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Abstract

An Analysis of Linear Perturbations and

Quasi-Normal Modes of Kerr Black Holes

Lúıs Felipe Longo Micchi

Supervisor: Marc Casals

This work is a thesis about linear perturbation theory of rotating black holes, so-called

Kerr black holes (Kerr BH’s). As such we start with a review of several analytical methods

that have been developed in the last few decades. We use these methods to investigate

the analytical properties of the retarded Green Function (GF) of the wave equation in

this space-time. The properties of the GF that we are concerned with in this work

are the branch cuts (BC’s) and the poles of its Fourier modes in the complex-frequency

plane. Each one of them is related to specific features of the BH, for instance the poles

in the GF are related to its characteristic modes of vibration (the quasi-normal modes,

QNM). Another interesting subject of study is the BH (in)stability. When discussing mode

stability of BH’s, QNM’s and BC’s play a major role, since they can lead to instabilities

depending on their localization on the complex-frequency plane

The novelty of our work is that our search for QNM modes is performed using the

semi-analytical method called MST method, which allow us to construct solutions to the

homogeneous wave equation and the retarded GF in term of series of hypergeometric

functions. This method is explained in our review. We also used this method to search
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for BC’s and to study the superradiance phenomenon. These topics were investigated

first in the sub-extremal rotating case for which we were able to reproduce results found

in the literature. The MST method was also applied to the extremal rotating BH and its

use allowed us to access QNM frequencies in the extremal Kerr case. Since it is known

that there is a new BC in the extremal case, we studied the formation of this new feature

as extremality is approached.

We hope that our work will contain some of the first few steps towards the under-

standing of wave propagation around extremal Kerr BH’s.

Keywords: General Relativity, Rotating Black Holes, Teukolsky equation, MST

method, Perturbation Theory, Quasi-normal modes
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Agradeço ao meu orientador, professor Marc Casals, por todas as horas dedicadas a

minha capacitação para a realização deste trabalho. Os créditos deste trabalho são tão

seus quanto meus.

Agradeço a todos os professores que tive no percurso do meu Mestrado aqui no

CBPF. Em especial, agradeço ao professor José Helayel-Neto, por tantos cursos, conselhos
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Chapter 1

Introduction

When dealing with a vibrating system, one of the aspects that plays a significant

role is the existence of its characteristic modes of vibration or normal modes (NM’s). A

well-known case where we deal with NM’s is in the context of vibrating strings, where

they represent standing waves traveling across the string. In these systems, it is shown

that there is an infinite number of NM’s [1]. It is also shown that these characteristic

modes have real frequencies, which are related to the length of the string [1]. This means

that, if one has a prior knowledge of the NM’s of a string, one can infer its size. In the

context of black hole (BH) physics, similar characteristic modes of vibration also appear,

but with some significant changes. By contrast with the previous example, BH’s are

not conservative systems: they are dissipative due to the presence of an event horizon.

This has the consequence that perturbations of a BH are not standing waves but damped

waves, meaning that their characteristic frequencies have a non-zero imaginary part. Due

to this dissipative property, these modes are now called quasi -normal modes (QNM’s).

A question that follows immediately is whether it is possible to work out the inverse

problem, like it was done in the string case. The answer is that QNM’s are related to the

mass, spin, net electrical charge and the (in)stability of the “vibrating” BH [2]. In this

work we are interested in studying BH’s with spin and zero net electrical charge, Kerr

BH’s as they are known in the literature.
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Since LIGO (Laser Interferometer Gravitational-wave Observatory)’s first detections

of gravitational waves [3–8], it has been possible to measure for the first time in history

the main QNM’s of BH’s resulting from collisions of two black holes [9]. In these measure-

ments, the QNM’s appear as the leading frequencies of the late-time phase (ringdown) of

the gravitational waveform, helping to estimate the mass and spin of the final BH’s. In

the light of this historical achievement, a better understanding of the QNM’s of BH’s is of

great interest. Many authors have calculated QNM’s for different space-times in the last

decade (several examples can be found in the review [10] and in references therein), but

a case where little is known is that of a maximally-rotating (extremal) BH. There is only

one paper where this problem has been tackled directly [11], to the best of our knowledge.

At first sight, it might seem like a purely academical question because it is widely

believed that there exists an astrophysical upper limit to the BH spin [12], which would

keep the BH away from extremality. However, observations in the electromagnetic spec-

trum do not completely eliminate the existence of extremal Kerr BH’s [13–15]. Another

reason that makes extreme Kerr a case of interest is the fact that the transition from the

sub-extremal to the extremal case of certain physical quantities might not necessarily be

smooth, as seen in [16]. In the context of QNM’s, it has been shown that some of them

“pile up” when the BH is arbitrarily close to extremality [17–20]. In this work we will

investigate QNM’s in extreme Kerr by means of a novel way that differs from the one used

in [11]. This will serve both as a check of the results in [11] and as means to obtain new

QNM frequencies and as a way to investigate what happens to the modes that “pile up”.

We also check the applicability of this new way of searching for QNM’s by reproducing

results for sub-extremal Kerr BH’s.
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Chapter 2

Rotating Black Holes: The Kerr
Metric

For astrophysical reasons, the most realistic BH study case is that of a rotating BH

with zero net eletrical charge [2,21]. A BH that has mass M and angular momentum per

unit mass a is described by the Kerr metric. In Boyer-Lindquist coordinates, this metric

is expressed as [2, 21]

ds2 = −∆

Σ

(
dt− a sin2(θ)dϕ

)2
+

sin2(θ)

Σ

(
(r2 + a2)dϕ− adt

)2
+

Σ

∆
dr2 + Σdθ2, (2.1)

where Σ ≡ r2 +a2 cos2(θ), ∆ ≡ r2−2Mr+a2, and the range of coordinates are 0 ≤ θ ≤ π,

0 < ϕ ≤ 2π, 0 < r < ∞ and −∞ < t < ∞. This space-time has two symmetries: it is

time-independent and axisymmetric. These two isometries are generated by the vectors:

ξ(t) ≡
∂

∂t
, and ξ(ϕ) ≡

∂

∂ϕ
, (2.2)

which are Killing vectors of this space-time [22].

It is obvious from equation (2.1) that this metric is divergent for Σ = 0 and for

∆ = 0. If we trace the curvature scalars, we can check that for ∆ = 0 they are finite, but

at Σ = 0 the Kretschmann scalar diverges [23]. This indicates that there is a region of this

space-time that constitutes a physical singularity. This singularity takes place at r = 0
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and θ = π/2. One can perform a slicing of this space-time, generating 3D hypersurfaces

of constant t. Focusing on one of these surfaces, one may be inclined to believe that the

singularity has a point-like projection on this surface, but this belief is not correct. The

reason for this is that Boyer-Lindquist coordinates are a form of spheroidal coordinates

that is related to Cartesian coordinates as

x =
√
r2 + a2 sin(θ) cos(ϕ), y =

√
r2 + a2 sin(θ) sin(ϕ), z = r cos(θ). (2.3)

Bearing this coordinate change in mind, it is possible to check that the projection of the

singularity on constant t hypersurfaces is actually a ring.

One might be interested in finding a hypersurface that is a one-way membrane. Such

goal can be achieved requiring a surface of constant r to be null, i.e.:

gµν∂µr∂νr = grr = 0, (2.4)

which implies ∆ = 0, which is the same condition that describes the unphysical singulari-

ties. This condition is met at r = r± ≡M±
√
M2 − a2, where r+ is the outer event horizon

and r− is the inner horizon. The hypersurface defined for r = r+ is an event horizon,

meaning that for r < r+ the light cones are entirely pointing inwards consequently this

region will be inaccessible for an observer that is located outside this region [2,24]. As one

can see, the roots of ∆ = 0 are only real if a ≤ M . This means that for a > M a event

horizon does not exist and it is said to be a “naked” singularity. Due to the weak cosmic

censorship hypothesis [22,25], it is widely believed that there should not exist singularities

that are not surrounded by an event horizon, i.e., a naked singularity. The weak cosmic

censorship hypothesis then imposes a natural upper limit to the BH angular momentum

that is a = M . At extremality we have that horizon radius is rH = r+ = r− = M . A BH

that has the maximum value of a is said to be an extremal Kerr BH.
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Another interesting feature of rotating BH’s appears when one looks at stationary

observers. By definition, a static observer is one whose four-velocity is proportional to

the vector ξ(t). When gtt > 0 this vector is space-like, and so no static observer can

exist in this region. This condition is met if M −
√
M2 − a2 cos2(θ) < r < rergo ≡

M +
√
M2 − a2 cos2(θ). The region r+ < r < rergo is named the ergoregion or ergosphere.

The boundary surface of the ergosphere can be shown to be a surface of infinite redshift

[21]. It is important to notice that the surface that delimits the ergosphere externally

(r = rergo) is not a one-way membrane. So a particle can, in principle, enter the ergoregion

and later on escape from it, if it does not cross the event horizon.

Another important class of observers is that of stationary observers. By definition,

a stationary observer is one whose four-velocity is a linear combination of the Killing

vectors associated with time translation invariance (ξ(t)) and axial symmetry (ξ(ϕ)) of this

space-time [24]. An observer that has angular velocity Ω, it will have a four velocity of

vµ = vt(ξµ(t) + Ωξµ(ϕ)). (2.5)

This observer only exists if vµvµ < 0, which is equivalent to:

gtt + 2Ωgtϕ + Ω2gϕϕ < 0. (2.6)

This is only true if Ω is inside the interval [Ω−,Ω+], where

Ω± =
−gtϕ ±

√
∆ sin(θ)

gϕϕ
. (2.7)

This means that this class of observers only exists for r > r+. It is straightfoward to

check that Ω+ = Ω− when r = r+. At this surface it is possible to find

ΩH ≡ Ω±|r+ =
a

2Mr+

=
a

r2
+ + a2

, (2.8)
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which is the only possible angular velocity for a stationary “observer” at the horizon 1.

To ΩH we give the name horizon frequency. In the extremal limit this quantity is simply

xΩH = (2M)−1.

A sub-class of stationary observers is the Zero Angular Momentum Observer (ZAMO)

class. As the name suggests, this sub-class of observer will follow a trajectory with L=0,

where

L = ξµ(ϕ)vµ, (2.9)

is the angular momentum. This condition constrains the four-velocity of these observers

to be [26]

vµZAMO =

(
−gϕϕ

∆ sin2(θ)

)1/2(
1, 0, 0,

−gtϕ
gϕϕ

)
. (2.10)

From this we can calculate the proper four-acceleration at a radius r as

aµZAMO = vνZAMO∇νv
µ
ZAMO. (2.11)

The aZAMO(r) =
√
−aµZAMOaµZAMO is the proper four-acceleration as measured at

a radius r. In order to obtain the four-acceleration of an observer at a radial distance

r as measured from infinity, one needs to multiply aZAMO(r) by the redshift factor thus

obtaining

a∞ZAMO(r) = aZAMO(r)

(
−ξµ(t)pµ

)
∞(

−ξµ(t)pµ
)
r

, (2.12)

where pµ is the observer’s four-momentum. When evaluating (2.12) at r = r+, one obtains:

a∞ZAMO(r+) =
(M2 − a2)1/2

2Mr+

. (2.13)

1Strictly speaking, there is no stationary observer at the horizon, because in this boundary vµvµ = 0.
These would imply that the observer is traveling at the light speed. As no observer can travel with this
speed there is no observer at the horizon.
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To a∞ZAMO(r+) it is given the name of surface gravity, since it can be understood

as the gravitational acceleration at the horizon. It can be proven that this quantity is

constant over the horizon and relates to the BH temperature as [22]

TH =
a∞ZAMO(r+)

2π
. (2.14)
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Chapter 3

Linear Perturbation of Rotating
Black Holes

In this chapter we summarize most of the results of linear perturbation theory of

rotating BH’s. In the first section, we start by reviewing the wave equation that guides

the propagation of perturbations of generic spin around this kind of BH. In the second

section, we digress about physical properties of waves around a BH.

3.1 Teukolsky Equation

3.1.1 Sub-extremal Case: a < M

In 1973, Saul A. Teukolsky [27] derived a linear master equation that drives a massless

master field Ψ of helicity s (and spin |s|) propagating around a Kerr BH (s = 0 for

scalar, s = ±1/2 for neutrino, s = ±1 for electromagnetic and s = ±2 for gravitational

perturbations). This major achievement in linear perturbation theory of BH’s was possible

by means of the so-called Newman-Penrose formalism. In this formalism it is useful to

work with the Kinnersley (null) tetrad basis

lµ =

(
r2 + a2

∆
, 1, 0,

a

∆

)
, (3.1)

nµ =
1

2Σ

(
r2 + a2,−∆, 0, a

)
, (3.2)

mµ =
1

21/2(r + ia cos(θ))

(
ia sin(θ), 0, 1,

i

sin(θ)

)
, (3.3)
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and mµ∗, (3.4)

to construct the so-called Newman-Penrose scalars. For instance, in the electromagnetic

case, the radiative components of the field are described by

φ0 ≡ Fµνl
µmν , φ2 ≡ Fµνm

µ∗nν , (3.5)

where Fµν is the Maxwell tensor. Here, φ0 represents the s = 1 field and φ2 the s = −1

field.

In the gravitational case, the radiative components of the field are described by

ψ0 ≡ −Cαβγδlαmβlγmδ, ψ4 ≡ −Cαβγδnαmβ∗nγmδ∗, (3.6)

where Cαβγδ is the Weyl tensor. In this case, ψ0 represents the s = 2 field and ψ4 the

s = −2 field.

Via independent derivations for each spin, Teukolsky could prove in his groundbreak-

ing work that field perturbations of generic spin around a rotating BH obey the following

linear partial differential equation (PDE)

[
(r2 + a2)2

∆
− a2 sin2(θ)

]
∂2Ψ

∂t2
+

4Mar

∆

∂2Ψ

∂t∂ϕ
+

[
a2

∆
− 1

sin2(θ)

]
∂2Ψ

∂ϕ2

−∆−s
∂

∂r

(
∆s+1∂Ψ

∂r

)
− 1

sin(θ)

∂

∂θ

(
sin(θ)

∂Ψ

∂θ

)
− 2s

[
a(r −M)

∆
+

i cos(θ)

sin2(θ)

]
∂Ψ

∂ϕ

− 2s

[
M(r2 − a2)

∆
− r − ia cos(θ)

]
∂Ψ

∂t
+ (s2 cot2(θ)− s)Ψ = 4πΣT, (3.7)

where T is a source term. We shall set T to be equal to zero throughout this work,

corresponding to the vacuum case. This set-up is justified since QNM frequencies are

source-independent quantities, as it will become clear later on. In this last equation, the

master field Ψ is understood as
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Ψ→


Φ for s = 0,

φ0 for s = 1, ρ−2φ2 for s = −1,
ψ0 for s = 2, ρ−4ψ2 for s = −2,

(3.8)

where ρ ≡ −(r − ia cos(θ))−1.

If we decompose Ψ into Fourier-harmonic components and angular multipoles as

Ψ =
1

2π

∫ ∞
−∞

e−iωt
∞∑
l=|s|

l∑
m=−l

eimϕsSlmc(θ)sRlmω(r)dω, (3.9)

it can be shown that the equations for Rlmω(r) and Slmc(θ) can be written as two linear

ordinary differential equations (ODE’s)

1

sin(θ)

d

dθ

(
sin(θ)

dsSlmc(θ)

dθ

)
+

(
c2 cos2(θ)− m2

sin2(θ)
− 2cs cos(θ)− 2ms cos(θ)

sin2(θ)
− s2 cot2(θ) + s+ sAlmc

)
sSlmc(θ) = 0,

(3.10)

with c ≡ aω and

∆−s
d

dr

(
∆s+1dsRlmω(r)

dr

)
+

(
K2 − 2is(r −M)K

∆
+ 4isωr − sλlmc

)
sRlmω(r) = 0,

(3.11)

where K ≡ (r2 +a2)ω−am and sλlmc ≡ sAlmc+ c2−2mc, which is a separation constant.

This pair of equations are the angular and the radial Teukolsky equations, respectively.

The angular equation has as solutions the spin-weighted spheroidal harmonics, which

have sAlmc (or, equivalently, sλlmc) as its eigenvalue. It is important to notice that equa-

tion (3.10) has regular singular points at cos(θ) = ±1 and a irregular singular point at

cos(θ) =∞, and that its solutions satisfy:
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∫ 2π

0

dϕei(m−m
′)ϕ

∫ π

0

dθsSlmc(θ)sS
∗
l′m′c(θ) sin(θ) = 2πδl

′

l δ
m′

m . (3.12)

The spin-weighted spheroidal harmonics are standard functions in BH perturbation

theory [28] and can be computed numerically using the toolkit available at [29]. This

toolkit also allows us to calculate sλlmc. In the static limit where a → 0, they reduce to

the spin-weighted spherical harmonics, which have sλlmc = l(l + 1). For the scalar case

(s = 0) they are the spheroidal wave functions.

It is important to notice some symmetries of the eigenvalues sAlmc. These symmetries

can be shown to be

sAlmc = sAl,−m,−c = sA
∗
lmc∗ = −sAlmc − 2s. (3.13)

For the radial Teukolsky equation (3.11) we can identify two regular singular points at

r = r± and an irregular singular point at r =∞. This structure classifies this equation as

a confluent Heun’s equation [30]. It is possible to find two linearly independent solutions

to (3.11) with different asymptotic behaviors, which we denote by sR
in
lmω and sR

up
lmω. Their

behavior near the horizon (r → r+) and at radial infinity is

sR
in
lmω ∼

sB
trans
lmω ∆−se−ikr∗ , for r → r+,

sB
ref
lmω

eiωr∗

r2s+1
+ sB

inc
lmω

e−iωr∗

r
, for r →∞,

(3.14)

sR
up
lmω ∼

sC
ref
lmω∆−se−ikr∗ + sC

up
lmωe

ikr∗ , for r → r+,

sC
trans
lmω

eiωr∗

r2s+1
, for r →∞.

(3.15)

Here, we defined k ≡ ω − mΩH , sB
inc/ref/trans
lmω and sC

inc/ref/trans
lmω as the incidence/

reflection/ transmission coefficients of the ingoing and upgoing modes, respectively. The

radial coordinate used was the usual tortoise coordinate, which is related to r as

r∗ ≡
∫
dr∗
dr
dr =

∫
r2 + a2

∆
dr = r+

2Mr+

r+ − r−
ln

(
r − r+

2M

)
− 2Mr−
r+ − r−

ln

(
r − r−

2M

)
. (3.16)
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These two solutions have different physical meanings. A wave that behaves like

e−iωtRin
lmω can be seen as a wave that propagates initially from infinity towards the black

hole, being partially reflected back to infinity by the potential barrier and partially trans-

mitted into the black hole. On the other hand, a wave that behaves like e−iωtsR
up
lmω can be

understood as a wave that is initially outgoing near the horizon and is partially reflected

back to the black hole and partially transmitted to radial infinity. This interpretation is

depicted in figure 3.1.

past horizon

future horizon
future null infinity

past null infinity

in-mode

past horizon

future horizon
future null infinity

past null infinity

up-mode

Figure 3.1: This figure shows Penrose diagrams with a schematic representation of the
in- and up-modes of the solutions to the radial Teukolsky equation.

Defining sR̄
in
lmω and sR̄

up
lmω as

sR̄
in
lmω =

sR
in
lmω

sBtrans
lmω

, sR̄
up
lmω =

sR
up
lmω

sCtrans
lmω

, (3.17)

and performing a change of coordinate defined by

dr

dr̄
= ∆s+1, (3.18)

it can be seen that the resulting ODE will be of second order with no term of first order

derivative. This means that the Wronskian with respect to r̄ will be constant [31]. This

Wronskian can be calculated as

sWlmω ≡
(
sR̄

in
lmω

dsR̄
up
lmω

dr̄
− sR̄

up
lmω

dsR̄
in
lmω

dr̄

)
= ∆s+1

(
sR̄

in
lmω

sdR̄
up
lmω

dr
− sR̄

up
lmω

dsR̄
in
lmω

dr

)
= 2iω

sB
inc
lmω

sBtrans
lmω

.

(3.19)
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It is easy to check that sWlmω also displays an interesting symmetry with respect to m

and ω, similar to sλlmc. The radial equation is complex conjugated if one performs the

change (m,ω)→ (−m,−ω∗). This means that sWlmω = sW
∗
l,−m,−ω∗ .

3.1.2 Extremal case: a = M

The derivation of the Teukolsky equations is valid for arbitrary values of the spin

parameter a. However, at extremality an important difference appears: although the

angular equation does not show any special feature in this limit, the structure of the radial

equation changes. In the extremal case the ODE has two irregular singular points: one at

the horizon (r = rH = r+ = r−) and another one at infinity (r = ∞). This implies that

the radial Teukolsky equation is now a doubly-confluent Heun equation [30] in contrast

with the sub-extremal case. With this change, one might wonder if the transition from

a < M to a = M in physical quantities of the BH, such as its QNM’s, is smooth.

In order to address the above question properly, an analysis of the radial Teukolsky

equation in the extremal case was performed in [32]. In this limit, it is possible to cast

equations (3.14) and (3.15) in a more suitable form

x
sR

in
lmω ∼


x
sB

trans
lmω e2M2ik/xx−2se−2M iω ln(x/(2M)), for x→ 0+,

x
sB

ref
lmω

eiω(x+2M ln(x/(2M)))

x2s+1
+ x

sB
inc
lmω

e−iω(x+2M ln(x/(2M)))

x
, for x→∞,

(3.20)

x
sR

up
lmω ∼


x
sC

ref
lmωe

2M2ik/xx−2se−2M iω ln(x/(2M)) + x
sC

up
lmωe

−2M2ik/xe2M iω ln(x/(2M)), for x→ 0+,

x
sC

trans
lmω

eiω(x+2M ln(x/(2M)))

x1+2s
, for x→∞,

(3.21)

where x ≡ r − rH = r − M and k is defined in the usual way. Equations (3.20) and

(3.21) are simple limits of (3.14) and (3.15) respectively, but it is worth noticing that the

coefficients will differ from the sub-extremal ones by a phase shift. However, it is easy to
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check that the Wronskian will have a similar expression

x
sWlmω ≡ ∆s+1

(
x
s R̂

in
lmω

dxs R̂
up
lmω

dx
− x

s R̂
up
lmω

dxs R̂
in
lmω

dx

)
= 2iω

x
sB

inc
lmω

x
sB

trans
lmω

, (3.22)

which is also constant with respect to r and obeys the same symmetry under (m,ω) →

(−m,−ω∗). In equation (3.22) x
s R̂

in
lmω and x

s R̂
up
lmω are the same as in (3.21) but normalized

by x
sB

trans
lmω and x

sC
trans
lmω respectively.

3.2 Physical Properties of Waves Around Black Holes

3.2.1 Quasi-Normal Modes

As an analogy to QNM’s, we can start by looking at the case of a vibrating bell.

When someone hits a bell, one can see that it will vibrate emitting a sound that will

fade away with time and it will return to its initial shape. It is an experimental fact that

different bells have different sounds even if they are hit in the same way. The different

sound is a consequence of having a different set of characteristic frequencies. So one can

expect that the sound emitted by the perturbed bell can tell us something about the bell,

such as its shape or material. This idea is largely explained in [33] for the undamped case.

Similarly, we can introduce the concept of QNM’s in the context of BH perturbation

theory. As in the case of the bell, if we perturb a BH by an external field, we can expect

the “sounds” emitted by the black hole to present characteristic frequencies. In this new

context, the perturbations can be, for example, caused by a particle falling into the BH

(gravitational case) or a gamma-ray burst nearby (electromagnetic case), and now the

sound in the bell analogy can be compared with electromagnetic and gravitational waves

respectively.

Since we expect these frequencies of the modes of vibration to be intrinsic, it is

natural that they are determined by the source-free differential equation, justifying the
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analysis of the vacuum case in (3.7). In order to search for the QNM’s we have to

introduce appropriate boundary conditions. On causal grounds, we impose that no waves

are coming out from the BH and that no waves are coming in from radial infinity. In this

picture we should expect that the physical field modes behave as

Ψ ∝

∆−se−iωte−ikr∗ as r → r+,
e−iω(t−r∗)

r2s+1
as r →∞,

(3.23)

where the proportionality factors are r- and t-independent.

Because of the dissipative nature of the problem, we expect the frequencies that

satisfy both boundary conditions in (3.23) to be complex-valued, where the imaginary

part of these frequencies will give the decay rate of the field. Given a spin-field s, there

are an infinite (but countable) number of QNM’s for each set of multipole numbers (l,m),

and they are enumerated by the so-called overtone number n = 0, 1, 2, .... Accordingly,

we shall denote the QNM frequencies by ωlmn. Typically, the value of n increases with

decreasing imaginary part of ωlmn. The imaginary part of ωlmn is related to the damping

time of the mode; the n = 0 QNM being by definition the longest-lived mode. Both

the real and imaginary parts of ωlmn are determined by the BH’s initial configuration

(mass, spin and charge) and the spin of the perturbation. The imaginary part the QNM

frequencies can tell us about an important property of the BH space-time. If =(ωlmn) > 0

for a particular mode, this mode will grow exponentially in time and this will indicate

that this space-time is linearly (mode-) unstable [10,21].

Even if ωlmn has a negative imaginary part, one might be concerned about the fact

that if we trace the mode perturbation back in time, it will grow, corresponding to initial

data with infinite amplitude. This is due to the fact that QNM’s do not form a complete

set of eigenfunctions, meaning that an expansion in terms of QNM’s is not always possible

[34–37]. Astrophysically, this means that QNM’s are excited only during a certain period
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of time [38]. This period where the QNM’s are excited corresponds to the ringdown phase

in the waveform, as we can see in numerical waveform calculations [40–42] and as seen

recently in LIGO’s observations [3–8].

Another way of understanding QNM’s, and the one that will be largely used in this

work, is via the retarded Green function (GF) [37]. The retarded GF is a solution to the

wave equation with 4πΣδ4(x, x′) source, and which satisfies boundary conditions in order

to respect the causality principle. In the section about the Teukolsky equation (3.1), we

used as starting point a mode decomposition as in (3.9). Having constructed the solutions

(3.14) and (3.15) (or (3.20) and (3.21) for the extremal case) we can write the GF of (3.11)

as

sGlmω(r|r′) = − sR̄
up
lmω(r)sR̄

in
lmω(r′)

sWlmω

Θ(r − r′)− sR̄
up
lmω(r′)sR̄

in
lmω(r)

sWlmω

Θ(r′ − r), (3.24)

then the full retarded GF, in the time-domain, will be

sG(xµ|xµ′) = −2∆s(r′)
∞∑
l=|s|

l∑
m=−l

∫ +∞+iC

−∞+iC

dωe−i(ωt−mϕ)
sSlmc(θ)sS

∗
lmc(θ

′)sGlmω(r|r′),

(3.25)

for C > 0 and xµ = (t, r, θ, ϕ). Because of the time invariance and axisymmetry of this

space-time, we have set t′ = ϕ′ = 0 in (3.25) without loss of generality.

In order to obtain the solution of the wave equation for an arbitrary source term, one

needs to integrate the retarded GF against the source term. When performing the Laplace

transform as in (3.25), one notices that there are different possible contributions to this

integral: from simple poles, branch cuts (see section 3.2.2) and from other irrelevant ( at

least after a certain time) contributions [37,39] (see figure 3.2). The first contribution to

the master field can be written as a sum of terms behaving in time like e−iωpt, where ωp’s

are simple poles of sGlmω(r|r′) in the frequency-domain. By the same reasoning applied
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in the bell case, these frequencies are the QNM’s. By construction, the simple poles of

sGlmω(r|r′) correspond to the zeros of sWlmω. Because of the equivalence between ωlmn

and zeros of sWlmω we will be looking for the zeros of equations (3.19) and (3.22) in order

to find ωlmn.

<(ω)

=(ω)

Figure 3.2: This figure is an illustrative representation of the contour deformation on the
complex-frequency plane for the modes of the GF of the radial Teukolsky equation, for
the static case (a = 0). The red dots represent simple poles of the GF and are the QNM
frequencies. The dashed green line is the high-frequency arc of integration. The solid
green line is the original integration for the Laplace transform. The blue hatched region
represents the BC that stems from the origin (ω = 0) that appear in the radial functions.
In the case where a > 0, more BC’s will appear in the complex-frequency plane, and they
come from spin-weighted spheroidal harmonics. It is worth noticing that there might exist
other types of BC’s that we are not aware of. The contour of integration here should be
taken in a clockwise sense.

3.2.2 Branch Cuts and Tails

Earlier in this chapter we said that the Green Function has three major contributions

due to the different parts of the integration contour chosen when performing integral

(3.25). Mathematically, this means that we can decompose the full GF (3.25) like

sG(xµ|xµ′) = sGQNM(xµ|xµ′) + sGBC(xµ|xµ′) + sGF (xµ|xµ′), (3.26)

where sGQNM(xµ|xµ) is the QNM contribution explained in the previous section, sGF (xµ|xµ′)

is the contribution of the high frequency arc (which reduces to the flat-space GF in the
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limit where M,a → 0) and sGBC(xµ|xµ′) is the BC contribution (see figure 3.2). This

section will be dedicated to the BC contribution to the GF (3.25).

It was in 1986 that this idea was explored for the first time in a work by Leaver [37].

Leaver worked on the Schwarzschild geometry (setting a = 0 in (2.1)). It was in his original

work that Leaver proved that in this geometry the contribution coming from the BC in

the contour of integration contributes to the late-time decay tails of the (Schwarzschild)

GF.

Since Leaver found that for the Schwarzschild case the sGBC contribution was the

leading term in (3.26) at the late-time regime [37], it would be expected that the same is

true in the Kerr metric. Following this train of though the authors of [39] computed (3.28)

via the MST expressions for sR
up
lmω. The starting point of the paper was the realization

that the BC in the GF comes from a discontinuity in the Wronskian, inherited from

sR
up
lmω

1. Because of the discontinuity in sR
up
lmω, it was proved that there is a discontinuity

in (3.25), that stems from the origin and goes down the imaginary axis of the complex-ω

plane.

Formally, the BC contribution to (3.25) can be expressed as

sGBC(xµ|xµ′) = −2∆s(r′)
∞∑
l=|s|

l∑
m=−l

eimϕ
∫ ∞

0

dωe−iωtsSlmc(θ)sS
∗
lmc(θ

′)δsGlmω(r|r′), (3.27)

where

δsGlmω(r|r′) = limρ̄→0+ (sGl,m,ω+ρ̄(r|r′)− sGl,m,ω−ρ̄(r|r′)) 6= 0 for iω > 0. (3.28)

Doing so, they reproduced the leading order behavior at timelike infinity as t−2l−3

and computed a third order correction behaving as t−2l−5 ln(t) in the scalar case. This

1It was argued that sR
in
lmω can not have BC’s. The main argument was that this solution has a Jaffé

series representation that is absolutely convergent ∀ ω ∈ C and r+ ≤ r <∞.
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leading order behavior is also correct for electromagnetic and gravitational fields and it

was first found in [43,44]. This result together with the mode stability (proved in [46]) can

be understood as an indication for the linear stability of the Kerr BH. If it was found that

the GF has a growth due to this BC, it would be seen as an instability of this space-time.

An instability due to the BC can occur if the branch point from which the BC stems from

happens to be in the upper part of the complex-frequency plane, i.e. =(ω) > 0. This

motivates us to search for possible new BC’s in the Wronskian (3.19), see our results in

sections 5.2.2 and 5.3.3.

In 1974, Hartle and Wilkins performed an investigation of the analytic properties of

the solutions to the Teukolsky equation in the complex-frequency plane [47]. The MST

method was not used, since it was only developed 22 year later. They were able to perform

such a study by means of a perturbative technique. It was defined

dr̂∗
dr

=
r2

∆
,

Υ(r̂∗) = ∆s/2rsRlmω(r), (3.29)

for which the radial Teukolsky equation takes the general form

d2Υ(r̂∗)

dr̂2
∗

+ V (r̂∗)Υ(r̂∗) = 0, (3.30)

where V (r̂∗) is the potential obtained after performing transformation (3.29) on the radial

Teukolsky equation (3.11).

By working in two different asymptotic regimes (r̂∗ → ∞) of (3.30) they were able

to construct two linearly independent solutions in each regime. These solutions are A∞±

for r̂∗ → ∞ and A−∞± for r̂∗ → −∞2. By separating the potential V (r̂∗) at r̂∗ → ±∞ in

2The ± sub-index refer to the mode of the wave. The minus sign (plus) stands for ingoing (outgoing)
wave. The super-index refer to which region the asymptotic behavior is valid. The minus (plus) sign
refer to the r̂∗ → −∞(+∞). The same is valid for other quantities.
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two terms (V ±∞0 (r̂∗) and V ±∞1 (r̂∗) ) and treating V ±∞1 (r̂∗) as a perturbation, they wrote

these solutions in the following manner

A±∞± = A±∞±
(0) +

∞∑
n=1

A±∞±
(n), (3.31)

where A±∞±
(0) is a solution to a ODE of the form

d2Υ(r̂∗)

dr̂2
∗

+ V ±∞0 (r̂∗)Υ(r̂∗) = 0, (3.32)

and

A∞±
(n) =

∫ ∞
r̂∗

dr̂(1)
∗

∫ ∞
r̂1∗

dr̂(2)
∗ ...

∫ ∞
r̂
(n−1)
∗

dr̂(n)
∗ G∞0 (r̂∗|r̂(1)

∗ )G∞0 (r̂(1)
∗ |r̂(2)

∗ )...

...×G∞0 (r̂(n−1)
∗ |r̂(n)

∗ )V ∞1 (r̂(1)
∗ )...V ±∞1 (r̂(n)

∗ )A∞±
(0), (3.33)

and

A−∞±
(n) =

∫ r̂∗

−∞
dr̂(1)
∗

∫ r̂1∗

−∞
dr̂(2)
∗ ...

∫ r̂
(n−1)
∗

−∞
dr̂(n)
∗ G−∞0 (r̂∗|r̂(1)

∗ )G−∞0 (r̂(1)
∗ |r̂(2)

∗ )...

...×G−∞0 (r̂(n−1)
∗ |r̂(n)

∗ )V −∞1 (r̂(1)
∗ )...V −∞1 (r̂(n)

∗ )A−∞±
(0), (3.34)

where G±∞0 (r∗|r(1)
∗ ) is the GF to (3.32). With this technique, they thought there might

be a branch point at

ωHW = mΩH + i(s− 1)
r+ −M
2Mr+

, (3.35)

in the solution A−∞− .

This frequency is now known as the Hartle-Wilkins frequency. Notice that if s = 2,

this frequency is in the upper-half complex-ω plane, and if this BC exists and contributes

to the GF (3.25), we might expect an instability of the space-time.

Although Hartle and Wilkins were inclined to believe in the existence of a branch

point at ω = ωHW , it was discussed by Glampedakis and Andersson that this indication

is misleading (see [45]). Since the MST method was not used on [45] we decided to

investigate whether we can find this BC or not by using the MST method.
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There is also in [45] a discussion about extremal Kerr black holes. They wrote the

radial Teukolsky equation in a similar form to (3.30) and studied its behavior as r → r+

for a = M . In this regime the Teukolsky equation can be approximated to

d2
sRlmω(r∗)

dr2
∗

+

(
Ω̂2 +

µ

r∗

)
sRlmω(r∗) = 0,

Ω̂ = ω −mΩH ,

µ = −2(m− is)Ω̂. (3.36)

The ODE (3.36) can be transformed to a Whittaker equation with two independent

solutions:

W±j,i(±2iΩ̂r∗) = (±2iΩ̂r∗)
1/2+ie∓iΩ̂r∗U(1/2 + i∓ j, 1 + 2i,±2iΩ̂r∗)

3 (3.37)

for

j = im+ s and i = ±1/2. (3.38)

The Whittaker function is multi-valued when its argument is zero, i.e. 2iΩ̂r∗ = 0.

This condition is equivalent to ω = mΩH
4. This leads to the conclusion that there is a

BC in the extremal Kerr BH that is absent for the sub-extremal Kerr BH. The BC in the

superradiance bound frequency will be referred to as “superradiant” BC.

This BC was found to be related with a blow up of the Weyl scalar ψ4 (see [50]).

However in [48,51] it was shown that this does not constitute an instability and that the

blow up in ψ4 is due to the choice of the tetrad basis.

3Notice that there is a degeneracy when using the name W both for the Wronskian and for the
Whittaker function. This is the only time the we are referring to the Whittaker function, so no confusion
should be expected.

4The condition is also met when r∗ = 0, but equation (3.37) is only valid for r∗ → −∞. For this
reason one can not conclude about a branch point at r∗ = 0.
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3.2.3 Superradiance

In 1969, R. Penrose discovered a process that enables the extraction of energy from

a rotating black hole [49], this process is now widely known as the “Penrose process”. In

this thought experiment, Penrose made use of a small massive object that, passing by

the vicinity of a BH, breaks into two fragments, one falling into the BH, and the second

one escaping to infinity. Penrose showed that if the breaking-up of the original object

happens inside the ergoregion, the fragment that crosses the horizon may have negative

energy with respect to a distant observer and the escaping particle has energy larger than

the original one. Thus, an extraction of rotational energy and a decrease in the BH’s spin

takes place.

The so-called superradiance phenomenon is the wave analogue to the Penrose process.

In this phenomenon, it is useful to use the fractional variation of energy

Zslmω ≡
dEout
dt

(
dEin
dt

)−1

− 1, (3.39)

where Ein and Eout are the energy of the incident and the reflected part of an initially

ingoing scattered wave at infinity. The quantity Zslmω is known in the literature as the

amplification factor and it is possible to show that it satisfies Zslmω = Zs,l,−m,−ω. For this

reason, in this sub-section, we will be assuming ω > 0.

The physical meaning of Zslmω is that, when it is larger than 0 the wave is carrying

away energy from the BH because dEout/dt > dEin/dt. This is the superradiance phe-

nomenon. This condition is met when k < 0 , in other words, when ω < mΩH
5. For that

reason ωSR ≡ mΩH is called the superradiant bound frequency.

5The most general condition is kω < 0, which can also be met for k > 0 if ω < 0. Since in this section
we assumed ω > 0, we found the superrandiance condition to be k < 0.
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By means of the stress-energy tensor in the scalar and electromagnetic cases, and of

the area theorem in the gravitational case, one can relate the energy fluxes in (3.39) with

the asymptotic amplitudes in (3.19) and find the amplification factors in terms of them

as [53,54]

Zslmω ≡



∣∣∣∣∣ sBref
lmω

sBinc
lmω

∣∣∣∣∣
2

− 1 for s = 0,∣∣∣∣∣ sBref
lmω

sBinc
lmω

∣∣∣∣∣
2(

16ω4

B2

)s/|s|
− 1 for |s| = 1,∣∣∣∣∣ sBref

lmω

sBinc
lmω

∣∣∣∣∣
2(

256ω8

|C|2

)s/|s|
− 1 for |s| = 2,

(3.40)

where we define B and C via

B2 ≡ Q2 + 4(mc− c2),

|C|2 ≡ B2 ((Q− 2)2 + 36(mc− c2)) + 48(2Q− 1)(2c2 −mc) + 144ω2(M2 − a2),

Q ≡ sλlmc + s(s+ 1).

(3.41)

If we keep Zslmω as in equation (3.40) it will not be useful for the purposes of this

work. As already stated in the previous section, our main goal is to compute the QNM’s

by means of the Wronskian as defined in (3.19) and (3.22), which we wrote as a function

of the incidence and transmission coefficients, but not of the reflection one. The idea is to

use this Zslmω in order to perform a consistency check of our numerical calculations. So

it would be useful to write the amplification factor as a function of the previously defined

Wronskian sWlmω. In order to do so, we can use a (different) Wronskian between the

solutions sY
in
lmω and −sY

in∗
lmω with respect to r∗, which is also r-independent. Then, we can

write the following identity using this second Wronskian :

[
−sY

in∗
lmω

dsY
in
lmω

dr∗
− sY

in
lmω

d−sY
in∗
lmω

dr∗

]
r=r+

=

[
−sY

in∗
lmω

dsY
in
lmω

dr∗
− sY

in
lmω

d−sY
in∗
lmω

dr∗

]
r=∞

, (3.42)
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where

sY
in
lmω ≡ ∆s/2(r2 + a2)1/2

sR
in
lmω (3.43)

which reflects conservation of energy [53,55]. The Teukolsky-Starobinsky identities [2,53]

allow us to correlate the asymptotic coefficients in (3.14) for fields of spins s and −s in

the following manner

sB
inc
lmω

∣∣
s=1

= −8ω2

B
sB

inc
lmω

∣∣
s=−1

, sB
ref
lmω

∣∣∣
s=1

= − B

2ω2 sB
ref
lmω

∣∣∣
s=−1

,

sB
inc
lmω

∣∣
s=2

=
64ω4

C
sB

inc
lmω

∣∣
s=−2

, sB
ref
lmω

∣∣∣
s=2

=
C∗

4ω4 sB
ref
lmω

∣∣∣
s=−2

. (3.44)

Using the set of relations (3.42) and (3.44), it is possible to rewrite Zslmω as

Zslmω =



−8ωMkr+

|sWlmω|2
for s = 0,

− 2ω3

Mkr+|sWlmω|2
for s = 1,

− 4ω5

k(2Mr+)3(k2 + 4ε̄2)

1

|sWlmω|2
for s = 2,

(3.45)

with

ε̄ ≡ (M2 − a2)1/2

4Mr+

(3.46)

and sWlmω appearing in (3.45) is defined via (3.19) and/or (3.22) . Here we have given an

expression for the amplification factor for positive helicity. The expressions for negative

helicity can be obtained in a similar way.

We developed a code in Mathematica [58] that will allow us to calculate the amplifi-

cation factor as defined by (3.45), but in order to test our results it will be useful to have

an analytical small-ω asymptotic behavior in order to verify the validity of our results.

Such expression was obtained in [56, 57], where it was used the assumption ω � mΩH ,

and it reads

Zslmω ∼8r2
+ω

2l+1(r+ − r−)2lT̂

[
Γ(1 + l − s)Γ(1 + l + s)

(2l + 1)!!Γ(l + 1)Γ(2l + 1)

]2

×

sinh

(
mΩH

T̂ r+

)
Γ

(
1 + l − imΩH

πr+T̂

)
Γ

(
1 + l +

imΩH

πr+T̂

)
, (3.47)
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where we have included the definition T̂ ≡ (r+ − r−)/(4πr2
+).

In the extremal Kerr case, T̂ is equal to zero, and one can easily check that equation

(3.47) for the small-frequency regime is no longer valid. However, in [57], Starobinsky

performed an approximation for our case of interest. This approximation is now valid for

ω → ωSR. Using the definition of δ̂2 ≡ 2m2− sAlmc− (aω)2− (s+ 1/2)2, α ≡ (1−ω/ωSR)

and Sα ≡ α/|α|, Starobinsky found

Zslmω ∼
sinh2(2πδ̂)

Sαeπm(Sα−1)

(
cosh2

(
π(m− δ̂)

)
eπδ̂(Sα−1) + cosh2

(
π(m+ δ̂)

)
e−πδ̂(Sα−1)

−2 cosh
(
π(m− δ̂)

)
cosh

(
π(m+ δ̂)

)
cos
(
γ0 − 2δ̂ log(2m2|α|)

))−1

, (3.48)

for δ̂2 > 0 and |α| � m−4max(1, |α|2), where the definition

γ0 = 4arg
(

Γ(1 + 2iδ̂)
)

+2arg
(

Γ
(

1/2 + s+ i(m− δ̂)
))

+2arg
(

Γ
(

1/2 + s− i(m+ δ̂)
))

,

(3.49)

was used. In the regime α ≈ 0, modes that have δ̂2 < 0 will have its amplification factor

expressed as

Zslmω ∼ 4Sα|δ|2(2m2|α|)2|δ̂|eπm(1−Sα) |Γ(1/2 + s+ |δ̂|+ im)|2|Γ(1/2− s+ |δ̂|+ im)|2

Γ(1 + 2|δ̂|)4
.

(3.50)

At this stage the reader may be wondering about the absence of the amplification

factors for the s = 1/2 field. The reason why these equations are not shown here is

because in the neutrino case superradiance simply does not happen [2, 55].
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Chapter 4

Linear Perturbation Methods

Now we are equipped with the most relevant equations of linear perturbation theory

in BH, the Teukolsky equations. The next most natural step is to investigate methods

that allow us to extract physical information from them, as well as the wave solution itself.

This chapter is devoted to a review of methods that allow us to perform such analysis.

4.1 Three-term Recurrence Relations and Continued

Fractions

In this chapter we will be using a result that is extremely useful when trying to

find solutions to ODE’s as series expansions. When dealing with series, one may en-

counter a recurrence relation that connects the series coefficients (fn’s). If such relation

is homogeneous and have three terms it can be written like:

αnfn+1 + βnfn + γnfn−1 = 0, (4.1)

where αn, βn and γn are the recurrence relation coefficients. We shall denote recurrence

relations like (4.1) as single-ended if n ∈ N and as double-ended if n ∈ Z.

It is known in the literature that the theory of three-term recurrence relations is

linked to the theory of continued fractions. For instance, with the recurrence coefficients

of (4.1) it is possible to contruct the a CF such as:
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−γ0

β0−
α0γ1

β1−
α1γ2

β2−
... (4.2)

In his work [59], Gautschi made use of the concept of minimal and dominant solutions

of (4.1). It can be seen that a three-term recurrence relation, such as (4.1), possesses two

linearly independent solutions, say, f̂
(1)
n and f̂

(2)
n . Gautschi studied the special case where

these two solutions satisfy:

lim
n→∞

f̂
(1)
n

f̂
(2)
n

= 0. (4.3)

Because of this behavior, f̂
(1)
n (f̂

(2)
n ) is called the minimal (dominant) solution of

(4.1) as n→∞. The minimal solution is unique up to an overall factor.

Studying the behavior of minimal and dominant solutions, Gautschi provided the

proof that the CF (4.2) is convergent if and only if the recurrence relation satisfied by

fn’s possesses a minimal solution, with f0 6= 0. In this case it is possible to prove that

fn
fn−1

=
−γn
βn−

αnγn+1

βn+1−
αn+1γn+2

βn+2−
... (4.4)

When dealing with double-ended three-term recurrence relation, there will be two

infinite continued fractions analogous to (4.2). The first one with the index embracing all

positive integers, and the second with the index running over all negative integers. The

main difference is that now we might also have a solution which is minimal as n→ −∞.

The convergence result is applicable in both limits. If there exist a minimal solution as

n→∞ (n→ −∞), the infinite CF, analogous to (4.2), holding positive (negative) index

will be convergent. It is important to notice that the minimal solution as n→∞ and the

minimal solution as n → −∞ will not necessarily be the same. Such imposition can be

made at some stage, but it is important to keep in mind that this is not a general rule.
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With this result in mind, when dealing with recurrence relations in the next sections, we

will always require the solutions to be minimal, for n → ∞ and (in double-ended cases)

for n→ −∞.

4.2 Leaver’s Method

4.2.1 Continued Fractions for Eigenvalues and QNM’s

Eigenvalue

An important method in BH perturbation theory relies on solving homogeneous three-

term recurrence relations by means of continued fraction (CF) techniques. As far as we

know, the first time this method was used in the context of black hole physics was in [60],

where it was used to calculate the angular eigenvalues. It was only in 1985 that Leaver [61]

showed that this method could also be applied to the QNM problem. Here we give a brief

review of this method.

The first step to calculate the angular eigenvalues consists in writing the solutions

to equation (3.10) as a power series. In order to construct a solution which is regular at

u = cos(θ) = ±1, one needs to notice that its behaviors at these points are

sSlmc(u) ∼
{

(1 + u)|m−s|/2, for u→ −1,
(1− u)|m+s|/2, for u→ +1.

(4.5)

Because of (4.5) we can write an appropriate ansatz to the solutions of (3.10) as

sSlmc(u) = ecu(1 + u)|m−s|/2(1− u)|m+s|/2
∞∑
n=0

aθn(1 + u)n, (4.6)

where aθn are the series coefficients for the solution of the angular Teukolsky equation.

Inserting (4.6) in (3.10) one can find a recurrence relation that connects aθn for dif-

ferent n’s. Defining the recurrence coefficients
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αθn ≡− 2(n+ 1)(n+ |m− s|+ 1),

βθn ≡n(n− 1) + 2n(|m− s|/2 + |m+ s|/2 + 1− 2c)− 2c(|m− s|+ s+ 1)

+ (|m− s|/2 + |m+ s|/2)(|m− s|/2 + |m+ s|/2 + 1)

− c2 − s(s+ 1)− sAlm,

γθn ≡2c(n+ |m− s|/2 + |m+ s|/2 + s), (4.7)

the relation is single-ended and reads


αθ0a

θ
1 + βθ0a

θ
0 = 0,

αθna
θ
n+1 + βθna

θ
n + γθna

θ
n−1 = 0, for n ∈ N.

(4.8)

If there exists a minimal solution to (4.8) it is possible to invert this relation and find

that

βθ0 −
αθ0γ

θ
1

βθ1−
αθ1γ

θ
2

βθ2−
αθ2γ

θ
3

βθ3−
... = 0, (4.9)

which is an infinite CF. The correct eigenvalue will be given by the root of equation

(4.9). This choice of sAlmc ensures that the coefficients of (4.6) correspond to the minimal

solution of (4.8) [59, 61]. In [60] it is found an equivalent equation to (4.8), but with

different coefficients αθn, βθn and γθn. This is due to the fact that the expansion was not

written as in (4.6) but as an expansion in terms of Jacobi polynomials.

QNM’s

When looking for QNM’s one might check that the correct asymptotic behavior of

the solutions of (3.11) that satisfy the QNM’s boundary conditions are:
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sRlmω(r) ∼


(
r − r+

2M

)−s−iσ+
, for r → r+, purely ingoing,

( r

2M

)−1−2s+i2Mω

eiωr, for r →∞, purely outgoing.

(4.10)

This justifies the use of

sRlmω(r) = eiωr
(
r − r−

2M

)−1−s+i(2Mω+σ+)(
r − r+

2M

)−s−iσ+ ∞∑
n=0

arn

(
r − r+

r − r−

)n
, (4.11)

as an ansatz for the solution of (3.11) that satisfies the QNM boundary conditions. It

was defined σ+ ≡ (ωr+ − am/(2M)) /
√

1− a2/M2.

When substituting (4.11) into (3.11) it is straightfoward to prove that a single-ended

relation similar to (4.8) holds for the radial coefficients, provided the change of index

(θ → r) and

αrn =(n+ 1) (n+ b0) ,

βrn =2n(1− n) + nb1 + b2,

γrn =n(n− 3) + 2 + b3(n− 1) + b4, (4.12)

where we have defined
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b0 ≡+ 1− s− 2Mωi− 2ib,

b1 ≡− 4 + 4Mωi
(

2 +
√

1− a2/M2
)

+ 4ib,

b2 ≡(2Mω)2

(
4 + 2

√
1− a2/M2 − a2

4M2

)
− 2amω

− s− 1 + (2 +
√

1− a2/M2)i(2Mω)−s Alm + (8Mω + 2i)b,

b3 ≡s+ 3− 6M iω − 2ib,

b4 ≡s+ 1− 8(Mω)2 − (2s+ 3)i(2Mω)− (8Mω + 2i)b,

b ≡ 1√
1− a2/M2

(
Mω − am

2M

)
.

(4.13)

Similarly to the case of the angular eigenvalue, the problem of finding QNM frequen-

cies is now a matter of finding the roots of the CF analogous to (4.9), but with the radial

recurrence coefficients. This is also a sufficient condition to ensure the solution of the

radial recurrence relation (analogous to (4.8)) to be minimal.

As already mentioned, the structure of the radial Teukolsky equation changes from

a < M to a = M . For this reason the previous equation to find QNM’s are valid only for

a < M . Motivated by a search of QNM’s in extremely rotating and extremely charged

BH, Richartz adapted this method in [11]. By using an expansion around r = 2M as an

ansatz for a solution of (3.11), Richartz found that the extremal arn’s satisfy a recurrence

relation similar to the one presented above. His recurrence coefficients are related to the

sub-extremal ones as given by equations (A23) and (A25) in [11].

Although this seems to address the problem of the extremal Kerr QNM’s, Richartz’s

method might not be well-suited for all regions of the complex-ω plane, such as near the

point ω = ωSR. The region near this point of the complex-frequency plane is of high

importance in the extreme Kerr case. The reason is that it has been shown that when

a → M , an infinite set of QNM’s “pile up” near this point [17]. In [18, 19] it was shown
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that for m > 0 modes, all QNM’s seem to accumulate to that point if m/(l+ 1/2) & 0.74,

while for modes with m/(l+1/2) . 0.74 there seems to be a few modes that do not follow

this pattern. The point ω = ωSR is also a branch point in the extremal case [45], hence

the question of what happens to the modes that accumulate at ωSR in the exact extreme

case is still an open and interesting issue. This seems to be an indication that QNM’s get

arbitrarily close and form a BC as extremality is approached.

4.2.2 Derivative of the Eigenvalue

The eigenvalue of equation (3.10) can be calculated as discussed in the previous

section, but one might ask if it is possible to find an analytical expression for its derivative

throughout the complex-c plane. At a first glance, this might be a purely technical

question, but there is some value to it.

A quantity of great interest in BH perturbation theory is the excitation factor of each

mode [37, 62, 63]. These factors are source-independent quantities that are needed when

one wishes to compute the excitation amplitudes of a given QNM.

By definition, the excitation factors are given by

sB
T
lmn ≡

1

2ω
sB

ref
lmω

sBtrans
lmω

(
d

dω

(
sB

inc
lmω

sBtrans
lmω

))−1
∣∣∣∣∣
ω=ωlmn

. (4.14)

As one might suspect, the amplitudes sB
inc/trans/ref
lmω depend on sAlmc. Therefore,

from the chain rule, an analytical expression for the derivative of this eigenvalue might be

useful, not only for investigating analytical properties of sB
T
lmn, but also as a practical way

of calculating this quantity. This is only one of the possible applications of the eigenvalue

derivative, and it was stated for illustrative reasons. As a matter of fact, the eigenvalue

derivative deserves attention on its own right, independently from the excitation factors.

One can use this result to study the analytical properties of sAlmc itself.
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To obtain the derivative of sAlmc one might start by assuming that the CF (4.9)

can be truncated at some finite order N in order to use as a “good enough” numerical

approximation to the eigenvalue. As commonly done in numerical recipes, one only needs

to demandN to be large enough in order for the CF to converge to some required precision.

This may seem like a crude approximation, but we have numerically shown that this is

not the case, as one can see in the results section.

In [64] it is given an analytical expression to the derivative of a finite CF (see its

equation (6)). Assuming that our approximation to the infinite CF is good enough and

making use of [64] we can take its derivative with respect to c (= aω). Following the

notation in [64], we can see that for the eigenvalue case this will yield a linear equation

for its derivative. This linear equation can be inverted to find

dsAlmc
dc

≈
−dζ

θ
0

dc
+
∑N

j=0

(∏j
k=0

1

αθkγ
θ
k+1

)(
1

tj

d(αθjγ
θ
j )

dc
+
dζθj
dc

)

1 +
∑N

j=0

∏j
k=0

(
t2k

αθkγ
θ
k+1

) , 1 (4.15)

where tN−k is the k-th tail of the truncated finite CF (4.9) for the eigenvalue and ζθn ≡

βθn + sAlmc
2. The definition of the k-th tail of the finite CF is

tN−k =
αθN−kγ

θ
N−k−1

βθN−k−1−
αθN−k−1γ

θ
N−k−2

βθN−k−2−
...
αθN−2γ

θ
N−1

βθN−1−
αθN−1γ

θ
N

βθN
.

To the best of our knowledge this is the first time that an analytical method was

developed to compute the eigenvalue derivative directly. We have numerical evidence

that supports the validity of this method, see section 5.1.

1This expressions is said to be an approximation in the sense that we achieved the derivative of the
finite CF, which was used as an approximation of the actual CF that defines the angular eigenvalue.
Thus that is what we mean when talking about an approximation for the derivative.

2Inspecting the expression for βθn (4.7) it can be seen that ζθn has no term that depends on sAlmc.
Then the derivative of ζθn will not contain the eigenvalue.
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4.3 The MST method

4.3.1 Sub-extremal Case

In 1996, Mano, Suzuki and Takasugi [65] developed an analytic method in BH per-

turbation theory, which is now widely known as the MST method. When developing this

method, they assumed <(ω) > 0. Because of the the complex conjugation of (3.11) under

the transformation (m,ω) → (−m,−ω∗) [39] one can use the following equation to ob-

tain results for <(ω) < 0. This method is based on a series expansion of the solutions to

(3.11) in terms of hypergeometric functions (4.16) and confluent hypergeometric functions

(4.17). These expansions are

sR
in
lmω = eiεκy(−y)−s−i(ε+τ)/2(1− y)i(ε−τ)/2

∞∑
n=−∞

anpn+ν(y), (4.16)

pn+ν(y) = 2F1(n+ ν + 1− iτ,−n− ν − iτ ; 1− s− iε− iτ ; y),

and

sR
up
lmω = 2νe−πεe−iπ(ν+1+s)eiẑ ẑν+iε+(ẑ − εκ)−s−iε+

×
∞∑

n=−∞

in
(ν + 1 + s− iε)n
(ν + 1− s+ iε)n

an(2ẑ)nU(n+ ν + 1 + s− iε, 2n+ 2ν + 2;−2iẑ). (4.17)

In these last expressions we have defined ε ≡ 2Mω, q ≡ a/M , κ ≡
√

1− q2, τ ≡ (ε−mq)/κ,

y ≡ ω(r+− r)/(εκ), ẑ ≡ εκ(1− y) and ε+ ≡ (ε+ τ)/2. The notation (y)n = Γ(y+n)/Γ(y)

stands for the Pochhammer symbol. Here, ν appears as a generalization of l. This

new parameter will be crucial for imposing the convergence of (4.16) and (4.17), as will

be clearer later on. To ν is given the name of renormalized angular momentum. This

parameter is a function of (l,m, ω).

Inserting equation (4.16) into (3.11) it is possible to find another double-ended three-

term recurrence relation. This time for an, that holds as

ανnan+1 + βνnan + γνnan−1 = 0, for n ∈ Z (4.18)
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with the following recurrence coefficients

ανn =
iεκ(n+ ν + 1 + s+ iε)(n+ ν + 1 + s− iε)(n+ ν + 1 + iτ)

(n+ ν + 1)(2n+ 2ν + 3)
,

βνn = −sλlmc − s(s+ 1) + (n+ ν)(n+ ν + 1) + ε2 + ε(ε−mq) +
ε(ε−mq)(s2 + ε2)

(n+ ν)(n+ ν + 1)
,

γνn = −iεκ(n+ ν − s+ iε)(n+ ν − s− iε)(n+ ν − iτ)

(n+ ν)(2n+ 2ν − 1)
. (4.19)

Notice that, by doing the same procedure with equation (4.17) one can check that its

series coefficients an satisfy the same relation. This justify the use of the same notation

for the expansion coefficients of the two different solutions.

This time we are dealing with double-ended three-term recurrence relation. In this

case, we have already explained that now we may have two minimal solutions, one for

n → −∞ (a−n ), and a second one for n → ∞ (a+
n ). As stated previously in this chapter,

three-term recurrence relations are connected with CF. This time we encounter two infinite

continued fractions, one for positive n, and another one for negative n. According to the

theory of CF’s we have seen that it is possible to write

Rν
n =

an
an−1

=
−γνn

βνn + ανnR
ν
n+1

, (4.20)

Lνn =
an
an+1

=
−ανn

βνn + γνnL
ν
n−1

, (4.21)

where the CF representation of Rn (Ln) is only valid if it is convergent for n → ∞

(n→ −∞),i.e. if the solutions for (4.18) are minimal for n→∞ (n→ −∞). This means

that we need to search for a solution that is minimal in both cases.

In theorem 2.3 of [59], it is given a way to analyze the asymptotic behavior of the

two solutions of three-term recurrence relations. In our study case, this theorem was used

to show that [66]
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
∣∣∣∣ a+

n

a+
n−1

∣∣∣∣ ∼ ∣∣∣∣ iεκ2n

∣∣∣∣ as n→∞,∣∣∣∣ a−na−n+1

∣∣∣∣ ∼ ∣∣∣∣ iεκ2n

∣∣∣∣ as n→ −∞.
(4.22)

Here the importance of ν is made clear. The renormalized angular momentum was

introduced in order to impose the convergence of the CF representation for both Rn (for

n → ∞) and Ln (for n → −∞). To do so, ν has to be calculated in such a way that

guarantees that the relation

Rν
nL

ν
n−1 = 1, (4.23)

is valid for an arbitrary integer n. Equation (4.23) is equivalent to

gn(ν) = βνn + ανnR
ν
n+1 + γνnL

ν
n−1 = 0. (4.24)

If conditions (4.23) and (4.24) are met for a single value of n ∈ Z, it is automatically

satisfied ∀ n ∈ Z.

Having convergent expressions for Rn and Ln and choosing a particular normalization

where a0 = 1, we can compute an ∀ n ∈ Z. To many purposes, it is useful to provide a

small ε-expansion for ν, this expansion reads

ν = l + ν2ε
2 +O(ε3), (4.25)

where

ν2 ≡
1

2l + 1

(
−2− s2

l(l + 1)
+

(
(l + 1)2 − s2

)2

(2l + 1)(2l + 2)(2l + 3)
− (l2 − s2)

2

(2l − 1)2l(2l + 1)

)
. (4.26)

A higher order expansion for ν can be found in [39].

The imposition that makes an to be minimal both to n → −∞ and n → ∞ at

the same time, together with the asymptotic (as |n| → ∞) properties of the (confluent)

hypergeometric functions guarantees the convergence of (4.16) for |y| < ∞ (r < ∞) and

(4.17) for r > r+ [65, 66].
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As explained before, the radial Teukolsky equation is complex-conjugated under

(m,ω) → (−m,−ω∗). Because of this property we henceforth assume <(ω) > 0, if

one wishes to compute MST quantities for <(ω) < 0 one can obtain them by using this

symmetry.

Noticing that solution (4.16) converges for r+ ≤ r < ∞ and (4.17) converges for

r+ < r ≤ ∞ , one can construct a solution that is convergent everywhere. In order to

do so, a matching procedure is performed. During this matching procedure the following

useful quantities arise :

Aν+ ≡ e−
π
2
εe

π
2
i(ν+1−s)2−1+s−iεΓ(ν + 1− s+ iε)

Γ(ν + 1 + s− iε)

+∞∑
n=−∞

an, (4.27)

Aν− ≡ 2−1−s+iεe−
π
2
i(ν+1+s)e−

π
2
ε

+∞∑
n=−∞

(−1)n
(ν + 1 + s− iε)n
(ν + 1− s+ iε)n

an,

and

Kν ≡
eiεκ(2εκ)s−ν−η2−siηΓ(1− s− 2iε+)Γ(η + 2ν + 2)

Γ(η + ν + 1− s+ iε)Γ(η + ν + 1 + iτ)Γ(η + ν + 1 + s+ iε)

×

(
∞∑
n=η

(−1)n
Γ(n+ η + 2ν + 1)

(n− η)!

Γ(n+ ν + 1 + s+ iε)

Γ(n+ ν + 1− s− iε)

Γ(n+ ν + 1 + iτ)

Γ(n+ ν + 1− iτ)
an

)

×

(
η∑

n=−∞

(−1)n

(η − n)!(η + 2ν + 2)n

(ν + 1 + s− iε)n
(ν + 1− s+ iε)n

an

)−1

, (4.28)

where η is an arbitrary integer. Here, Kν is independent of the value of η.

Via this matching procedure, it is now possible to calculate the asymptotic amplitudes

defined in (3.14). Obtaining:

Btrans
lmω =

(εκ
ω

)2s

eiκε+(1+2 log κ/(1+κ))

∞∑
n=−∞

an, (4.29)

Binc
lmω = ω−1

(
Kν − ie−iπν

sin (π(ν − s+ iε))

(sinπ(ν + s− iε))
K−ν−1

)
Aν+e

−i(ε ln ε− 1−κ
2
ε), (4.30)

Bref
lmω = ω−1−2s

(
Kν + ieiπνK−ν−1

)
Aν−e

i(ε ln ε− 1−κ
2
ε). (4.31)
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Now we are able to calculate the Wronskians (3.19) and (3.22) and then calculate

the QNM’s by searching for its zeros.

4.3.2 Extremal Case

Based on the idea of Mano, Suzuki, and Takasugi, [32] has adapted the MST method

to the extremal Kerr case. By noticing the different singularity structure of (3.11) for

a = M , it was possible to find analogous expressions to the sub-extremal ones. All

these extremal quantities will be referred to with similar notation but with an extra “x”

super-index on them.

By using an expansion for sR
in
lmω and sR

up
lmω in terms of confluent hypergeometric

functions, the series coefficients xan were defined. This leads to a modification in the

recurrence relation coefficients (4.19). They were exchanged by

xανn =
εx(q

ν
n + χs)(q

ν
n − χ−s)

qνn(2qνn + 1)
, (4.32)

xβνn = (qνn − 1)qνn − sÂlmc − εx
χ−sχs

(qνn − 1)qνn
, (4.33)

xγνn =
εx(q

ν
n − 1− χs)(qνn − 1 + χ−s)

(qνn − 1)(2qνn − 3)
, (4.34)

with the definitions

εx ≡ 4M2ωk = 4M2ω(ω −mxΩH),

qνn ≡ n+ ν + 1,

χs ≡ s− i2Mω,

sÂlmc ≡ −7(Mω)2 + s(s+ 1) + sAlmω. (4.35)

With these new recurrence relation coefficients, one can now calculate the CF’s xRn

and xLn. These CF’s play the same role as in the sub-extremal case. They are also

used in order to write analogous conditions to calculate ν for the convergence of the
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CF, see equations (4.23) and (4.24). It is worth mentioning that the extreme recurrence

relations are the a→M limit of the sub-extreme ones with a sign change in the xανn and

xγνn coefficients with respect to their sub-extreme equivalents. It is important to notice

that the sign change in these coefficients cancel out when constructing Rν
n and Lνn, this

cancellation assures that the a → M limit of (4.23) and (4.24) are exactly the same as

their extreme equivalent constructed with the coefficients (4.32).

Similar arguments to the ones employed in the sub-extremal case allowed the au-

thors to calculate the asymptotic amplitudes that are needed to compute the extremal

Wronskian (3.22). The two coefficients needed in this work are xB
inc/trans
lmω .

xBtrans
lmω = (2M)2sς

(0)
+ (2Mk)ν+1(−i2Mk)−ν−1+s+i2Mωe−iπχ−s/2e−iπ(ν+1/2)

∞∑
n=−∞

Γ(qνn + χs)

Γ(qνn − χs)
xan

(4.36)

and

xBinc
lmω =2Mς

(∞)
+

(
xKν − (−i2Mω)−2ν(i2Mω

)2ν
e−2πiν xK−ν−1)2s−i2Mω(2Mω)ν+s(i2Mω)−ν−i2Mω

× e−3πMωe−πi
sin(π(ν + i2Mω))

sin(2πν)

∞∑
n=−∞

(−1)n xan. (4.37)

In the last equation xKν is by construction

xKν ≡
ς

(0)
+

ς
(∞)
+

(2Mk)ν+1(−i2Mk)−2ν−1(4Mω)−ν−1eiπs

×

(
∞∑
n=η

Γ(qνn + χs)

Γ(qνn − χs)
Γ(2qνn − 1)

Γ(qνn + χ−s)

(1− qνn + χ−s)n−η
(2− 2qνn)n−η(n− η)!

xan(−i2Mk)−η

)
×

×

(
η∑

n=−∞

Γ(qνn + χs)

Γ(qνn − χs)
Γ(1− 2qνn)

Γ(1− qνn + χs)

(qνn + χs)η−n
(2qνn)η−n(η − n)!

xan(−4iMω)η

)−1

,

(4.38)

where η is again an arbitrary integer. The ς
(0)
+ and ς

(∞)
+ are normalization factors chosen

as
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ς
(0)
+ ≡ (2Mk)−ν(−i2Mk)νeiπν

(
sin (π(ν − i2Mω))

sin (π(ν + i2Mω))

)1/2

,

ς
(∞)
+ ≡ (2Mω)−ν(−i2Mω)νeiπν

(
sin (π(ν − i2Mω))

sin (π(ν + i2Mω))

)1/2

.

These are the quantities needed to the construction of the extremal Wronskian. This

will allow us to perform a search for BC’s and QNM’s in the exactly extremal Kerr BH

like in the sub-extremal case.

4.4 Monodromy Method

Another powerful technique that can be used when dealing with BH linear perturba-

tion theory is the monodromy method. This method starts by complexifying the radial

coordinate of the radial Teukolsky equation. The failure of the field to be globally holo-

morphic in the complex-r plane is encoded in the so-called monodromy matrices. In this

section we will give a small review about the monodromy method and state a couple of its

applications in the context of BH linear perturbation theory. In this section we summarize

the discussions in [67], where further details can be found.

4.4.1 Overview

Suppose that Λ(z) is a function of a complex variable z that satisfies a ODE of the

type:

∂z (P (z)∂zΛ(z))−Q(z)Λ(z) = 0. (4.39)

This equation is equivalent to a first order ODE for a two component vector Ξ that

reads

∂z

(
Ξ1

Ξ2

)
=

(
0 P (z)−1

Q(z) 0

)(
Ξ1

Ξ2

)
≡ A(z)Ξ, (4.40)

where Ξ1 = Λ(z) and Ξ2 = P (z)∂zΛ(z) are the components of Ξ. The functions P (z) and

Q(z) are such that A(z) is meromorphic.
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This ODE has two linearly independent solutions Ξ(1) and Ξ(2), which are two-

dimensional vectors. With these solutions, we can construct the fundamental matrix

ϑ(z) as

ϑ(z) ≡
(
Ξ(1) Ξ(2)

)
. (4.41)

Following a closed loop γ in the complex-z plane around an arbitrary point z the

fundamental matrix is found to be equal to ϑγ(z). From this construction it is possible

to define the monodromy matrix Mγ via

ϑγ(z) ≡ ϑ(z)Mγ. (4.42)

In general we will have that the value of the function is not equal at the beginning

and at the end of γ, i.e. ϑγ(z) 6= ϑ(z). If the path γ does not enclose any branch point

in ϑ(z) then Mγ = 1. When the path encloses a branch point Mγ is non trivial and a

measure of the lack of meromorphicity of ϑ(z).

4.4.2 Calculating ν

In our study case, the Kerr metric, the relevant ODE that we are interested in

studying is the radial Teukolsky equation (3.11). In the sub extremal case it has been

argued that the monodromy matrix for r = ∞ is related to the renormalized angular

momentum (ν) [67]. More precisely, the monodromy matrix around r =∞ has e2πiαirr as

its eigenvalues, and this eigenvalues relate with ν as:

ν = l + iαirr, (4.43)

where l is the angular momentum multipole index. This is the way that we chose to

compute ν throughout this work, except when explicitly said otherwise. In order to

compute αirr we used the code developed in [67] and publicly available at [68].
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The expression (4.43) is shown to be true in the sub-extremal Kerr case, but in this

dissertation we worked under the assumption that it still holds for the extremal case as

well. It is also important to notice that we have calculated ν both for a = 0.999M and for

a = M and compared the two results. After this comparison we were convinced that ν (as

calculated by the monodromy technique) is smooth in the transition from sub-extremal

to extremal Kerr.

4.4.3 Calculating QNM’s

Although we have used the monodromy technique only in order to perform a numer-

ical calculation of ν, this technique has been adapted to the numerical calculation of the

QNM frequencies as well. To those whom may be interested in this method to calculate

QNM frequencies in the Kerr space-time we direct to the papers [67, 69,70].
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Chapter 5

Results

In the previous chapter, we studied relevant methods for obtaining physical informa-

tion about waves around a BH. With such methods, we were able to investigate several

properties, such as the presence of possible new BC’s, the amplification factor, and most

importantly the QNM’s. We analyzed these properties both in the sub-extremal and

extremal Kerr cases. This chapter is dedicated to our findings.

5.1 Eigenvalue Derivative

When deriving equation (4.15) for the eigenvalue derivative, we assumed that trun-

cating the infinite CF (4.9) at a high enough finite order N provided a good approximation

to the original CF. In order to check this assumption, we wrote a code in Mathematica [58]

and carried out numerical tests.

As it can easily be seen, equation (4.15) for the derivative of sAlmc depends implicitly

on the eigenvalue itself. Therefore, when writing the derivative code, one needs to calculate

eigenvalues as well. We calculated the eigenvalues by means of the publicly available

Mathematica package [29].

In order to implement an algorithm for the derivative code we included a loop that

increases N by steps of 100. In each loop, equation (4.15) is computed and the result
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is compared with the one obtained for the previous value of N . The loop stops at a

given N , determined when the relative error, both in the imaginary and real parts of

dsAlmc/dc, is smaller than a required precision. In this work we required an agreement

of 16 digits when comparing the results from two consecutive iterations. However, all

the quantities inside the code were always being calculated with 128 digits. We chose

to keep the number of digits higher than the precision required in our derivative code

because we did not know how fast the convergence of (4.15) would be. By taking steps

in N of 100, we may be including more terms than the necessary to achieve 16 digits

of precision, therefore achieving a higher precision, this will be shown to be true when

computing relative differences.

In order to compare the efficiency and the applicability of this code we performed a

couple of tests. As a first test, we compared an analytical fourth order small-c expansion

for the eigenvalue [28] against our numerical results. The results for some modes are

shown in figure 5.1.

As a second test, we compared the results obtained using the Mathematica derivative

operator (Mdo) upon the eigenvalue function of the package [29] against the ones obtained

by our new method. The comparison was accomplished via the computation of the relative

difference between the two methods, which permitted us to test our code where the small-c

expansion fails. For the modes where this test was applied we notice that our code works

at least 5 times faster than by computing the derivative using the Mdo method. By the

time we perform these tests, we notice that the Mdo direct application on the package

eigenvalue function was not able to obtain a result for some complex frequencies. Although

our CF derivative code could access these frequencies, we could not compare the results

with an alternative method. That is why we show results only for real values of c.
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Figure 5.1: These plots show the comparison between the c-derivative of the angular
eigenvalue obtained from two methods. Green solid curves represent the results obtained
from the small-c expansion. Red dotted curves represent the results obtained from our
CF derivative code. Their agreement is very good up to c ∼ 4 for every mode tested. The
results shown here are for several different modes and spins.

Figure 5.2 shows that our concern about the convergence of (4.15) with respect to a

increase in N was in fact correct. It is worth noticing that even requiring a precision of

16 digits, our code obtained a much higher agreement when compared with the results

obtained via the Mdo method, as can be seen in figures 5.2. This means that the series in

(4.15) must converge faster than we originally expected and the code could in principle

be made to be even faster. A possible way to speed up our code is by taking smaller steps

in N .
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Figure 5.2: These plots show the results for the relative difference between the derivatives
found by means of (4.15) and by the Mdo method. Here, δ is defined as the ratio between
the values obtained in each method. Notice that the results show that the achieved
precision is higher than the 16 digits that we required. For one of the modes some of the
points seem to be missing. This is due to the fact that the agreement in those points
was exact, leading to a zero relative difference, and the logarithm of this value is minus
infinity, so the points are not in the range of the plot.

5.2 Sub-extremal Kerr

In this section we are going to present our results on sub-extremal Kerr case. This

section is organized in two sub-sections. The first one is dedicated to tests that we

performed in order to check for the convergence of our code and its ability to reproduce

well-known results, such as the superradiance amplification factor. The second sub-section

is dedicated to our results on the search for possible unknown BC’s in the complex-ω plane

and on the search for QNM frequencies. The code developed and used in this section uses

expressions from the sub-extremal MST method available in section 4.3.1.
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5.2.1 Tests

Convergence Tests

The first test that we performed was in order to check the convergence of our code.

The MST expressions presented in section 4.3.1 depend on several different sums, such as

the ones appearing in equations (4.27)-(4.29). The sums that we are concerned with here

are the ones appearing in (4.28). The reason for ignoring the sums in (4.27) and (4.29) is

that they cancel out when calculating the Wronskian via (3.19).

Because an is chosen to be a minimal solution of the MST recurrence relation, the

solutions (4.16) and (4.17) of the radial Teukolsky equation are convergent. Since the

asymptotic amplitudes of these solutions depend linearly on Kν ( see (4.30) and (4.31) ),

one may also expect Kν to be convergent. The question that we address here is whether

our code is implemented in such a way that convergence is achieved. Our code has an

internal loop for calculating the sums in Kν . This loop only stops when the relative

error in imaginary and real part of Kν for two consecutive steps of the loop is smaller

than a certain required precision. We need to check that this condition is not met before

convergence has taken place.

The answer to this question can be found by performing a calculation of Kν , and

saving the value of each partial sum (K
(n)
ν ) in a table. Then we plot the values of K

(n)
ν

against n (the index of the sums in (4.28)) in figure 5.3. When analyzing these plots we

can see whether convergence is numerically achieved or not by looking at the asymptotic

behavior of K
(n)
ν for large n. We performed the designed test for the summation in the

real and in the imaginary part of K
(n)
ν for several frequencies. Figure 5.3 corroborate

the fact that our code is indeed reaching convergence when calculating Kν . For these

plots the required precision was of 20 digits. We chose these particular complex-values

frequencies because they are the values of the QNM frequencies, which are already known
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from previous works [61, 71]. The results shown in figures 5.3 are for only one mode

(s = 2, l = 2, a = 0) but we executed the same test for different modes and different

values of a and the results were conceptually the same. We choose to display here only

the case for a = 0 for brevity.
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Figure 5.3: We show the results for the convergence test in the series in the definition of
Kν . Each plot shows the partial sum K

(n)
ν as functions of n for various frequencies. As one

can see on the tables in Appendix B, these values of the frequencies are QNM frequencies.
These plots indicate that we have achieved convergence correctly. The results shown here
are for the mode s = 2, l = 2, a = 0.

When calculating Kν , we were also saving the value of each summand in a table.

Then we plot the values of this table against n in figure 5.4. As we can see in our results

the values of the summands can start increasing in the first few steps. The results found

in figures 5.4 were obtained by also requiring 20 digits of precision both in the imaginary

and real parts of each sum.

As we can see from figure 5.4, we calculated the sums at least to the required precision.

The same figure show that for the same frequency all sums have the same number of
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terms, the final value of n. However, the sums in the denominator seem to achieve a

larger precision than the required one. The reason for this is that in our code the final

precision was required in the final fraction in (4.28), not in the denominator and numerator

separately. As one can clearly see, the convergence of the denominator is reached faster

and we can use this fact to speed up our code in future works.
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Figure 5.4: Each plot shows the summands in the sums in the denominator (SDenn ) and in
the numerator (SNumn ) as functions of n. As one can see on the tables in Appendix B, these
values of the frequencies are QNM frequencies. These plots indicate that we have achieved
convergence correctly. The results shown here are for the mode s = 2, l = 2, a = 0.

Superradiance Test

In this section we will be showing the results found when calculating Zslmω via equa-

tions (3.19), (3.45), (4.29) and (4.30). Our results are displayed in figure 5.5 and they can



51

be compared with the ones shown in figure 12 in [54].

0.005 0.010 0.050 0.100
Mω

10-7

10-6

10-5

10-4

0.001

0.010

0.100

Z0,1,1,ω [%]

(a) s=0,l=1,m=1,a=0.99M

0.05 0.10 0.50
Mω

10-7

10-4

10-1

Z2,2,2,ω[%]

(b) s=2,l=2,m=2,a=0.5M

Figure 5.5: This figure shows our results of the calculation of Zslmω for two different
modes. The blue solid lines are the results of our code for Zslmω as defined in (3.45).
The red dashed lines were obtained via the small-ω approximation for Zslmω, given in
(3.47). These results are shown in a log-log scale, where the vertical axis is Zslmω in the
percentage form and the horizontal axis is Mω. The top panel is to be compared with
figure 12 in [54] and the bottom panel is original from this work. Notice that for the mode
displayed on the top panel MωSR ≈ 0.4338, while for the mode displayed on the bottom
panel MωSR ≈ 0.2679.

As already explained in section 3.2.3, the amplification factor can only take positive

values for ω ≤ ωSR. For l = 1,m = 1 and a = 0.99M (top panel of figure 5.5) we have

MωSR ≈ 0.4338, while for l = 2,m = 2 and a = 0.5M (bottom panel of figure 5.5)

MωSR ≈ 0.2679. The results from our code not only found the correct threshold for the

superradiance phenomenon but also show the correct behavior for small frequencies.
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The results of the convergence test show us that our code is reaching 20 digits of

precision accurately and the results of the superradiance test is in agreement with the

literature [54]. These facts give confidence on our code.

5.2.2 Results

Finding BC’s

We have discussed in a previous section, 3.2.2, how BC’s can be either unphysical

(e.g., angular BC’s, see appendix A of [39]) or, by contrast, can have physical conse-

quences (e.g., instability). For this reason, BC’s deserve some attention and this section

is dedicated to looking for possible new BC’s in the sub-extremal Kerr case. If they exist

the following question is whether they have physical implications or if they are carried

away in the sums performed in the full retarded GF.

In order to search for BC’s we start by pointing out the possible sources of BC’s in

the complex-ω plane in (3.25). A discontinuity would manifest itself through the radial

solution(s), meaning that they would reveal themselves in the Wronskian. We can point

out that possible sources are ν, sλlmω and an. We designed a routine that allows us to

numerically check for the presence of BC’s inside a finite region of the complex-ω plane.

This routine consists of few simple steps. We start by choosing a point that we suspect

that might be a branch point or at least nearby a branch point. With this particular choice

we calculate the particular quantity of interest ( ν, sλlmω, an or sWlmω) around this point.

We performed this calculation and plotted these quantities as a function of φ on the circle

ω = ωc +$eiφ, for 0 ≤ φ < 2π, where ωc is the point that we are investigating, and $ is

the radius of this circle. A discontinuity in these plots would suggest the presence of a BC

passing by that circle, but it does not necessarily indicate the presence of a branch point

inside the particular region. However, at this stage, we are interested in the existence of

the BC, so the test is still useful to us.
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We applied this routine to each of the quantities cited above for some modes. At

first we chose the central point to be the origin and the radius $ was set large enough

to include the superradiance bound frequency (ωSR) and the Hartle-Wilkins frequency

(ωHW ). In this section we show the results of our search for BC’s.

It is worth noticing that we did not plot ν directly. The reason for this is that

ν is discontinuous, but these discontinuities are related to the symmetry properties of

MST equations. The MST symmeries under the change ν → −ν − 1 and the addition

of an integer to ν imply that whenever we find a discontinuity on ν we would need to

check if they can be carried away by using these symmetries. If ν can be made to be

continuous using these symmetries, the BC’s found are unphysical. A systematic way

that we can take these symmetries in to account is to plot | sin(2π<(ν))| and |=(ν)| due

to the symmetric properties of these functions. In these ν plots the unphysical BC’s due

to these symmetries will not manifest themselves.

We can see that the plots for ν and sλlmω do not show any discontinuity in the

region, so they can not contribute to the formation of a BC. The renormalized angular

momentum ν and its properties were largely studied in [72, 73]. In these papers, it was

reported that in the real frequency line ν is either an arbitrary real number or a complex

number with a half integer real part. We have numerically checked this property to true

in all our cases of interest. When performing the search for BC’s on ν, we evaluate ν for

complex-valued frequencies. It is clear from figure 5.7 that for frequencies away from the

real axis ν is complex-valued with an arbitrary real part. However, if one looks carefully

to the same figure at φ = 0, 2π , the function | sin(2π<(ν))| is zero, meaning that ν has a

half-integer real part at this point.

Inspecting the plots of the coefficients an’s ( figure 5.8) around the origin, we can

see several discontinuities. In these plots we display the coefficients an’s for n running
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from 1 to 4 1, and all of them show discontinuities happening for the same values of

φ. But looking at the plots of the Wronskian itself (figue 5.9), we only found a BC at

φ = 3π/2 which is an already known BC. This is the BC that stems from the origin

and goes down the imaginary axis in the complex-ω plane [37, 39]. The fact that the

several discontinuities in an’s that happen for φ 6= 3π/2 do not appear in the Wronskian

implies that they are unphysical. These discontinuities in an’s coefficients were found to

be related to the discontinuities on ν that can be ruled out by the symmetries of the

MST equations, reinforcing the idea that they are unphysical. Somewhere in the fourth

quadrant, we can also see an indication that the “superradiant” BC is being formed. It

may seem that there is a discontinuity in the fourth quadrant, but it is just a very steep

structure in the Wronskian. If we had chosen a smaller value of a this structure would

have been less steep (see figure 5.20). The formation of this BC will be seen in further

details when we discuss the results on extremal Kerr, see section 5.3.3.

In figures 5.6-5.9 , we show the results of our analysis when encircling the origin. We

chose to display the results of only one particular mode for brevity, but other modes were

tested and all the results were conceptually the same, so all the information is contained

in the images shown here. The mode that we chose to display here is s = l = m = 2,

for which MωSR ≈ 0.2679 and MωHW ≈ 0.2679 + 0.2320i. We set M$ = 1 because it

guarantees that both MωSR and MωHW are inside the circle. This investigation leads to

the conclusion that no physical BC’s were found in the Wronskian around ω = 0, ω = ωSR

and ω = ωHW , other then the known one down the imaginary axis in the sub-extremal case

and an indication that a second one going down from ωSR is forming when a approaches

M .

1Remember that we set a0 = 1, so no discontinuity can come from this particular coefficient.
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Figure 5.6: This figure shows 2λ2,2,c, on the circle of |c|=0.5, for ωc = 0. We can not see
any discontinuity here.
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Figure 5.7: This figure shows ν, on the circle of |Mω| = 1, for ωc = 0. We can not see
any discontinuity here. The mode is s = l = m = 2, for a = 0.5M .

It was not by chance that we chose to display the results for the mode s = l = m = 2.

As we explained in section 3.2.2, [47] suggested that if s = 2 there might be a BC in the

upper-half complex-ω plane that stems from ωHW (see equation (3.35)), which could

lead to an instability. Although this frequency is inside the contour chosen to encircle

the origin, one might be concerned that the BC could be of finite size. This happens,

for example, in the function f(z) =
√
z2 + 1 which has branch points in z = ±i. If a

particular choice of foliation is assumed, there will be only one BC connecting both of

the branch points. Being concerned with the possibility that a similar structure could be

taking place here, we performed the same search for BC’s, but this time for ωc = ωHW
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and $ = |ωHW |/5. Although the search for BC’s around ωHW in the quantities ν, sλlmc,

an’s display the same qualitative results, we also chose to display our results for the search

for BC’s in the Wronskian as a stronger evidence that there is no BC in this point. This

result can be seen in figure 5.10.
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Figure 5.8: This figure shows an coefficients for n = 1 (green lines), n = 2 (blue lines),
n = 3 (red lines) and n = 4 (purple lines). We can see discontinuities that are related
to the symmetries of the MST equations with respect to ν. For this reason they are
unphysical and should not appear as BC’s in the GF. The mode is s = l = m = 2, for
a = 0.5M for ωc = 0. Here it was used M = 1.
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Figure 5.9: This figure shows 2W2,2,ω, on the circle of |Mω| = 1, for ωc = 0. We can
see a discontinuity at φ = 3π/2. This discontinuity is the manifestation of the already
known BC that stems from the origin and goes down the imaginary axis [37,39]. A steep
structure is seen in the fourth quadrant. This is related to the formation of the BC in the
extremal case. The mode is s = l = m = 2, for a = 0.5M . Here it was used M = 1.
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Figure 5.10: This figure shows 2W2,2,ω, on the circle of radius $ = ωHW , for ωc = ωHW .
No discontinuity can be seen at the entire range of φ apart from the one near φ = 2π.This
discontinuity is merely due to the choice of parametrization, i.e. a phase shift from π to
−π represent the same point. The mode is s = l = m = 2, for a = 0.5M . Here it was
used M = 1.

Finding QNM’s

When looking for QNM frequencies we did not use the Wronskian (3.19) directly.

By noticing that sWlmω has some overall factors that can not lead to a zero, meaning

that they can not lead to a QNM, we defined what we call the (dimensionless) Wronskian

factor:

sW
f
lmω ≡ (2i)−1

( ω
εκ

)−2s eiκε+(1+2 log κ/(1+κ))

e−i(ε ln ε− 1−κ
2
ε)e−

π
2
εe

π
2
i(ν+1−s)2−1+s−iε

e−iεκ2si−η

Γ(1− s− 2iε+)
sWlmω (5.1)

=

(
K̂ν − ie−iπν

sin(π(ν − s+ iε))

sin(π(ν + s− iε))
K̂−ν−1

)
Γ(ν + 1− s+ iε)

Γ(ν + 1 + s− iε)
,

where

K̂ν ≡
e−iεκ2si−η

Γ(1− s− 2iε+)
Kν . (5.2)

We now have an expression that contains only the factors that can lead to zeros of the

Wronskian. We can use sW
f
lmω to search for QNM’s.

We calculated the Wronskian factor over a region by requiring 16 digits of precision

and we performed contour plots to estimate the locations of the zeros of this function. By

means of a minimization method routine, we used the estimated positions for the zeros
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as initial guesses to find minima of |sW f
lmω|. These minima are zeros of the Wronskian, so

they correspond to QNM frequencies. One might be concerned that it was argued before

that ωlmn are zeros of sWlmω and now we are using a different condition. However, these

two conditions are in fact equivalent. As claimed by minimum modulus principle in the

theory of analytic functions, it is known that an analytic function can only have a local

minimum within its region of analyticity if this point is a zero of the function [31, 74].

In fact the Wronskian has poles and BC’s and it is not analytic everywhere. However,

poles can clearly not correspond to minima in |sWlmω|. In their turn, branch points could

correspond to local minima which are not zeros of sWlmω, but they can easily be eliminated

by spotting the appearance of a discontinuity from such points.

The minimization routine chosen in this work is the Nelder-Mead method [75]. This

method is applicable for minimizing a real n-dimensional function f : Rn → R, for which

the derivatives may not be known. It works by calculating and comparing the value of

the function of interest at n+ 1 points pi = (xi1, x
i
2, ..., x

i
n) for 1 ≤ i ≤ n+ 1. Among these

n+ 1 points, the one that leads to the largest value of the function is excluded and a new

point that is closer to the point with the lowest value of f(x1, x2, ..., xn) is chosen. Then a

new comparison is made and this process is repeated until all the points are close enough

to each other, i.e. they are separated by a distance smaller than a required precision.

After this condition is met, the point that leads to the smallest value of f(x1, x2, ..., xn)

is the one that we consider to be its numerical minimum. In appendix A this method is

explained more carefully.

When using the Nelder-Mead routine with the initial guess obtained from the contour

plots, we require at least 8 digits of precision in both imaginary and real parts of ωlmn,

in the Schwarzschild case it was required 16 digits of precision. We compared the results

obtained from our method with QNM frequency data publicly available in [71]. We found
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the agreement between them to be within their error bars.

Since all sub-extremal MST expressions are valid for 0 ≤ a < M , an obvious starting

point to check our code for calculating the Wronskian factor (5.1) is the static case a = 0.

The results for this case can be seen in figure 5.11.

(a) s=1,l=1

(b) s=2,l=2

Figure 5.11: This figure shows the contour plot of log10 |sW
f
lmω| for the electromagnetic

(s = 1) and gravitational cases (s = 2) in the complex-ω plane. The red dots are ωlmn for
these two particular modes, as obtained from our method. Note that m is not specified
here because it is of no relevance for a = 0.
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As stated before, all Schwarzschild QNM frequencies found in this work reproduce

previous data [71] within their error bars and can be found in appendix B. For s = 2, there

is one frequency that we found to be on the imaginary axis, within the 16 digits of precision

that we used. This point correspond to the n = 8 overtone. Leaver [61] calculated this

QNM frequency as being very close to but not exactly at 2Mω = −4i. This frequency

(2Mω = −4i) has drawn much interest in the literature [76–78], and it is called the

algebraically special frequency (AS). The interest is based in some peculiar behaviors. In

the static limit (a = 0) metric perturbations around this BH can be described by two

different equations: Regge-Wheeler equation (axial perturbations) and Zerilli equation

(polar perturbations). Although these two equations are in general isospectral [79], i.e.

have the same set of QNM frequencies, this particular point seems to be a QNM for the

Zerilli equation but not for the Regge-Wheeler equation [76]. When dealing with the

Teukolsky equation for a small, van den Brink [76] showed that there is a branch of QNM

which, in the Schwarzschild limit, stems from 2Mω = −4i for s = l = 2 (see equation

(7.30) of [76]). A careful reader may have noticed that at this point, there is a pole of

Γ(1 − s − 2iε+) for a = 0, s = 2, a factor that was present in sWlmω but was excluded

in our definition of W f
lmω, see equation (5.1). This factor could in principle cancel out

the contribution that leads to a zero in W f
lmω. In order to check whether the use of the

Wronskian factor leads to misleading results about this frequency, we performed a plot

with the full Wronskian around this frequency. The result of this approach is shown in

figure 5.12.
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Figure 5.12: Contour plot of |sWlmω|, as defined by (3.19), which includes the term
Γ(1 − s − 2iε+). Here we can see that the point 2Mω = −4i is numerically found to be
a zero of the Wronskian. This plot refers to the mode s = 2, l = 2, a = 0, and should be
compared with the central region of figure 5.11b.Here it was used M = 1.

It is clearly seen from figure 5.12 that the concern about the cancellation of the QNM,

although justifiable, is not correct and 2Mω = −4i is numerically found to be a QNM of

the Teukolsky equation for the mode s = l = 2 with a = 0.

After the successful calculation of ωlmn via the MST method in the static case, we

moved on to the near extreme Kerr (NEK), a ≈ M . This regime was studied largely

in [18,20], but in these previous works the method applied was the CF method explained

in section 4.2.1. We note a known particular behavior for modes with m > 0. In the NEK

case all these modes present overtones that tend to accumulate near the point ω = ωSR,

which is real-valued. These modes are called zero-damped modes (ZDM) due to the lack of

imaginary part in the asymptotic limit a→M . If a mode also satisfies m/(l+1/2) . 0.74,

we found that some overtones that maintain a finite imaginary part do exist. To these

overtones it is given the name of damped modes (DM). These results are consistent with

the ones found in [18,20], where this terminology of ZDM and DM was first proposed.

In the NEK case, we choose modes in order to compare our results with the ones found

on figure 7 on [18]. The only studied mode with s = −2 that has m/(l+1/2) & 0.74 is the

one shown in panel 5.13d. For this mode we did not found any DM, in agreement with
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findings in [18, 20]. All the ZDM’s for the various modes on figure 5.13 are accumulated

near ω = ωSR, as expected. Panel 5.13b is a zoom of a specific region of panel 5.13a.

In figure 7 of [18], it was performed a plot of the CF in Leaver’s method to compute

QNM frequencies with the recurrence coefficients (4.12). This plot shows poles that can

be “very close” to the QNM frequencies. Our method of plotting the Wronskian factor

did not display poles around the QNM frequencies. This is again a reflection of the terms

that were ruled out from sWlmω when defining W f
lmω. This can be seen as an advantage

of our approach to QNM, once these poles become arbitrarily close to ωlmω, as seen on

the bottom left panel of figure 7 on [18], the presence of these poles can lead to numerical

issues when going to the NEK case. The values for the QNM’s frequencies found for the

modes shown in figure 5.13 can be seen on the tables of appendix C, QNM frequencies in

the NEK case were calculated with 8 digits of precision and agree with data from [18,20,71]

.
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(a) s=-2,l=2,m=0,a=0.998M (b) s=-2,l=2,m=0,a=0.998M, zoom in

(c) s=-2,l=2,m=1,a=0.998M
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(d) s=-2,l=2,m=2,a=0.9999M

Figure 5.13: In these figures we show some of the modes investigated in the NEK case.
These are contour plots of log10 |sW

f
lmω|. Here, we show the results for |s| = 2 and l = 2 for

values of 0 ≤ m ≤ 2. Panel 5.13b exhibits the same mode as panel 5.13a, but it displays
a zoom over a smaller region.The superradiance bound frequencies for these modes are
2MωSR = 0 (for m = 0), ≈ 0.938 (for m = 1) and ≈ 1.972 (for m = 2).

At this stage a valid question can be made: what happens with QNM’s under the re-

flection s→ −s? This question is easily answered by means of the Teukolsky-Starobinsky

relations. Because of these relations, the solution with s can be written in terms of the

solution with −s, due to these relations we are inclined to believe that these two solutions

are isospectral. We have numerically checked that our code obtained the same set of

QNM’s for two modes differing only by the sign of its helicity. Those modes were s = ±2,

l = m = 2. However, this is not sufficient to assert that there is not an exception to the

isospectrality.
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In this section we have seen that our method of searching for QNM can provide

correct results. Bearing this in mind, we are now going to use an analogue expression for

the extreme Kerr case and investigate the same properties as in the sub-extremal case.

5.3 Extremal Kerr

In the previous section we applied the MST method to the sub-extremal case and we

could correctly calculate quantities such as the amplification factors and QNM frequencies

for several different modes. In this section we show our findings after we performed a

similar analysis in the extremal case.

5.3.1 Large ν Expansion

As stated earlier in this work, the physically meaningful MST equations satisfy some

symmetries with respect to ν. These symmetries are under the change ν → −ν − 1 and

an addition of an arbitrary integer [66]. By making use of these last properties of the

MST equations, Throwe was able to find an analytical approximation for large ν [80] in

the sub-extreme case. Following his idea, we found a large ν expansion for the continued

fraction equation that defines ν in the extremal case. This expansion reads as follows:

xg0(ν∗) ≈(ν∗ + 1/2)2 − 1/4− sλlmc − s(s+ 1)− 2Mmω + 8(Mω)2+

2Mω(−ms2 −m2Mω + 2s2Mω + 4M3ω3)(ν∗ + 1/2)−2, (5.3)

where xg0(ν∗) is the three-term recurrence relation for the extreme Kerr case, analogous

to equation (4.24), with n = 0 for simplicity 2. It is worth mentioning that equation

(5.3) is not reproduced by taking the a → M limit of Throwe’s large ν expansion. This

has to do with the fact that Throwe used different recurrence coefficients in the sub-

extremal equations than the ones defined in (4.19). His choice of sub-extremal recurrence

coefficients are a multiple of (4.19) by the factor F ≡ (n+ν)(1+n+ν)(−1+2n+2ν)(3+

2Remember that ν should not change for different choices of n in the equivalent equations to (4.23)
and (4.24) in the extremal case. See [32].
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2n + 2ν), which is of fourth order in ν. This justifies the fact that Throwe’s polynomial

expression and (5.3) have different orders, while Throwe found a sixth order polynomial

for the sub-extremal case we found a “second” order one. Both choices of recurrence

coefficients are valid since equation (4.18) can be re-scaled by an overall factor and still

lead to the same value of ν via (4.24). The polynomial that we achieved for the extremal

case can be also found by taking the a→M limit of Throwe’s expansion and dividing it

by F .

The values of ν∗ that are the roots of xg0(ν∗) are the ones to be used in the MST

expressions as ν. The exact three-term recurrence relation satisfied by ν in the extreme

Kerr case is available in [32]. Although this approximation was not implemented in our

code, future works might find it quite useful to use this expression in order to speed up

numerical calculation like the ones presented in the next few sections.

Having this approximation, we can now try to find its roots for a given frequency.

We have numerically checked that in the extremal case ν has similar properties in the

real line as in the sub-extremal case reported in [72, 73]. Specifically, in the real line, it

is either an arbitrary real number or a complex number with half integer real part. By

noticing this property of ν, one can search for roots of xg0(ν∗) on the real ν∗ line, or in

the line ν∗ = 1/2 + iν̂ for −∞ < ν̂ <∞, if ω ∈ R. We performed a test in order to verify

equation (5.3). We plotted xg0(ν∗) as a function of (real-valued) ν∗ for a value of ω that

leads to a real-valued ν for the mode s = 2, l = 3,m = 2. The result is shown in figure

5.14.

In figure 5.14 we can find a blue line representing the results from our numerical

exact calculation of ν by plotting the extremal case analogous to (4.24), as a function

of ν∗, a red line representing our large ν expansion (5.3) and a green line for Throwe’s

large ν expansion for a = 0.9999M , see equation (3.15) in [80]. They respectively give
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the values for ν as being equal to 1.835, 1.851 and 1.866. We understood these results

as a confirmation that the analytical expression we found performs better than Throwe’s

expansion for a = M . However, we checked that the value of ν at the extremal case and

to the sub-extremal case for a→M are the same.

Due to the degeneracy in ν (ν → −ν − 1 and/or ν → ν + n for n ∈ Z) there will be

an infinite amount of possible values of ν. In our plot the value ν ≈ 2.165 is correlated

with the value ν ≈ 1.835 by the relation ν → −ν + 4, so it would still be a valid choice

for ν. Similarly to Throwe, we found that most of these valid roots of xg0(ν∗) are close

to its poles (for example the zero at ν ≈ 2.165), which can lead to numerical issues when

using most of the root finding algorithms. He argued that these poles also indicate that

the series for Rn and Ln are poorly behaved in the region, so if these roots are used to

evaluate the coefficients an they will often lead to additional numerical errors. This may

also be the case for the extremal MST expressions. One might also notice that there

are actual spurious zeros appearing in the exact xg0(ν∗), i.e. they can not be correlated

through these relations. They seem to be half integers, just like in the sub-extremal case

in Throwe’s work. These spurious zeros should be disregarded.

A careful reading of this section might lead to two subsequent questions. We stated

that ν has two different behaviors in the real ω line. The first question that appears here

is where does this behavior changes. The second question is, what is the behavior of ν

away from the real ω line. The answer to the first of these questions was unclear to us and

remains an open issue to the best of our knowledge. The answer to the second question is

that ν seems to be an arbitrary complex number in the complex ω plane, like in the sub-

extremal case. For this reason the search for a root of xg0(ν∗) is not limited to a particular

line of the complex ν plane, as in the previous cases. Although the expression (5.3) should

still be valid in the whole complex-ω plane, it is unclear to us how to distinguish possible
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spurious zeros of xg0(ν∗) for =(ω) 6= 0. These were the reasons why we chose not to use

equation (5.3) in our current code, but this should not be seen as an impediment for

future works.

(a) zoom in (b) zoom out

Figure 5.14: Plot of the CF xg0(ν∗) as a function of ν∗. The roots of xg0(ν∗) define the
value of ν that leads to a minimal solution. The mode presented here is s = 2, l = 3,m = 2
for the extremal case, for a given frequency of Mω = 0.9. Here the red, blue and green
lines represent, respectively, the numerical CF function, our large ν expansion (5.3) and
Throwe’s large ν expansion for a = 0.999999M , see equation (3.15) in [80]. Notice that
because the two expansions are polynomials of different order the growth rate is different,
but both still have similar zeros, i.e. they hold approximately the same value of ν.

5.3.2 Tests

As in the sub-extremal case, we also need to check for the convergence of our extremal

MST code. Although the expressions are not the same, the tests that we designed in the

sub-extremal case are still well suited for checking if our code for the extremal MST

expression is correct. Thus, the tests performed here are similar to the ones performed

in section 5.2.1. We organized this subsection in two parts: convergence tests and the

superradiance test.

Convergence Tests

Just as in the sub-extremal case, we need to be careful about the convergence when

computing the sums appearing in the extremal MST expressions. In the extreme case,

we chose to apply the convergence test to the coefficients xBinc
lmω (4.37) and xBtrans

lmω (4.36),
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since they are needed to compute the Wronskian via equation (3.22). The test that we

performed for this new code is similar to the one designed for Kν in section 5.2.1. This

means that we plotted the partial sums xBinc
n and xBtrans

n as functions of n. Notice that

the partial sum here, means that the sums in (4.37) and (4.36) were performed from

−n to n. The results for these convergence tests are shown in figures 5.15 and 5.16.

While performing this test, we were requiring 20 digits of precision as the threshold for

our internal loop used to perform the sums in both coefficients. The results found are

displayed in figures 5.15 and 5.16.

Just as in the sub-extremal case for the summands in Kν , we also plot the summands

in xBinc
n and xBtrans

n . These plots range from negative to positive values of n. This is

because the range of the index in these sums is now from −∞ < n <∞, and the dominant

terms are the ones near n = 0 as we can see in the plots shown in 5.18 and 5.17. Using

this routine we plotted the summands and notice that our code is including summands for

n > 0 that do not alter the value of the sum within our required precision. This happens

because in order to perform the sums in xBtrans
lmω (4.36) and xBinc

lmω (4.37), we wrote routines

containing loops that add summands of both n and −n index in each iteration. In other

words, the sum will always have the same number of summands for negative and positive

values of n. These loops stop when the relative difference between the values of the sum

for |n| and |n− 1| is smaller than the required precision. Our code can be made faster if

we change the loops where the sum is performed, in a way not to include the negligible

terms that are still appearing in our sum.
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Figure 5.15: Here it is shown plots for the partial sum xBinc
n . The required precision in

our code when generating these plots was of 20 digits. Here it was used 2M = 1.
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Figure 5.16: Here it is shown plots for the partial sum xBtrans
n . The required precision in

our code when generating these plots was of 20 digits. Here it was used 2M = 1.
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Figure 5.17: Here it is shown plots for the summands (STn ) of the series for xBtrans
lmω . The

required precision in our code when generating these plots was of 20 digits. Here it was
used 2M = 1.
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Figure 5.18: Here it is shown plots for the summands (SIn) of the series for xBinc
lmω. The

required precision in our code when generating these plots was of 20 digits. The plot for
the imaginary part of SIn for 2Mω = 0.22049 is not shown here because for this frequency
the summands were found to be real. Here it was used 2M = 1.

Although, we only show here results for one mode for brevity, other modes were tested

and the results were conceptually the same. Here, in contrast with the sub-extremal case,

we choose not to use QNM frequencies when performing the tests. We made this choice

because we performed all our numerical calculations in the extremal case oblivious to



72

Richartz findings [11], only comparing the final results. When analyzing the results in

figures 5.15-5.18, we concluded that our code is reaching convergence up to a desired

precision, and that our code is ready to be used for obtaining physical information.

Superradiance Test

Equation (3.45) is still valid for the extremal Kerr case. However, sWlmω now has

to be calculated via (3.22), i.e. using the extremal asymptotic amplitudes. The results

shown in this section have the same motivation as in the sub-extremal case, but some

differences do exist. The main difference is that there is no guarantee that (3.47) also

holds in the extremal case, but it should be valid arbitrarily close to the extremal case.

This difference will be useful as a test of how smooth Zslmω is in the transition from

a < M to a = M . We plotted (3.45) in the extremal case and (3.47) with a very close

to M against each other. This plot (figure 5.19) allowed us to check if the value of the

amplification factor in the extremal case is similar to sub-extreme one. We can also check

our extremal Zslmω result against its behavior near ωSR given by (3.48) and (3.50).
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Z0,3,2,ω[%]

Figure 5.19: Log-log plot of our numerical result for the amplification factor (in per-
centage) for the extremal Kerr case as a function of the frequency, for the mode
s = 0, l = 3,m = 2, a = M . The solid blue line is the result that we obtained using
our own code via (3.45). The dashed red line is a plot of (3.47) with a = 0.9999M . The
dashed black line is a plot of (3.48), where it was assumed a = M . For this mode in the
extremal case we have MωSR = ma/2r+ = 1, in agreement with the plot.
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Figure 5.19 shows that our numerical code agrees with the predicted analytical be-

havior near the threshold (ω ≈ ωSR). Furthermore, it shows that the behavior for small

frequencies is very similar, if not the same, to that in the sub-extremal case with a arbi-

trarily close to M . We conclude that our code for the extreme case is correct, and so our

code is ready to be used to search for QNM’s.

5.3.3 Results

Formation of the Superradiant BC

A search for BC’s in the extremal case was performed similarly to the one in section

5.2.2 and no BC’s were found other then the expected ones at ω = 0 and ω = ωSR. This

section is dedicated to show our results on the formation of the BC that happens to stem

from the point ω = ωSR, where the ZDM’s accumulate in the NEK scenario as seen in

figure 5.13, as predicted ins [45]. We used the full sub-extremal Wronskian for increasing

value of a until the extremal Wronskian in needed in order to study the formation process

of this BC through the accumulation of the ZDM’s.

When looking at figure 5.20, it is clear to us that the formation process of the BC is

more complicated then it might have been anticipated. Previous works have noticed the

accumulation of QNM frequencies, but they are not the only modes that do so. As we can

see, the poles in sWlmω are also “piling up” at the same point. These poles represent the

totally reflected modes (TRM). This can be seen on equation (3.19): when the mode is

totally reflected we have Btrans
lmω = 0, leading to poles in sWlmω unless Binc

lmω = 0. Another

fact that supports our interpretation of these poles as TRM’s is that these are coming

from the Γ(1− s− 2iε+) factor which appears in the construction of the Wronskian. Such

poles happen at 1− s− 2iε+ = −n for n = 0, 1, 2, 3..., which is a condition equivalent to

ω = mΩH − 2πiTH(n− s+ 1).3 (5.4)

3The equation shown here display the factor (n−s+ 1) and in the original paper this factor is (n−s).



74

Equation (5.4) was first found in [69] and it was derived as the sufficient condition for

defining a TRM.

Figure 5.20 shows that the TRM’s and QNM’s are coming closer together as we

increase the value of a. When a = M an infinite amount of both mode classes accumulate

and mix in a way that a BC finite discontinuity is formed. To the best of our knowledge,

this is the first time that this accumulation of TRM’s is reported in the literature.

(a) s=0,l=3,m=2,a=0.95M (b) s=0,l=3,m=2,a=0.99M

(c) s=0,l=3,m=2,a=M

Figure 5.20: Here it is shown the 3D plots for the absolute value of the Wronskian
for different values of a. The images are ordered by increasing a. Notice that for this
particular mode s = 0, l = 3,m = 2, 2MωSR ≈ 1.447 (for a = 0.95M), ≈1.735 (for
a = 0.99M), =2 (for a = M). For s = 0 the Wronskian defined via (3.19) is dimensionless.

This can be understood as a relabeling of the index n.
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Finding QNM’s

In this subsection we are going to summarize the results found when performing a

search for QNM frequencies for extreme Kerr BH’s. For the extreme case, we used the full

Wronskian (3.22), with analogue expressions to (4.27)-(4.30) that can be found in [32].

In figure 5.20 we showed how sWlmω transitions from sub-extremal to extremal Kerr.

In panel 5.20c we can see two isolated QNM’s frequencies appearing to the right of the

BC, which correspond to the DM’s found in the NEK case. We display in figure 5.21 the

same data as in panel 5.20c, but in the form of a contour plot for clarity. We also applied

the method to the mode s = −2 and l = 2 for 0 ≤ m ≤ 2. Our results for this search for

QNM frequencies are displayed in panel 5.22c.

In figure 5.22 we can see two different regimes: 0 < m . 0.74(l + 1/2) and m &

0.74(l + 1/2). For l = 2 and m = 0 there is an accumulation of QNM’s at ω = ωSR = 0

(see figure 5.13a) and we found several QNM frequencies in the analyzed region of the

complex -ω plane. For l = 2 and m = 1 we have m/(l+1/2) = 0.4 < 0.74 and we can also

see a BC that is formed from the accumulation of QNM’s and TRM’s - see previous section.

Although this accumulation takes place, some QNM’s (the DM’s in [18,20] notation) are

still away from the accumulation point. These DM’s seem to be always to the right of the

BC. For s = 2, l = 2 and m = 2 we notice the absence of QNM’s in this particular region

of the complex-ω plane.

All QNM frequencies discussed in this section were calculated with 8 digits of preci-

sion and are displayed in appendix D. Only the first excited QNM’s for each mode was

computed in the exact extremal case in [11], some of the highly excited QNM’s for this

case were first calculated in this thesis.
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Figure 5.21: Contour plots of log10 |xsWlmω| in the complex-frequency plane. The presence
of two minima to the right of the BC is clearly seen. The mode analyzed here is s = 0, l =
3,m = 2, a = M . The superradiance bound frequency for this mode is 2MωSR = 2. Here
it was used 2M = 1.
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Figure 5.22: Contour plots of log10 |xsWlmω| in the complex-frequency plane. For the
m = 0 mode we have m/(l + 1/2) = 0 < 0.74 and DM’s do appear. For the m = 1 mode
we have m/(l + 1/2) = 0.4 < 0.74, and for this reason DM’s appear. For the m = 2
mode we have m/(l + 1/2) = 0.8 > 0.74, and for this reason DM’s do not appear. The
superradiance bound frequencies for these modes are 2MωSR = 0 (for m = 0), 1 (for
m = 1) and 2 (for m = 2). Here it was used 2M = 1.



78

Chapter 6

Conclusions

In this thesis we have reproduced literature results and obtained new results about

wave propagation around a rotating black hole. We started by reviewing the Kerr metric

and its properties. This was followed by a review on linear perturbation theory of rotating

black holes. The main methods developed in the last few decades in the context of this

theory are explained on first few chapters. Our first contribution to the theory, i.e the first

(approximative) analytical method to calculate the angular eigenvalue derivative directly,

can be found in those first capters.

The last chapter was dedicated to our numerical results. There we numerically

demonstrated the validity of our angular eigenvalue derivative method. This result may be

useful in the future for the study of the analytical properties of spin-weighted spheroidal

harmonics. It is worth mentioning, that this result was sent to the authors of Black

Hole Perturbation Toolkit [29] before the conclusion of this thesis, where we expect the

method to be implemented. We have also applied the MST method to investigate the

sub-extremal and extremal Kerr BH.

The main goal of this work was to obtain the QNM frequencies of the extremal

Kerr BH. In order to obtain this result we chose to use the MST method. It seems

to us that this was the first time that the MST method was used to perform a search
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for QNM frequencies. For this reason we started by investigating whether our approach

can reproduce results found in previous works for sub-extremal Kerr. By checking the

convergence of our numerical methods and investigating the behavior of the amplification

factor we convinced ourselves that our MST code was correct. The following step was to

use our code to find QNM frequencies. We were able to calculate them with 16 digits of

precision, and all the values found are in agreement with the ones available in the literature

within their error bars. We also discussed the QNM problem in the algebraically special

point in the static case. A search for possible new BC’s in the complex-frequency plane

for several quantities in the sub-extremal Kerr case was also performed. Although we

have found BC’s in the MST coefficients an’s, we provide reasons to believe that they are

unphysical due to the symmetries of the MST equations with respect to ν. Although we

did not find any new physical BC’s, we could see indications of the formation of the BC

that is known to appear in the Wronskian for extremal Kerr case.

We also made use of the adaptation of the MST method to the extremal Kerr case

provided in [32]. By making use of this adaptation, we performed similar analysis to the

ones executed in the sub-extremal case, but this time in the exact extremal Kerr case.

The BC analysis performed there provided an enlightenment about the formation process

of the BC that appears in the extremal case at ω = ωSR. We found that this BC is formed

due to the accumulation not only of QNM frequencies, but also of totally reflected modes.

To the best of our knowledge, this is the first time this TRM frequencies accumulation

is reported. We concluded this section performing a QNM frequency search. Our results

were consistent with the ones found in the first work -and, as far as we know, only work

until now- on the QNM frequency problem in extreme Kerr [11], and we were also able

to provide new modes.
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We believe that our findings presented here constitute a contribution in the under-

standing of the rotating black hole spectroscopy and to the extremal Kerr perturbation

theory.
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Appendix A

Nelder Mead Method

The Nelder-Mead method is designed to minimize a given function f : Rn → R in a

way that the knowledge of the derivatives of f is not needed. Our case of interest is the

minimization of functions in the complex-frequency plane. This implies that our function

is of the kind f : R2 → R. For this reason we focus in the n = 2 case.

Let f(x, y) be a function to be minimized. The method starts by choosing three

(n + 1) points (r1 = (x1, y1), r2 = (x2, y2) and r3 = (x3, y3)) around an input point. The

function is evaluated in these three points and their sub-index are re-organized in a way

that

f(r1) < f(r2) < f(r3). (A.1)

This implies that (r1) is the best point, r2 is the next best and r3 is the worst point.

The second step of this method is to choose a fourth point for which f(r4) < f(r3).

The first attempt to find this fourth point is by performing a “reflection” of the point r3.

By reflection we mean that given the middle point in between r1 and r2

rM =
r1 + r2

2
=

1

2
(x1 + x2, y1 + y2) . (A.2)

There will be a point rR that the line that connects r3 and rR also has rM as its middle

point. This implies that the point rR is given by
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rR = 2rM − r3 = r1 + r2 − r3 = (x1 + x2 − x3, y1 + y2 − y3). (A.3)

If at the point rR we have f(rR) < f(r3), this implies that we are moving in the

correct direction towards the minimum. In order to speed up the code, we can then go

further than the point rR. Then the next choice of point is rE defined as

rE = 2rR − rM =
3

2
(r1 + r2)− 2r3 =

(
3

2
(x1 + x2)− 2x3,

3

2
(y1 + y2)− 2y3

)
. (A.4)

If at the point rR we have f(rR) ≥ f(r3), we can consider the middle points between

the r3 and rM (rC1) and in between rM and rR (rC2). More explicitly:

rC1 =
1

2
(r3 + rM) and rC2 =

1

2
(rM + rR). (A.5)

The point to be chosen among rC1 and rC2 is the one which has the smaller value of

f(r).

If neither f(rCi) is smaller than f(r3) it will be needed to change not only one of the

three initial points, but two of them. Then we replace r2 by rM and r3 by rM ′ , where rM ′

is defined by:

rM ′ =
1

2
(r1 + r3) . (A.6)

After a proper substitution of the point r3 (as explained above) is made we need to

do another comparison and rename the points such that f(r1) < f(r2) < f(r3) and the

algorithm should restart. Our code have a internal loop that will only stop when the

distance between the three points obtained by the end of an iteration is smaller than a

certain precision.
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In this appendix we gave a brief review on the Nelder-Mead minimization method.

For a more robust explanation of the method we direct the reader to the original paper [75].

Our approach is following the book [81].
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Appendix B

Quasi-Normal Modes in the static
limit

In this appendix we show the numerical values of the QNM frequencies found for the

static limit (a = 0). All QNM frequencies were calculated requiring 16 digits of precision

in the Nelder-Mead method. The results in this section reproduced data available in [71].

n <(2Mωlmn) =(2Mωlmn) n <(2Mωlmn) =(2Mωlmn)

0 0.4965265283562173 -0.1849754359058844 14 0.1138827216530754 -7.0588242614723885
1 0.4290308391272116 -0.5873352910914572 15 0.1076388804077767 -7.5588298858301907
2 0.3495471352140215 -1.0503751987176475 16 0.1019345654471042 -8.0587165153033316
3 0.2923533988340006 -1.5438178479961673 17 0.0966992437620215 -8.5585032900426174
4 0.2531082919807309 -2.0451005676066696 18 0.0918753100189363 -9.0582062397023968
5 0.2245055815994594 -2.5478512387567702 19 0.0874150860459493 -9.5578388629413776
6 0.2024294110658836 -3.0505326668465852 20 0.0832786401996066 -10.057412586453461
7 0.1846474957013585 -3.5527984667340478 21 0.0794321733827058 -10.556937129275995
8 0.1698699422722535 -4.0546121404360987 22 0.0758468048005483 -11.056420793285824
9 0.1572992817032460 -4.5560176410894342 23 0.0724976449235120 -11.555870696277964
10 0.1464132214186788 -5.0570744262743998 24 0.0693630782316914 -12.055292960281668
11 0.1368531061225688 -5.5578388099154208 25 0.0664242014881736 -12.554692864823763
12 0.1283628845257800 -6.0583593636213461 - - -
13 0.1207537642791251 -6.5586766623760287 - - -

Table B.1: First 26 QNM frequencies found for the mode s = 1,l = 1 in the static limit,
a = 0.
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n <(2Mωlmn) =(2Mωlmn) n <(2Mωlmn) =(2Mωlmn)

0 0.7473433688360836 -0.1779246313778713 15 0.1771807742403373 -7.6502104162908118
1 0.6934219937583269 -0.5478297505824693 16 0.1772658049187587 -8.1533291773508900
2 0.6021069092247327 -0.9565539664461436 17 0.1769534131502148 -8.6561004191053505
3 0.5030099243711811 -1.4102964048669906 18 0.1763816962479507 -9.1585939137992660
4 0.4150291596261311 -1.8936897817327030 19 0.1756402482612919 -9.6608594981426344
5 0.3385988061860873 -2.3912161082716935 20 0.1747887765200058 -10.162934199017293
6 0.2665046804903760 -2.8958212523240763 21 0.1738679005724426 -10.664846401122938
7 0.1856446673404019 -3.4076823444122710 22 0.1729056889963510 -11.166618422135411
8 0.0000000000000000 -4.0000000000000000 23 0.1719217573281910 -11.668268178135232
9 0.1265270102512119 -4.6052895303170809 24 0.1709299134350313 -12.169810302837954
10 0.1531069257719723 -5.1216532347630114 25 0.1699399081388461 -12.671256924716690
11 0.1651962892832580 -5.6308847452159755 26 0.1689586186240758 -13.172618221905741
12 0.1714558441266348 -6.1373894878623803 27 0.1679908632304430 -13.673902828129253
13 0.1747885247471989 -6.6424604768651184 28 0.1670399714594522 -14.175118135962898
14 0.1764778815211748 -7.1466413966158448 - - -

Table B.2: First 29 QNM frequencies found for the mode s = 2,l = 2 in the static limit,
a = 0.

We notice here that the direct comparison between our data on table B.2 and the one

available in [71] might lead to the idea that we might be missing some QNMs. A closer

look to the data [71] makes clear that there are some QNMs that appear twice, compare

overtones 16 with 17 and 19 with 21.
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Appendix C

Quasi-Normal Modes in the NEK
case

In this appendix we show the numerical values of the QNM frequencies found for

the NEK case. All QNM frequencies were calculated requiring 8 digits of precision in

the Nelder-Mead method. The results found here should be compared with results in

[18,20,71].

n <(2Mωlmn) =(2Mωlmn)

0 1.9713470966806632 -0.0069373462544075
1 1.9713468597857080 -0.0208124415349988
2 1.9713453797831881 -0.0346882478043017
3 1.9713419240436814 -0.0485634659910419
4 1.9713375953012363 -0.0624367815760039
5 1.9713340856818211 -0.0763083934382931
6 1.9713323376196595 -0.0901795811028893
7 1.9713322647878837 -0.1040517402296938
8 1.9713331557214282 -0.1179258510123462
9 1.9713340429536808 -0.1318023505608337
10 1.9713340509847605 -0.1456812351061738
11 1.9713324642294122 -0.1595622208298687
12 1.9713287805720145 -0.1734448743562819
13 1.9713227134222075 -0.1873287089462004

Table C.1: First 14 QNM frequencies found for the mode s = −2, l = 2, m = 2 for
a = 0.9999M . All modes found are DMs.
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n <(2Mωlmn) =(2Mωlmn)

0* 1.1595905916950376 -0.0801552055206187
1 1.0128246189985108 -0.1548386076219234
2 1.0191995567920022 -0.2218210493975133
3* 1.0812342857353620 -0.2414640438496770
4 1.0189114942447858 -0.2907420089883552
5 1.0165014213372467 -0.3523120790458688
6 1.0152559976961604 -0.4099635096644475
7 1.0133930804868406 -0.4654490258922171
8 1.0101405717137750 -0.5207860324030136
9 1.0064307022327026 -0.5770692853983539
10 1.003030985193748 -0.6340464951810719
11 1.0000364943762467 -0.6912846069656605
12 0.9973003500319220 -0.7485746306385128

Table C.2: First 13 QNM frequencies found for the mode s = −2, l = 2, m = 1 for
a = 0.998M . DMs are marked with an asterisk next to the overtone number.
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n <(2Mωlmn) =(2Mωlmn)

0* 0.8497014162982315 -0.1439808166999697
1 4.2813025356148538E-13 -0.1908029268511687
2 1.6133932944734374E-11 -0.2549128389211351
3 2.0861339309548894E-10 -0.3192664571585073
4 1.4112152221038231E-9 -0.3838535854911746
5* 0.805266192017904 -0.4375466474032832
6 5.9299537933605541E-9 -0.4486623210969351
7 1.6626013373652602E-8 -0.5136796393498069
8 3.1053668497217304E-8 -0.5788919278698033
9 3.4191619687710365E-8 -0.6442854493903880
10 1.135840168381935E-8 -0.7098467272001575
11* 0.717215586136940 -0.7500069519697677
12 1.239371642637061E-8 -0.7755628272018890
13 2.5688570536685546E-7 -0.8414214727090431
14 1.1658747683348692E-6 -0.9074109471227567
15 3.1301060891667473E-6 -0.9735198957853128
16 5.9597142325921566E-6 -1.0397373761203023
17* 0.5925271414495406 -1.0992299852258983
18 8.3810929082231399E-6 -1.1060535457874829
19 8.3665510313142873E-6 -1.1724609020505298
20 4.8894220654935239E-6 -1.2389550811797087
21 5.0788435566747307E-7 -1.3055336623942467
22 2.5123372245788627E-6 -1.3721922443226842
23 0.0000198044053804 -1.438919648701022
24* 0.4529296319723091 -1.500426838753440
25 0.0000551203790710 -1.505697005013715

Table C.3: First 26 QNMs frequencies found for the mode s = −2, l = 2, m = 0 for
a = 0.998M . DMs are marked with an asterisk next to the overtone number.



98

n <(2Mωlmn) =(2Mωlmn)

26 0.0000975254149259 -1.5725050132612980
27 0.0001234595986826 -1.6393374354593325
28 0.0001104770648556 -1.7062113315348556
29 0.0000585954332592 -1.7731632324870182
30 6.1339246638969148E-6 -1.8402256504334241
31 0.0000206921152345 -1.9073896415811154
32* 0.3274322055589949 -1.9488165448516351
33 0.0001514930143687 -1.9745827207085047
34 0.0003711727149325 -2.0417034399558274
35 0.0005725575563100 -2.1086999011906039
36 0.0006318957562721 -2.1756201952904564
37 0.0004859045755673 -2.2426043847662110
38 0.0001981613243805 -2.3098335098277969
39 2.0476288845307958E-6 -2.3774113055092371
40* 0.2294865036189526 -2.4246081362511984
41 0.0001934703484596 -2.4451760977052985
42 0.0008001211397212 -2.5127268306227174
43 0.0014923338376196 -2.5798143056745361
44 0.0018970031723576 -2.6465234821341333
45 0.0017932766991870 -2.7131419586219955
46 0.0011481121506923 -2.7800774910218619
47 0.0002707506872494 -2.8478249659172592
48* 0.1573845140134125 -2.9128345054153782
49 0.0000858389157906 -2.9164924819378490
50 0.0012258578041372 -2.9849577618968206

Table C.4: Some QNMs frequencies (n from 26 to 50) found for the mode s = −2, l = 2,
m = 0 for a = 0.998M . DMs are marked with an asterisk next to the overtone number.
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Appendix D

Quasi-Normal Modes in the
extremal limit

In this appendix we show the numerical values of the QNM frequencies found for the

extremal limit (a = M). It is worth remembering that for the mode s = −2, l = 2,m = 2

no QNM’s were found in the analyzed region. The values to be compared with the ones

found in [11] are only for the n = 0 overtones, here we also present more highly excited

overtones. All QNM frequencies were calculated requiring 8 digits of precision in the

Nelder-Mead method.

n <(2Mωlmn) =(2Mωlmn)

0 2.1431894440820635 -0.0644759702177074
1 2.0656356129857118 -0.1936077596772604

Table D.1: QNM frequencies found for the mode s = 0, l = 3, m = 2 in the extremal
limit, a = M . Only 2 QNM’s were found in the analyzed region.

n <(2Mωlmn) =(2Mωlmn)

0 0.8502902157903121 -0.1436123677901097
1 0.8054871811610688 -0.4365659774477609
2 0.7168565323913904 -0.7487455643472152
3 0.5916519753042957 -1.0980779772217546
4 0.4518396148398792 -1.4995932736046661
5 0.3264000593090661 -1.9482445063583910
6 0.2286126573618755 -2.4241702137821273

Table D.2: First 7 QNM frequencies found for the mode s = −2, l = 2, m = 0 in the
extremal limit, a = M .
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n <(2Mωlmn) =(2Mωlmn)

0 1.1628664034525474 -0.0765109111482389
1 1.0777093249806252 -0.2372558086108238

Table D.3: QNM frequencies found for the mode s = −2, l = 2, m = 1 in the extremal
limit, a = M .
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