. In each graph, the first one is
the continuous blue line, and the second one is the dotted green
graph. The first graph presents the non-relativistic regime, and
the second one presents the relativistic regime. In both cases,
r1/a = 0, aω = 1, µ/|∆E| = 0.035 and ∆E = −20 in arbitrary
units of energy.

we can see in figure 5.6 that both the rate and its fluctuations are
way more relevant than in the non-relativistic one. There are a lot of
discontinuities in those graphs as we take |∆E|a = 200 and aω closer
to one, since we approach the singularities discussed in subsection
5.1, annihilating the denominator |(mω − ∆E′)2 − k2

mn − µ2|1/2. But,
except for those discontinuities, the dimensionless transition rate does
not change significantly with the value of ω when we fix the other
parameters. In the non-relativistic case, with |∆E|a = 20000, it was
roughly 9× 10−5. In the relativistic case, with |∆E|a = 200, excluding
discontinuities, it is always between 0.15 and 0.16.
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(a) r1/a = 0

(b) r1/a = 0.01

Figure 5.4: Symmetric de-excitation rates for the non-relativistic regime. In
the first graph, the first detector is fixed in the origin. In the second
graph, the first detector is also fixed, but out of the origin. In both
cases, |∆E|a = 20000, aω = 1, µ/|∆E| = 0.035 and ∆E = −20 in
arbitrary units of energy.

We can also see, from equations (4.33) and (4.34), that the only sig-
nificance of the mass of the field, µ, is to change the relativistic regime,
changing the zeros of the denominator of the response function.

There is also the de-excitations that involve the anti-symmetric
entangled state. In figure 5.7, we show the behavior of the transition
rate for this case when the first detector is in the origin or out of the
origin, respectively. In figure 5.8, we show graphs of this transitions
computed from the function CT, or from the approximation Γ′anti−symm.
As in the symmetric de-excitation case, the approximation is very
good for the non-relativistic regime but very different from the actual
transition rate for the relativistic one.

Notice that in figure 5.7 the anti-symmetric transition rate vanishes
for r1 = r2. In fact, we could think of an intuitive argument for
understanding this behavior. The only parameter that differs both
detectors in this model is the distance from the origin. If we take
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(a) 10−4 ≤ ωa ≤ 10−2.

(b) 10−2 ≤ ωa ≤ 1.

Figure 5.5: Dependence of the transition rate as a function of ω, for a fixed, in
the non-relativistic regime (|∆E|a = 20000). The first graph shows
the interval 10−4 ≤ ωa ≤ 10−2, and the second graph shows
the interval 10−2 ≤ ωa ≤ 1. In both cases, r1/a = 0, r2/a = 0.1,
µ/|∆E| = 0.035 and ∆E = −20 in arbitrary units of energy.

equal radii, there are no physical means of distinguishing them. If we
interchange both detectors, we do not expect anything to happen to
the state. But, in the anti-symmetric entangled state, the system’s state
should be anti-symmetric if we exchange both detectors. So, it seems
not to be possible to have a transition from the excited state to the
anti-symmetric entangled state when r1 = r2.

Now, for r1 very different from r2, the symmetric and anti-symmetric
cases should have very similar transition rates, because the crossed
response functions becomes very small, as seen in figures 5.1(c) and
5.1(d). In figure 5.9 we explicitly compare the transition rates of de-
excitations involving the symmetric and the anti-symmetric entangled
states for r1/a = 0.01, and r2/a varying. Both functions goes to the
same value near 8× 10−5 as r2 � r1, with the same behavior.
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(a) 10−4 ≤ ωa ≤ 10−2.

(b) 10−2 ≤ ωa ≤ 1.

Figure 5.6: Dependence of the transition rate as a function of ω, for a fixed,
in the relativistic regime (|∆E|a = 200). The first graph shows
the interval 10−4 ≤ ωa ≤ 10−2, and the second graph shows
the interval 10−2 ≤ ωa ≤ 1. In both cases, r1/a = 0, r2/a = 0.1,
µ/|∆E| = 0.035 and ∆E = −20 in arbitrary units of energy.

If both crossed rates, R12 and R21, tend to zero, we have only transi-
tions caused by the individual rates. It is expected that even decaying
from |e〉, the final state would not be entangled. In fact, if we have the
same transition rate for |s〉 and |a〉, with the same sign, we are just
generating the pure state |g〉1⊗ |e〉2. But, when r1 ≈ r2, the transitions
on the two cases are very different. While the symmetric case dis-
played a maximum, the anti-symmetric one will display a minimum.
In fact, the last one is equal to zero in r1 = r2, as shown in figure
5.7. Graphs of anti-symmetric transition rates as a function of ω are
visually identical to the graphs in figures 5.5 and 5.6, so they were
omitted.

In section 4, we obtained that, for the response function to be dif-
ferent than zero, we needed ∆E < 0. That means we can only see
de-excitations in our system. It was already expected, as the rotating
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(a) r1/a = 0

(b) r1/a = 0.01

Figure 5.7: Anti-symmetric de-excitation rates for the non-relativistic regime.
In the first graph, the first detector is fixed in the origin. In
the second graph, the first detector is also fixed, but out of the
origin. In both cases, |∆E|a = 20000, ωa = 1, µ/|∆E| = 0.035 and
∆E = −20 in arbitrary units of energy.

vacuum was shown in section 3.3 to be equivalent to the Minkowski
vacuum. So, we trivially get that all excitations are identical, and
Γ|g〉→|s〉 = Γ|g〉→|a〉 = Γ|s〉→|e〉 = Γ|a〉→|e〉 = 0. But there is a more inter-
esting behavior on the Γ’s as a function of ∆E. In this discussion, we
will take r1/a = 0 different from r2/a = 0.1, so there is no significant
difference between transitions involving symmetric or anti-symmetric
Bell states, as the crossed rates C12 and C21 are small compared to
C11 and C22. Let us use a transition involving the symmetric state.
We can see in figure 5.10 that there is a gap where transitions are
more probable to happen. When the energy of the gap is above some
(negative) upper value, there is no transition at all. For negative en-
ergy gaps much bigger (in modulus) than mω, αmn/a, and µ, it is
expected that the transition rate goes to zero since the rate will be
roughly proportional to 1/|∆E′|. Between those limits, it oscillates
around a function that steadily grows with the modulus |∆E|, with a
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(a) Non-Relativistic regime.

(b) Relativistic regime.

Figure 5.8: Comparison between the transition rates of a de-excitation in-
volving the anti-symmetric entangled state calculated from CT ,
or using the approximation Γ′symm. In each graph, the first one
is the continuous blue line, and the second one is the dotted
green line. The first graph presents the non-relativistic regime
(|∆E|a = 20000), and the second one presents the relativistic
regime (|∆E|a = 20). In both cases, ωa = 1, µ/|∆E| = 0.035 and
∆E = −20 in arbitrary units of energy.

behavior very similar to other works with rotating detectors (see, for
example, [73]). The extremes of the oscillations depend on the radius a
of boundary condition, as it defines the normal modes of the field that
mediates the interaction. The asymptotic behavior of the transition
rate as 1/|∆E′| when ∆E → −∞ is illustrated in figure 5.10 by the
green dots plotted, as a function ∝ 1/|∆E′|.

We can try to define the extrema of the interval of ∆E where the
transition rates oscillates by inspection of equation (4.33). The greater
limit of the interval is a specific value defined by the Θ function, that
requires mω −

√
k2

mn + µ2 − ∆E′ > 0. So, for the other parameters
fixed, ∆Emax for having a non-zero transition rate will be given by
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Figure 5.9: Comparison between transition rates for de-excitations involving
the symmetric and the anti-symmetric states, respectively being
the blue continuous line and the orange continuous line, as a
function of r2. This is the non-relativistic regime (|∆E|a = 20000),
and the first detector is fixed in r1/a = 0.01. Again, ωa = 1,
µ/|∆E| = 0.035 and ∆E = −20 in arbitrary units or energy.

Figure 5.10: Dependence of the transition rate on the energy gap of the
detector, for a = 10 (in arbitrary units of space). The green
dotted plot refers to the asymptotic limit ∆E→ −∞, where the
transition rate goes with 1/|∆E′|. Here, r1/a = 0, r2/a = 0.1,
ωa = 1 and µa = 7.

∆Emax = γ2 ·max
m

(mω −
√

k2
m1 + µ2), already taking the maximum

in n, for n = 1. The minimum value of the interval is related to
the regime where Γ asymptotically behaves like 1/∆E. That occurs
when the term (mω− ∆E′)2 − k2

mn − µ2 tends to (∆E′)2, that is, when
∆E� −γ2 ·max

m
(mω, αmn/a, µ).

So far we have computed transition rates between states of the
system, and we used them to discuss, among other features, the
stability of entangled states. A more direct way of analyzing it is to
compute the mean life of those states. Since we have no excitation,
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(a) Symmetric Bell state

(b) Anti-symmetric Bell state

Figure 5.11: The first and second graphs represent the mean-lifes of the sym-
metric and the anti-symmetric entangled Bell states, respectively,
as a function of r2, in the relativistic regime (|∆E|a = 200), with
ωa = 1, µ/|∆E| = 0.035 and ∆E = −20 in arbitrary units or
energy.

entangled states can only decay to the ground state |g〉 of the system,
so the mean life of an entangled state |i〉 is given by

τ|i〉(r1, r2; a, ω, ∆E, µ) = [Γ|i〉→|g〉(r1, r2; a, ω, ∆E, µ)]−1. (5.5)

In figure 5.11, the behavior of the mean life of both the symmetric
and anti-symmetric entangled Bell states is presented. As already
pointed out, we see that, for r1 = r2, the mean life of the symmetric
entangled state is a minimum, and the mean life of the anti-symmetric
one diverges, as this state becomes stable. For other values of r2, we see
the mean life oscillating, with several peaks, as we are in the relativistic
regime, but its value is always between 3 and 3.5. As r2 gets more
different from r1, the amplitudes of the oscillations become smaller. In
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the non-relativistic regime, the mean life would be a smooth function
of r2, since there are no peaks in the transition rate, and consequently
no peaks in the mean life.
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6
C O N C L U S I O N S

In this thesis, two entangled Unruh-DeWitt detectors coupled with a
massive scalar field are studied. We discuss the radiative processes in
a uniformly rotating frame, with Davies-Dray-Manogue’s cylinder as
the boundary condition for the field. Motivated by Davies et al [30]
concerning rates in rotating frames, and by Rodriguez-Camargo et al
[69] – entanglement of two detectors in a non-inertial frame (Rindler
space-time, in that case) – radiative processes between two detectors
in a rotating frame are discussed. Notice that the detectors are under
the influence of different “gravitational fields".

For this objective, we made a historical review of relativistic rotation
and discussed one of the approaches that could be compatible with
Quantum Field Theory. In the sequence, we discussed Quantum Field
Theory results that would be used in what follows, and we quan-
tized a massive scalar field in a rotating frame, in a radially-bounded
spacetime.

After discussing the basic theory of Unruh-DeWitt detectors, we
show that there can not be any excitation of the detector system
in this frame, extending the Davies et al. result for two entangled
detectors. It is consistent with the Bogoliubov’s β coefficients between
Minkowski and the rotating field modes being zero. There is a non-
zero crossed response function due to the coupling with the scalar
field. This crossed term is responsible for transitions involving pure
states and entangled states of both detectors. As we computed, only for
r1 ≈ r2 the crossed response functions are significantly different from
zero, and this was important to study transitions involving entangled
states. From the monopole matrices, we see that transition rates for de-
excitations can be separated into two disjoint cases: the ones involving
|s〉, and the ones involving |a〉. Specifically, Γ|e〉→|s〉 = Γ|s〉→|g〉 and
Γ|e〉→|a〉 = Γ|a〉→|g〉. The second ones tend to zero when r2 → r1, where
the first ones have their maximum, as a consequence of the behavior
of the crossed response functions.

The entanglement harvesting effect can only be seen for r1 ≈ r2,
and only in the de-excitation |e〉 → |s〉 between the state where both
detectors are excited and the maximally entangled symmetric state.
The crossed response function tends to zero for other values of radial
coordinates, and the transitions to anti-symmetric and symmetric
entangled states will have the same rate, generating a statistically
pure state. On the other hand, entanglement degradation happens
for both the transitions |s〉 → |g〉 and |a〉 → |g〉. The anti-symmetric
entangled state is the only stable state, and only for r1 = r2, when the

43
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transition rate goes to zero. Mean-life of both entangled states are also
studied. One can also look at the divergence in the mean-life plot for
r1 = r2, in the anti-symmetric de-excitation, to verify the existence of a
stable state. Finally, there are no entanglement effects associated with
excitations, since there is no excitation at all.

The issues investigated in this thesis could be continued by studying
the radiative processes of two detectors in the scenario of a non-time
orthogonal metric, for instance, in the Kerr spacetime, where the effects
over radiative processes can be analyzed. From this method, the possi-
bility of extracting entanglement from a rotating black hole vacuum
can be analyzed. One could also discuss the degradation of entangled
states, comparing it with other works about entanglement dynamics in
Kerr spacetimes [12]. Radiative processes with electromagnetic fields
and entangled atoms can also be considered, as more realistic models.
Moreover, the master equation approach could provide a more com-
plete treatment for the dynamics of entangled detectors interacting
with quantum fields.



M
ar

ch
2
, 2

0
2
1

at
2
3
:16

B I B L I O G R A P H Y

[1] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation
and Quantum Information: 10th Anniversary Edition. 10th. New
York: Cambridge University Press, 2011.

[2] Jurgen Audretsch and Rainer Muller. “Spontaneous excitation of
an accelerated atom: The Contributions of vacuum fluctuations
and radiation reaction.” In: Phys. Rev. A50 (1994), pp. 1755–
1763. doi: 10.1103/PhysRevA.50.1755. arXiv: gr-qc/9408019
[gr-qc].

[3] Asher Peres and Daniel R. Terno. “Quantum information and
relativity theory.” In: Rev. Mod. Phys. 76 (2004), pp. 93–123.
doi: 10.1103/RevModPhys.76.93. arXiv: quant- ph/0212023
[quant-ph].

[4] Greg L. Ver Steeg and Nicolas C. Menicucci. “Entangling power
of an expanding universe.” In: Phys. Rev. D79 (2009), p. 044027.
doi: 10.1103/PhysRevD.79.044027. arXiv: 0711.3066 [quant-ph].

[5] Jiawei Hu and Hongwei Yu. “Entanglement generation outside a
Schwarzschild black hole and the Hawking effect.” In: JHEP 08

(2011), p. 137. doi: 10.1007/JHEP08(2011)137. arXiv: 1109.0335
[hep-th].

[6] Eduardo Martin-Martinez and Nicolas C. Menicucci. “Entangle-
ment in curved spacetimes and cosmology.” In: Class. Quant.
Grav. 31.21 (2014), p. 214001. doi: 10.1088/0264-9381/31/21/
214001. arXiv: 1408.3420 [quant-ph].

[7] G. Menezes and N. F. Svaiter. “Vacuum fluctuations and radia-
tion reaction in radiative processes of entangled states.” In: Phys.
Rev. A92.6 (2015), p. 062131. doi: 10.1103/PhysRevA.92.062131.
arXiv: 1508.04513 [hep-th].

[8] Jiawei Hu and Hongwei Yu. “Entanglement dynamics for uni-
formly accelerated two-level atoms.” In: Phys. Rev. A91.1 (2015),
p. 012327. doi: 10.1103/PhysRevA.91.012327. arXiv: 1501.
03321 [quant-ph].

[9] G. Menezes. “Radiative processes of two entangled atoms out-
side a Schwarzschild black hole.” In: Phys. Rev. D94.10 (2016),
p. 105008. doi: 10.1103/PhysRevD.94.105008. arXiv: 1512.
03636 [gr-qc].

[10] G. Menezes and N. F. Svaiter. “Radiative processes of uni-
formly accelerated entangled atoms.” In: Phys. Rev. A93.5 (2016),
p. 052117. doi: 10.1103/PhysRevA.93.052117. arXiv: 1512.
02886 [hep-th].

45

https://doi.org/10.1103/PhysRevA.50.1755
https://arxiv.org/abs/gr-qc/9408019
https://arxiv.org/abs/gr-qc/9408019
https://doi.org/10.1103/RevModPhys.76.93
https://arxiv.org/abs/quant-ph/0212023
https://arxiv.org/abs/quant-ph/0212023
https://doi.org/10.1103/PhysRevD.79.044027
https://arxiv.org/abs/0711.3066
https://doi.org/10.1007/JHEP08(2011)137
https://arxiv.org/abs/1109.0335
https://arxiv.org/abs/1109.0335
https://doi.org/10.1088/0264-9381/31/21/214001
https://doi.org/10.1088/0264-9381/31/21/214001
https://arxiv.org/abs/1408.3420
https://doi.org/10.1103/PhysRevA.92.062131
https://arxiv.org/abs/1508.04513
https://doi.org/10.1103/PhysRevA.91.012327
https://arxiv.org/abs/1501.03321
https://arxiv.org/abs/1501.03321
https://doi.org/10.1103/PhysRevD.94.105008
https://arxiv.org/abs/1512.03636
https://arxiv.org/abs/1512.03636
https://doi.org/10.1103/PhysRevA.93.052117
https://arxiv.org/abs/1512.02886
https://arxiv.org/abs/1512.02886


M
ar

ch
2
, 2

0
2
1

at
2
3
:16

46 bibliography

[11] G. Menezes. “Spontaneous excitation of an atom in a Kerr space-
time.” In: Phys. Rev. D95.6 (2017). [Erratum: Phys. Rev.D97,no.2,029901(2018)],
p. 065015. doi: 10.1103/PhysRevD.95.065015. arXiv: 1611.
00056 [gr-qc].

[12] G. Menezes. “Entanglement dynamics in a Kerr spacetime.” In:
Phys. Rev. D97.8 (2018), p. 085021. doi: 10.1103/PhysRevD.97.
085021. arXiv: 1712.07151 [gr-qc].
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