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Abstract
Reservoir Characterization is a major field of petrophysics and geology which aims to
obtain empirical and theoretical models for an accurate description of the factors and
forces that create and modify a Hydrocarbon Reservoir, as well as the different physical
properties that might characterize and define it properly by mapping different physical
properties of the reservoir soil. Amongst all properties, three are considered key when
determining whether it is feasible or not to exploit a reservoir: saturation of phases,
permeability and porosity of the rock.
Obtaining accurate permeability and effective porosity measurements of the reservoir soil
is not an easy task as it usually involves obtaining undamaged core samples from the
reservoir itself, to which different expensive and destructive laboratory tests are applied.
From this perspective, several authors have proposed to use borehole wirelogs and seismic
data to estimate different geological properties such as permeability and porosity logs,
rock facies or electrofacies.
In this work, we present two novel methods that can be applied to borehole image logs
in order to extract accurate estimations of petrophysical and geological properties from
them. The first one, which is based on deep stacked autoencoders, uses ultrasonic and
microresistivity borehole image data to obtain an estimation of both permeability and
porosity logs. We tested our method on borehole data obtained from a carbonate reservoir
in the brazilian pre–salt region, achieving an accuracy of over 96%. The second novel
method we propose in this work is based on deep convolutional neural networks, which
extract high–order inner features of ultrasonic and microresistivity borehole image logs in
order to predict rock reservoir facies. We also tested this method in another carbonate
reservoir in the brazilian pre–salt region, achieving a global accuracy of over 97%.
These two methods address the problem of petrophysical properties estimation from the
Deep Learning perspective. The fact that we use sliding windows and/or convolutional
techniques allows our methods to extract properties from the Borehole Images by retaining
spatial surrounding data, rather than just looking at single data points (as most of the
previous benchmark did). Our results, along with the results obtained in previous work
in the field, suggest that there exists indeed a link between the properties captures on
these images and petrophysical logs.
Apart from that, we also present three novel methods to enhance/filter and process bore-
hole image logs. The first of them is an automatic method for detecting breakouts.
Characterizing these structures in borehole data is important as it helps understanding
the stresses that took place while drilling. Currently, breakouts are usually selected man-
ually by approximative methods, thus leading to inaccurate results. Our method, which is
based on Transit–Time Borehole Image Data, has shown high accuracy in characterizing
the geometry of these formations automatically for the tested data. The second novel
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method for processing borehole images aims to eliminate the distorsion caused by the dis-
tance between an uncentered probe and the borehole wall when obtaining some borehole
image logs, such as the ultrasonic one. In our method, we use transit–time image logs to
estimate the distance between the probe and the borehole wall and remove the distorsion
caused by this effect. Lastly, we present a method for automatic pad artifact removal
from borehole image logs. Our method is based on a specific pad–reject function to the
ultrasonic data, so that the resulting image contains only the lithological information of
the wellbore that was had been masked by the artifacts, which might help geologists in
any further analysis of this data.
Key-words: Deep Learning, Convolutional Neural Network, Borehole Image Logs, Reser-
voir, Oil, Image Processing.
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Resumo
A Caracterização de Reservatórios é um campo importante da petrofísica e da geologia
que tem por objetivo obter modelos teóricos e empíricos capazes de descrever de forma
precisa os fatores e forças que criam e modificam os reservatórios de hidrocarbonetos,
assim como as diversas propriedades físicas que possam caracterizá-lo e definí-lo, me-
diante o mapeamento de diversas propriedades físicas do reservatório. Dentre todas as
propriedades, três são consideradas chave para determinar a viabilidade da exploração de
um reservatório: a saturação de fases, a permeabilidade e a porosidade da rocha.
Obter medidas confiáveis de permeabilidade e porosidade efetiva do reservatório não é uma
tarefa simples, já que geralmente implica a necessidade de obter amostras rochosas intatas
do próprio reservatório, nas quais diversos testes destrutivos e caros são aplicados. Desde
essa perspectiva, diversos autores propuseram usar curvas de poços e dados sísmicos para
estimar diferentes propriedades geológicas tais como permeabilidade, porosidade, fácies
de rochas ou eletrofácies.
Neste trabalho, apresentamos dois novos métodos que podem ser aplicados a perfis de
imagens de poços para extrair deles estimativas precisas de propriedades geológicas e
petrofísicas. O primeiro, que é baseado em Deep Stacked Autoencoders, usa imagens de
poço ultrassônicas e de microresistividade para obter uma estimativa de curvas de per-
meabilidade e porosidade efetiva. Testamos nosso método em dados originários de um
reservatório de carboneto do pré–sal, obtendo uma precisão na estimativa de mais de
96%. O segundo método que apresentamos neste trabalho é baseado em redes neurais
convolucionais profundas, as quais são capazes de extrair características internas sofisti-
cadas de imagens de poço ultrassônicas e de microresistividade, para poder estimar fácies
de rochas. Esse método também foi testado com dados de um outro poço do pré–sal,
obtendo uma precisão global de estimativa de mais de 97%.
Estes dois métodos abordam o problema da estimativa de propriedades petrofísicas desde
o ponto de vista do deep learning. O fato de usarmos janelas deslizantes e/ou técnicas
convolutivas permite que nossos métodos extriam propriedades das Imagens de Poços que
mantém as características espaciais das redondezas de cada amostra, ao invés de tratar
cada amostra como um ponto único (como a maioria dos métodos anteriores analisados
faziam). Nossos resultados, junto com os resultados obtidos em trabalhos prévios ao
nosso nessa área, sugerem a existência de uma ligação entre as propriedades capturadas
por essas imagens e estas curvas petrofísicas.
Por outro lado, nós também apresentamos três novas técnicas para realçar/filtrar e pro-
cessar imagens de poços de reservatórios. A primeira delas é um método de detecção
automática de breakouts. Caracterizar estas estruturas em dados de reservatório é im-
portante porque ajuda a entender a distribuição de estresses no poço durante a perfuração.
Atualmente, os breakouts são detectados manualmente por métodos aproximados, o que
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acaba gerando resultados pouco precisos. Nosso método, que é baseado em imagens de
reservatório de tempo de transito, mostrou uma alta precisão na caracterização automática
destas formações nos dados testados. O segundo método de processamento de imagens
de poço tem por objetivo eliminar a distorção causada pela distância entre sensores não
centralizados e a parede do poço, ao obter imagens de poço tais como as ultrassônicas.
Nosso método usa imagens de tempo de trânsito para estimar essa distância e remover a
distorção causada por este efeito. Por último, nós apresentamos um método para remoção
de artefatos de patins de imagens de poço de reservatório. Nosso método se baseia na
aplicação de uma função específica de rejeição de patins em dados ultrassônicos, de forma
que a imagem resultante contém unicamente a informação litológica do poço que foi mas-
carada pelos artefatos, o que pode ajudar aos geólogos em futuras possíveis análises do
dado.
Palavras Chaves: Deep Learning, Rede Neural Convolucional, Perfil de Poço, Reser-
vatório, Óleo, Processamento de Imagens.
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Chapter 1

Introduction

The term Petrophysics1 (from the Greek πέτρα, rock and φίσις, nature or physics –
modern science–) is used to refer to the field of science that applies geology, physics,
chemistry and mathematical models to study and characterize the properties of reservoir
rocks (Buryakovsky et al., 2012). During this process, which is usually called reservoir
characterization, petrophysics aims to achieve a detailed description regarding the com-
position and disposition of each layer of the reservoir, along with the structures found
inside them and their physical properties, as well as to obtain empirical and theoretical
models that might explain the geological processes that built itself.

The information regarding the physical properties of the reservoir obtained by the
reservoir characterization process does not only help geologists understand how a reservoir
was formed, but it also helps engineers, physicists and analysts to create models to predict
how the rocks that form the reservoir might react to certain fluids flowing through them
(Lucia, 2007). These models are critical to evaluate whether it is feasible or not to
even consider that reservoir for hydrocarbon exploitation. The formations known as the
brazilian pre-salt2 is a clear example of this: even though it has been estimated that the
total volume of hydrocarbons hidden under them can range from 50 to over 300 billion
barrels of exploitable oil (Jones et al., 2011), engineers and technicians are still striving up
to this day to find an efficient and reliable way to overcome the difficulties and challenges
that the salt layer presents for any large-scale production proposed (da Costa Fraga et al.,
2015).

Even when dealing with more accessible reservoirs, characterizing the field is a chal-
lenging task that requires both a high technical and economical effort. The most common
data sources are:

1The term Petrophysics was coined by G.E.Archie and J.H.Thomeer in the early XX century (Thomas,
1992) and has been used since then to refer to the study of physical properties of rocks in oil/gas reservoirs.

2From portuguese pré-sal, which refers to a thick layer of salt that separates the reservoir rocks from
the upper layers of sand at the bottom of the sea in the brazilian east–coast basins.
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1. Seismic data: this source of data essentially shows the different densities and
velocities of each one of the layers that compose the rocks of the reservoir. This
data is often used to get an idea of where the hydrocarbons are most likely located
(if any). Further detail about this data will be explained in Section 2.2.

2. Wirelog data: this source of data is obtained by drilling the reservoir in order
to extract the most amount information from them, while causing the minimal
impact on the field. Once these spots are drilled (and commonly, meanwhile they
are drilled, as shown by Zhang et al. (2006)), several tools are introduced in the
boreholes to gather information about the rocks that compose the reservoir. The
information obtained during this process can be either represented by simple curves
(i.e., gamma ray, neutron porosity or bulk density logs, to name a few), spectra logs
(i.e., NMR decay times per depth) or images (i.e., acoustic and electrical borehole
formation image data, like the ones on which this work is mainly focused). This
data will be explained in more detail in Section 2.3 and Section 2.4.

3. Core Analysis: undamaged cores of the drilled boreholes are extracted3 and taken
to the laboratory where chemical tests are run on them. These tests have the
purpose of obtaining specific petrophysical properties from the reservoir beddings,
such as saturation, permeability, porosity or density that can only be obtained
by destructive or direct laboratory experiments. The information extracted from
these tests is essential in the process of reservoir characterization and production
feasibility evaluation, as will be explained in detail in Section 2.5.

4. Formation Tests: this source of data help analysts to have a notion of how the
reservoir can react while exploitation. Several small tests are run in order to extract
a certain amount of hydrocarbon from the reservoir. Commonly small amounts
of hydrocarbon are extracted (and usually discarded), as the main objective of
formation tests is to gather direct information about the exploitability and the
behaviour of the reservoir and their fluids while hydrocarbon extraction.

When all this information has been gathered, experts analyze it carefully, usually val-
idating empirical models using several different production conditions (Dahaghi et al.,
2010; Brouwer et al., 2004; Oldenburg et al., 2001; Burshears et al., 1986), and decide
whether the field is exploitable or not. Generally, this process is developed during several
months or even years. It is worth noticing that despite how important reservoir character-
ization is, there has not been found yet a unique automated procedure to obtain a single

3The proportion of rock core that is extracted to be used in the laboratory depends on different
logistic factors. In order to extract intact cores it is required to use a special drill while drilling with high
precaution. This process is very time and effort consuming and so it is common to retrieve only about 10
to 20% of the whole borehole core to be taken to the lab while discarding the rest of it (drilling it faster,
with a much more destructive drill).
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definitive objective prediction about the reservoir feasibility from all the field information
retrieved. Instead, this process requires that a group of highly qualified and experienced
experts analyze all that information in order to come up with a decision (Chopra and
Marfurt, 2007; Doyen, 2007; Oliver et al., 2008; Kelkar et al., 2002).

In this context, the application of machine learning and artificial intelligence has
proved to be exceptionally beneficial for the oil/gas industry, as will be detailed in Section
4, Section 5 and Section 6. As soon as computational methods increased their performance
and started to be considered as more reliable methodologies to be applied on scientific and
technical problems, they started to be used for reservoir characterization and simulation
as well. Early works used computers to run complex reservoir flow simulations (Du et al.,
1986), predict petrophysical parameters (Angeleri and Carpi, 1982) and used them for
reservoir characterization purposes (Mohaghegh et al., 1994). Once these techniques be-
came more and more sophisticated and specially once artificial neural networks began to
be widely used in scientific applications, a more robust panorama for automatic analysis
was developed, thus improving the performance in automatic reservoir characterization
(Anifowose and Abdulraheem, 2011; Ouahed et al., 2003; Ouenes, 2000; Mohaghegh et al.,
1996).

One major revolution in the digital processing field took place in the last decade
with the invention of the convolutional neural networks (LeCun et al., 1998; Krizhevsky
et al., 2012). These networks are a type of feed-forward4 artificial neural network that use
recursive filtering to extract inner local features from images that can later be used for
regression, classification or characterization purposes on almost any kind of input data.

Deep convolutional networks are mainly used in data that has some sort of distribution:
either spatial (i.e., images) or temporal (i.e., signals over time). They have proved to be
a very effective methodology for extracting the internals patterns of data that help in the
signal characterization process. Some examples of applications of convolutional networks
(henceforth, ConvNets or CNNs), published recently, include using them in medicine
to segment cancerous cells from brain images (Havaei et al., 2017) or from CT scans
(Todoroki et al., 2017); in astrophysics to predict the presence of supernovae (Kimura
et al., 2017) or gravitational lenses (Metcalf et al., 2018; Hezaveh et al., 2017) in retrieved
images from space; in computer science to recognize faces automatically (Yan et al.,
2017) or even the emotions contained in a certain conversation or speech (Mukaihara
et al., 2017).

While borehole image logs have been commonly used for structure and object detec-
tion (i.e., breakouts, fractures, bedding planes), in the past decade some authors have
used them for more sophisticated workflows than structures detection. Among them it
is worth naming two, on which this thesis is focused: rock facies classification and flow

4A feed-forward neural network –henceforth, FFNN– is a type of neural network where the weights of
each inner layer only affect the weights of the following layers, without any type of recursive loop.
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petrophysical properties estimation. Different methodologies have been proposed using
different types of data sources, for borehole lithology characterization using well images
such as: applying wavelet filters to formation microscanner data (henceforth, FMS) and
then extracting haralick textural features (Haralick et al., 1973) from the filtered im-
ages and using a discriminant analysis for facies classification, obtaining a success in the
classification of 98% (Linek et al., 2007); using textural features extracted directly from
FMS data and inputing them into a linear discriminant analysis (henceforth, LDA) and
obtaining a classification result of 80% of success (Jungmann et al., 2011); or extracting
textural features from FMS and dipmeter data and combining them with conventional
wireline logs to use in an artificial neural network to both classify the facies in the well and
obtain predictions of permeability logs (Russell et al., 2002). More recently, C. Menezes
et al. de Jesus et al. (2016) have used acoustic image log data to estimate permeability
and porosity logs from them using multi-level segmentation and non-linear optimization,
achieving high quality results in their prediction.

In this work, we explore two different image processing fields. The first field, which is
studied in Section 3, regards the application of modern image processing tools for auto-
matic object recognition and detection, image enhancement and image transformation. In
there, three novel borehole image log processing methods are presented. The first one is
an automatic borehole breakout characterization method which uses transit–time image
data logs (see Section 2 for further information) as source, and which is very useful to
automatically extract geometrical information about these formations (such as breakouts
area, volume or average orientation). The second one is a method for ultrasonic borehole
image logs eccentricity correction based also on the data contained in the transit–time
image log associated with it. The last one is an automatic pad removal filter for ultra-
sonic borehole image logs, which removes the artifacts caused by any wirelogging tools
with pads that was introduced previously. Both these last two methods aim to enhance
the contrast of the image, thus improving its quality and making it easier to be analyzed
and characterized by geologists and petrophysicists.

The second field, which is studied in Section 4, Section 5 and Section 6, regards the
use of state–of–the–art deep learning techniques for predicting petrophysical properties
and geological information. We propose to use deep learning techniques to extract the
most amount of information from electrical and acoustic images for both methods. The
first method uses deep stacked autoencoders to predict permeability and porosity logs
with an accuracy of 96% (in both cases). The second one uses deep convolutional neural
networks to predict sedimentary facies with an overall accuracy greater than 97%.

In Section 2, we introduce the most common different types of data obtained from
reservoirs, their impact on reservoir characterization and their main use in the oil/gas
science field. In this Section the data available for this work is also introduced. In
Section 3, some image processing methodologies are applied to borehole image data logs
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as part of data preparation process that might precede the characterization step. Some
of these methodologies are basic image processing tools, while others are novel methods
that aim to improve the quality of borehole image data, such as automatic breakouts
detection or automatic artifacts removal. Section 4 presents a brief introduction to deep
learning techniques, emphasizing autoencoders and convolutional neural networks. In
Section 5, deep convolutional networks are used on borehole image data logs for reservoir
characterization and facies classification, as well as the results obtained for real reservoir
data characterization. In Section 6, a novel methodology for petrophysical laboratory or
wirelogs data prediction using deep learning techniques applied to borehole image data
logs is presented, as well as the results obtained when applying it to real reservoir data.
Finally, in Section 7, the conclusions regarding all the work are presented and discussed,
as well as future work that might be related by this document.
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Chapter 2

Reservoir data

As introduced in Section 1, obtaining a reliable model that might succeed in the task
of reservoir characterization is extremely difficult. This task is essential because it is not
only important to find out where the fuel reservoir is located, but also to know how the
field surrounding it is, i.e., how it is composed and what are their geophysical properties,
in order to be able to make predictions about how the soil might react to production and
exploitation.

In their book Geostatistical Reservoir Modeling, (Pyrcz and Deutsch, 2014) describes
porosity and permeability measures as the main variables needed for reservoir charac-
terization. Most of the physical properties measured in reservoirs are usually considered
because they are, at some level, correlated with porosity and/or permeability.

The importance of permeability and porosity measurements is linked to the fact that
these two properties help us understand how the geological system that forms the reservoir
is. These properties can be measured directly from core samples extracted from wellbores
drilled on the reservoir. Even though these measurements are very expensive (due to the
careful process by which they are obtained), they are still essential for reservoir charac-
terization purposes. As obtaining core samples from the whole drilled interval would be
extremely expensive, the total coverage of core samples extracted from the borehole is
commonly low. This is the reason why the oil/gas industry has shown interest on indi-
rect methods to estimate these measurements, like the one presented in Section 6, as an
alternative to be able to extrapolate them to the whole wellbore. Before going into the
different types of data on which we rely nowadays for reservoir characterization, it is es-
sential to fully understand the concepts of porosity (total and effective) and permeability
(which will be explained in the following Section).

There exist several different sources that are used either to map the reservoir volume
or to extract physical properties from the reservoir rocks (Slatt, 2006), from which the
main four of them are described in Table 1.
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Table 1 – Summary of the main sources of data for reservoir characterization. Further
information in Slatt (2006); Pyrcz and Deutsch (2014).

Data Source Resolution Coverage Resulting data Main application

Subsurface GeologicalSeismic ∼ m ∼ km2 3-D volume
Reflectors Identification

Wireline cm – Curve Logs Reservoir Properties
Borehole Images mm – Image Logs Sedimentary structures1

3-D Scans/ Porosity/PermeabilityCore Analysis µm ∼ cm2

Single-Measurement Measurements

2.1 Porosity and permeability measurements

2.1.1 Absolute porosity and effective porosity

Absolute porosity is defined as the fraction of void space contained inside a certain
volume (Hook et al., 2003). Porosity values can range from 0%, when the volume is
absolutely solid and has no inner void space, to 100%, when the internal void space
occupies the whole volume2. In reality, porosity values for porous media analyzed in
reservoir applications commonly go up to a maximum value of around 40%.

Nevertheless, reservoir experts are usually more interested on a different concept
known as effective porosity. Effective porosity is defined as the fraction of interconnected
pores contained inside the total volume of a certain porous medium. Non-interconnected
pores, even though being void space inside the porous medium, are not considered in this
calculation because they do not contribute to fluid flow through them and, therefore, they
ought not be taken into consideration for permeability estimations.

In plain words, if we consider the porous medium as a solid with a volume Vt, which
has a certain distribution of void structures inside, each one of them with a certain volume
Vi, so that it satisfies

N∑
i=1

Vi < Vt, (2.1)

its absolute porosity (henceforth, PHIT) would be given by

PHIT =

∑N
i=1 Vi
Vt

, (2.2)

while its effective porosity (henceforth, PHIE) would be a value between 0 and PHIT.
This concept is illustrated in Figure 2.1.

1One of the main objectives of this work is to prove that Borehole Image Data Logs can be used for
Reservoir Characterization, as shown in Section 5 and Petrophysical parameter estimation, as shown in
Section 6.

2It is obvious that a volume with a porosity value of 100% could never exist, as its own existence as a
volume requires it not to be composed by absolute void. By definition a void volume is not a solid, but
rather just void.
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Figure 2.1 – Illustration of how the pore distribution affects the absolute porosity and
effective porosity values. In this illustration pores are represented as clear
yellow areas, while the rock matrix is represented in gray. As it can be seen,
the volume in the left (a) has a much greater absolute porosity than the one
on the right (b), however their pores are not connected and thus its effective
porosity (pores that contribute to oil and gas production) is smaller than
the effective porosity of the volume on the right (b). However, it is worth
mentioning that in real conditions engineers can create artificial fractures
in rocks like (a) in order to induce pore connection and thus, increase the
effective porosity of the rock.

Pore interconnection is important in reservoir characterization because it describes
the path that any flow could follow when going through that certain medium. Non-
interconnected pores are void space inside the medium that cannot contribute to the flow
of fluid, as there is no physical way the fluid can reach them. When core samples are
available, calculating effective porosity can be achieved directly by using a porosimeter
Storr (1988) or by computerized methods, like CT Scans Vega et al. (2014). However,
extracting intact core samples is very expensive and technically difficult. For that reason,
it is a common practice to estimate porosity values using indirect methodologies such as
Wirelogs.

2.1.2 Permeability

The first notion and mathematical description of the phenomenon of fluid absolute
permeability was proposed in 1856 by French engineer Henry Darcy on his book Darcy
(1856). There Darcy described his study on the quantitative effect that different sand
filters had on the output flow of water. Darcy noticed that the relation between the water
flow and the applied pressure column, as well as the geometrical properties of the sand
bed, required an extra proportional term K that proved to be constant for each kind of
sand. Darcy called this property permeability and defined it as the physical property
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that quantifies the ability that a porous medium has to allow flow through itself. The
equation that links all these geometrical and physical properties is nowadays known as
Darcy’s law:

Q = κ
A

µ

(
∂p

∂x

)
, (2.3)

where Q is the flow of the fluid through the porous medium (in m3/s), A is the cross-
sectional area of the porous medium (in m2), µ is the fluid viscosity (in Pa · s), ∂p

∂x
is the

pressure differential through the medium length (in Pa
m
) and K is the permeability of the

medium (in m2)3. The rocks found in a reservoir usually present permeabilities as low as
1µD for extremely low–permeable rocks, up to tens and even thousands of milidarcies for
extremely good reservoirs.

Another measuring that is very much appreciated by Petrophysicist is the relative
permeability per fluid for each sample. Relative permeability is defined as the ratio of
the effective permeability of a certain phase to the absolute permeability of the sample,
in multiphase flow in a certain porous medium Burdine et al. (1953); Honarpour et al.
(1986). For oil industry purposes, this calculation is usually carried on considering two
(oil and water) or three (oil, water and gas) different phases on each sample Stone (1973).
Obtaining relative permeability measurements from core samples is a difficult and expen-
sive task that provides a great amount of information about the properties of the reservoir
rock and their dependance on the multiphase flow through them, unless artificial fractures
are induced in the rock to cause pore connection.

Permeability measurements over the wellbore are basically use to feed dynamic-flow
models that simulate the most likely reaction of that field to fuel production. In order
to do so, it is usual to use permeability measurements to look for low-permeability layers
(i.e., shales) which block the vertical flow of fluid through them.

Obtaining permeability values directly from a porous medium is not an easy task. It
requires very specific and supervised laboratory tests, under very controlled conditions,
to get reliable measures. This means that, up to the day this work is being published,
there has not been invented any tool able to obtain permeability curve logs from reservoir
boreholes. In reality, these measurements are usually obtained by two different mecha-
nisms:

1. Direct laboratory measurements using lateral samples and core plugs.

2. Formation tests carried out in the reservoir, after or while drilling the wellbores, by
which a certain (usually small) amount of hydrocarbon is extracted from within.
By doing so, important information regarding how the rocks of the reservoir might
react in real exploitation conditions can be obtained (Staff, 2006). Among all the

3Even though the international unit for permeability is m2, milidarcies (mD) are widely used in
several fields in science –i.e., in oil industry– for expressing permeability. One darcy is equivalent to
9.869233 · 10−13m2
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information obtained by this method, it is possible to obtain an estimation of the
permeability of the rocks present in the reservoir.

While the first method is very precise and provides the most reliable measurements,
sampling the whole wellcore would be extremely expensive and almost impossible due
to the fact that extracting this core intact is a very difficult task. On the other hand,
formation testing is usually the final step right before the exploitation of the reservoir beg-
gins, providing confirmation of all parameters and conditions concluded from the previous
steps in the workflow (seismic geological layers delineation, well–to–well logs parameters
correlation, core analysis, etc). Thus, formation tests can provide direct measurements of
permeability (and several other parameters), but they are not used as direct sources to
obtain them.

Apart from that, indirect estimations of permeability using theoretical models Timur
et al. (1968) or using artificial intelligence and wirelogs (like the method explained in
Section 6) are commonly used as an alternative to extrapolate and obtain approximate
values of these parameters along different extensions of the reservoir. Although direct
measurements are completely essential for reservoir characterization (and it is not the
intention of this work to imply that indirect approximate measurements could ever replace
them) it is important to notice that indirect measurements, even though less reliable, are
much cheaper.

2.2 Seismic Data

Consider a seismic wave (mechanical wave) that is propagating through a certain
medium (i.e., a certain layer on the earth). Its propagation velocity vc depends on the
acoustic impedance Z, as well as the density ρ of that specific medium (Doyen, 2007),
and can be calculated as

Z = vc · ρ. (2.4)

Now, when a seismic waves propagating at vc encounters an interface between two different
materials or layers, a fraction of it is bounced back by the boundary, while the rest
continues propagating through the second material Allard and Atalla (2009). The fraction
of the wave that bounces back is known as the reflected wave, while the part that continues
propagating through the new layer is called transmitted wave. The amplitudes of the
original wave (before the boundary) and the reflected wave are related by the reflection
coefficient R, which depends on the difference of acoustic impedance of the mediums, and
can be calculated as4

R =
Z2 − Z1

Z2 + Z1

, (2.5)

4Equation 2.5 can be used only when assuming normal incidence. In real conditions, seismic waves
encounter layer boundaries at different angles. For further reading on this subject see Allard and Atalla
(2009).
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where Z1 and Z2 are the impedances of the medium 1 and 2, respectively.

Seismology, which is the field of science that studies how mechanical waves travel and
propagate through the earth, uses a modified version of the reflection relation presented
in (2.5) in order to obtain valuable data from the Earth regarding the composition and
disposition of its layers. In order to do so, engineers use a controlled seismic energy
source (Hardage, 1985) (i.e., dynamite controlled blasts, specialized air guns or a seismic
vibrator) to generate seismic waves in the surface, which propagate through the Earth
and repeatedly bounce back when encounter any layer boundary. At the surface, special
acoustic listening devices records the amplitude of the reflected waves, as well as the time
that took for each response to reach the geomicrophones. By processing and stacking this
data (Yilmaz, 2001) it is possible to obtain a representation of acoustic impedance local
variations of the mapped Earth.

Seismic data is widely used nowadays in the oil/gas industry because it provides a
great amount of information about the reservoir rocks (Chopra and Marfurt, 2007; Bath,
2013), the composition and the mechanical properties, such as acoustic impedance (which
can be linked to density) of each one of the layers that compose the reservoir. In this
scenario, reflection data has been used for reservoir characterization purposes such as
lithofacies detection, rock properties extraction and petrophysical parameters mapping
(Jiang and Spikes, 2016; Bosch et al., 2010; John et al., 2005; Mukerji et al., 2001), to
name a few. An example of how reflectancy seismic data can be used for such purposes,
after applying sequential inversion procedures (Lines et al., 1988), is shown in Figure 2.2.

Figure 2.2 – Left and Middle: Example of reflectancy seismic data processed with two
different methods. Right: Acoustic Impedance Inversion example obtained
from the reflectancy data shown in the images on the left. The first two
images (starting on the left) are maps of acoustic properties from a certain
region of the earth. As it can be seen, it is possible to distinguish different
strata that geologists usually link to geological layers (image on the right)
by using data inversion methods. Source: DURHAM (2013)
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Table 2 – Different types of wirelog tools and their relation to the physical property de-
sired to be measured from the soil. Source: Schlumberger (2011).

2.3 Wireline Logs

As introduced in the previous Section, Seismic Data is widely used in the reservoir
field to characterize the different layers of the earth that form the reservoir, as well as
some basic mechanical properties such as acoustic impedance and rock density. However,
these mechanical properties are usually not enough to characterize reliably the reservoir
and therefore other types of physical properties of the rocks are required in order to fully
understand the complexity of the field. With that purpose, the reservoir has to be drilled
and opened so different tools can be lowered down by them and through the different
layers of the Earth. A common borehole used for wireline logging can have more than
one kilometer in depth, which means that it would be impractical, for economical reasons,
to drill too many holes in the reservoir. Choosing the right spots that should be drilled
in order to obtain the maximum amount of information about the soil while minimizing
the effect caused on the reservoir, as well as the number of drills, is a difficult task that
usually takes into account seismic data obtained previously Hughes (2002). In reality,
the coverage area of the wireline logs data is much smaller to that of the seismic data,
although its vertical resolution is far superior.

Each logging tool has the purpose of recording a certain physical property of the
reservoir for each certain depth. Variations of these properties through the depth of the
borehole usually indicate the variation of mediums or the presence of some structures
that might be interesting to the experts. An example of four of these wireline logs is
shown in Figure 2.3, where the distinction of layers containing hydrocarbons and brine
is possible by analyzing the values of the Gamma Ray, Resistivity, Neutron Porosity and
Bulk Density logs.

The main objective of wireline logging is to locate hydrocarbons in the field, as well as
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Figure 2.3 – Example of wireline logs: Gamma Ray, Resistivity, Bulk Density and Neu-
tron Porosity. Source: Schlumberger (2011).

to obtain an estimation of the amount of it that it is present in the reservoir, so that the
feasibility of field production can be calculated. This is the reason why most tools used
in this operation measure directly or indirectly what is known as formation parameters:
porosity, permeability and water saturation. With these parameters companies can obtain
a fair estimation about the total amount of reserves contained inside the formation.

Interpreting wirelogs, however, is a complex task (Limited, 1984) that requires an
experienced technician to analyze all logs side-by-side, along with seismic and core analysis
data, altogether. A complete study on wire-logging tools, their principles and importance
in reservoir characterization can be found in Ellis and Singer (2007).

2.3.1 Electrical Logging

Electrical wirelogs were the first wireline tools to be used in the field and nowadays
the majority of wireline tools are based on this phenomenon. The principle behind this
measure is that oil has a much higher resistivity than brine, and so by simply measur-
ing the resistivity of the layers in the borehole it is possible to locate layers containing
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hydrocarbons.
There exist basically three types of electrical logging tools which are:

1. Laterolog – The resistivity measurement is obtained by direct contact to the soil.
The wireline tool contains a pair of buttons on its side that act as electrodes, where
a certain potential is applied. This voltage creates a current that flows through
the fluid contained in the medium that forms the borehole wall, thus allowing the
measurement of resistivity. It is common to find two types of laterolog measures
combined into a single logging tool called Dual Laterolog: Deep Laterolog (LLD)
and Shallow Laterolog (LLS), which measure, respectively, the resistivity of the for-
mation at deep and shallow depths into the layer. Laterolog measurements usually
provide accurate measures for resistivity as low as 200 mΩ · m and as high as 40

kΩ ·m. Further information about this wirelog can be found in Sibbit et al. (1985);
Chemali et al. (1988).

2. Induction – Some reservoir fields are composed by soils in which direct electrical
measurements are not possible, i.e. non-conductive oil-based muds reservoirs or
air-drilled boreholes. In order to be able to obtain resistivity measurements in
these conditions an induction logging tool was created. This tool consists of an
array of multiple transmitter coils driven by a certain alternating current. This
current causes a magnetic field that induces continous circular eddy currents in
the formation (Sophian et al., 2001). These currents, which are proportional to
the formation conductivity, generate a secondary magnetic field which induces an
alternating voltage in the receiver coils. Thus, the formation conductivity can be
estimated by this method. Just like the laterolog tool, it is common to find Induction
tools designed for different depths into the formation stacked together in the same
tool (Induction Logging Medium (ILM) for medium depth into the formation and
Induction Looging Deep (ILD) for deep depth into the formation) (Beste et al.,
2000). At the same time, usually induction tools include a third measurement called
Spontaneous Potential, which measures the spontaneous current created when each
layer in the borehole is connected to a low-resistivity layer, i.e. in the surface of the
soil, and which is useful to distinguish between shale and sand layers.

2.3.2 Nuclear/Radioactive Logging

The different materials that make up a reservoir, i.e. sand, clay, water and hydrocar-
bons, have very distinguishable chemical compositions. Some of these parameters, like
the number of neutrons that the atoms of the material forming a certain layer has, can be
directly related to petrophysical properties of interest to the petroleum industry, such as
porosity or density. Thus, using tools able to obtain and map these chemical properties
in a reservoir is a top priority, nowadays.
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Nuclear/Radioactive Logging Tools base their measuring principle in the interaction
between a certain type of radiation (usually nuclear radiation) and matter (reservoir
layers) (Hertzog et al., 1989). When the radiation emitted by a radioactive source reaches
matter different phenomena occur (Ellis and Singer, 2007). Part of this radiation might be
initially absorbed by the material, energizing the electrons in the atoms and being emitted
back later. Another part of it might be scattered a certain angle, while losing energy due
to this effect. After the scattering process it is still possible that the remaining radiation
keeps on going further into the material and is eventually absorbed by deeper layers.
The radiation that is absorbed and emitted back by the material can be detected by a
radioactive counting device set up in the logging tool. As the type of radiation used on
these tools is highly energetic it can penetrate into much deeper layers than conventional
logs (i.e., electrical logs), thus allowing us to obtain chemical information about the inner
layers of soil.

There exist three major types of radioactive logging tool methods currently used in
the industry:

1. Bulk Density Log (RHOB) – This tool sends Gamma-Ray radiation to the
formation and detects the radiation that the formation itself emits back (due to
the Compton Effect (Stuewer, 1975)). The amount of gamma-ray radiation that is
absorbed by a given material present in the formation is directly proportional to the
electron cloud surrounding its atoms5, which is related to the bulk density of the
formation (Blake, 1965). This method has been used for bulk density estimation for
many years, and it is still essential for reservoir characterization purposes (Bertozzi
et al., 1981).

2. Neutron Porosity Log (NPHI) – Neutron Porosity logging tools contain a source
that produce neutrons. When these neutrons reach the formation, they get captured
by it. Hydrogen atoms are the ones that have a bigger impact on capturing neutrons.
Since this is the main compound that is contained inside the pores of porous reservoir
formations (which is commonly filled with hydrocarbons or water), measuring the
amount of neutrons that are absorbed by the formation along the depth of the well
helps keeping track of its porosity (Tittman et al., 1966). The formation matrix,
which corresponds to the main type of material that forms the analyzed layer, also
has a certain impact on this measure, as absorbs a small fraction of the bombarded
neutrons. That is the reason why RHOB measurements are usually calculated

5Notice that as gamma radiation consists on photons, they potentially interact with any kind of
electrically charged particle. Nonetheless, the reason why nuclei is usually ignored in these types of
gamma–ray & matter interaction is because the electrons in the nucleus are much more strongly bounded
together with the neutrons than the electrons on the electron cloud of the atom are bounded with the
nucleus. As the energy bound of the electrons in the electron cloud is far lower than the strong nuclear
force present in the nucleus, most of the gamma radiation that interacts with the soil of the reservoir will
not interact with the nucleus.



2.3. Wireline Logs 17

assuming three different matrices (Ellis, 1986): Limestone, Sandstone and Dolomite.
It is the expert’s task to use the right curve, for the right matrix, for each layer,
which can be deduced by looking at different other wirelogs.

3. Gamma Ray Log (GR) – Unlike the rest of radioactive wirelog tools these tools
do not emit any kind of radiation: instead, they only capture the radiation nat-
urally emitted by the formation. There are basically three types of isotopes that
naturally emit radiation in the Earth (Bigelow, 2002): 40K , 232Th and 238U. These
isotopes emit gamma-ray radiation in very distinguishable energy levels, which can
be measured using a scintillation detector. Generally, shale layers have very small
radioactive activity, while sands layers are usually detected using gamma ray logs
because of the high values they cause in them. Recently, there has been used a new
line of gamma ray logging tools which instead of single counting hits, obtain spectral
readings, thus distinguishing not only the amount of radiation per depth, but also
the energy of each type of radiation. These tools are called Spectral Gamma Ray
Logging Tools. Counting the total level of the received energy distribution leads to
the relative proportion of each one of the isotopes named previously in each layer
of the soil. For further information about Spectral Gamma Ray Logs see Gadekea
et al. (1991).

Other types of nuclear and radioactive logging tools less commonly used in the industry
include Pulsed Neutron lifetime logs (Mills et al., 1988), Carbon Oxygen Logs (Lock
et al., 1974) and Geochemical Logs (Herron and Herron, 1990). It is usual to find many
radioactive tools stacked into a single logging tool.

2.3.3 Sonic Logging

The same concept applied for obtaining seismic data is also applied on borehole well-
logging when using sonic logging tools (Cheng et al., 1992). In this case, pulses of pressure
are applied to the well formation through the borehole mud by sonic transmitters. These
pulses propagate through the formation in all directions. Far away from the transmitters
locations some receivers can capture the propagating sonic wave. It is common to have
several of these receivers before and after the transmitter, within the logging tool, so that
undesirable effects, like noise, are minimized.

The average time that it takes for the wave to propagate through the formation, from
the transmitter to the receiver, is called transit time, and it is usually expressed in µs.
This transit time depends on two factors: the geological properties of the formation and
the distance between the transmitter and the receivers. In order to discard the effect of
the second component, the calculated transit time is divided by this distance, thus the
sonic logs are usually expressed in µs/ft or µs/m.
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Sonic logs are usually correlated to the porosity of the formation, because the transit
time of the sonic waves going through the formation depends on its physical properties
and, therefore, on porosity and density. Thus, they are usually used along with radioactive
logs to validate the porosity of the formation through the depth of the borehole. These
logs have the advantage of not being much affected by the variation of size in the hole.

2.3.4 Nuclear Magnetic Resonance Logging

The phenomenon of nuclear magnetic resonance was described and measured for the
first time by Rabi et al. (1991) and was, from that moment on, used in several fields
like physics, chemistry, biology and medicine (Webb, 2013). The first wire-logging tool
that applied the NMR principle for reservoir characterization was created in the 1960s
by Chevron Research Laboratories (and others, 1964). Since then, the NMR Wireline
Logging tool has been increasingly more important to geologists and petroleum engineers,
as the data provided by it, as well as the different parameters that could be obtained from
them, was better understood by science.

NMR technique measures the induced flux of hydrogen nuclei magnetic moment that
form the tested sample. Within the oil/gas context, the fact that NMR only affects hy-
drogen nuclei (protons) means that NMR logging tools are almost exclusively affected
by the fluids contained inside the pores of the formation, and not by the whole ma-
trix (in opposition to what happens with sonic, electric and radioactive logs) (Kleinberg
and Jackson, 2001). As the fluids inside the formation pores that are affected by NMR
measurements are hydrocarbons (oil/gas) or water, this method is extremely useful for
mapping their presence and volume over the borehole depth, which is the final goal of
reservoir characterization.

From NMR logs geologist and petrophysicists might extract information regarding
(Dunn et al., 2002), i.e., the volume and distribution of pore space (which is directly
related to its absolute and effective porosity and can help predict permeability), the
Water/Oil Proportion of the reservoir (which is extremely useful for reservoir production
feasibility estimations) or the viscosity of the fluids contained inside the pores.

1. Volume and distribution of pore space: The response obtained by the NMR
log tool captures the volume of fluid contained inside the pores of the formation.
Therefore, keeping track of this volume over the depth allows geologists to know
the total volume of pore space within the formation. This parameter can be linked
to the formation porosity. On the other side, it is also possible to deduce the
pore distribution which, along with a previous rock characterization, can give an
estimation of the permeability of the formation.

2. Water/Oil Proportion: It is possible to infer the proportion of water and oil fluids
inside the pore space due to the fact that the magnetic response of 1H isotopes in
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water is very different from the response of those isotopes in oil, and so they can be
distinguished after processing the NMR data. This proportion is extremely useful
for the reservoir production feasibility estimation.

3. Viscosity Estimation: One of the properties that shows correlation with the NMR
responses is fluid viscosity. Thus, through data processing, it is possible to estimate
the viscosity of the fluids contained inside the formation pores, which, in case the
most part of the fluids in the tested samples are hydrocarbons, can be a reflection
of the quality of the oil.

2.4 Borehole Image Logs

Borehole image logging tools allow us to obtain azimuthal high–resolution maps of
physical properties of the wall of a certain borehole. These images, which have evolved
into high-resolution data during the past decade (Morris et al., 2006), are commonly used
for formation evaluation and characterization purposes such as fracture and breakouts
identification, analysis of sedimentological features or evaluation and detection of bedding
layers. An extensive study on this type of data and its applications can be found in
Prensky (1999).

There are three different types of borehole imaging devices, which allow us to obtain
four different types of borehole images: Optical imaging tools, ultrasonic imaging tools
(which obtain both acoustic impedance and transit time images) and microresistivity
imaging tools. Each one of these images is commonly used for a purpose, being the
optical the imaging device that is less used nowadays. The following sections explain in
detail each one of these data sources and their applications. Further information regarding
borehole imaging tools can be found in Gaillot et al. (2007).

As the borehole imaging devices record the properties of the borehole wall, the final
result can be considered as the inner peel of the borehole. Boreholes have cylindrical
shapes, so the final images obtained must be flattened in order to be easily analyzed by
the users. Therefore, one of the consequences of this procedure is that the apparent shape
of the structures in the image are modified: i.e., a cutting bedding layer always intersects
the borehole wall in a shape that forms a circle (or an ellipse if the borehole is not a
perfect cylinder) which becomes a single-period sine wave when the borehole image is
flattened (see Figure 2.4).

2.4.1 Optical Televiewers

Optical borehole imagers or televiewers were the first borehole imaging devices to
be used for reservoir applications. This tool allows to obtain true-color images of the
wall of the borehole, which can be then used by geologists to detect and identify layers
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Figure 2.4 – Procedure of borehole image data flattening. As borehole data is obtained
from a cylinder, it must be flattened in order to be displayed in a 2-D rep-
resentation. This procedure changes the apparence of some structures, like
the bedding fractures that appear in this schematic (here called high and low
angle dips). Source: Schlumberger (2011).

and different lithological structures that might help them characterize the geology of the
reservoir. One major drawback that this tool has is that they require that the borehole
is filled with transparent fluid in order to be able to obtain acceptable data. In order
to make this possible, these devices usually attach a fluid-injection system close to the
optical lens. On the other side, it is also essential to include a lighting source to the device
to overcome the darkness in the borehole.

Nowadays, optical televiewers are usually only used in air-filled boreholes, where the
rest of televiewer types, i.e. acoustic and electrical, fail to obtain accurate images. Figure
2.5 shows an example of optical image data obtained from a real borehole.

2.4.2 Acoustic Televiewers

Borehole acoustic imaging logging tools, usually called acoustic televiewers, use ultra-
sonic pulsed waves to obtain information about the acoustic impedance of the borehole
wall (Williamson et al., 1999). Differently than what happens with optical televiewers,
acoustic televiewers can obtain valid data even with opaque muds in between the trans-
ducer and the borehole wall, which make them much more versatile than the optical
imagers. Acoustic Televiewers are azimuthal imaging tools, which means that there is
usually one sensor that rotates a certain number of times to cover all 360 degrees that
form the borehole wall6.

The measure principle on which these televiewers are based is the same used in the
sonic logging and seismic tools: acoustic reflectivity. Figure 2.6 shows an schematic of
the measuring process. In this case, the transducer emits a pulsed acoustic wave7 that

6Most acoustic imaging tools have a resolution of 2 degrees per measure, which means that the final
image has a total of 180 data points per row.

7The frequency of the acoustic pulse is directly related to the quality of the final image. Each man-
ufacture optimizes its tools for a certain frequency, however it is common to find measurements in the
frequency range [250, 500] kHz.
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Figure 2.5 – Example of optical image obtained from a real borehole. On the left, the
flattened true color image of the borehole wall. On the right, its 3D version
(not-flattened). Source: Williams and Johnson (2000).

goes through the drilling mud and strikes the borehole wall. This first wave has an initial
amplitude of A0. While this wave travels through the fluid inbetween the logging tool and
the wall, part of its power is absorbed by the fluid itself, according to a linear law that
depends on the total travelled distance (the more distance, the more loss to the fluid).
The total loss of amplitude due to the absortion of the fluid is refered to as ∆A 8, in this
work. Once the wave reaches the wall, and as it was explained in Section 2.2, part of this
wave will be absorbed by the formation and continue to propagate inside it, while the rest
of it will bounce back. Being an azimuthal tool and assuming that the distance between
the transducer and the borehole well is small, this reflection can be considered to happen
under normal reflection conditions. In any case, acoustic televiewers extract two different
values from each returning wave: the time that it took for that wave to reach the borehole
wall and then reach the transducer back (transit time) and the ratio between the energy

8The drop of acoustic amplitude whilst travelling through the interface fluid depends not only on the
distance between the probe and the borehole wall, but also on several other factors such as the density or
the composition of this fluid. However, as modern drilling tools usually inject their own fluids to better
control the drilling procedures, it is assumed that the only factor that effectively affects the contrast
between pixels on the final image is the distance from the probe to the borehole wall.
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of the emitted signal and the received signal (acoustic attenuation magnitude).

Figure 2.6 – Schematic explaining how the amplitude of the acoustic wave changes while
travelling on the borehole: (0) First the sound wave is emitted with amplitude
A0; (1) while travelling through the drilling fluid (or the borehole water, in
case no drilling fluid was used) the amplitude drops ∆A proportionally to
the distance travelled by the wave, going from an amplitude of A0 to A1 right
before the wave hits the wall of the borehole; (2) once the wave reaches the
wall, part of it is absorbed by it and the rest bounces back to the transducer
(the ratio between the absorbed and reflected part depends on the densities
of the fluid and the wellbore rock) with an amplitude of A2; (3) the reflected
wave travels back to the transducer through the drilling fluid, losing again
∆A proportionally to the distance travelled by the wave, going from an
amplitude of A2 to A3, right before the wave reaches the transducer back;
(4) finally, the reflected sound wave reaches the transducer with an amplitude
A3, which is measured and stored as a pixel of the final ultrasonic borehole
image log.

It is important to notice that the borehole shape is a very important parameter that is
directly correlated with the final image quality. This is so because the drilling mud that
separates the logging tool from the borehole wall absorbs a certain amount of the acoustic
waves energy. This means that the more separated the transducer is from the borehole
wall, the weaker will be the signal when reaching back the transducer. Variations in the
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borehole shape affect the final acoustic image and causes regions with the same typical
acoustic impedance to appear with different contrast and tone. Acoustic images obtained
from elliptical and oval shaped boreholes suffer from artifacts caused by this effect. The
most clear example of this is the difference in contrast caused by breakouts (for further
detail see Section 3.3).

Transit time data is commonly used for characterizing the shape of the borehole. On
the other side, Acoustic attenuation magnitude data can be used for lithology charac-
terization, as it reflects the values of the acoustic impedance of the borehole wall. It is
important to remember that the acoustic impedance of a medium is strictly related to
its density. Thus, an image of the acoustic impedance of a borehole wall can be directly
linked to a map of the different densities of the layers that form it.

An example of acoustic impedance and transit time data obtained from a well from
the Santos Basin in Brazil is displayed in Figure 2.7 using the Borehole Texture Analyzer
software designed in the context of this thesis.

Figure 2.7 – Example of acoustic borehole log data (acoustic impedance and transit time)
obtained from a well explored in the Santos basin in Brazil, displayed and
processed using the software created for this work: Borehole Texture Ana-
lyzer (BTA).

Acoustic televiewers can be refered to using specific acronyms given by the manu-
facturer. Among them, the most usual are: UBI (ultrasonic borehole imager – Schlum-
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berger), ABI (acoustic borehole imager – Advanced Logic Technology) and HRAT (high
resolution acoustic televiewer – Robertson Geologging). For further information about
Acoustic Televiewers, see Hayman et al. (1998).

2.4.3 Microresistivity Formation Imagers

Microresistivity formation imagers are logging tools that allow us to obtain azimuthal
images of the microresistivity of the borehole wall with high resolution. In order to do so,
this tool is equipped with a certain amount of electrode arrays, commonly called buttons,
between which a constant potential is applied. Similarly to what happened in electrical
logging tools measuring procedures (Section 2.3.1), this voltage causes a current to flow
between the electrodes and through the material that forms the borehole wall. This
current, which is measured by the device, is inversely proportional to the resistivity of the
formation. As the buttons used in these tools are very small, to provide high-resolution
data, electrical borehole imagers are usually called microresistivity formation imagers, as
they map the microresistivity of the borehole wall.

In fact, these tools do not measure the real value of resistivity nor resistance of the
borehole wall, but rather a value that is directly proportional to it. Thus, microresistivity
formation images offer information regarding variations in electrical resistivity, which still
helps geologists identify the different types of layers of the reservoir. The coverage of
measurement obtained by these tools has evolved through the years, whilst the number
of buttons on each array was increased. It is also worth mentioning that some of these
tools require some type of fluid to be introduced between the electrodes and the borehole
wall. It is usual to either perform an oil-based drilling procedure or use synthetic muds,
which present just the right conductivity to allow resistivity measurements (Laastad et al.,
2000).

Microresistivity images can be used directly for detecting structural features, such
as fractures, faults or folds; sedimentary features, such as bedding surfaces, slumps or
crossbedding; and diagenetic features such as stylolites (Bourke et al., 1989). On the
other side, it is possible to use these images, along with some other data sources (i.e.,
wirelogs or acoustic image logs) to obtain further information regarding the borehole
features, such as vugs, shale distributions, cementations, laminations, concretions and
others. An example on using both acoustic and microresistivity image data for breakouts
and fracture detection can be found in Tingay et al. (2008).

An example of microresistivity data obtained from a well from the Santos basin in
Brazil is displayed in Figure 2.8 using the Borehole Texture Analyzer software designed
in this work.

Electrical televiewers can be refered to using specific acronyms given by the manufac-
turer. Among them, the most usual are: FMI (formation micro imager – Schlumberger),
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Figure 2.8 – Example of microresistivity image data obtained from a well explored in the
Santos basin in Brazil, displayed and processed using the software created
for this work: Borehole Texture Analyzer (BTA).

EMI (electrical micro imager – Halliburton) and FMS (formation micro scanner – Schlum-
berger).



26 Chapter 2. Reservoir data

2.5 Core analysis

Although the amount of information obtained using seismic, wireline logs and borehole
imaging data sources is huge, it is usually required to extract raw samples either from
the borehole core or the borehole wall in order to accomplish the fully complete reservoir
characterization task.

Obtaining real samples from the reservoir offers the opportunity to validate the petro-
physical properties estimated using the rest of the data, as well as to extract other types
of properties, directly from the sampled rock, from direct evidences.

Core analysis can be defined as the direct study of samples obtained from the ex-
tracted cores of the borehole reservoir (Anderson, 1975; Craft and Keelan). The American
Petroleum Institute explains in detail the recommended methodologies and procedures to
be applied when dealing with core samples, as well as how to obtain petrophysical mea-
surements from them, such as porosity and permeability calculations (API, 2010). It is
possible to divide core analysis into three different subcategories:

1. Plug analysis: This is the most frequently used type of analysis. This procedure
involves extracting a small sample of the whole core every certain distance (usually
one every feet or so). Each one of these small samples is expected to represent a
certain interval of the whole core. Intervals with high heterogeneity in lithology or
any physical property (i.e., apparent pores grainsize) require more frequent sam-
pling. Each sample is labeled with the depth of the core it was taken from and then
several tests are run on them.

2. Whole core analysis: In some cases, the heterogeneity of the reservoir is so high
that extracting plugs samples from the core would lead to unreal results about the
reservoir lithology. In these cases it is possible to divide the whole core in smaller
intervals and run tests on them.

3. Sidewall core analysis: There exist mechanisms to extract samples from the
borehole wall, directly, while or after drilling it. These mechanism allow us to obtain
direct samples from the reservoir. However, it has proved to be a very difficult task
to keep these samples intact and undamaged, while retrieving them to the surface.
This technique only provides unaltered cores when dealing with very specific types
of formations (Craft and Keelan).

4. Thin section granullometry: This technique studies the grain size and sorting of
thin sections of rocks extracted from the reservoir. The disposition of these grains
has a great influence on the properties of the reservoir and the feasibility to exploit
it, as it is intrinsically linked to permeability and effective porosity.
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Regardless of the type of core analysis used, the physical properties that are most
commonly extracted from them are (Keelan et al., 1972): Pore quantification and distri-
bution, permeability calculation, fluid content determination, lithology characterization,
dip analysis and density determination.

As it can be seen core analysis is essential to obtain properties that are extremely
important for the oil/gas industry and that help enormously in the reservoir characteri-
zation process. Indeed, some of these petrophysical properties, like Permeability, can
only be directly obtained by these means9 or by formation tests, which make them even
more valuable.

Despite their importance, obtaining intact core samples is neither easy nor cheap. In
reality, it is much cheaper to obtain wirelog and borehole image data than a large number
of core samples. This is one of the reasons why petrophysical parameters estimation
from borehole logging data methodologies have evolved so much and so rapidly in the
last years. These methodologies, like the ones discussed in this work, cannot only bring
new information about reservoirs from different approaches, but can also help the oil/gas
industry spare a considerable amount of resources.

For further detail into coring procedures and analysis methodologies see API (2010)
or McPhee et al. (2015).

2.6 Available data

In this work, we use four different types of reservoir data: wireline logs, borehole
images, petrophysical properties extracted from core analysis and lithology classification
charts (made by petrophysicists). This data was provided by two different main sources:
PETROBRÁS and ANP (National Petroleum Agency of Brazil, from the portuguese
Agência Nacional do Petróleo). Table 3 shows the different type of data obtained from
these sources, and how they have been used in our work.

All Image Data available for this work was obtained using borehole logging tools such
as the ones described in Section 2.4. On the other hand, the available logs regarding
petrophysical properties (PERM, PHIE and PHIT curves) were all obtained applying
Timur-Coates models to NMR Data (Timur et al., 1968). Even though these measure-
ments are not direct porosity/permeability measurements, it has been proved over the
years that NMR extrapolated petrophysical data presents a high correlation with real

9Permeability can be estimated using different techniques and tools such as NMR Logs, however the
only direct methods to obtain the true real permeability of a rock from a reservoir is to either handle a
core plug obtained from it or to perform formation tests.

10PETROBRÁS
11This data cannot be published due to PETROBRÁS internal data security policy.
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Table 3 – Summary of reservoir data available for this work.

Data Well Basin Wireline Borehole Petrophysical Used in this
Provider Name (Location) Logs Images Logs thesis for

GR,NPHI, Facies
17°25′23.0′′S PHIT,RHOB, UBI, Classification,
44°38′27.5′′W LLD,LLS FMI WellANP 1imet8MG

and others

n/a

Synthesis
UBI, PERM PetrophysicsBR10 n/a11 n/a11 n/a
FMI PHIE, PHIT Estim.

data (Mohaghegh et al., 1997). In any case, the data lent to us for this work had already
been processed by this technique.

It is important to notice that all data obtained from PETROBRÁS was lend under
their data secrecy policy, which means that it is strictly prohibited for us to publish any
kind of reference to the location where this data was obtained, among other characteristics
regarding the properties of the data. Contrarily, the data provided by ANP can be
published as it was lent under research and scholarship terms.
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Chapter 3

Image Processing applied to
borehole image data logs

3.1 Introduction to digital image processing and applications

Digital Signal Processing (DSP) can be defined as the engineering field that deals
with signals of different nature (electrical, computational, mechanical) and modifies them,
by applying different methodologies and techniques, usually with the aim of extracting,
enhancing or removing some sort of information from them (Antoniou, 2016; Smith et al.,
1997). Even though it started as a field applied to electrical and electronics engineering
exclusively, it rapidly evolved and gained ground with the evolution and expansion of
computational technologies and has rightfully earned its position as one of the most
important fields in science and engineering developed in the last century.

These days, it is very difficult to find a single field of science on which DSP does not
play a crucial role: from astronomy to quantum physics or from chemistry to medicine,
science nowadays relies on our capacity to acquire and process signals. It is important to
clarify that although the term signal is wide enough to include images, they have become
such an important source of information that the term DSP is almost exclusively used for
1–D signals that vary over a single or multiple variables (time, space, population age, etc.).
Images are a special case of 2–D signals (or 3–D signals, when dealing with multiband
images, i.e. color images) that represent the variation of a certain function over a spatial
region. Images present spatial correlation, which means that each single measurement is
conditioned by the values of its surroundings. For instance, color images represent the
variation of light received by the capturing device1 (i.e., a camera) in a certain region.
2–D representations of measurements that lack spatial correlation are usually called maps,

1Images can be obtained from different sources apart from the common visible–spectrum band, such
as X-ray and CT-scan images, Gamma-Ray, UV and IR band images, thermal images, ultrasonic images,
etc.
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rather than images. The study of the digital techniques and methodologies that can be
applied to images is known as Digital Image Processing (DIP).

The current state of the art of Digital Image Processing has changed and improved
drastically over the past decade with the expansion of wavelets and multiscale analysis
(Chui, 2016), as well as convolutional recognition and characterization techniques such as
convolutional neural networks (LeCun et al., 1995) and deep learning techniques (LeCun
et al., 2015; Schmidhuber, 2015). Apart from these, the most basic and common used
image processing techniques (Gonzalez et al., 1992) can be summed up in:

1. Gray–Level/RGB transformation: Basic transformations in the levels of the
image such as inversion (negative images), linear transformations (a.k.a normaliza-
tion) and non–linear transformations (such as log, power–law or piecewise transfor-
mations). These transformations usually aim to change the values of the image for
better visualization.

2. Histogram processing: Used to change the distribution of the intensity levels of
the image so that its contrast is increased, thus increasing the level of visible details
(e.g., histogram equalization, histogram matching or local enhancement).

3. Image Restoration/Degradation: Which seeks to remove a certain component
of information contained inside the images, usually considered as noise, in order
to restore an ideal image where only the desired part of the information is kept
(e.g., band–reject or band–pass filters, notch filters, adaptative filters, etc.). These
techniques rely on two different types of filtering processes:

3.1. Spatial filters: Which work in the spatial domain (that is, with the original
values of intensity of the image itself) and that are commonly used for smooth-
ing, sharpening or averaging techniques (e.g., median, standard–deviation, gra-
dient or canny filters).

3.2. Frequency–Domain filters: Based on the fourier transform and the convo-
lution theorem, which unlike spatial filters these rely on their fourier spectrum
rather than on the images on the spatial domain themselves, and are extremely
useful in the removal of periodic noise, for instance. Frequency filters are, with-
out any doubt, the most important and widely used tools for DIP. The most
common filters used in this methodology are: smoothing low–pass, butterworth
or gaussian filters; sharpening high-pass, butterworth, gaussian and laplacian
filters; and homomorphic filters.

4. Image segmentation: Used to partition the image intensity levels (gray–scale or
color) into multiple groups that share a certain common property (such as similar
color/gray–scale level or similar response to a certain filter). This technique is
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widely used in different areas of knowledge as it allows further operations such as
object recognition, morphology characterization or background removal. A special
case of image segmentation is image binarization, which segments the image into
two different groups.

5. Image compression: Which aims to compress as much information as possible
from the original image by reducing their storage cost.

6. Wavelets and multiscale processing: Which seeks to characterize the input
image, as well as extract and enhance several of its properties, by analyzing its
response at different scales, thus widing the available information obtained from the
image (Chui, 1992; Daubechies et al., 1991; Chui, 2016; Meyer, 1993).

As mentioned before, the most important tool used nowadays in image processing is
the fourier transform. This tool allows us to represent any input signal as the series of
periodic harmonic signals that compose it (Stein and Weiss, 2016). This is extremely
useful because removing/enhancing a certain undesired/desired periodic component from
a signal is much easier by using this technique than it would be by directly manipulating
the original image in the original space.

The 2–D continous fourier transform (F) of a 2–D signal input f(x, y) (in our case, a
grayscale image) is defined by

F (ωx, ωy) = F [f(x, y)] =
1√
2π

∫ ∞
−∞

∫ ∞
−∞

f(x, y) · e−j(ωxx,ωyy)dxdy, (3.1)

where ωx and ωy represent frequency in both dimensions x and y respectively. On the
other side, the 2–D discrete Fourier Transform of a discrete input f(nx, ny) 2–D signal
F (kx, ky) is defined by

F (kx, ky) = F [f(nx, ny)]k =
∞∑

ky=−∞

∞∑
kx=−∞

f(nx, ny) · e
−2πj

(
kxnx
λ0x

,
kyny
λ0y

)
, (3.2)

where λ0 represents the fundamental frequency of the signal (sampling rate) and kx and
ky represent discrete frequency in both dimensions x and y respectively. Table 4 shows
some of the most basic properties of the fourier transform. Among all these properties
it could be said that the most fundamental one is Convolution, which allow us to apply
filters in fourier space as a simple product of functions, rather than having to convolve
them in the original space.
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Table 4 – Basic properties of the fourier transform.

Time Function Fourier Equivalent

Linearity af1(t) + bf2(t) aF1(ω) + bF2(ω)

Time shift f(t− t0) F (ω) · e−jωt0

Time scaling f(at) 1
|a|F

(
ω
a

)
Time transformation f(at− t0) 1

|a|F
(
ω
a

)
· e−

jωt0
a

Duality F (t) 2π · f(−ω)

Frequency shift f(t) · ejω0t F (ω − ω0)

Convolution f1(t) ∗ f2(t) F1(ω) · F2(ω)

f1(t) · f2(t) 1√
2π
· F1(ω) ∗ F2(ω)

Differentiation dnf(t)
dtn

(jω)n · F (ω)

(−jt)n · f(t) dnF (ω)
dωn

Integration
∫ t
−∞ f(τ)dτ 1

jω
· F (ω) + πF (0)δ(ω)

3.2 Digital processing techniques applied to borehole image logs

The workflow used in oil industry for processing borehole images is well-stablished
and has not suffered many changes in the last years, apart from constant upgrades and
improvements regarding the techniques and methodologies.

The type of image processing method applied to borehole images depends basically
on the type of data analyzed and the information that petrophysicists expect to get from
them. In Section 2.4 the main uses for each type of borehole image data was introduced,
as well as the main information to be extracted from them. The most typical workflows
(Williamson et al., 1999) that both ultrasonic and microresistivity borehole images follow
are shown in Table 5. Orientation and Speed Corrections are the most basic and initial
operations carried out on borehole images. The first one is used to make sure that the
image is oriented according to the true north azimuth, so that all information regarding
orientation extracted from them is true (breakouts and fracture position and orientation,
bedding plane orientation, etc.). On the other hand, speed correction ensures that the
data displayed to the user has the right vertical size (due to the fact that the cable
acceleration is not null and therefore some regions appear compressed while others are
dilated).

After the data has been oriented and corrected, it is necessary to normalize it so it can
be properly displayed to the user. Thus, Static and Dynamic enhanced data are obtained
from the original data. It is worth mentioning that Static normalization do not perform
any kind of operation in the histogram, but rather linearly scales the range of data to
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Table 5 – Most common techniques and workflow that both Ultrasonic and Microforma-
tion borehole images follow to effectively extract information from them. The
green tick (3) symbolizes that the technique is commonly used for that type
of data, while the red cross (5) symbolizes that the technique is almost never
used for that certain type of data. The yellow asterisk (i) symbolizes that the
technique is sometimes used for that certain data type, althought it might not
be necessary.

Technique Utility UBI FMS
Orientation correction Used to correct the orientation of the data

in order to be displayed with true az-
imuthal orientation

3 3

Speed correction Used to correct the vertical position of
each data line in order to be displayed with
true depth correlation

3 3

Static normalization Gray–Level normalization to improve vi-
sualization using the whole data 3 3

Dynamic normalization Gray–Level/local contrast enhancement to
improve visualization over a user–specified
sliding window. This technique is useful to
enhance local textural features, specially
in FMS data (such as fractures or bedding
planes)

i 3

Texture analysis Histogram analysis that uses the propor-
tions of gray–level values over a user–
defined sliding window to characterize lo-
cal differences in texture which might be
related to some petrophysical or lithologi-
cal property

3 3

Image segmentation Used for porosity quantification, vuggy
analysis (Cunningham et al., 2004) and
breakouts detection

3 5

Used for electrofacies characterization
(Jungmann et al., 2011; Ye et al., 1998)
and porosity evaluation

5 3

Edge detection Used for fracture and bedding planes eval-
uation (Assous et al., 2013; Wang, 2005) 5 3

improve data display. Both these methods are based on a rather simple operation: for
any input image Axy, its static normalized image Sxy can be calculated as

Sxy =
Axy −maxi∃[n] (fi)

maxi∃[n] (fi)−mini∃[n] (fi)
. (3.3)

The difference between static and dynamic normalized images is that while static nor-
malization uses the whole data to perform its operation, dynamic normalization uses a
smaller sliding window, usually around 2 meters wide (but which can also be defined by
the user), performing the normalization for each one of these windows before averaging
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all results to form the final image. It is important to notice that features separated a
great vertical distance from each other on dynamic images cannot be directly compared.
Both these techniques compress the range of values in the data to [0, 1].

Figure 3.1 shows the difference between static and dynamic normalization on a sample
of microformation data: a) Shows the static data, while b) to e) show the dynamic data
for a sliding window width of 1 m, 0.5 m, 0.25 m and 0.125 m respectively. As it can be
seen the effect that the width of this window has on the final result is very noticeable.
The smaller the width of the window, the more local features appear. Dynamic data
normalized with small windows are usually used for fracture and bedding plane detection.

(a) (b) (c) (d) (e)

Figure 3.1 – a) Static Normalized FMS Data; Dynamic Normalized FMS Data using slid-
ing window of width of b) 1 m c) 0.5 m d) 0.25 m and e) 0.125 m.

3.3 Automatic breakout detection and characterization from bore-

hole image logs

As it was discussed in Section 2, the main objective pursued when drilling boreholes
in the soil is to gather enough information about its geology, lithology and some of its
physical properties in an attempt to help in the process of reservoir characterization. In
order to obtain reliable data, the drilling procedure must be as noninvasive as possible,
so that most of the original structures in the borehole wall are preserved once the logging
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Figure 3.2 – Schematic showing how artificially induced fractures and breakouts are
formed while drilling boreholes due to the imbalance of stresses. In this case
a horizontal section of the borehole is shown. At this section it is supposed
that the borehole has a nearly circular shape anywhere except in the break-
outs regions, as it is represented by the average borehole radius circle. The
regions where the drill applied the maximum pressure (σmax) have greater
chance to produce induced fractures (DIF), while breakouts only appear on
the regions where the drill applied the minimum pressure (σmin).

tools are introduced. Finding the balance between controlling the drilling pressure, speed
or acceleration and doing this as fast as possible (so the process is not too expensive) is
a very challenging task.

Most of the times artificially induced structures are created unintentionally (Kulan-
der and Dean, 1988). The most common structures that are created due to mechanical
stress while drilling are: drilled induced fractures (Aadnoy, 1990) (henceforth DIF) and
breakouts (Haimson et al., 1986). Both these structures are formed when too much stress
is introduced into the borehole. The stress applied by the drilling tool into the borehole
can be decomposed into four main forces: two on each of the main axes orthogonal to
the direction of drilling. Too much stress on the borehole wall might cause its rock to
break, forming DIL, which appear in borehole image logs as vertical stripes that follow
the maximum stress axis of drilling. On the other hand, this excess of stress might cause
the part of the well with the less stress to collapse, leaving breakouts of material that
appear as big dark marks on these logs. This phenomenon is illustrated in Figure 3.2.

It is important to notice that due to the intrinsical simetry of the borehole, breakouts
almost always appear in pairs and separated 180° from each other2. Tracking the creation

2The only exception happens when one of the breakout–pair is still forming, so that only one of
them appears on the final image. In any case, even geologists do not commonly agree amongst them on
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and evolution of these formations while drilling it totally essential, as an excessive amount
of them will surely compromise the stability of the borehole and, in the worst case scenario,
will make the borehole to collapse. The most common workflow during drilling is to keep
track of several variables that help technicians and engineers to prevent the stress to
grow excessively in the wellbore. Monitoring the formation of breakouts whilst drilling
has gained popularity in the past decades, and is currently used as an alert monitor
mechanism to control the mechanical stability of the borehole (Wessling et al., 2011).

Nevertheless, characterizing stress formations after the borehole has already been
drilled has become more important over the years for evaluating wellbore stability (Bar-
ton et al., 1997) and in-situ stress determination (Barton et al., 1988). It is important
to remind that these structures, even though they have little to do with the lithology of
the reservoir, have a major impact on any further automatic textural/image processing
technique applied to the borehole images obtained from the wellbore. For that reason, it
is common to see experts detecting these structures manually, in a way to minimize the
effect that they have on these tests. The use of these tools leads to very inaccurate mea-
surements of their geometrical properties (i.e., area, volume, eccentricity or orientation),
even in commercial softwares.

An example of what breakouts look like in different sources of ultrasonic borehole
images is shown in Figure 3.3. As it can be seen in Figure 3.3a, breakouts appear as very
dark predominant regions in this type of borehole data, not because the lithology at these
regions is much different than the one from the surroundings of the breakout, but because
the rock collapsing that formed the breakouts itself caused the wall of the borehole to
be farther away from the transducer. As the drilling fluid between the wellbore and the
transducer absorbs part of the energy of the sound wave emitted while travelling through
it, the farther away from the sensor, the less energy the wave will have once arrives back
to the transducer, and therefore the darker the region will appear in the borehole acoustic
image (this will be further explained in Section 3.4.1). This is the reason why breakouts
appear as brighter areas on transit time images, as it can be seen in Figure 3.3b: because
in transit time images, brightness means farther away from the transducer, while darker
means closer to it. A better way to visualize breakouts is using 3–D renderization, as
shown in Figure 3.3c: here it can be seen that the breakouts do appear as prominent
areas, changing the shape of the borehole to a more elliptical and asymetrical one.

Previous work on automatic detection of breakouts include the creation and use of
a specialized tool to be introduced into the borehole separatedly (increasing the time
that the drilling and acquiring operation would take, thus making this procedure more
expensive) as proposed by Wessling and Pei (2015). Even though the main purpose of
this method is to monitor the in–situ wellbore stability, it is worth noticing that obtains

whether these special cases should be considered breakouts. For that reason, we only consider breakout
those formations that come in pairs and separated 180° one from each other.
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(a) (b) (c)

Figure 3.3 – Example of breakout structures in a real wellbore (1imet8mg, see 2.6) in a)
an ultrasonic borehole image; b) transit time borehole image; c) 3–D view
of the ultrasonic borehole image using the transit time data as the shape of
the wellbore.

inaccurate results. In this Section, we present a novel technique that automatically detects
and characterizes breakouts on borehole acoustic image data, very accurately. Our method
uses both ultrasonic and transit time data as inputs, as well as several parameters that
can be controlled by the user, in order to detect breakouts.

3.3.1 Proposed method

Even though breakouts appear as dark, separated regions in ultrasonic borehole im-
ages and very bright regions in transit time images, not all structures that match these
conditions on borehole data are breakouts. In other words, there are different artifacts
that might fullfil these conditions but that should never considered as breakouts. An
example of such structures is shown in Figure 3.4. In Figure 3.4a, it is possible to see a
structure, at the center of the image, that appears very dark in the ultrasonic data while
very bright in the transit time image, even though it is not a breakout. The same happens
in the vertical structure (denominated keyseat (Lofts and Bourke, 1999)) that is shown
in Figure 3.4b.

Due to this kind of false–breakout structures, along with the fact that transit time
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(a) (b)

Figure 3.4 – Examples of two different wellbores on which some non–breakouts structures
appear as dark regions on ultrasonic data and as bright regions on its equiva-
lent transit time data. Neither the central region of image a) nor the vertical
stripe shown on image b) are breakouts.

data is usually very noisy, the direct use of segmentation methods to ultrasonic and transit
time data would most likely fail. Even though it would be expected for breakout regions
to be homogeneous, in reality these regions present a high degree of noise, which affects
directly the quality of the segmentation. Serendipitously, we discovered that breakouts
regions can be characterized due to this heterogeneity and noise in the transit time data.
Thus, we propose to first pre-process the transit time images with a standard deviation
box-filter. This process enhances the regions with the higher level of local heterogeneity,
which commonly happen to be breakouts.

The effect of this process to transit time data can be seen in Figure 3.5. First, in Figure
3.5a the transit time data is displayed. As it can be seen, the breakouts (both vertical
formations that go through the whole image, separated 180°) appear as very bright and
heterogeneous regions. If we tried to segment this data directly, as shown in Figure 3.5b,
in an attempt to separate breakout formations from the background we would fail due to
the intrinsic noise that these regions have. As it can be seen on that image, breakouts
and non-breakouts regions are mixed, leading to a fail segmentation.

In Figure 3.5c the transit–time borehole data has been pre-processed using a standard
deviation [3× 3] box–filter before the segmentation process was applied. The final raw
segmentation of this pre–processed data is shown in Figure 3.5d, and as it can be seen this
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segmentation is far more accurate than the one achieved when using the raw Transit–Time
data. Even though some of the breakouts regions were separated, this problem can be
solved with further common post–segmentation processing (i.e., dilation, erosion, etc.).

(a) (b) (c) (d)

Figure 3.5 – Difference between the use of a) transit time borehole image data and b)
its segmentation to characterize breakouts; and the use of c) transit time
borehole image data filtered using a standard-deviation box filter and d) its
segmentation. As it can be seen, the second segmentation, even when no
further post-processes are applied, characterizes much more accurately the
breakouts in the borehole data.

As introduced before, in order to obtain an accurate result it is necessary to apply
some post–segmentation processing. First of all, and right after the standard deviation
filtered transit time image has been binarized into breakout-candidate and background
regions, a dilation is applied (Gonzalez et al., 2009). This procedure ensures that small
regions that appear separated and unconnected after the binarization, which belong to
the same breakout structure, are connected back. The size of the neighbourhood matrix
on which the dilation depends is a parameter that allows the user to control this process.
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Once the binarized image has been dilated, all detected structures (Breakout-candidate)
are labeled. Thus, each structure can be distinguished from any other, which allows us
to extract morphological information about them.

At this point, it is crucial to distinguish between those structures that strictly fullfil all
characteristics to be considered as breakouts from those that do not. This can be achieved
by comparing the morphological properties of each detected structure with those expected
of a breakout pair. It is possible to identify accurately breakouts because these structures
share the following morphological properties:

1. Each breakout formation must come in pairs. Breakouts are formed due to the
axial stress on the borehole and therefore they are always formed in pairs. A single
structure without its pair is not a breakout.

2. Breakout pairs must be separated 180°.

3. Breakouts can only appear with a certain range of orientations. They usually appear
vertically but they might also be formed with a certain angle with respect to the
vertical axis. It is impossible to find horizontal breakouts.

4. A breakout cannot be formed by more than two structures at each depth (see point
one).

All these conditions are tested for each formation. Those that fullfil all of them can be
considered as breakout candidates. Four examples of this method applied to real borehole
data are shown in Figure 3.6, Figure 3.7, Figure 3.8 and Figure 3.9.
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Figure 3.6 – Example of the method of automatic breakout detection and characterization
proposed in this work applied to a real wellbore.

Figure 3.7 – Example of the method of automatic breakout detection and characterization
proposed in this work applied to a real wellbore.
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Figure 3.8 – Example of the method of automatic breakout detection and characterization
proposed in this work applied to a real wellbore.

Figure 3.9 – Example of the method of automatic breakout detection and characterization
proposed in this work applied to a real wellbore.
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3.4 Automatic borehole image logs artifact removal

Borehole image logs have been used over the last decades for different purposes and
are currently considered to be excellent tools that help greatly in the process of reservoir
characterization, mainly because they can provide specific information about the field with
a greater resolution than any of the rest of the tools used for reservoir characterization
(wirelogs, seismic data, etc.).

Despite their importance, this data is commonly affected by some acquisition problems
that might end up compromising its resolution and the quantity of information that can be
effectively extracted from it. These problems, which are mainly mechanical or geometrical
issues related to the drilling process, create artifacts in the borehole images that mask
the information that really matters to petrophysicists. The main types of artifacts that
affect acoustic and electrical borehole images (Al-Khabbaz et al., 2012) are:

1. Drilling related artifacts

a) Ghost hole: In some reservoirs it is possible that two or more wellbores are
opened at different locations in the surface but converge into a single hole
further deep into the ground. In these cases holes are expected to appear close
to the convergence point between the boreholes. It is important to identify
these ghost holes that interconnect the wells before any processing is done
to avoid critical errors such as porosity/permeability estimation errors. An
example of the effect this artifact has on borehole ultrasonic images can be
seen on Figure 3.10a3.

b) Breakouts & DIFs: As discussed in Section 3.3, too much pressure on the
wellbore may cause its rock to break down and collapse, forming breakouts
and DIFs. An example of DIFs on borehole ultrasonic images can be seen on
Figure 3.10b3.

c) Spiroloids: Eccentricity and non-centered probes might cause this effect,
which manifests itself as brighter marks that follow a helicoidal path though
the wellbore (Sugiura, 2011). An example of the effect this artifact has on
borehole ultrasonic images can be seen on Figure 3.10c3.

d) Petal & Centerline fractures: These artifacts are similar to DIF but instead
of remaining parallel to the vertical axis, as DIF do, Petal fractures begin as
vertical fractures in the edges of the wellbore and then change their orientation
forming centerlines. They are caused by excessive pressure of the logging tool
on mud-type fields. An example of the effect this artifact has on borehole
ultrasonic images can be seen on Figure 3.10d3.

3Source: Al-Khabbaz et al. (2012)
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e) Oil smearing: Sometimes when the drilling process crosses the location of an
oil reservoir part of this oil scapes from the reservoir into the wellbore and it is
recorded into the image, appearing as vertical non-uniform stripes at random
angular locations. This effect can also be produced if too much oil or drilling
fluid is used while the drilling procedure. An example of the effect this artifact
has on borehole microresistivity images can be seen on Figure 3.10e3.

f) Keyseat: These artifacts are caused due to the contact between the drilling
tool string and the wellbore wall. It can be clearly identified as a very sharp
prominent vertical thick stripe that commonly appears on high–angle bore-
holes. An example of the effect of this artifact on borehole ultrasonic images
was shown in Figure 3.4b.

2. Logging related artifacts:

a) Pad pressure: Some imaging tools (i.e., OBMI) require their pads to be in
contact with the wellbore wall in order to obtain measurements. The pressure
that the pads must apply on the wall, however, cannot be too high nor too low
to avoid quality and resolution loss.

b) Pad/Spring traces: Imaging tools that have pads or strings (i.e., UBI,
OBMI) usually leave their traces on some types of soft rock of the wellbore
wall. These traces might be later captured by the tool itself, appearing on the
images, interfering in a great manner in any further processing made on them.

On this chapter we present two techniques that allow us to deal with pad traces and
uncentered probes related artifacts. In Section 3.4.1 we present an adaptation to Menger
et al. (1994) technique, which uses travel transit time image data to correct eccentricity
artifact on uncentered acoustic borehole images, increasing greatly the final contrast of
the images. Additionally, in Section 3.4.2 we present a novel processing technique that
removes the traces left by borehole imaging tool pads or strings, leaving only the back-
ground of the wellbore wall and thus increasing the amounf of effective information that
can be extracted from the data.

3.4.1 Eccentricity Correction for Borehole Image Logs

As it was introduced in Section 2.4.2 acoustic televiewer images are based on measuring
the variation of amplitude of the sound wave after being emitted from the transducer and
right after being received back from bouncing back from the borehole wall. The physical
principle behind this method is that the amplitude of the reflected wave depends on the
ratio between the drilling fluid and the borehole rock densities, as expressed by

R =
m · cosα−

√
n2 + sinα2

m · cosα +
√
n2 + sinα2

, (3.4)
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(a) (b) (c) (d) (e)

Figure 3.10 – Examples of image artifacts on boreholes caused while drilling: a) ghost
hole; b) drilling–induced fracture; c) spiroloid artifact; d) petal & centerline
fractures; e) oil smearing.

where R is the acoustic reflectance coefficient of the interface between the borehole rock
and the drilling fluid, m = ρrock

ρfluid
is the ratio between the density of the wall rock ρrock

and the density of the drilling fluid ρfluid, n =
vfluid
vrock

is the ratio between the velocity of
the sound in the drilling fluid vfluid and the velocity of the sound in the wall rock vrock,
and α is the angle on which the wave sound hits the borehole wall. Thus, the amplitude
of the wave reflected by the borehole wall A2 could be obtained by

A2 = R · A1, (3.5)

where R is the acoustic reflection coefficient of the interface medium and A1 is the ampli-
tude of the sound wave before hitting the borehole wall.

There is yet another effect that causes amplitude loss: the fluid travelling decay. While
the sound wave is travelling through the drilling fluid –or the fluid found inbetween the
transducer and the borehole wall, i.e., brine– its frontwave expands spherically. This
expansion and the fact that the transducer has a limited size makes a certain part of the
wave to be lost. The amount of amplitude to be lost is directly proportional to the distance
travelled by the wave: the greater the distance, the greater the expansion of the wave and
therefore the greater the loss of amplitude. This relation between perceived amplitude
and travelled distance is usually approximated with an exponential decay, defined by

Ad = A0 · e−λ·d, (3.6)

where A0 is the original amplitude of the sound wave and Ad is the amplitude of the
sound wave after travelling a certain distance d through a fluid with an acoustic decay
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coefficient λ. If we assume that the interface fluid is homogeneous, according to the
schematic presented in Figure 2.6 we could estimate the amplitude of the sound wave
that would be received by the transducer A3, after travelling a distance rθi through the
interface fluid with acoustic decay coefficient λ and being reflected by the borehole wall
with a reflectance coefficient of R, and assuming that the original amplitude of the emitted
wave is A0, by applying the previous equations (3.4) and (3.6), as:

A3 = A0 ·R · e−2·λ·rθi . (3.7)

In reality the measurement recorded by the acoustic televiewer is not the final acoustic
amplitude A3 from (3.7), but rather the ratio between the amplitude of the emitted wave
A0 and the received wave A3, in decibels (dB). This ratio Ωθi can be obtained by applying
(3.8). It is possible to deduce that, since A3 must necessarily be inferior to A0 and
therefore Ωθi must always be greater than 0. Ωθi can be written as

Ωθi = 20 · log

(
A0

A3

)
= 20 · log

(
A0

A0 ·R · e−2·λ·rθi

)
= 20 · log

(
1

R · e−2·λ·rθi

)
. (3.8)

Thus, it would be possible to correct the effect caused by the travelling decay by calcu-
lating a new ratio Ωθi ′, as shown in

Ωθi ′ = 20 · log

(
10

Ωθi
20 · e−2·λ·rθi

)
, (3.9)

which can be simplified as

Ωθi ′ = Ωθi − 40 · log e · λ · rθi . (3.10)

Borehole Imagers obtain one measurement per radial position (depth Di and angle
θi). Only if the borehole has the shape of a perfect cylinder and if the probe is perfectly
centered at all times, will the distance between the transducer and the borehole wall be
constant for all measurements, thus allowing us to ignore the effect of travelling decay4.
In reality the shape of the borehole is very irregular, unsymmetrical and changes greatly
at different depths, as it was shown in Figure 3.3c.

The irregular shape of the borehole and the uncentering of the probe make the distance
between the transducer and the borehole wall to be different for each measurement. This
effect is critical because it might cause two different areas of the borehole wall with similar
rock properties to appear very different in contrast, which will clearly affect negatively the
information extracted from this data. This is exemplified in Figure 3.11. Even though
the real borehole distance (radius) image is not obtained while drilling nor measuring,
Menger et al. (1994) presented a method to use transit–time logs to obtain an estimation
to distance logs, which could be later used as an approximation of distance images.

4The variation of amplitude due to the travelling decay can be ignored if it is constant for all mea-
surements only because images are usually normalized before displaying them. This normalization –or
contrast adjustment– discards any constant component of the image, thus cancelling this underisable
effect caused by the travelling decay.
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(a) (b)

Figure 3.11 – Illustration of the effect of uncentered probes on borehole image logging.
As it can be seen the transducer is much closer to the wall in a) than it
is in b), which according to 3.6, will produce a difference in the acoustic
impedance measurement, even if the rock in the wall at that depth is totally
homogeneous.

In our work, we extend Menger’s work by using transit–time image data instead of
transit–time logs to correct Acoustic Borehole Image Logs. We know that the relation
between the transit time at a certain radial position TTθi (the time that it takes for a
wave to travel all the way from the transducer to the borehole wall and arrive back to the
transducer) and the real distance rθi is given by

rθi = vfluid ·
TTθi

2
, (3.11)

which we can combine with (3.10) to obtain

Ωθi ′ = Ωθi − 20 · log e · λ · vfluid · TTθi . (3.12)

Most times neither the type of interface fluid nor the optimal λ coefficient are known by
neither the user nor the processing software. Nevertheless, as in our work this tool has
been implemented to obtain greater contrast in borehole images, so that further processing
results can be more accurate, these coefficients can be set manually by the user. That
way the user has a greater control on the enhancement process and is able to chose the
coefficients (vfluid · λ) that produce the optimal enhancement for the post–process that is
going to use that data.

Figure 3.12 shows an example of how this method increases the local contrast of the
data. The images on the left on Figure 3.12a and Figure 3.12b show original acoustic
borehole image logs from two different intervals that suffer from eccentricity and shape
irregularities. As it can be seen in these two intervals, some parts of the borehole image
appear to be much brighter than others (due to eccentricity while measuring). After
applying equation 3.12 using a factor of K = log(e) · λ · vfluid = 0.25 the final enhanced
images (on the right) show a much greater contrast than the original ones. In the enhanced
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images it is possible to see details of the formation that were masked on the original
raw images, ensuring that any post–process using the enhanced data will provide more
accurate results regarding the real properties of the rocks in the borehole wall.

(a) (b)

Figure 3.12 – Illustration of the effect of uncentered probes on borehole image logging.
As it can be seen the transducer is much closer to the wall in a) than it
is in b), which according to 3.6, will produce a difference in the acoustic
impedance measurement, even if the rock in the wall at that depth is totally
homogeneous.

3.4.2 Logging tool pads removal

The presence of pad traces is one of the most common artifacts present on ultrasonic
borehole images. These traces are left due to the mechanical system that the logging
tool carries to ensure centralization and stabilization of the tool during the procedure.
They usually appear as rectangular vertical stripes with homogeneous size and separation
between them along the whole image, even though these parameters depend greatly on
the logging tool used.
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Removing these artifacts is an important procedure to be carried out due to the great
impact that they might have on any further processing that might be applied to the
images. In this section, we present a method that tries to model these traces in order
to design a filter which, once applied to the original images, removes the pad artifacts,
preserving all the lithological features present in the rocks of the borehole wall as if no
pad traces had ever been there.

3.4.2.1 Pad–rejector filter design

If we assume that the pad traces are a multiplicative noise, then any borehole image
uij on which a pad mark appears can be defined as the product of the original image qij
(regarding the lithology of the borehole, the one we are trying to retrieve) and the noise
added by the pads of the logging tool pij (which we are trying to remove), as

uij = qij · pij. (3.13)

Pad artifacts usually appear in borehole image logs as vertical rectangular stripes, with
very sharp and well-defined edges, as it can be seen in Figure 3.13. Assuming that the
shape of these marks is homogeneous over the whole borehole, we could try to model the
traces that these pads leave pij on each line of uij as a square wave.

Square waves are defined by two parameters:

1. Period τ : in this case the space between each pad trace and the next one.

2. Duty cycle D: in this case the proportion between the width of the pad traces (λ)
and the width of the gaps between them (µ).

If we define the width of our image uxy as N , the number of pads as Np, the width
of the pad traces as λ and the width of the gaps between the pad traces as µ we could
model pxy as a vertical repetition of a square wave with a duty cycle D given by

D =
λ

µ+ λ
, (3.14)

which period τ would be given by

τ =
N

Np

, (3.15)

as it can be seen in Figure 3.13.
Instead of trying to find these pads by fitting or segmenting the original image, line

by line, we will try to find the analytic expression of a filter hxy that when applied to the
original image uxy, it removes or at least minimizes the effects of the pad traces. As we
discussed in Section 3.1, filtering uxy with hxy is equivalent to finding the product of the
fourier transform of uxy

F−→ Uω and the fourier transform of hxy
F−→ Hω, as expressed in:

F [uxy ∗ hxy] = F [uxy] · F [hxy] . (3.16)
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Figure 3.13 – Example of interval of acoustic borehole image log uxy and its modeling pxy
using a vertically repeated square wave.

In order to do so first we need to obtain the expression, in space domain, that describes
the square wave used to model the pad traces.

There exist different expressions that lead to square waves. Due to its periodic nature,
it would be possible to use fourier analysis (Weller, 2015) to find the series of harmonics of
periodic fundamental waves (sines and cosines) that, when weighted and added together,
approximate a square wave, as expressed by

ĥx ≈
∞∑

k=−∞

Ak · ejkx, (3.17)

where ĥx is an approximation of the pad traces noise function we are aiming to define,
Ak is the kth weight constant of each harmonic ejkx, along the variable x. Even though
this technique is widely used for similar purposes, it is well known that the number of
harmonics required for a fair representation of a square wave with the least amount of
noise possible is considerably high. A high number of harmonics would lead to complicate
expressions, thus making the use of this method impractical. Another possibility could
be to use the relation between sine or cosine waves and their absolute values, as expressed
in:

ĥx ≈
sin 2πx

T∣∣sin 2πx
T

∣∣ , (3.18)
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where ĥx is also an approximation of the sine–wave pad traces noise function we are
aiming to define along the variable x and T is the wave period defined in (3.15). This
last definition, however, might lead to complicate equations when applying the fourier
transform due to the absolute value of the denominator.

Figure 3.14 – Example of a pulse wave with its non–zero constant value between the
interval [−b, b].

Still, it is possible to define a square wave using the definition of a square pulse. A
square pulse is a signal that has a non–zero constant value only during a certain interval,
as shown in Figure 3.14. The analytical definition of a square pulse fx defined on the
interval [−b, b] with an amplitude of 1 is

fx =

1 −b ≤ x ≤ b

0 otherwise
. (3.19)

Using that definition it is possible to obtain the equation of a square wave gx with duty
cycle D as as an infinite summatory of square pulses shifted a certain number k of periods
(considering that the period of that wave would be T = 2b

D
), as:

gxy =
∞∑

k=−∞

f

(
x− 2b · k

D
, y

)
. (3.20)

By applying the definition of the continuous fourier transform introduced in (3.1) to (3.19)
we obtain the fourier transform of a single square pulse, written as

Fωx = F [fx] =
1√
2π

∫ b

−b
e−jωxxdx =

1√
2π

[
ejωxb − e−jωxb

]
jωx

. (3.21)

It is posible to apply Euler’s formula (Euler et al., 1748, Chapter 8)

sinx = ejθ−e−jθ
2j

cosx = ejθ+e−jθ

2

(3.22)

to (3.21) and obtain

Fωx = F [fx] =

√
2

π

sinωxb

ωx
. (3.23)

We can now obtain the expression of a periodic square wave as an infinite sum of shifted
square pulses. Thus, applying the time/space shift and the linearity properties (see Table
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4) to equation (3.20) and taking into account the definition of Fωx expressed in (3.23), we
obtain

Gωx =
∞∑

k=−∞

√
2

π

sinωxb

ωx
· e−jωx·

2bk
D . (3.24)

Since our image has a limited size we do not require a full square wave but rather Np

periods of it. Therefore, using the previous definitions, as also presented in Figure 3.13,
we can obtain the final definition of Np periods of a square wave Hωx with a duty cycle
of D and a period of N

Np
, as a model of the pad traces left by a logging tool with Np pads

on an image with a width of N pixels, as expressed by

Hωx =

√
2

π

sin
(
ωxD

N
Np

)
ωx

·
Np−1∑
k=0

e
−jωx N

Np
·(D2 +k). (3.25)

In Figure 3.15 the magnitude (on the top) and the phase (on the bottom) of the filter
expressed in (3.25) when D = 0.5, N = 180 and Np = 6, is shown.
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Figure 3.15 – (Top) Magnitude and (Bottom) Phase of a theoretical square wave con-
formed by a finite sum of square pulses, used as a model for the pad traces
left by the logging tool on our Borehole Image Data logs.
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Nonetheless, equation (3.25) has only one dimension, while our image has two dimen-
sions. Even though we could overcome this problem by applying (3.25) line by line to our
image, this would be impractical and would make the final processing much more time
and resource consuming than by just applying a single 2-D filtering process to our image.

As it was stated before in this Section, we can fairly assume that the pad traces are
periodic only over the horizontal axes. This means that we can assume that the value of
these traces does not depend on the vertical position or, in other words, that they are
just a vertical repetition of a horizontal square wave (as shown in Figure 3.13).

The previous statement allow us to rewrite (3.19) as the separable function

hxy = h(x) · 1(y). (3.26)

It is also well known that the fourier transform of a constant with value 1 is a dirac delta
Bracewell and Bracewell (1986). Using these two principles we can expand (3.26) and
obtain the final version of the 2-D fourier transform of the pad traces we are trying to
suppress, which can be written as

Hxy = Hx · F [1(y)] =

√
2

π

sin
(
ωxD

N
Np

)
ωx

·
Np−1∑
k=0

e
−jωx N

Np
·(D2 +k) · δ(ωy). (3.27)

An example how the 2-D spectrum (magnitude and phase) of (3.27) looks when D = 0.5,
N = 180 and Np = 6, is shown in Figure 3.16.

(a) (b)

Figure 3.16 – (a) Magnitude and (b) Phase of the 2-D fourier transform of the pad traces
signal expressed on (3.27).

3.4.2.2 Automatic pad period detection

The final expression of the 2-D fourier transform of the traces left by pads represented
on (3.27) depends on three basic parameters:

1. N : The horizontal size of the input image.
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2. Np: Number of pads of the logging tool.

3. D: Relation between the size of the pad and the total period of the square wave
model, as shown in (3.14).

While the first parameter, N , is a constant and well-known value (number of columns
of the image); both Np and D are unknown and depend on the tool used during logging
procedures. We know, however, than on regions of our image Uxy where the pad traces
are very noticeable, its 1-D horizontal spectrum magnitude should present a very sharp
peak around the value of ω equivalent to the period of the square–wave model of the pads
or, in other words, to the space between two consecutive pads.

Thus, if we extract the 1-D fft for each line of our image, and average these values for
the whole image, we ought be able to deduce the period T of the pads traces wave. An
example, applied to the same interval of borehole image shown in Figure 3.13, is shown
in Figure 3.17.
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∣∣∣

Figure 3.17 – Average of the magnitude of the FFT obtained from the image Uxy for each
line.

As it can be seen in the previous image, the most prominent peak is located at ω =

30px5. This means that, for the analyzed image, each pad trace is separated 30 pixels
from the next one. It is now possible to calculate the total number of pads, Np by using
this value and (3.15). In this case, the value of Np deduced from this analysis is 6, which
can be confirmed by visually checking the previous image.

5Notice that in this case the horizontal axis has been normalized and discretized so that it represents
values of pixels of the input image.
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The coefficient D is much more difficult to obtain by image processing. It could be
possible to estimate it by using fitting or segmentation methods, by checking different
coefficients of D and analyzing the fit of the resultant square-wave model, line per line,
however this has not been tested in our case. Instead, we allow the user to modify this
coefficient, allowing them to use it as a tunning parameter that controls the quality of
the filtering process.

3.4.2.3 Results

The following figures show the results of applying this method to remove the pad traces
on an ultrasonic borehole image log provided by PETROBRAS. Only the intervals that
displayed pad traces on the original images are shown as the filter does not interfere in the
image where no pad traces appear. The left images that appear on Figure 3.18a, Figure
3.18b, Figure 3.18c and Figure 3.18d show different intervals of the original borehole data,
while the right images display the data after the application of the filter.

As it can be seen the filter shows notable gains by preserving the most important
lithological features of the rock behind the pad traces while suppressing the pads, thus
making the task of further texture and lithology characterization of the borehole much
easier.
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(a) (b)

(c) (d)

Figure 3.18 – Result of applying the proposed method to different intervals of an Ultra-
sonic Borehole Image log. For each one of the four intervals (a), (b), (c)
and (d) the images shown in the left represents the original data, while the
ones on the right represent the result after applying the filter.
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Chapter 4

Deep learning and applications

4.1 Brief introduction to artificial neural networks

The idea of an artificial mechanism able to simulate biological neural systems is not
new. McCulloch and Pitts (1943) introduced the idea of an artificial neuron, whose aim
was to recreate the behaviour that biological neurons had. This unit, usually refered to as
McCulloch–Pitts neuron, basically computed a weighted sum of each input by a certain
interal constant (called weight), followed by a thresholding operation. Using this unit
as the essential building block it was posible to create the first artificial neural networks
(henceforth, ANN) which were used to implement different simple and complex logical
functions, according to the internal weights and thresholding level of each unit. These
ANNs, however, had a major drawback: as the weights of each neuron were fixed, the net
could not learn nor adapt to new examples.

During the following years, Hebb (1949) and after him Minsky (1954) proposed dif-
ferent modifications to be made to the learning algorithm, so that the network would
become a much more flexible system, thus allowing the net to adapt to new conditions
and examples. Rosenblatt (1958) set a milestone in the artificial intelligence (henceforth
AI) world by proposing the perceptron model and the perceptron learning law, which
proved to converge the feature space for several different pattern classification problems.

Even though, mathematically speaking, the foundations of artificial neural networks
had been set up to that point, it was not until the development and improvement of
computational systems in the 1980s that the use of ANNs for pattern recognition problems
started to grow (Anderson and Rosenfeld, 2000). From that moment on ANN have been
widely used in all fields of science that require any type of signal processing or pattern
recognition, such as in medicine for cancer detection (Esteva et al., 2017; Bhardwaj and
Tiwari, 2015; Lisboa and Taktak, 2006), engineering (Esfe et al., 2015; Ali et al., 2015)
or physics (Carleo and Troyer, 2017; Kumar et al., 2015), to name a few.
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ANNs are called artificial because they are inspired by the structure of the biological
neural structures found in nature, i.e. like the ones found in our brains (Nielsen, 2015).
Even though in the past years these models and the different types of structures have
evolved and spread enormously, they are still very far from showing the performance
that natural systems, mainly because it is almost impossible to simulate the number and
structure of the interconnections of neurons present in any real neural system.

Although our current ANNs are very small in size when compared the brain of any
animal, they are already displaying some of the features of pattern recognition and artifi-
cial intelligence that they aim to emulate from biological systems (Yegnanarayana, 2009).
One of the main characteristics that make neural networks so interesting is their flexibil-
ity: NNs adapt to new circumstances and learn how to deal to unexpected scenarios, even
when no pre-programmed instructions are given. In other words, one of the most valuable
things about neural networks is that they are fuzzy systems that can work with noisy and
probabilistic data. Being able to create fuzzy systems that are not completely logic was a
major step in the artificial intelligence field (as previous AI systems were based on logical
computations which made them very sensitive to noise).

Current neural networks are composed by gathering several artificial neurons and
training them for different purposes (classification, regression, pattern recognition, etc)
(Kröse et al., 1993). There are two major structures that define the type of direction of
the data inside the net: feedforward or recurrent. Feed-forward neural networks (FFNN)
commonly present a layer-stack type of structure and always have a directed acyclic graph,
which means that the information contained on each layer can only be passed forward
on the net, but never backwards. On the other side, Recurrent Neural Networks (RNN)
might let the inner information to flow in different directions (forward, backwards and
even recursively), which allows these nets to present dynamic temporal behaviour and
even long/short term memory. Most data processing applications use FFNN as they
are usually more predictable and more easily applicable to classification and pattern
recognition problems.

Based on these two different types of data-flow inside the ANN, several inner structures
have been proposed. A complete list of most known types of ANN is presented in Figure
4.1. Further detail about each type of network and their applications can be seen in the
source of the image presented below: Veen (2016). For more information about simple
neural networks, their use and applications see Egmont-Petersen et al. (2002); Patterson
(1998); Cochocki and Unbehauen (1993); Peretto (1992).
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Figure 4.1 – Chart of all different 27 types of ANNs structures found nowadays. It can be
found a total of 13 different artificial neurons types, each one implementing a
certain specific function. Input cells behave as bridges between the internal
layers of an ANN and its inputs, while output cells do a similar job at the
output of the ANN. Hidden and convolutional cells extract features from the
data inputed to them, which will be later used for complex purposes (such
as classification or regression). Memory and recurrent cells allow the net to
keep track of previous values present at different points of the net, so that
the ANN itself can present some sort of short-term memory. Combination
and concatenation of these times of cells allow us to create all the types of
ANNs shown in this illustration. Source: Veen (2016).
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4.2 Deep learning

One of the most spread ANN structure (Hassoun, 1995) consists of simply stacking
three fully connected neuron layers in a backpropagation/feedforward architecture, so
that the first layer is an input layer, the second layer is the hidden layer (which contains
all the hidden weights and biases that link the input data and the output variable(s) we
are trying to estimate or predict) and the last one is the output layer. This structure
is commonly called single hidden layer feedforward neural network (henceforth, SLFNN)
and has been considered as one of the simplest types of ANN there is, so far.

It is also possible to stack several hidden layers, one after another, so that the neuron
of each layer is connected to all neurons of the previous layer, thus creating what is called
a multilayer perceptron (henceforth MLP). MLPs belong to the supervised algorithms
class and they are commonly used for both linear and non–linear regression and classi-
fication problems. MLPs have been widely and successfully used over the last decades
for regression and classification problems that are either non-linear or depend on a great
amount of variables (Nazzal et al., 2008; Yan et al., 2006; Cigizoglu, 2004; Gardner and
Dorling, 1998). An example of the internal architecture of network with a single output
is shown in Figure 4.2.

Figure 4.2 – Simplified version of the internal structure diagram of a MLP for data re-
gression –single output–.

Hornik (1991) and Hagan and Menhaj (1994) showed that, from a theoretical and
mathematical point of view, even ANNs with a single hidden layer can be considered
as universal approximators (Csáji, 2001; Cybenko, 1989). This means that even SLFNN
with a finite number of neurons can, at least in theory, be trained to approximate any
type of continous function on compact subset Rn, as shown in (Knerr et al., 1992; Huang
et al., 2000; Marcialis and Roli, 2005; Auer et al., 2008).

Nevertheless, having an structure able to approximate any continous function does not
always guarantees that, for a given particular problem, the training process will lead to
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succesfull or acceptable performance results. Indeed, SLFNN usually fail when trying to
approximate very complex non–linear functions. When we, as humans, try to understand
complex problems we usually attempt to divide them into several simpler problems that
can be individually understood and which, when put altogether, allow us to understand
how that complex system works.

In machine learning algorithms it is often considered that each layer of the trained net
is an approximation of a singular function of the input data. Thus, using multiple layers
(singularly or consecutively trained) leads to approximating several different functions
that, when combined, might be able to solve the initial complex problem characterized
on the input data with greater accuracy than a SLFNN could reach. If one observes any
(successfully) trained multilayer ANN it is possible to see how the complexity of the learnt
features and functions of each layer is directly proportional to the depth it is located on
the net (Eldan and Shamir, 2016). Hence, the first layers of the network usually capture
simple and basic features of the input data, while the last layers present complex patterns
of the relation between each of the previously connected layers and the input data.

The process by which we humans understand a spoken sentence (Allen, 1994; Lipp-
mann, 1997; Greenberg et al., 2004; Hickok and Poeppel, 2007; Rauschecker and Scott,
2009) is a good analogy of the increase of complexity of deeper layers inside a deep net-
work: first the brain delegates to the auditory system the task of sensing an incoming
sound; then the cortical structures of the brain involved in hearing processes have to
determine whether than sound is human or belongs to any other kind of natural or ar-
tificial sounds; once it has been determined that the sound comes from a human being,
the brain must process the changes in tone, frequency and silence gaps in the incoming
sound in order to form complex data which we call sentence; lately, it is necessary to give
each of these units of sound (words) their right meaning (which also involves detecting
the language on which the emitter is speaking, in polyglot brains), thus allowing us to
understand the concept that the emitter of the sentence wanted to express. It is obvious
that the cortical networks that allow us to process the meaning of each word in the brain
are far more complex than those dedicated to simply detect the nature of a sound (or
whether it is or not life–threatening).

These architectures formed with several partially or fully connected layers are com-
monly called deep networks and the field of AI dedicated to its study is called deep learning
or hierarchical learning (Bengio et al., 2009; Deng et al., 2014). It is worth noticing that
Deep Learning does not necessarily involves a deeper understanding of the input data
processed by the net, but rather the techniques and methodologies that automatically
learn deep features and functions in order to solve a particular complex problem (i.e.,
classification, regression, etc).

These complexity in the structures created and used in deep learning is not random at
all. In fact, if we analyze the systems involved in processing several complex sensory data,
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such as speech or visual generation and recognition, we will find that nature has come up
with hierarchical structures similar to those used in modern Deep Learning techniques, in
order to transform the input waveform level data into meaningful high–level information
such as linguistics or object recognition, for the given example.

Over the past years, deep learning has revolutioned the AI and machine learning field
(Goodfellow et al., 2016) by making possible the creation of artificial structures able to
process complex signals and data from a wide variety of sources, and extract deep features
from them that can be more effectively and accurately linked to other properties of our
interest (such as classification labels, or other physical properties we might be willing
to estimate from the input data). For instance, deep learning has shown very effective
results in face recognition (Ranjan et al., 2017; Lu et al., 2017), speech detection and
characterization (Zhang et al., 2017; Meng et al., 2017), as well as in medicine (Miotto
et al., 2017; Rawat et al., 2017; Danaee et al., 2017; Goodwin and Harabagiu, 2017) fields,
proving that this approach deals with complex functions in a better way than SLFNNs
do.

There exist three main types of deep neural networks (henceforth, DNN), which are
(Deng et al., 2014):

1. Unsupervised or generative DNN: In this case, no targets (classes nor regression
values) are given to the net. The DNN must then automatically extract high–order
features from the input data and correlate them with the whole dataset in order to
characterize it. The information extracted from this characterization can be also
used in a generation model, allowing us to create new synthetic data. Generative
adversarial networks (GANs), deep autoencoders (like the one used in Section 6),
restricted boltzmann machines (RBM) (Marlin et al., 2010; Hinton, 2010) and Deep
Belief Networks (DBN) (Hinton, 2009) fall into this category. For further informa-
tion about unsupervised deep networks see Erhan et al. (2010).

2. Supervised DNN: In this case, targets (discrete or continuous values) are provided
to the net, so that its main purpose is to use the high–order features extracted from
the input data to create a discriminative model whose aim is to recreate these same
targets on its output. By this reason these models are usually called discriminative
deep networks (DDN). The discriminative model that links the extracted features
and the targets is most of the times based on hidden markov models (HMM) or
some type of variation (Eddy, 1996). Nowadays the most commonly used type
of supervised DNN is the multilayer perceptron, in all its forms. Convolutional
networks, for instance, fall into this category.

3. Hybrid DNN: Which is sometimes considered as a special case of supervised learn-
ing, as its main objective is to use the outcomes of a generative unsupervised DNN
(usually called pre–training process) in a discriminative model able to be used for
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classification or regression purposes, as any other type of supervised DNN. Discrim-
inative deep belief networks (DDBN), a combination of DBN and discriminative
models, are among the most common type of hybrid DNN used nowadays for sev-
eral classification purposes (Zhou et al., 2010; Mohamed et al., 2011).

Further reading on deep learning methods and on how deep learning can be applied to
signal and data processing can be seen in Schmidhuber (2015) and Yu and Deng (2011),
respectively.

4.3 Autoencoders

As introduced before, an autoencoder (henceforth AE) is a type of unsupervised ANN
whose objective is to reproduce a set of inputs with the least possible amount of distor-
sion by creating a hyperspace of features with an encoded version of the original data
information. In other words, given a certain input to an autoencoder, its objective is to
return a reproduction of the input data from a minimalistic representation, as close to
the original data as possible. Although autoencoders may seem naive and useless at first
glance, the internal mechanism that autoencoders use to achieve this goal is extremely
useful for deep learning and pattern recognition purposes (Baldi, 2012; Ng, 2011).

The simplest version of the internal structure of an autoencoder is composed by three
main layers: an input layer with the same dimension as the input data, a hidden layer with
a certain number of hidden neurons β and an output layer with the same dimension as the
input data. During the training process the autoencoder changes the internal weights of
each neuron in the hidden layer, as well as the layer biases, in order to obtain an estimate
representation of the input data that minimizes a certain cost function.

Depending on the size and structure of the neurons in the hidden layer, autoencoders
can accomplish different tasks. If the total number β is smaller than the total number of
inputs, the output of the autoencoder will be a compressed representation of the input.
This results in a bottleneck structure that is capable of extracting underlying represen-
tations of the input data, retaining only those meaningful features of the input data that
are useful for characterizing it, while discarding the information that does not contribute
to this task. That is the reason why autoencoders are usually used as data compressors
(Tan and Eswaran, 2011; Theis et al., 2017) or denoising networks (Feng et al., 2014;
Agostinelli et al., 2013).

A simplified version of the internal structure diagram of a typical shallow autoencoder
is shown in Figure 4.3a.

It turns out that the learning process of an autoencoder –tuning the internal weights
and biases so that the final output result is similar to the input– results in an approxi-
mation of the identity function of the input system. This means that the hidden layer
of a trained autoencoder contains useful information about the patterns hidden in the
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(a) (b)

Figure 4.3 – a) Simplified version of the internal diagram of an Autoencoder. The encod-
ing process is performed by the input and hidden layers. The internal values
obtained after the hidden layers, for any given input, are the internal features
that are used in this work for the petrophysics parameters regression. The
decoding process, on the other hand, is performed by the hidden and the
output layers. b) Example of autoencoding process for a sample ultrasonic
borehole image: (I) original input image; (II) estimated image returned by
the autoencoder after the training process. Denoising can be observed in this
procedure, although the main objective in our case is to encode the geolog-
ical information contained in the input image. The input data is encoded
by the AEs and can be concatenated to form encoded logs. A sample of the
concatenation of the 4 encoded logs for the input sample borehole image is
displayed in (III).

input data. By trying to recreate the input data, the autoencoder has somehow learned
to produce an estimated version of it, and has done so by estimating a certain group of
hidden features from the input data.

The encoded representations obtained from the hidden layers of an AE can be very
useful in image characterization. If each image sample introduced to the AE represents
a certain object or property (in our case, each sample contains geological information
regarding a certain region of the borehole), the AE might be able to characterize the
inherent differences between these samples. Then, these encoded versions of the input
data can be used for further classification and pattern recognition problems, instead of
using the original data. This approach has been applied for medical purposes such as HIV
classification (Betechuoh et al., 2006) or breast cancer nuclei detection (Xu et al., 2016).

Nowadays, AEs come and go by different structures and sizes. The structure presented
in the previous paragraphs can be repeated and combined forming what is known as an
stacked autoencoder. Stacked AEs are a type of Deep Learning technique on which a
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series of autoencoders are trained consecutively by using the encoded values extracted
from the hidden layer of the previous AE. In this structure, the first AE is trained using
the original input data; the second AE is trained using the encoded hidden features of
the first autoencoder; and so on. An example of a stacked AE with 4 levels is shown in
Figure 4.4.

Figure 4.4 – Example of internal architecture of a stack of 4 autoencoders.

Stacked AEs allow us to extract properties of the input data at different levels and
scales. Thus, it can be helpful when analyzing images or signals that present different
properties at different scales, as it has been shown in recent works (Shin et al., 2013; Xu
et al., 2016; Kan et al., 2014). Recently, variation autoencoders have been implemented
for subsurface reservoir characterization by Li and Misra (2017).

In this work, we propose to use a 3 level Stacked AE to encode the geological infor-
mation contained inside borehole images at different scales and use this information in
a posterior regression problem in order to estimate permeability and porosity, as will be
explained in Section 6. As borehole images are continuous, it was necessary to crop them
into slices using a sliding window, so that the information extracted from each slice could
be correlated to the petrophysical properties we are trying to estimate. It is worth notic-
ing that these sliced images samples used in our method for each type of borehole image
log are represented by [21× 180] pixels, which means that the total number of variables
to be encoded by the first AE is 3780. The internal structure of each one of these AE was
composed, respectively, by: 2001., 100 and 50 hidden neurons.

In our method each sliding window produces a single point estimation (porosity or
permeability estimated for that specific window), thus allowing us to concatenate the
encoded information of consecutive image slices to obtain encoded logs, which are later
used to estimate porosity and permeability logs. An example of how this procedure works
in a sample borehole ultrasonic image using the first autoencoder is shown in Figure 4.3b,

1Using 200 hidden neurons on the input autoencoder (AE1) net represents compressing the data
present in the borehole images using a compression factor of 95%. In other words, this can be seen as
forcing the net to learn to represent the borehole images using 95% less amount of information than the
original images.
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where the original ultrasonic image is displayed in (I), the AE approximation is displayed
in (II) and a sample of the concatenation of the 4 encoded logs is displayed in (III). As
it can be seen in this Figure, each one of the encoded logs captures a unique property of
the input image.

4.4 Convolutional neural networks

Convolutional neural networks (henceforth, CNNs or ConvNets) are a special type
of neural network that use convolutional methods to extract features from input data
that can be later used for supervised or unsupervised classification, pattern recognition,
characterization and regression, among other purposes.

What makes CNNs so interesting is that it takes advantage of the multidimensional
structure of the input data, meaning that the high–order features extracted from it depend
on the local surroundings (filter size of each CNN convolutional layer) of each sampled
value. This is the main reason why CNNs have become so popular over the last decade
in different types of deep learning challenges, such as image classification (Peralta et al.,
2018; Zhang et al., 2018; Lin et al., 2018; Pradhan et al., 2018; Masood et al., 2018; John
et al., 2015; Simonyan and Zisserman, 2014), speech recognition and characterization
(Vecchiotti et al., 2018; Choi et al., 2017; Abdel-Hamid et al., 2014; Swietojanski et al.,
2014) and even in prognostics medical problems (Li et al., 2018; Rajpurkar et al., 2017)
or linguistics problems (Kim, 2014).

Using convolutional layers as feature–extractors instead of fully–connected layers (as
in common MLP) has an extra benefit: CNNs are usually more easily trained as they
have fewer parameters than its MLP equivalents, because the weights and biases of each
convolution layer are connected to a small number of adjacents neurons, rather than to
all of them (as it happens in fully connected layers).

CNNs are inspired on biological vision systems, such as the ones found in the eyes
and visual cortex of mammals. Hubel and Wiesel (1968) showed that the neurons on
cat and monkey visual cortexes respond to small regions of the visual field and that
neighboring cells have overlapping receptive fields. Furthermore, they showed that some
neurons of the visual cortex of these animals were activated (or fired) only when an
image with some specific feature was shown to them: images with vertical, horizontal and
diagonal stripes fire, each one of them, different neurons. Their conclusions was that there
existed different structures in their visual cortexes which were intrisically speciallized to
detect these singular features individually. The main idea behind CNNs is to mimic
these biological systems and deep architectures composed by parts that detect individual
specific features of the input data.

LeCun et al. (1998) proposed, for the first time, to apply this approach to hand-written
digit recognition on 32×32 pixel images by using convolutional methods. In order to train
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the weights and the biases of the convolutional layers they used a gradient feed–forward
methodology. Their net, called LeNet–5, is used as a common reference until today
in the Machine and Deep Learning field. LeNet–5 was composed by 7 different layers:
two convolutional layers, two subsampling layers, two fully connected layers and one
discriminator layer. Further reading on LeNet–5 architecture and other CNN architectures
can be seen in A.

Even though LeCun’s paper had laid the foundations of CNNs and how to use them
for image classification, CNNs only started to spread in the classification field after 2012,
when Krizhevsky et al. (2012) presented their architecture, named AlexNet, in the ILSVR
Challenge2 (ImageNet Large–Scale Visual Recognition Challenge) decreasing the classifi-
cation error rate down to 15.4% (more than 10% less error than the second classified in
the competition).

AlexNet had a simple architecture, when compared to the architectures of current
CNNs. It was composed by 8 layers: 5 convolutional layers followed by 3 fully–connected
layers.

From that moment on CNNs gained popularity exponentially and can be considered
nowadays, without any doubt, the most widely spread methodology used for image clas-
sification, characterization and pattern or object recognition problems. As the years have
gone by, the nets architecture and complexity has also increased significantly. The winner
of the 2016 ILSVR challenge had a total of 152 layers, an increase of 1800% when com-
pared with the 8 layers of the AlexNet presented by Krizhevsky et al. in 2012. Figure 4.5
shows the evolution of the classification error rate in the ILSVR Challenge since 2010 up
to 2016. All architectures that have won that challenge from 2012 (AlexNet introduction)
up to nowadays are CNNs.

An overview on some common architectures for CNNs published in the last years can
be seen in Appendix A.

4.4.1 CNN Types of Layers

As it was introduced before, one of the main highlights of CNNs is the use of convolu-
tional layers to extract high–order features from the input data. However, this does not
mean that CNNs are composed by this type of layers only. In reality, since the born of
convolutional networks, there have appeared several types of layers, each one thought to
perform a specific transformation to data. Designing a D–CNN involves combining these
layers in a structure that is able to extract the deep features of the input data, which can
be later used either in discriminative or generative model, or simply to characterize the
data.

2The ILSVR Challenge is a competition where each team is required to do different image processing
tasks such as classification, localization, object detection, etc. The system or model that scores the most
on all categories is considered the winner of that year’s competition.
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Figure 4.5 – Evolution of the Classification Error rate on the ILSVR Challenge over the
years, since 2010 up to 2016. As it can be seen the introduction of AlexNet
in 2012, as the first CNN, revolutionized the image classification field. Ref-
erences on some of these architectures can be found: AlexNet (Krizhevsky
et al., 2012); GoogleNet (Wu et al., 2014); ResNet (Garson et al., 2002);
ResNeXt (Java)

4.4.1.1 Convolutional Layer

Convolutional Layers are the heart of CNNs. The purpose of this kind of layer is
to extract volume features from the input data while preserving its multidimensional
relationships. While fully–connected layers analyze each value, sample or pixel without
taking into account its surroundings, the weight and bias value of each convolutional layer
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inside a CNN do depend on their surroundings. This preservation is extremely useful when
dealing with multidimensional data, such as images or volumes, on which each pixel or
voxel has a strong correlation with the pixels or voxels around it.

In order to do so, ConvLayers apply the convolution operator to the input data.
Convolution is defined as a mathematical operation of two functions f and g that results
in a third function, which can be obtained as the integral of the pointwise multiplication
of one function and the other function being translated. For 2–D continuous functions
this operation is defined as

f(x, y) ∗ g(x, y) =

∫ ∞
ω1=−∞

∫ ∞
ω2=−∞

f(ω1, ω2) · g(x− ω1, y − ω2)dω2dω1, (4.1)

while its discrete version is defined as

f [i, j] ∗ g[i, j] =
∞∑

n1=−∞

∞∑
n2=−∞

f [n1, n2] · g[i− n1, j − n2]. (4.2)

Applying the convolution operator on two functions is equivalent to filtering one of
them with the other function. Each Convolutional Layer is composed by a set of differ-
ent filters, also known as kernels or feature detectors, all with the same size, which once
trained produce different outputs when filtering the same input image. The outputs of
these kernels, which are called activation or feature maps, correspond to different multidi-
mensional features from the input data, and can be used as inputs on the following layers
of the net or for any other characterization purpose (such as inputs to a discriminative
classifier external to the CNN).

Figure 4.6 shows an illustration of how spacial convolution works. In this case, the
original [7 × 7] matrix is filtered using a [3 × 3] kernel filter. It is possible to appreciate
how the first (green squares) and last (red squares) values of the final Activation Map are
obtained: the kernel filter (blue square) applies a pointwise product of a certain region
of the original data and itself; the sum of this product is the final value to be set into its
corresponding place in the activation map. The location of the result into the activation
map is given by the top–left pixel of the region of the original data used in the convolution
process. For instance, in Figure 4.6, the first green square in the original data has its top–
left pixel at position [1, 1], thus its result after processing the region with the kernel filter
(2) is set at position [1, 1] in the activation map.

It is important to notice that the resulting activation map is always smaller or equal
than the original input data (if no padding is applied, as it will be explained later).
This is a drawback when dealing with discrete convolutions and discrete data. This is so
because both the original data and the filter kernel have limited size and so the convolution
operator cannot be applied to any region outside it. Figure 4.7 illustrates this problem:
as the values of the original data at position [−1,−1] (top–left corner of the red square)
are not defined outside the limits of the original data itself (here represented as question
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Figure 4.6 – Illustration of how spacial convolution works using a [3× 3] kernel filter on a
[7 × 7] image. The colored squares indicate the region being filtered by the
kernel filter (blue square) at a certain moment. Notice that the activation
map is [5× 5] instead of [7× 7] due to the padding effect problem explained
in this Section.

marks), the result of convolving this region with the kernel filter is also undefined. As it
can be seen in the illustration, the final activation map has the same size of the Original
Data ([7× 7]), however its outter pixels are undefined. Thus, the final size of the defined
pixels of the activation map is [5× 5], just as it was in the case presented in Figure 4.6.

Figure 4.7 – Illustration of why the final activation map after the convolution operation
has a smaller size than the original data: the values outside the original data
limits are undefined.

Sometimes this reduction of size due to convolution is not convenient. In this case,
it is possible to use an operation called padding, which basically adds an outter border
to the input matrix (thus increasing its size) with predefined values. These values are
not considered to calculate the locations of the values on the final activation map, but
rather just to set the undefined values outside the original data limits so the final size of
the activation maps can be set to a certain size defined by the user. There exist three
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main types of paddings: zero–padding, which sets all outter values to zero; replicate
padding, which sets the outter values to the values on the border of the original data;
and symmetric padding, which acts as a mirror in the border of the original data. An
illustration of the result of applying a 2–level pad using all these three padding methods
applied to the same [7 × 7] matrix used in the previous examples can be seen in Figure
4.8.

Figure 4.8 – Illustration of the different types of padding methods used to set the final
activation map to a certain desired size. In this case a 2–level pad is applied
to a [7 × 7] matrix, using three different methods to deal with its outter
pixels. In this image, the yellow squares indicate the location of the pixels
outside the original data matrix, which are undefined before the padding is
applied.

Apart from the padding, there is another parameter to be considered when dealing
with convolutional layers, which also has a major impact on the size of the activation
map: the stride. This parameter refers to the number of positions that the filter moves at
every iteration. For instance, a stride of 1 means that if at iteration 1 the filter is applied
over the region with a top–left corner at [1, 1], the next region to be used at iteration 2
will be [1, 2] (as the filter sweeps the input data horizontally), while if the stride was 2 the
next region to be used at iteration 2 would be [1, 3]. This process is illustrated at Figure
4.9, where the selected subregions for the three first iterations, using different strides of
1, 2 and 3 clearly produce activation maps with different sizes.

Each ConvLayer is usually defined by the padding [PH × PW ] to be applied to the
original data, the stride [SH × SW ] to be used during the convolution and the size of
the layer itself [H ×W × C ×D], where H and W represent the height and width of
the kernels, respectively; C represents the number of channels of the kernels, which must
match the number of channels of the input data; and D is the depth of the layer, which
represents the number of different kernels that will be contained inside the layer.

Knowing the size of the input data [M ×N × C] and all these parameters it is possible
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Figure 4.9 – Illustration showing the effect that the stride has on the size of the final
activation map. Here the subregions of the original data on which the kernel
filter is applied (colored rectangles) are shown for the first three iterations,
using three different stride values: 1, 2 and 3. The final activation maps for
each value of stride is also displayed on the right.

to determine the size of the output data [M ′ ×N ′ × C ′] by

M ′ =
(M −H + 2 · PH)

SH
+ 1 (4.3a)

N ′ =
(N −W + 2 · PW )

SW
+ 1 (4.3b)

C ′ = D (4.3c)

When designing a CNN it is important to determine all the sizes that the activations
maps will have along the net, and make sure that their number of channels matches the
number of channels of the following ConvLayer that will be applied to them.

Determining the depth of each ConvLayer is not an easy task and usually involves
several tests in order to find the right values for them. Nevertheless, most CNN architec-
tures present a simple rule: the deeper the ConvLayer is located on the net, the greater
its depth D. This is not a compulsory rule to be followed but rather just an empirical law
that has been found to present good results over the years. Still, it is based on the very
definition and organization of deep learning and deep networks, whose extracted features
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gain complexity the deeper they are located inside them.
The depth of a ConvLayer determines the number of features functions that it can

found after the training. As stated before, each kernel filter will perform a single trans-
formation to the input data, thus enhancing a very specific type of feature of it. Different
characterization or classification problems, even using the same types of input data, might
require different kernel filters, as the features required to characterize the data might be
completely different.

Consider, for instance, that we were to find vertical strips on a series of images con-
taining different patterns (strips in different orientations, dots, starts, etc.). It is obvious
that the kernel filters on this CNN would have to enhance the features on the input images
that are related to vertical stripes, while minimizing all other features (star–related fea-
tures, dot–related features, etc.). While it was a common practice, before the appearence
of CNNs, to manually or semi–automatically design these filters to be used for feature
extraction (Randen and Husoy, 1999; Clausi and Jernigan, 2000; Grigorescu et al., 2002;
Unser, 1995; Sun et al., 2002), this process demanded either to have great experience on
filter design so that the final filter bank was suitable for the required data characterization
task, or to use general–purpose universal filters, such as gabor or wavelets, which had the
drawback of being less efficient for very specific problems.

Backpropagation and CNNs allow us to obtain these filters automatically, so that after
the training process the filter banks of each ConvLayer in the net have been optimized to
extract the activation maps that better characterize the features required for the specific
problem for which the net was designed.

4.4.1.2 Activation layer

So far we have presented how ConvLayers help extract features from the input data and
how these activation maps vary in size depending on the different parameters specified.
We also introduced the main concept behind the automatic optimization of the filter
kernels inside those layers through the backpropagation mechanism. There is, however,
one key concept related to the activation maps obtained by ConvLayers that has not been
discussed: the lack of non-linearity.

The effect that a convolutional layer (or any hidden layer on a MLP) with its weights
wi,n and bias bi has on the input data xi,n can be described as the linear operation defined
by

ui =
K∑
n=1

(wi,n · xi,n) + bi, (4.4)

where K is the total number of neurons on that layer (or on every subgroup used on each
convolution step) and i is the number of that layer. From (4.4) it is possible to deduce
that the outputs of any ConvLayer will be a linear transformation of its inputs. Thus,
the operation applied by a net formed with a stack of ConvLayers only would still be a
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linear transformation. The problem in this case is that often we are required to work with
non–linear functions in the real world, rather than linear ones. It is not possible to fully
describe a non–linear function with linear operations only. For that reason it is usually
necessary to add a layer to our net which will act as a non–linear operator. As the net
gets trained, this operator will also be optimized for obtaining the most suitable features
that will help us characterize our problem. This non–linear function is often referred to
as the activation function (not to be confused with the Activation Map introduced in
Section 4.4.1.1), as its transformation will ensure that only the most relevant part of the
Activation Map is passed forward and, thus, “fires” or activates the following layers in the
net.

Frequently, each ConvLayer of the net is followed by an activation layer, thus ensuring
that each convolutional step (extraction of features) is a non–linear operation. There exist
as many activation function as non–linear mathematical functions are there. However,
there are three of them which are the most ofently used when implementing CNNs (which
can be seen, alongside their equations, in Figure 4.11):

1. ReLU: The Rectified Linear Unit function, which acts as a threshold, setting all
negative values of the input matrix to zero, and keeping the rest unmodified. It
is usually implemented as the maximum between each value and 0: ReLu(x) =

max
i∀N

(x, 0). The output values of this function range from [0,+∞].

2. Sigmoid: Sigmoid function, sometimes called logistic function3, saturates the values
that are far away from 0, so that the output values range between [0, 1]. Its major
drawback is that it might saturate the gradient for values near the limits (away from
zero), which means that the training process would be useless for that specific layer.
Apart from that, the outputs are not zero–centered, which might cause dynamics
problems (fluctuations) in the errors during backpropagation, which might likely
lead to unstabilities.

3. TanH: Hyperbolic Tangent function. This function acts as a type of saturation
function, making the output values range between [−1,+1]. In practice, this func-
tion has the same properties as sigmoid function, except that its output is actually
zero–centered. This is the main reason why tanh layers are preferred over sigmoid
layers.

An illustration of a convolutional (or a hidden) layer followed by a non–linear operator
can be seen in Figure 4.10.

Throughout the years several authors have argued the benefits and drawbacks of dif-
ferent types of activation functions (Glorot and Bengio, 2010; Nair and Hinton, 2010;
Maas et al., 2013). On the same paper where Krizhevsky et al. presented the architecture

3The Sigmoid function is a special case of the logistic function for L = 1, x0 = 0 and k = 1.
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Figure 4.10 – Illustration showing the linear operation carried on inside a ConvLayer on a
CNN or a hidden layer on an MLP, where the inputs xi,n are multiplied by
the weights of the layer wi,n and added to the bias of the layer bi; and the
following non–linear operation that takes place with the activation function
f , resulting in the final output yi.

Figure 4.11 – Three main types of activation functions used in CNNs and other types of
NNs: ReLU (Rectified Linear Unit function), TanH (hyperbolic tangent)
and Sigmoid (a.k.a., logistic function).

and results of the AlexNet (Krizhevsky et al., 2012) (see Section 4.4), they also found
that using ReLU layers instead of tanh improved in ∼ 6 times the convergence of the
net. Apart from this improvement, using ReLU layers does not require computationally
expensive processes and its implementation is extremely easy. These are the main rea-
sons why ReLU functions have become one of the most popular activation functions used
in Neural Networks. Further reading about these activation functions, as well as their
performance on CNNs can be seen in Xu et al. (2015).

Activation layers (and sometimes, specifically called ReLU layers, in case the activation
function is assumed to be the ReLU function) do not change the size of the input data,
but rather just its values. As introduced before, the most usual architecture consists on



76 Chapter 4. Deep learning and applications

placing an activation layer right after each convolutional layer on the net.

4.4.1.3 Pool Layer

In Section 4.4.1.1 we stated that, even though there does not exist a single universal
rule which explicits how the depth of each ConvLayer must change according to its position
on the net, it is a common practice to increase this value the deeper the ConvLayer is
located inside the net, so that more complex features can be extracted from the data.
However, increasing the depth of the ConvLayers steadily inside the CNN comes at a
price: if the size of the filter kernels is kept constant, the number of parameters to be
optimized (weights and biases) grow exponentially with the number of ConvLayers of the
CNN.

Another issue to be discussed about the activation maps created by Convolutional +
ReLU Layers is spatial invariance. Since the dawn of object recognition and characteri-
zation field there has been a major effort on trying to find the right group of functions
or methods to be able to extract features from input data that could universally be
used as descriptors of its properties, thus making the characterization task much easier.
Among all different properties that these functions should held there is one in particular
that attracted the attention of several authors in the last decades: rotation and location
invariability.

To us, humans, it is pretty clear that two images with the same pattern but rotated
different orientations still represent the same type of texture or information, however this
task has proved to be a very challenging one to be taught to machines. This is the main
reason why so many different authors proposed over the last decades many techniques to
try this problem (Lowe, 1999; Lazebnik et al., 2006; Brown and Lowe, 2002; Ojala et al.,
2002; Tuytelaars et al., 2008).

This is a problem we still must deal with as CNNs work with multidimensional
spatially–correlated data. An attempt to prevent rotation and location variability prob-
lems consists on training the net with repeated samples that have been shifted, rotated
and scaled, so that the network identifies that these features (local position, scale or orien-
tation) are not correlated with the discriminant feature we are trying to reproduce (data
class, for instance). However, this obviously increases greatly the number of samples to
be used to trained the net, causing the training process to be more time and resource
consuming, as well as less efficient.

Instead of using the sample repetition mechanism, and also to kept the number of
parameters of the net to grow exponentially with the number of layers, it is common to
place what is known as a pooling or simply a pool Layer at different locations of the net,
usually after a block (or after some sets of blocks) with a ConvLayer + a ReLU Layer.

Pool layers were mainly conceived to reduce the dimensionality of the activation maps
inside the net, in an attempt to avoid an excessive amount of parameters, as well to make
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the training process more efficient. However, it was soon found that this reduction of
dimensionality also introduces an extra non–linearity to the net, allowing it to capture
features from different scales. These layers work on subregions of the input data, in a
similar way ConvLayers do, applying a certain function to it. Just like activation layers
can use different activation functions, Pool Layers can vary from CNN to CNN depending
on the method they use to fulfil their purpose. The three main types of pooling functions
on which pool layers can be based are: max–pooling, subsampling and sum pooling.

Max–pooling operation keeps the maximum value of the selected subgroup of the input
data only, the subsampling method passes on the average value of that subregion and the
sum–pooling returns the sum of that same subregion. Figure 4.12 shows an illustration
of how all these three pooling methods work using a sample [5 × 5] matrix and a stride
of 2.

Figure 4.12 – Illustration showing the output of a pooling operation using three different
pooling functions: max–pooling, subsampling and sum–pooling. The initial
matrix (on the left) is subdivided in groups of 3×3 cells (the first one of these
subgroups is highlighted), which are later used to obtain the final result
by applying each one of the pooling functions. The division of subgroups
depends on the size of the stride. In this case a stride with a value of 2
was used. The influence of the stride value on the size and shape of the
final result matrix was illustrated in Figure 4.6. For instance, the first 3×3
group, highlighted, has a maximum value of 6, an average value of 3.3 and
the sum of its elements is 30. This is the reason why the highlights cells of
the outputs matrices (on the right) are these values, respectively.

Scherer et al. (2010) showed in their work that max–pooling layers performed much
better than the rest of them, when tested on the same architecture and for different
datasets and types of data. This is one of the main reasons why most pooling layers found
in image processing and CNN literature use max–pooling layers instead of subsampling
layers.

Just like ConvLayers, pool layers modify the size of the output data, depending on
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the size of the window (subgroup) used [LH × LW ] and the stride (number of positions
to be skipped at each iteration) [SH × SW ]. As the pooling operation is applied for each
slice of data, the depth of the input data remains unmodified. The output size of some
input data with size [M ×N × C] can be calculated by

M ′ =
(M − LH)

SH
+ 1 (4.5a)

N ′ =
(N − LW )

SW
+ 1 (4.5b)

C ′ = C (4.5c)

Even though Pool layers may have the theoretical benefits introduced before, some authors
(Springenberg et al., 2014) have proposed to get rid of them as they consider that their
effects are counter-productive in some CNNs classification problems, stating that the lack
of pool layers seem to have positive effects on some generative models such as variational
autoencoders (VAEs) and generative adversarial networks (GANs).

In the architecture proposed in Section 5.3 for facies classification, we do not use any
pooling layers as we found, after a series of trials, that their use was not benefitial for the
particular classification problem discussed in this work.

4.4.1.4 Normalization layer

As we introduced in Section 4.4.1.2, ReLU layers are the most widely used activation
layers there are. Even with all their benefits, ReLU layers present the main problem
of generating unbounded data. This means that the outputs of a ReLU layer (or any
other type of unbounded activation function based layer) have a theoretical infinite range
of values. The main issue behind this is that any slight error in the weights of these
layers may unleash a correlated error that spreads along all following layers of the net (Ba
et al., 2016), thus making the net to require much more time to converge. A solution for
this problem is to use normalization layers, which limit these activations between certain
boundaries. Normalization layers are usually located after linear layers (ConvLayers or
fully–connected layers) and right before non–linear layers (such as activation layers).

There exist different types of normalization layers, but all of them have something in
common: they change the values introduced to them in a way such that they range inside
a certain desired bound (usually from [0, 1] or [−1, 1], depending on the type of layer that
follows). Among these different types of normalization layers, the most commonly used
are:

1. Batch normalization layer (B–norm): First introduced by Ioffe and Szegedy
(2015), this layer reduces internal covariate shift in the input activations by setting
their average value to zero and their variance to one. In order to do so, B–norm
layers calculate the mean and variance for a randomly chosen mini–batch over each
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input channel. It has been found over the years that this simple normalization (1)
improves the gradient flow, thus decreasing the convergence time; (2) highly reduces
the dependency that CNNs have on initialization values; (3) allows higher learning
rates due to the extra stability they create. Further reading on these types of layers
and their benefits can be found in Salimans and Kingma (2016); Cooijmans et al.
(2016).

2. Local response normalization layer (LRN): Along with AlexNet architecture,
Krizhevsky et al. (2012) also introduced on their paper the concept of local reponse
normalization applied to CNNs. There they raised the discussion on whether it
could be benefitial to implement the lateral inhibition that takes place in our brains,
by which an excited neuron has the ability to reduce the activity of its neighbors,
creating a contrast in stimulation and thus increasing the sensory perception. In
plain words, lateral inhibition is what makes edges with high contrast within images
to stand out in our brains. It increases the sensory perception because it produces
a certain kind of local normalization on the viewed image, which increases its local
contrast and therefore the amount of information our brains can obtain from it. Its
implementation in CNN architectures takes a small region within the input data
and across close kernels, and normalizes it, thus promoting competition between
same regions of different kernels and by doing so encouraging the net to keep only
high peaks of activations rather than continuous regions with constant activation
values. Krizhevsky et al. (2012) themselves present in their paper the increase in
performance that including these normalization layers had on their classification
problem.

In the CNN architecture for lithological facies classification proposed in this work we
use batch normalization layers between each convolutional layer and the ReLu layer after
it.

4.4.1.5 Fully–connected layer

A fully–connected layer (henceforth, FC) is a type of layer similar to a ConvLayer, with
the main difference that all its weights are directly connected to all input activations. An
FC layer is a common type of hidden layer, like any layer in an MLP nertwork structure.
FC layers are usually found at the end of the structure of a CNN, as they work as the
final step that links the high–order features extracted through the net with the values we
are asking the net to predict for us.

FC layers in a CNN act as a bridge between these features and the targets by learning
non–linear combinations of them in order to produce the most accurate prediction. The
last FC layer of a CNN must always match the number of target classes we are aiming
to reproduce. For instance, if we are trying to classify images from 6 different animals,
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the final FC of our CNN must have 6 neurons; while if we were to predict the orientation
that hand–written digits have on certain images, the last FC of our CNN should have 1
single neuron.

Often a group of FC layers are stacked together at the end of the CNN, in order to
gently reduce the number of features up to the number of hidden neurons required at the
last FC layer, although this is not a compulsory method.

4.4.1.6 Dropout layer

This type of layer was thought as a way to reduce overfitting on ANNs. Overfitting
refers to the issue caused when a succesfully trained net does not perform well when
dealing with new data, as it was biased to solve the specific problem introduced by the
sample data used during the training stage.

The term dropout refers to the procedure of randomly dropping out or cancelling a
certain amount of weights from the neural network that would otherwise be taken into
account when computing the final output. This methodology was firstly introduced by
Srivastava et al. (2014) and it has been used over the last years as a simple yet effective
way to reduce the effects that overfitting have on NN.

The main aim of dropout layers is to simply set to zero the values of certain proportion
p of randomly chosen positions of the input activations. This simple procedure forces the
net to be redundant, which means that even when some activations are dropped out the
classification results is still right. By doing so the net is trained in a way that it makes
sure that it does not get too fitted to the training data, and it is versatile enough. Figure
4.13 shows an illustration regarding how dropout layers work.

Figure 4.13 – Illustration showing how dropout layers work: some of the values of the
input activations are set to zero, thus forcing the net to be versatile enough
to produce good results even without them. In this illustration, a compar-
ison between (a) a standard FC NN, whose weights are all connected from
layer to layer and (b) a layer where some weights have been dropped out
(cells with a cross inside). These dropped cells do not contribute to the
final result of the layer. Source: Srivastava et al. (2014).
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Srivastava et al. (2014) proposed in their original paper to use a dropout layer after
each fully–connected layer. More recently, Park and Kwak (2016) studied the effect these
layers have when used after ConvLayers.

4.4.1.7 Loss layer

The most common final layer of a CNN is a so–called loss layer. The main purpose of
this layer is to determine the penalization of each deviation between the prediction of the
net and the target value of each sample. In plain words, loss layers act as a function to
the input training targets and the net predictions, returning a value which represents the
total weighted error of that training iteration. This error value is then used to evaluate
the performance of the net during the training procedure.

Depending on the problem to be solved different loss functions might be considered
more suitable:

1. Softmax loss layer: This type of layer uses the softmax function, which is a
generalization of the logistic function. This function basically returns the probability
distribution of a certain vector over K different mutually exclusive levels or classes.
Softmax layer is commonly found on classification problems where the activations
of the last FC layer must be converted to N–class probabilities in order to obtain
the final prediction (which is set to the class with the higher value). The sum of all
the output values of this layer is always one.

2. Sigmoid cross–entropy loss layer: This type of layer applies the concept of
cross–entropy and information theory (Rubinstein, 1999) to calculate the error of
each prediction, for a multiclass problem, assuming that all levels or classes are
independent. This function penalizes probabilities of correct classes only, rather
than taking into account all classes probabilities, which makes the final error value
independent of how the remaining probability is split between the rest of the classes.

3. Euclidean loss layer: This type of layer uses the sum of the euclidean distance
between the predicted values and the targets as the layer error. It is most suitable
for regression problems where it is necessary to fit unbounded real data that can
range from [−∞,∞].

In the CNN architecture for lithological facies classification proposed in this work
(Section 5) we use a softmax loss layer right after the last FC layer, as the classes in our
problem (litological facies to be predicted) are mutually exclusive.
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Chapter 5

Reservoir lithofacies
characterization using deep

convolutional neural networks
and borehole image data logs

5.1 Reservoir’s facies characterization

In Section 2 the concept of reservoir characterization, as well as its importance, was
introduced as one of the key concepts to be considered when evaluating a reservoir. Some
of the properties that are used to find the unique patterns of each type of rock, such as
permeability, porosity or electrical and acustical properties, were also introduced. These
properties are oftently used to distringuish between groups of rocks with similar properties,
although they cannot be considered enough to define unique universal classes of rock.

A rock body with specific singular appearance, composition, condition of formation,
with the same chemical, physical and/or biological features, which makes it distinguishable
from any other adjacent rock body is called a Facies (Parker, 1984). The most common
types of facies by which rocks can be classified are:

1. Lithofacies: Defined by the lithology of the rock, thus its macroscopic physical
characteristics, which include its mineral composition, its grain size, its color and
its apparent texture. All these physical properties depend on the depositional en-
vironment that produced the rocks and so they are usually be used for dating and
region tectonic and deposition regime analysis purposes.

2. Sedimentary Facies: Defined by the type of sediment that forms the rock. Sedi-
mentary properties do not capture the level of detail contained in lithofacies, however
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their value is to be able to supply information regarding the depositional processes
that took place and by which the rock itself was created.

Different types of facies are used for differents purposes in order to define the properties
of a certain region. In oil industry, on which this work is focused, seismic data is commonly
used to find the most likely regions where the reservoirs could be located (if any). After
that, these regions are drilled and well–logging tools are introduced to extract different
data from them: ultrasonic and microresistivity borehole images, as well as boreline data
are used to determine both rock facies and some other petrophysical properties of the
reservoir. Borehole image logs also allow petrophysicists to locate fossils and other types
of biological structures, which can be used to track environmental and/or evolutionary
changes as an attempt to increase the information regarding the geological processes that
took place to form the reservoir. On the otherh hand, core plug samples are used to detect
the microscopical properties of rocks extracted from the reservoir.

Previous work on automatic facies classification required the use of core, petrophysical
logs and borehole images altogether to obtain a reliable prediction (Basu et al., 2002);
or provided lithological subjective classifications based on the texture of the data (Chai
et al., 2009; Linek et al., 2007; Newberry et al., 2004; Hall et al., 1996). In this Section
we present a novel methodology which applies deep learning (using CNNs) to borehole
image logs to solve an objective lithofacies classification problem.

5.2 About the data and the training process

The data used in this test belongs to a well called 1–IMET–8–MG by the Brazil-
ian National Petroleum Agency (ANP), which is located at the São Francisco basin, at
17°25′23.0′′ S, 44°38′27.5′′ W, near Pirapora City, in Minas Gerais state, Brazil. Its loca-
tion within the south american continent and Brazil, as well as nearby Pirapora city, can
be seen in Figure 5.1.

In this work we have used the ultrasonic borehole image log (UBI), the formation
microresistivity imager (FMI) and the lithofacies classification carried out by geologists
Claudiano Miranda and Vicente Pimentel. First, all required data was exported from the
DLIS file to plain comma–separated text files with a vertical spatial resolution of 0.00508

m. The UBI data was acquired within the range [465, 1472] m, the FMI data within
[490, 1482] m and the rock classification was carried out within [27, 1780] m.

Even though geologists are usually able to intuitively classify sections where not all
data is available, our model requires both UBI and FMI samples, as well as the ground
truth facies classification sample to work. This means that we had to crop our data within
the interval [490, 1472] m, thus keeping 193, 307 samples.

The lithofacies data contained 6 different unique lass Labels, on which our method
was based. The name of each type of class (in portuguese) and its equivalent in english
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Figure 5.1 – Location of the well from which all data used in the rock facies classification
section was extracted. Source: Google Maps.

Figure 5.2 – Legend of colours and patterns of each one of the lithofacies classes used in
this work.

are shown below, and the legend of colours and patterns of each class used for displaying
are shown in Figure 5.2:

1. ARGILITO : Argillite

2. CALCARENITO : Calcarenite

3. CALCILUTITO : Calcilutite

4. DIABASIO : Diabase

5. FOLHELHO : Shale

6. SILTITO : Siltstone
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5.3 Proposed methodology for lithofacies prediction

5.3.1 CNN architecture

Our method relies on two different CNNs: one for the ultrasonic image data and an-
other one for the microresistivity image data. The architecture of each one of these CNNs
(which will be further explained in 5.3.3) is identical: they contain 5 convolutional layers
and a final fully–connected layer, followed by a softmax layer. The first 4 convolutional
layers have all of them the same filter size: [5×42×1], but consecutively increasing depths
8, 16, 32 and 64, respectively. It is noticeable that the sizes of the filters are much greater
than any other filter size in the common architectures presented in Section A. Even though
the final filter size results from a manual trial and error process in order to find the most
suitable values that provided the smallest classification error, it is reasonable that these
filters are not squared, as the input images are much wider than higher (the cropped UBI
images, and thus the UBI CNN input layer have a size of [21×180×1], while the cropped
FMI images, and thus the FMI CNN input layer have a size of [21× 192× 1]).

Due to this difference on height and width of the input images it is essential to insert
an extra ConvLayer, right before the first FC layer, that vectorizes the weights. This
is the main purpose of Conv5 Layer (which can be seen in Figure 5.3), which takes a
[5×16×64] input matrix and applies 128 filters with a size of [5×16×64] so its output is
vectorized to a final size of [1× 1× 128]. Thus, Conv5 layer could be also considered as a
FC layer as it takes the spatially correlated activations of the previous layer and outputs
vectorized activations.

Each one of the first 4 ConvLayers is followed by a batch normalization layer, as an
attempt to reduce the dependency on initialization values and the convergence time. In
previous tests we found that the error gradient grew exponentially and rapidly, causing
the net to fail in the training process, when no normalization layers were used after these
ConvLayers.

ReLU layers were introduced right after each one of the normalization layer of these
first 4 ConvLayers, as well as after Conv5 layer and FC1 in order to ensure non–linearity
to the activations. The output of the last FC layer is a vector with 6 different values, each
one corresponding to a certain rock Facies class (see Figure 5.2), which are converted into
class probabilities using a softmax loss layer, as Facies classes are mutually exclusive.

5.3.2 kNN classifier

As it is expected that the data of each individual borehole image is not enough to
predict the lithofacies of the well, we supposed that the individual activations and class
probabilities obtained at the output of each CNN will contain error and misclassification.
Thus, once both CNN have been trained, the activations for the training data before
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and after the softmax layer are used to train a k–nearest neighbour classifier (henceforth
kNN), whose aim is to produce a fine–classification based on the activations of both
borehole image data used. The output of this kNN classifier is the definitive lithofacies
classification result considered when evaluating the net.

K–nearest neighbour classifiers belong to the non–parametric classifiers family. The
classification of new data is achieved by computing the value of a cost function (which
is commonly the euclidean distance) that depends on the values of each point of input
data and the centroids or mesoids of each class in the features hyperspace. Each input
point will be assigned to the class with the smaller associated cost. In our case, each
class is associated with a certain lithofacies. For further reading on kNN classifiers see
Altman (1992) and for some practical applications see Liao and Vemuri (2002) and Shen
and Chou (2005).

These classifiers should not be confused with other common methods also based on
the iterative computation of the data centroids or mesoids, such as k–means algorithm
(Steinbach et al., 2000), which is an unsupervised segmentation technique.

5.3.3 Overall architecture

As introduced in Section 5.3.1, our structure is based on two CNNs, one for each type
of borehole image data log. Each image sample, for each type of data, is introduced
on its corresponding CNN, obtaining the features that are used as input to the kNN
classifier which gives the definitive prediction of lithofacies. An illustration of the overall
architecture with the complete diagram of the proposed method is shown in Figure 5.3.
As it can be seen in this image, the results obtained right before and after the softmax
layer of each CNN (ultrasonic data at the top and resistivity Data at the bottom), are
concatenated and input into the kNN Classifier to obtain the lithofacies prediction.

5.3.4 Training subset division

The first step in the process is to divide the input data into subsamples. As litho-
facies can be considered a discrete curve (on which each value per depth represents a
categorical class), each depth measurement represents a single depth sample to be used
for training or prediction. However, if we were to divide our input borehole images into
single-row subsamples, the information contained on each row would not be sufficient to
obtain consistent results because the geological structures we are trying to identify using
the autoencoders are contained on bigger depth interval windows. This means that the
geological information contained on single–row image subsamples would most likely not
be enough to obtain consistent results, as the structures that are presumptuously linked
to the property we are trying to predict (lithofacies) could not be contained on them. This
is specially true in heterogeneous reservoirs like the ones found in the pre-salt carbonates.
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In order to be able to capture as much geological information contained on each image
subsample as possible, we propose to use a 21 pixel sliding window (which in this case
is equivalent to a depth window interval of 10.67 cm or 4.2 inches) to crop the images,
so that each subsample will include not only the information of that specific row, but
also the information about its surroundings. Defining the optimal window size is an
important task that could lead to better results and even a better understanding of how
the information contained on borehole images is related to petrophysical and geological
properties. Even though this process has not been implemented nor tested in this work,
it will be addressed in future work on this area.

Once the images have been cropped using the same sliding window, and before any
further process, it is essential to divide our data into training and testing subsets. In
order to obtain robust results, we decided to divide our data into continuous subsamples
of 100 lines each (this is equivalent to 50.8 cm or 20 inches). Trying to predict continous
blocks is a more robust way to test the model rather than using randomly distributed
single points, as it pushes the model to produce continously-consistent estimations the
same way these models are expected to work in realistic oil/gas industry operations. The
193, 307 datasamples were then divided into training, validating and testing groups as
follows:

1. 135, 407 (70.05%) as training samples on blocks with different samples each,

2. 28, 900 (13.95%) as validation samples on a total of 289 continuous blocks of 100
samples each,

3. 29, 000 (15.00%) as testing samples on a total of 290 continuous blocks of 100 samples
each.

The first divisions of training, testing and validating subsamples, from 420 m to 653 m,
are shown in Figure 5.4, where training intervals are identified as green regions, validating
intervals as red regions and testing intervals as blue regions. It is important to notice that
in order to prevent overfitting a certain number of samples N above and below each testing
and validating intervals are not considered for training (left–out), which ensures that no
sample used in the training of the net is used on its validation or testing procedures. The
number of pixels to be left–out (N) depends on the size of the sizepad used to crop the
input images SW and can be calculated by

N = bSW − 1

2
c (5.1)

.
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5.3.5 Training technical information

Each CNN was trained using a gradient–descent algorithm1 in order to find the optimal
weights of the net so that the activations extracted from each type of data can be used
for predicting the rock facies at each depth sample. The overall training process took over
3 days using a GeForce GTX 1080 GPU and Cuda Toolkit version 8. In this work we
used MatConvNet library (Vedaldi and Lenc, 2015) for all NN architectures implemented,
which is an open–source toolbox designed for implementing DNN in MATLAB®.

1For further information regarding the gradient–descent algorithm, see Baldi (1995); Vapnik (1999);
Ruder (2016).
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Figure 5.4 – Example of the first divions of subsamples into training (green regions), vali-
dating (red regions) and testing (blue regions). As it can be seen, validating
and testing subsamples were selected to form continuous 100 pixels blocks, in
order to obtain consistent and robust results. It is important to notice that
blank gaps were left between testing/validating and training regions with
a number N (5.1) of pixels above and below these regions to ensure that
no sample used in the training of the net is used again on its validation or
testing.
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5.4 Lithofacies characterization results

The results shown in this Section are based only on the testing samples described
in Section 5.2. No sample used during the training or validation process was used for
testing purposes. At the same time, the results displayed in this Section were obtained
for continuous 100 lines samples in an attempt to prove the robustness of the proposed
method.

The overall classification success for all tested samples was 97.69%. In order to evaluate
the accuracy of the classification we used two tools: a classification confusion table and
the receiver operating curve (henceforth, ROC) plots of each lithofacies class. A confusion
table shows the number of times that each target class was predicted as every other type
of class, thus allowing us to visualize the classes that are most usually confused by the
classifier, as well as the accuracy of prediction of each class.

The confusion table of the tested data is shown in Figure 5.5. As it can be seen
there, even though the number of samples of each class was not uniform (ARGILITO and
CALCILUTITO have far less samples than the rest of the classes) the results show that
the predictions of classes appear to be consistent: no class was predicted with an accuracy
inferior to 94%. The results seen in the confusion table also show that the pair of classes
the classifier confuses the most is FOLHELHO–ARGILITO.

In order to evaluate how well defined each one of these classes is for the trained
classifier, we plot the ROC for each class (Zweig and Campbell, 1993). These plots show
how the rate of true positives (sensitivity) changes depending on the rate of false negatives
(1−specificity). In plain words, these curves show how the success in classification changes
in a binary classifier depending on the threshold chosen as condition of true prediction.
The ROC plot for each Facies class for the proposed method applied to the testing data is
shown in Figure 5.6. The dashed lines on these plots indicate a random guess: any curve
below them (with an area under the curve below 0.5) is considered worse than a random
guess and thus indicates that that certain class is not defined for the tested classifier.
On the other hand, the higher the area under the ROC (the closer to 1) the better the
classificator.

As it can be seen in Figure 5.6, all classes have an area under the curve above 0.95,
which is much greater than 0.5 (random guess). It is possible to notice that the classes
that are better defined for the trained classifier are: CALCILUTITO, DIABASIO and
ARGILITO, while the worse defined one is FOLHELHO. This result is consistent with
the previous results shown in the confusion table of Figure 5.5.

In Appendix B, from Figure B.1e to Figure B.59e we display the top 60 worse predicted
blocks, sorted from worse (the whole block was misclassified) to better (the block samples
were only partially misclassified). The first three columns display the Depth, Ultrasonic
data and Resistivity data of that interval, while the forth and fifth columns show the
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Figure 5.5 – Confusion Table obtained for the tested data and using the workflow pro-
posed in this Section for lithofacies prediction using borehole image logs.
Green cells indicate right predictions (where the class predicted by the clas-
sifier is the same as the original target class), red cells indicate wrong pre-
dictions (both false positives and true negatives), gray cells show statistics
for each type of predicted or target classes and the blue cell on the bottom–
right corner indicates the overall sucess. The text labels inside the green and
red cells indicate the number of hits and their relative percentage with the
overall total number of samples of all classes. The text labels inside the gray
cells indicate the success rate in classification on top of their equivalent error
rate (which they add up to 100%).

target facies of that interval and the prediction made by the model proposed in this
Section.

An example of the evolution of the first 8 activations of each layer through both CNNs
for the sample depth sample is shown in Figure 5.7, for the Ultrasonic data, and in Figure
5.8 for the Resistivity Data. As it can be seen there the activations of both nets capture
different patterns of the inputed data. The activations of the Resistivity data seem,
however, more heterogeneous than the activations obtained for the Ultrasonic data.

Lastly, an example of the 8 most proeminent weights of each ConvLayer of both CNN is
shown in Figure 5.9. As it can be seen there, the weights of the first layer of the ultrasonic



94
Chapter 5. Reservoir lithofacies characterization using deep convolutional neural networks and borehole

image data logs

CNN (top) seem to produce higher activations for bumpy data, which suggests that these
layers look for porous formations, which might be correlated with some of the lithofacies
classes further inside the net. On the other hand, the weights of the first layer of the
Resistivity CNN (bottom) try to find more complex patterns such as fractures (second
image on starting from the top on column f) or more gradative horizontal variations of
resistivity. As it was expected (due to the increased complexity of each layer) the weights
of deeper layers display more complex patterns.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6 – ROC Curves for each one of the lithofacies classes used in this work: a)
CALCILUTITO; b) DIABASIO; c) CALCARENITO; d) ARGILITO; e)
SILTITO and f) FOLHELHO. The dashed lines on each plot represent the
equivalent curve of a random guess (untrained random classifier). As it can
be seen, the area under each curve is much greater than the equivalent of
a random guess (0.5) and very close 1, indicating that each class is almost
perfectly defined for the trained classifier. These results are consistent with
those shown in the confusion table shown in Figure 5.5.
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5.5 Conclusions

We trained two convolutional neural Networks with 17 layers each (combining con-
volutional, ReLU, fully–connected, softmax loss and batch normalization layers), with
almost identical architectures, each one of them for a specific type of borehole image log
(ultrasonic and resistivity) using the cropped borehole image data logs –cropped with a
21 pixel sliding window–.

Using this sliding window rather than just single–row vectors was considered necessary
to preserve the geological structures present in the borehole image data. With the method
proposed in this paper, these geological features remain intact, thus allowing the CNNs
to extract information about the whole window and about the whole structure contained
inside that window. This detail is specially important when trying to link borehole images
with geological properties that highly depend on the values of the surroundings, such as
the lithofacies we are trying to predict. To the best of our knowledge, all previous studies
in the lithofacies classification field used single–point methods. In this work we have
shown that using convolutional methods with borehole images seems to improve greatly
the amount of information that we can extract from this type of data.

As we showed in Section 5.4, the predictions obtained with this model were competitive
enough, achieving an overall success of 97.67%. These classifications were carried out using
randomly centered continuous blocks with 100 lines each. We decided to use continuous
blocks rather than single randomly located points in order to obtain more reliable and
robust results, as well as to stress the model so that the results could be compared directly
with more realistic production conditions.

These results are a clear indicator of the correlation between borehole image logs and
geological/lithological properties. For several years this type of data has been seen by
petrophysicists as a helping tool in the reservoir characterization process. However, the
amount of information of borehole images to be taken into account in each case when
analyzing a certain reservoir was more of a subjective feeling or an intuition than an
objective measure. Our method shows that this correlation not only exists but that it
can also be objectively quantified.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.9 – Example of the 8 most proeminent weights of each ConvLayer of both CNN:
(a) to (e) weights of convolutional layers from 1 to 5 of the UBI data CNN; (f)
to (j) weights of convolutional layers from 1 to 5 of the FMI data CNN. The
weights of the UBI CNN are shown on top, while the ones regarding the FMI
CNN are on the bottom. Please, notice that these images do not match the
sizes of the actual weights of the trained CNNs, but have rather been resized
so that they could be displayed here. As it was introduced before, the weights
of the first layers of the UBI CNN (a) seem to be sensitive to heterogeneity,
which could be intuitively related to porous rocks in the borehole wall; while
some weights of the first layers of the FMI CNN (f) seem to be sensitive to
fracture-like formations (see the second weight map starting on the top of
the (f) image).





101

Chapter 6

Estimation of Petrophysical Logs
using Stacked Autoencoders and

Borehole Image Data Logs

Estimating petrophysical properties from well-logs is a valid solution which might not
only provide results with a reasonable level of accuracy (Mohaghegh et al., 1995; Perez
et al., 2005; Hamada and Elshafei, 2010; Abdideh, 2012; Rafik and Kamel, 2016; Elkatatny
et al., 2017; de Jesus et al., 2016), but also may help oil/gas industries reduce the total
cost invested in reservoir characterization, for instance by using methodologies, like the
one proposed in this section, to estimate petrophysical properties from borehole data.

In this context, we propose a novel method to use borehole image logs (borehole
image data made available by PETROBRAS, see Section 2.6) and deep networks –Stacked
autoencoders– to estimate effective porosity and permeability logs with an accuracy of over
96% for the tested data. This method allow us to extract information that encompasses
a certain interval of the borehole image data logs, rather than just single points, as it was
proposed in the previous work in the field (Mohaghegh et al., 1995; Perez et al., 2005;
Hamada and Elshafei, 2010; Abdideh, 2012; Rafik and Kamel, 2016; Elkatatny et al.,
2017; de Jesus et al., 2016). These intervals or windows are essential because they allow
us to keep together some geological structures observed in the borehole wall, thus using
the information of the surroundings of each depth and taking them into account in the
final estimation of the petrophysical log. In this work, we discuss how this surrounding
approach may present benefits when compared to using single row measurements.

It is worth mentioning that before any of this borehole image data can be used it is
essential to process them in order to remove both the natural (such as natural breakouts
or fractures) and artificial artifacts (like the ones caused by the drilling or measuring
tool). The presence of these artifacts would alter the trained models, inducing error
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in the estimation, as they do not have any geological meaning and therefore they do not
contribute to the estimation of the petrophysical measurements on which we are interested
here.

In order to adjust the ultrasonic borehole image data to these conditions, first the
pad-removal filter designed by Valentin (2018), and presented in 3.4.2, was applied to the
ultrasonic borehole image data, so that the artifacts caused by the pads of the logging tool
would be removed and the real values of ultrasonic response of the rock lying undernearth
them would stand out. Afterwards, a contrast–limited adaptive histogram equalization
(CLAHE) (Zuiderveld, 1994), as explained in 3.2, was applied to it in order to increase
the local contrast of the image, as an attempt to enhance local geological features and
structures. In this case, no other artifacts (such as breakouts or fractures) appeared on
the data, so none of them were removed.

On the other side, the microresistivity borehole image data was set to logarithmic
scale and afterwards the same CLAHE enhancement technique was used on it, in order
to increase the local contrast. In this case no artifacts appeared on the Microresistivity
image, so it was not necessary to remove them.

This chapter is divided as follows: in Section 4.3 and 6.2.1, we explain how AEs and
SVM systems work and with what purpose they are normally used for. In Section 6.2.2,
we explain in detail the novel method proposed in this Section, as well as its structure.
In Section 6.3, we present the results obtained for all tested cases and data, comparing
them with the results obtained in previous works in the field, also showing the best case
estimations along with the original logs. Finally, in Section 6.4, we expose our conclusions
about the results and the proposed method.

6.1 Previous work

The research for theoretical and empirical relationships between petrophysical mag-
nitudes is not new. Archie et al. (1942) showed that electrical measurements could be
used to estimate rock porosity. The empirical law that Archie established on his work
made other authors attempt estimating permeability by trying to find empirical equa-
tions that could relate permeability to other physical properties such as porosity or water
saturation (Leverett et al., 1941; Tixier, 1949; Timur et al., 1968; Jorgensen et al., 1988).
Koponen et al. (1997) modified Kozeny-Carman equations of multiphase flow (Kozeny,
1927) and added effective porosity and tortuosity terms to it, as well as proved a very
consistent relation between their predictions and experimental results. Even though these
early empirical laws seem to provide accurate results, this accuracy seemed to be strongly
dependent on the conditions and factors under which the tests were carried out.

More recently, some authors have proposed the use of well-logging data to estimate
permeability and/or porosity (Mohaghegh et al., 1995; Perez et al., 2005; Hamada and
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Elshafei, 2010; Abdideh, 2012; Rafik and Kamel, 2016; Elkatatny et al., 2017). Instead
of trying to find an analytical or empirical equation between well-logs and petrophysical
properties, these techniques take advantage of modern computational methods and use
artificial intelligence to obtain these experimental relations.

Borehole image logs have been used for porosity and permeability estimation based
on the estimation of fracture aperture (Cheung et al., 1990; Luthi and Souhaité, 1990).
Using a similar approach, de Jesus et al. (2016) proposed to use borehole ultrasonic image
logs (Williamson et al., 1999) to estimate matrix permeability by obtaining a segmented
version of the ultrasonic impedance borehole image. Even though their method achieved
good results for the tested cases, the segmentation process –on which the final result relies
greatly– requires the user to have a certain degree of geology knowledge and experience
in borehole image analysis. On the other hand, Li and Misra (2017) used variational
autoencoders to generate in-situ pore size distribution, which can be further processed to
obtain residual saturation and permeability.

In this chapter, we make use of the relationship between borehole images and petro-
physical properties exploited by de Jesus et al. (2016); Cheung et al. (1990); Luthi and
Souhaité (1990) and use it, along with deep learning artificial intelligence methods, to
estimate permeability and porosity with a high degree of accuracy.

6.2 Methodology

Autoencoders cannot be used in regression problems directly, as they are strictly
unsupervised networks. In order to make regression or classification tasks possible it is
necessary to add an extra structure after the autoencoders to link the encoded features
extracted by them to the parameters we wish to estimate. In our case, a Support Vector
Machine (henceforth, SVM) was trained using the encoded features obtained from the
borehole image log samples to predict porosity and permeability data logs.

6.2.1 SVM regressors

Support vector machine regressors belong to the family of parametric non-probabilistic
binary regressors. These models aim to construct a vector on a feature hyperplane such
as the distance between the different samples and the vector itself is maximized. The set
of vectors that maximized the distance between the clusters in the created hyperplanes
–called Support Vectors– are used as boundary limits for further predictions. Any new
point will be allocated at one side of the vector, and so its predicted value will depend
on a certain loss-function and its distance to these borders in the hyperplane space.
For further information on SVM classifiers and regressors see Tong and Koller (2001);
Joachims (1998); Inglada (2007).
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6.2.2 Proposed method

In this work, we propose a novel workflow to estimate formation porosity and perme-
ability logs using a set of 3 level Stacked AE for each type of borehole image data (one
for the ultrasonic and other for the microresistivity data), which are used to encode the
information contained inside these Borehole Image Logs, and use the encoded information
of each image in an SVM Classifier trained to estimate permeability and porosity data
logs. The internal structure of each one of these AE was composed, respectively, by: 2001,
100 and 50 hidden neurons. An example of this hidden features extraction, for a sample
borehole ultrasonic image, using the first autoencoder (AE1), can be seen in Figure 4.3b,
where a sample of 4 internal encoded logs are shown. As it can be seen in this Figure,
each one of the extracted textural features captures a unique property of the input image.

The first step in the process is to divide the input data into subsamples. As both the
permeability and porosity measurements are formed by single-points measurements, each
depth measurement represents a single sample to be used for training or prediction. On
the other hand, we used a 21 pixel sliding window (equivalent to a depth window interval
of 5.33 cm or 2.1 inches) to crop the borehole data images, so that each subsample will
include not only the information of that specific row, but also the information regarding
its surroundings. The importance of using sliding windows when dealing with geological
image data in order to preserve crucial geological structures was already discussed in
Section 5.3.4.

Once the images have been cropped using the same sliding window, and before any
further process, it is essential to divide our data into training, validating and testing
subsets. In Section 5.3.4 we already discussed the importance of predicting continuous
blocks of petrophysical properties instead of single randomly located samples in order to
obtain robust results. We decided to divide our testing and validating data into continuous
subsamples of 300 lines each (this is equivalent to intervals of 76.2 cm or 30 inches).
Then we divided our data into 80% training (15, 110 samples) and 20% validating (3, 777

samples) groups.
After that, two different three–level stacked AEs are trained using the training subset,

one for each one of the cropped images –one for the cropped ultrasonic borehole image
and another one for the cropped microresistivity borehole image–.

Once the stacked AEs have been trained, the input borehole images are encoded using
them, and this encoded information is stacked and prepared to be used by the SVM
regressor. This process, which is repeated for both the ulrasonic and microresistivity
borehole images, was illustrated in 4.3b.

1Using 200 hidden neurons on the input autoencoder (AE1) net represents compressing the data
present in the borehole images using a compression factor of 95%. In other words, this can be seen as
forcing the net to learn to represent the borehole images using 95% less amount of information than the
original images.



6.2. Methodology 105

Afterwards, the extracted encoded features, of both the ultrasonic and microresistiv-
ity borehole images, are introduced into the SVM structure, along with the permeability
or porosity training samples. During this process the SVM is trained to learn the inter-
nal model that links these petrophysical properties and the features extracted from the
borehole images.

The stacked AEs and SVM are put together into a single architecture so that the
testing and estimation procedure that follows consists simply on introducing the Borehole
Images into the stacked network. At this point it is possible to calculate the accuracy
of our method by using the testing subset data. In our work we have used two different
coefficients to quantify the accuracy of our method:

1. Coefficient of determination (R2) between predicted and original testing data. This
coefficient quantifies the linear correlation between two variables (Benesty et al.,
2009). In this work we use this coefficient as a measure of the quality of the esti-
mation. The closer this value is to 100%, the better the model is at estimating the
petrophysical parameters.

2. Normalized Root Mean Squared Error (%RMSE)2 between predicted and original
testing data. This coefficient is a measure of the sample standard deviation of the
differences between the predicted and original data (Willmott, 1981), normalized by
the total range of the original data. The lowest this value is, the better the model
is at estimating the petrophysical parameters.

A diagram of the complete workflow proposed in this work is shown in Figure 6.1.

6.2.3 Formation permeability and effective porosity measures

The permeability and porosity measurements used in this paper were obtained apply-
ing Timur-Coates models to NMR data (Timur et al., 1968). Even though these mea-
surements are not direct porosity/permeability measurements, it has been shown over the
years that NMR extrapolated petrophysical data presents a high correlation with real
data (Mohaghegh et al., 1997; Li and Misra, 2017).

Figure 6.2 shows the histogram of both the petrophysical logs used in this work: the
base 10 logarithm of the permeability measurements (left) and the effective porosity mea-
surements in percentage (right). Extracting an interpretation regarding possible groups of
reservoir rocks or characteristics from the information contained inside these histograms
is a very complex task.

2 The normalized root mean squared error can be obtained by dividing the Root Mean Square Error
(RMSE) by the total range of the original data to be fitted. This measurement was preferred in this work
because it is dimensionless.
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Figure 6.2 – Normalized distributions of base 10 logarithm of permeability measurements
(left) and effective porosity measurements (right) of the petrophysical data
used in this work.
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6.3 Estimation Results

In this section, we present the results obtained when using the proposed workflow to
estimate porosity –Section 6.3.1– and permeability –Section 6.3.2–. Table 6 shows the
accuracy for the proposed method when estimating both the effective porosity and the
formation permeability logs. These results will be discussed in the following sections.

Table 6 – Estimation of effective porosity and formation permeability measurements re-
sults. Estimation accuracy is quantified using the coefficient of determination
R2 and the normalized root mean squared error %RMSE2 between original
and predicted effective porosity values.

Effective Formation
porosity permeability

%RMSE2 (%) 7.30 5.51
R2 (%) 96.30 96.06

Figure 6.4, Figure 6.5, Figure 6.6, Figure 6.7 and Figure 6.8 display the data used
in this paper, along with the original and estimated values for each petrophysical log:
effective porosity and permeability. Due to the fact that the data covers thousands of
depth samples it was necessary to split them in 5 different intervals in order to show them
on these figures. In all of these figures the data is presented using the same structure: at
the left (a) the dynamically normalized ultrasonic borehole image data is presented, next
to it (b) the dynamically normalized microresistivity borehole image data is presented,
followed by the effective porosity data (c) and the formation permeability data (d), re-
spectively. Both curves use the same color code for displaying the results. The original
values used for training the net are plotted in solid red lines, the original values used for
testing the net are plotted in dashed blue lines, while the values predicted by the net are
represented by the solid yellow lines. The original values used for testing the net were
not used during the training procedure. The accuracy of the estimation was obtained by
comparing the values represented by the blue dashed and the yellow lines.

6.3.1 Effective porosity estimation results

As it can be seen in Table 6, the Normalized RMSE2 value when estimating the
Effective Porosity log is below 10% (7.30%), while the R2 coefficient is fairly high (96.30%).
Both these coefficient values indicate a high-quality estimation of the tested effective
porosity log. The complete original log and these estimations is shown in Figure 6.4c
Figure 6.5c, Figure 6.6c, Figure6.7c and Figure 6.8c .

Table 7 compares our best result in estimating effective porosity logs with previous
studies in the porosity estimation field. As it can be seen our result is not only higher
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Table 7 – Comparison between our best result for the estimation of effective porosity measurements and
the results of previous authors.

R2(%) Data used Method

Hamada and Elshafei (2010) 66.00 RHOB8, GR9, NPHI11, DRT/SRT12, NMR(T2)13 FFNN10

Our method 96.30 UBI/OBMI14 sAE15 + SVM16

8 RHOB: Bulk Density Log.
9 GR: Gamma Ray Log.
10 FFNN: Multilayer Feed-forward Neural Network.
11 NPHI: Neutron Porosity Log.
12 DRT: Deep Resistivity Log / SRT: Shallow Resistivity Log.
13 NMR(T2): NMR Decay Inversion Time T2 Log.
14 UBI: Ultrasonic Borehole Image / OBMI: Oil-based Borehole Micro-resistivity Imager.
15 sAE: Stacked Autoencoders.
16 SVM: Support Vector Machine.

than the one that Hamada and Elshafei (2010) obtained, but it is very close to 100%,
meaning that the estimated values are extremely close to the reference porosity log.

Lastly, Figure 6.3a and Figure 6.3b show an example of the internal encoding weights of
the trained autoencoders for the fifteen first inner layers with the highest correlation with
the effective porosity logs, for the (a) ultrasonic image data and the (b) microresistivity
image data, respectively. It is worth mentioning that even though these filters show a
great diversity, it is possible to notice that most of them seem to show higher activations
for images with high variation in their grayscale tone for the Ultrasonic Borehole Data case
(Fig 6.3a). This means that rocks that appear in ultrasonic images with high heterogeneity
(i.e., due to all intrinsic heterogeneities and roughness of the formation) are more likely
to activate the autoencoder of the ultrasonic data. This result supports the notion that
porosity is somehow directly related to the ultrasonic variations displayed in Borehole
Data, but in a more complex way than the naked eye can see.

6.3.2 Permeability estimation results

As it can be seen in Table 6, the normalized RMSE2 value is below 10%, while the
R2 coefficient is slightly over 96%, indicating a high-quality estimation, similarly to the
porosity estimation case. The complete original log and these estimations is shown in
Figure 6.4d Figure 6.5d, Figure 6.6d, Figure6.7d and Figure 6.8d .

Table 8 compares our best result in estimating permeability logs with previous stud-
ies. As it can be seen our result is higher than all of them but the result obtained by
Mohaghegh et al. (1995). However, it is worth noticing that the result Mohaghegh et al.
(1995) presented on their work was tested on a total of 23 sample points, while our method
was tested using over 3700 sample points: a considerable increase in the amount of data
points. On the other side, our best result has a R2 very close to 100%, meaning that the
estimated values are extremely close to the reference permeability log.
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Table 8 – Comparison between our best result for the estimation of permeability measurements and the
results of previous authors.

R2(%) Data used Method

Mohaghegh et al. (1995) 96.30 Depth, GR9, RHOB8, DRT12, ZSS18 ANN17

RHOB8, GR9, NPHI11, DRT/SRT12,Hamada and Elshafei (2010) 93.75
NMR(T2)13 FFNN10

Abdideh (2012) 89.00
Depth, CDT19, DT20, NPHI11, FFNN10
RHOB8, PHIT21, WS22, GR9

RHOB8, GR9, NPHI11, DT20, BNN23 + ANFIS24
Elkatatny et al. (2017) 95.00

DRT/SRT12, WS22, Caliper, PHIT21 SVM16

Our method 96.06 UBI/OBMI14 sAE15 + SVM16

17 ANN: Artificial Neural Network.
18 ZSS: Zonal Subdivision Specification.
19 CDT: Conductivity Logs.
20 DT: Sonic Response Log.
21 PHIT: Total Porosity Log.
22 WS: Water Saturation Log.
23 BNN: Backpropagation Neural Network.
24 ANFIS: Adaptative Neuro Fuzzy Interference System.

(a) (b) (c) (d)

Figure 6.3 – First 15 internal encoding weights of the trained autoencoders that produce
the encoded features with the higher correlation with the effective porosity for
the (a) ultrasonic borehole data and (b) microresistivity borehole data; and
with the higher correlation with the formation permeability log for the (c)
ultrasonic borehole data and (d) microresistivity borehole data. Bright areas
indicate high activation of neurons. The difference and variance between
filters in this image show the complexity of extracting textural information
from borehole images that might be linked to petrophysical data.
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Figure 6.4 – a) Dynamically normalized ultrasonic borehole image used for the petro-
physical parameters estimation test from depth 4790.084 to 4800.242 meters.
b) Dynamically normalized microresistivity image used for the petrophysical
parameters estimation test from depth depth 4790.084 to 4800.242 meters.
c) Effective porosity logs and d) formation permeability logs predicted from
borehole image data from depth depth 4790.084 to 4800.242 meters. The
original values used for training the net are plotted in solid red lines, the
original values used for testing the net are plotted in dashed blue lines, while
the values predicted by the net are represented by the solid yellow lines. The
original values used for testing the net were not used during the training
procedure. The accuracy of the estimation was obtained by comparing the
values represented by the blue dashed and the yellow lines.
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Figure 6.5 – a) Dynamically normalized ultrasonic borehole image used for the petro-
physical parameters estimation test from depth 4800.244 to 4810.402 meters.
b) Dynamically normalized microresistivity image used for the petrophysi-
cal parameters estimation test from depth 4800.244 to 4810.402 meters. c)
Effective porosity logs and d) formation permeability logs predicted from
borehole image data from depth 4800.244 to 4810.402 meters. The original
values used for training the net are plotted in solid red lines, the original
values used for testing the net are plotted in dashed blue lines, while the
values predicted by the net are represented by the solid yellow lines. The
original values used for testing the net were not used during the training
procedure. The accuracy of the estimation was obtained by comparing the
values represented by the blue dashed and the yellow lines.
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Figure 6.6 – a) Dynamically normalized ultrasonic borehole image used for the petro-
physical parameters estimation test from depth 4810.404 to 4820.562 meters.
b) Dynamically normalized microresistivity image used for the petrophysi-
cal parameters estimation test from depth 4810.404 to 4820.562 meters. c)
Effective porosity logs and d) formation permeability logs predicted from
borehole image data from depth 4810.404 to 4820.562 meters. The original
values used for training the net are plotted in solid red lines, the original
values used for testing the net are plotted in dashed blue lines, while the
values predicted by the net are represented by the solid yellow lines. The
original values used for testing the net were not used during the training
procedure. The accuracy of the estimation was obtained by comparing the
values represented by the blue dashed and the yellow lines.
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Figure 6.7 – a) Dynamically normalized ultrasonic borehole image used for the petro-
physical parameters estimation test from depth 4820.564 to 4830.722 meters.
b) Dynamically normalized microresistivity image used for the petrophysi-
cal parameters estimation test from depth 4820.564 to 4830.722 meters. c)
Effective porosity logs and d) formation permeability logs predicted from
borehole image data from depth 4820.564 to 4830.722 meters. The original
values used for training the net are plotted in solid red lines, the original
values used for testing the net are plotted in dashed blue lines, while the
values predicted by the net are represented by the solid yellow lines. The
original values used for testing the net were not used during the training
procedure. The accuracy of the estimation was obtained by comparing the
values represented by the blue dashed and the yellow lines.
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Figure 6.8 – a) Dynamically normalized ultrasonic borehole image used for the petro-
physical parameters estimation test from depth 4830.725 to 4837.938 meters.
b) Dynamically normalized microresistivity image used for the petrophysi-
cal parameters estimation test from depth 4830.725 to 4837.938 meters. c)
Effective porosity logs and d) formation permeability logs predicted from
borehole image data from depth 4830.725 to 4837.938 meters. The original
values used for training the net are plotted in solid red lines, the original
values used for testing the net are plotted in dashed blue lines, while the
values predicted by the net are represented by the solid yellow lines. The
original values used for testing the net were not used during the training
procedure. The accuracy of the estimation was obtained by comparing the
values represented by the blue dashed and the yellow lines.
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6.4 Conclusions

In this chapter, we have described a novel method to estimate permeability and ef-
fective porosity logs using borehole image data logs and deep networks. By doing so we
expected to show that ultrasonic and microresistivity borehole images contain inside them
far more information than previously suspected, and that this information can be used
for the estimation of these petrophysical property logs.

We used the cropped borehole image data logs –using a 21 pixel sliding window– and
trained a 3–level stacked autoencoder with them. Even though this has not been addressed
in this work, we plan to explore how the size of this window affects the final estimation
and how to find an optimal size for each kind of application, depending on the type
of studied reservoir and its expected geological formations, in future investigations. We
used these cropped images to train a series of stacked autoencoders (each for each type of
borehole image), which we later used to characterize the differences in the information of
the reservoir contained within these Image logs, extracting their inner features and using
them in a Support vector machine to predict either the effective porosity or permeability
logs final values.

Using this sliding window rather than just single–row vectors was considered neces-
sary to preserve the geological structures present in the borehole image data. With the
method proposed in this paper, these geological features remain intact, thus allowing the
autoencoders to extract information about the whole window and about the whole struc-
ture contained inside that window. This detail is specially important when trying to link
borehole images with petrophysical properties that highly depend on the values of the
surroundings, such as the properties our method estimates (porosity and permeability).
All previous studies in the petrophysical estimation field used single–point methods. In
this work we suggest that extracting the information of a certain window from borehole
images seems to improve greatly the amount of information that we can extract from this
type of data.

As we showed in Section 6.3, we obtained competitive results for both porosity and
permeability estimations: R2 = 96.30% and R2 = 96.06%, respectively. These estimations
were carried on using randomly centered continuous blocks with 300 samples of width each.
We decided to use continuous blocks rather than single randomly located points in order
to obtain more reliable and robust results, as well as to stress the network so that the
results could be compared directly with more realistic production conditions.

These results are a clear indicator that the correlation between borehole image logs
and some petrophysical logs (at least the ones we tested in this paper) is a reality. For
several years this type of data has been seen by petrophysicists as a helping tool in the
reservoir characterization process. However, the amount of information of borehole images
to be taken into account in each case when analyzing a certain reservoir was more of a
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subjective feeling or an intuition than an objective measure. Our method shows that this
correlation not only exists but that it can also be objectively quantified.

Our model performed better in estimating these petrophysical parameters than almost
all of benchmark studied, on which our work was based. Even though Mohaghegh et al.
Mohaghegh et al. (1995) had a slightly better result in the permeability prediction case
(R2 = 0.24% better than our method), it is important to notice that in their work they
used far less testing points than us: they tested their method on a total of 23 sample
points, while we tested our method on over 3700 sample points.

Taking into account the results we presented on this work and the current state of
the art of petrophysical logs estimation we consider that this novel method might be
considered an interesting approach for producing reliable estimations for both effective
and permeability logs when using borehole image data logs. Apart from that, it is also
worth mentioning that this workflow does not require the user to have any previous
advanced knowledge regarding deep networks nor artificial intelligence nor geology in
order to use it.
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Chapter 7

Conclusions

The objective of this dissertation was two–fold: first, to evidentiate how the use of
typical image processing techniques could help improve the quality of borehole image
logs, enhancing some of their features and/or retrieving part of the information contained
inside them; and second, to present the applicability of deep learning techniques to this
kind of data, and how them –which have revolutionized the machine learning field– might
be benefitial for the oil/gas industry.

In order to do so, we first introduced the different types of reservoir data that any
geologist, petrophysicist or analyst has to deal with when trying to characterize a reservoir,
in Section 2. Similarly, we introduced the concept of Deep Learning in Section 4, its
advantages and the different techniques and architectures that have gained popularity
over the last years, as well as how they could be applied to reservoir data.

Along this work we introduced 5 different novel methods to enhance, improve, char-
acterize or extract information from borehole image logs. Three of these methods were
based on shallow (non–deep) image processing techniques, which had the objective of
apply some type of transformations (linear or not) to the images, so that some part of
the information contained in them would be enhanced or removed: automatic breakouts
detection from borehole image logs, Eccentricity correction on borehole image logs and
automatic pad artifact removal on borehole image logs. On the other side, the rest of
the methods were based on deep learning techniques, which had the objective to extract
inner hidden features of the borehole images that could be later link to other type of
petrophysical properties: estimation of petrophysical logs from borehole log image data
and lithological reservoir characterization using deep convolutional neural networks.
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7.1 Method for automatic breakouts detection from borehole im-

age logs

In Section 3.3, we proposed a technique to automatically detect breakout structures
from borehole image logs, based on the information of both the ultrasonic and transit–
time data logs. The method requires the application of a standard–deviation filter (and,
optionally, a gaussian filter) on the transit–time data and the dilation and segmentation
of the resulting data. The geometric properties (such as area, centroid, etc.) from the
segmented formations are extracted and used to find the structures that better match the
conditions to be considered as breakout–pairs candidates.

Previous work on automatic detection of breakouts (Wessling and Pei, 2015) required
introducing a specialized tool into the borehole, after drilling. It is important to no-
tice that the total cost of any borehole drilling procedure is directly proportional to the
time spent on the operation, so that introducing any additional tool to detect breakouts
(apart from the conventional logging tools mentioned in Section 2 required for lithology
characterization) will inevitably cause an increase in the final cost of the operation.

The method we presented, on the other hand, does not require any special tool to
be introduced into the wellbore, as it is based on borehole image logs (which are already
obtained in conventional drilling procedures and used for several purposes, as introduced
in this dissertation). Apart from that, our method has presented a high accuracy in
characterizing the geometry of these formations. The introduction of this technique in
the current workflow of reservoir characterization and borehole image analysis could also
be very simple.

7.2 Method for eccentricity correction in borehole image logs

In Section 3.4.1, we presented a novel technique to transform ultrasonic borehole
image data logs in order to compensate the effect that irregular borehole shape and probe
uncentering cause on the information contained in them. This effect is critical because it
causes differences in the contrast of the borehole image that have nothing to do with the
lithology of the wellbore wall (on which specialists are usually interested on).

Our method, which is an extension of Menger et al. (1994) work, uses transit–time
image logs to obtain an estimation of a distance map between the probe and the borehole,
which is later used on a linear transformation applied to the ultrasonic data to correct
each sample point, deleting the effect that this distance had on the ultrasonic impedance
value of that same sample.

Even though our method is semi–automatic (as it depends on a parameter to be regu-
lated by the user), the results displayed in Section 3.4.1 show that our technique effectively
increases the local contrast of the ultrasonic image, thus enhancing the lithological infor-
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mation contained inside it and allowing some hidden structures from the Wellbore to
appear.

7.3 Method for automatic pad artifact removal from borehole im-

age logs

In Section 3.4.2, a novel method for removing pad artifacts from ultrasonic image logs
was introduced. These artifacts are left by other types of logging tools, introduced before
into the Borehole, which require or come with some type of centering mechanism (usually
some type of pads or rollers) when making contact with the borehole wall. These artifacts
have a great impact on the final Borehole Image, as they mask the lithological information
we are aiming to capture with these probes (i.e., the acoustic or electrical impedance of
the borehole wall).

Our method is based on the application of a specific pad–reject function to the ultra-
sonic data, so that the resulting image contains only the lithological information of the
wellbore that was not caused by the artifacts. As it can be seen in the previously men-
tioned section, our methods shows very interesting results when applied to real borehole
image logs, removing the pad–artifacts and enhancing only the lithological underneath.
The results suggest a relvant gain in borehole processing methods, and it might help ge-
ologists and petrophysicists to analyze and exract information from these borehole logs
more easily. To the best of our knowledge there are no previous methods nor techniques
(publically published) regarding this topic.

7.4 Method for reservoir lithofacies characterization using deep

convolutional neural networks and borehole image data logs

In Section 5, we described a novel method to automatically classify reservoir lithofacies
using borehole image data logs and deep convolutional neural networks. By doing so we
expected to show, the same way we did in Section 6, that ultrasonic and microresistivity
borehole images contain inside them far more information than was expected, and that
this information can be used for such a challenging and important task as the classification
of lithofacies.

Our method was based on two identical convolutional neural networks with a total of
17 layers (5 convolutional, 4 normalization, 6 activation, 1 fully–connected and 1 softmax),
one for each type of borehole image data log used (ultrasonic and microresistivity), whose
function is to extract the inner high–order features of these image Logs. After training
them, these nets (as explained in Section 5.4) automatically look for high–order features
such as fractures or bumpy regions in the image logs, which present a high correlation with
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the lithofacies we are aiming to predict. These high–order features (from both borehole
image logs) are extracted, concatenated and used in a k–nearest neighbour classifier to
obtain the definitive categorical prediction of lithofacies class for each data sample.

With this architecture we achieved a global classification accuracy of over 97%. We
tested our method predicting continous blocks of 100 samples each instead of single data
points to obtain more robust and reliable results. Even though the number of samples
for each class predicted was not uniform (ARGILITO and CALCILUTITO had far less
samples than the rest of the classes) our classifier showed consistent results and no class
was predicted with an accuracy inferior to 94%.

Taking into account the results we presented on this contribution and the current
state of the art of automatic lithofacies prediction we consider that this novel method
might be considered a promissing approach for producing reliable classifications when
using borehole image data logs. Apart from that, it is also worth mentioning that this
workflow does not require the user to have any previous advanced knowledge regarding
deep networks nor artificial intelligence nor geology in order to use it.

It is important to notice that Deep Learning techniques and, specially, convolutional
neural networks are expected to keep evolving and increasing their performance in the
following years. Even though the results we obtained in this work are very interesting, it
should be clear that the applicability that other types of deep learning techniques have
on the oil/gas industry has not been exploited yet. The use of modern convolutional
diagram–type architectures such as residual blocks or inception modules could make the
classification results even better. For instance, generative adversarial networks could
also be used to simulate borehole data which could be used to create more accurate
petrophysical models; while deep intuition methods, such as the one shown by AlphaZero
(Marcus, 2018; Barratt and Pan) (which after only 24 hours of self–taughthing itself
to play the ancient chinese game GO defeated the world human champion), could help
us automatize the procedures carried on by geologists and analysts regarding reservoir
characterization, structure and formations detection or even assist in highly–qualified
tasks such as deciding where to drill a borehole in the reservoir or whether it is worthy
or feasible to extract oil from a reservoir or not.

7.5 Method for estimating petrophysical logs using stacked au-

toencoders and borehole image data logs

In Section 6, we introduced a novel method for estimating porosity and permeability
logs from borehole image data, by using deep learning techniques. Our method is based
on two identical 3–level stacked AE, one for the ultrasonic borehole data and another for
the microresistivity borehole data, which were used to characterize the inner features of
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these data logs. Later, these features are used in a SVM classifier to obtain an estimation
of porosity or permeability values.

Previous work on this field had shown very positive results while using other types of
wirelogs (not images) such as Gamma–Ray, Neutron Porosity and/or Bulk Density Logs.
On the other hand, more recent research has used linear operations to predict permeability
and porosity from borehole images by estimating fracture aperture (Cheung et al., 1990;
Luthi and Souhaité, 1990) or by calculating the rock matrix porosity of ultrasonic borehole
images (de Jesus et al., 2016). However the results they obtained achieved lower accuracy
than the ones we obtained using the method we presented in this work.

Our method achieved an estimation correlation of over R2 = 96% for both porosity
and permeability logs estimations, when using the testing data presented in the previously
mentioned section. This value presented a notable improvement regarding the benchmark,
except for the result obtained by Mohaghegh et al. (1995), which had a slightly better
result than ours. Even though it is important to notice that Mohaghegh et al. (1995):
used a far smaller testing sample group (23 data samples) than ours (3700 sample points);
and used other types of wirelogs which seem to be more intrisically related to the borehole
lithology than borehole image logs (such as Gamma–Ray or Bulk Density Logs).

Apart from that, it is also interesting to mention that our work was based on brazilian
pre–salt carbonate reservoir data. The data obtained from this group of basins has proven
to be difficult to analyze as most of the well–known models currently used to analyze other
types of reservoirs from all over the world do not seem to apply correctly to them. The
brazilian pre–salt Ccarbonate is still considered a challenge for the petrophysical world
for these and other reasons.

The increase in regression performance with our method is important not only because
it allows petrophysicists to estimate the values of permeability and porosity logs more
accurately, but also because it shows that borehole image data Llgs can really be linked
to these petrophysical properties in such a way that the information extracted from them
using deep methods can be used to estimate these logs with higher accuracy than the
methods that use conventional wirelogs such as Gamma Ray, Spontaneous Potential or
Bulk Density logs.

It is also important to emphasize that our method relies on the extraction of geological
information for each type of borehole data within a certain sliding window, which preserves
the geological and lithological structures that we expect to be related to the petrophysical
logs we are estimating. To the best of our knowledge, all previous benchmark used
single point operations to perform their estimations, rather than taking into account the
information contained in the surroundings of each data sample.

Future work in this area includes testing this method using other deep learning ar-
chitectures (e.g., convolutional, rectifier, normalization and pooling layers), and how the
effect of convolutional methods affects the regression result, as well as studying how the
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size of the sliding window affects the final prediction.
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APPENDIX A

Common Examples of
Convolutional Neural Networks

Architectures

Each one of the types of layers introduced before can be seen as an important building
block to be used to build CNNs. And even though knowing their specific functionalities
helps in the process of CNN implementation, it still requires a lot of expertise and trial
and error in order to fully get the sense of how these building blocks should be combined
and used together to form an effective architecture which can be reliable for the specific
problem to be solved. For that reason, it has been considered interesting to include in
this work the most common CNN architectures that have appeared on the literature since
Yann LeCun’s first paper.

A.1 LeNet–5 (1998) – Yann LeCun et al.

In Figure A.1 the architecture of what is usually considered the first CNN ever is
shown: LeCun’s et al. LeNet–5 Network. This net included a total of 7 layers: 2 convo-
lutional layers, 2 pool layers, 2 FC layers and a final discriminative layer. LeNet–5 was
used for classificating [32× 32] hand–written digits images.
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Figure A.1 – Architecture of LeNet–5, the CNN created by LeCun et al. in 1998, designed
for hand–written digits classification and the first CNN ever implemented.
Image extracted from LeCun et al. paper LeCun et al. (1998).

A.2 AlexNet (2012) – Krizhevsky et al.

Even though LeCun’s net already used convolutional layers to extract features from in-
put images, it was not until Krizhevsky et al. presented their net to the ILSVR Challenge
in 2012 that CNNs started to be considered as real tools for image processing. Figure A.2
shows the architecture of 2012 AlexNet, which was mainly composed by 3 convolutional–
pooling groups (ConvLayer + ReLU + Local Response Normalization Layer + Max–Pool
Layer), 2 simple convolutional groups (ConvLayer + ReLU), 3 FC groups (FC + ReLU +
Dropout) and a final discriminative layer that classified the images among different 1000
classes. This configuration won the 2012 ILSVR Challenge, with a total of 15.4% error
on classification (that is 11% less error than the second best net).

Since LeCun et al., almost all CNN–like architecture that had been built and tested
had used the ConvLayer + PoolLayer group. It was not until AlexNet that it was shown
that it was possible (and equally effective) to stack some of these convolutional groups
without using any pool or subsampling method after the convolution. On the other hand,
Krizhevsky et al. implemented for the first time the dropout layer, as well as used data
augmentation1 to prevent overfitting.

1Data augmentation is an overfit–preventing technique which consists on using the same image samples
repeatedly, changing some spatial parameters such as rotation, translation, reflections, etc. This way
more data is input to the net and therefore the training process can be more complete, thus obtaining
classification or recognition models that do not depend so strongly on these spatial features, but just on
the shapes and real properties of the images we are aiming to characterize with the CNN.
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Figure A.2 – Illustration showing the architecture of Krizhevsky’s (et al.) CNN: AlexNet.
This CNN was the winner of 2012 ILSVR Challenge with an error rate of
15.4%. As it can be seen, it was formed by 8 main groups os layers: 5
convolutionals and 3 fully–connected.

A.3 ZF Net (2013) – M. Zeiler and R. Fergus

In 2013, the winner of the ILSVR Challenge was again a CNN model proposed by M.
Zeiler and R. Fergus and called ZF Net. The architecture of ZFNet itself, which is shown
in Figure A.3, was simply an improvement of the 2012 version of AlexNet. The main
differences are that ZFNet used [7×7] filters with stride 2 in the first convolutional layer,
instead of the [11× 11] filters with stride 4 found in the original AlexNet, and that some
hyperparameters of the layers were modified. The main intuition behind this decrease in
the input filter size is that smaller filters help to retain more spatial information, thus
the net is able to see more of the input intrinsic patterns, before applying the following
deeper layers.

Figure A.3 – Illustration showing the architecture of M. Zeiler and R. Fergus CNN:
ZFNet. This CNN was the winner of 2013 ILSVR Challenge with an er-
ror rate of 11.2%. ZFNet is an improvement version of 2012 AlexNet, with
some modified filter and pooling sizes and strides.

Although the architecture proposed by M. Zeiler and R. Fergus was simply a revision
of AlexNet, the truth is that their paper Zeiler and Fergus (2014), on which their classi-
fication results and methodologies were explained, is still considered up to date as one of
the most important papers on Convolutional Neural Networks. That is so because there
Zeiler and Fergus introduced a new method for visualizing CNNs. Instead of showing the
activations that a certain image would have after going through the layers of the trained
network, they proposed to attach a Deconvolutional Network Zeiler et al. (2011) to each
one of the layers of the already trained CNN to map the extracted features from each
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one of these layer back to the original input image pixel size, by using deconvolutions,
unpooling and rectification layers.

This process allow us to visualize which structures in the original image input in the
net cause a certain group of neurons to excite. Thus, it is possible to check if the structures
that activate each layer in the net do correspond with the classes or types of groups we are
aiming to classify or recognize with our net. Being able to check the greatest activations
for each class in real pixel is vital to check the discriminative power of the network, as
well as to evaluate how well the training procedure went. Figure A.4 shows an example
of these deconvolved activations for layer 4 and 5 of the original ZF Net. It is possible to
see how the structures of the original images (images on the left, mainly in gray tones)
that most activate each class do have a great correlation with the classes that the authors
were aiming to classify in the problem (dogs, persons, etc.).

Figure A.4 – Visualizations of some examples of images for different classes used in the
ZF–Net and the structures of these images that produce the greatest acti-
vations of the net. Source: Zeiler and Fergus (2014).

A.4 VGG Net (2014) – Simonyan and Zisserman

VGG Net was presented in the first ILSVR Challenge celebrated in 2014, by its creators
Simonyan and Zisserman. Even though they did not win the competition, the VGG Net
was the second classified (just below GoogleNet) obtaining a stunning 7.3% error rate:
an improvement of almost 4% when compared to the previous year challenge winner, ZF–
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Net. In their paper Simonyan and Zisserman (2014) it is possible to check all different
structures and combinations that they tested to achieve the final result. Among all of
them, the one that performed the best was the architecture using 16 different layers.

What was most surprising about VGG Net success was its simplicity: it is based on a
combination of [3× 3] stride 1 convolutional layers and [2× 2] with stride 2 max–pooling
layers, along with Activation and FC layers. Instead of using different sets of filters with
higher sizes (like AlexNet or ZF–Net did before them), they decided to consistently use
smaller filters in an attempt to decrease the number of total parameters. Apart from that,
they argue that a concatenation of 3 [3× 3] filters has a receptive field of [7× 7], thus this
net should be able to extract similar patterns and features as other architectures with
bigger filters, but reducing the total amount of parameters.

The final architecture that achieved the best results (and that was presented in the
ILSVR challenge) is shown in Figure A.5. It is interesting to notice how the depth of the
ConvLayers doubles each time a pooling is applied to the data. This reinforces the idea
that the deeper the layer is located inside the CNN, the greater Depth it should have.
This concept has been applied to the method for Facies classification proposed in this
Section.

Figure A.5 – Illustration of the full architecture of the VGG–16 Net, which obtained a
top–5 classification error rate of 7.3% in the 2013 ILSVR Challenge.

A.5 GoogLeNet (2014) – Szegedy et al.

Until the presentation of GoogLeNet in 2014, all proposed CNN architectures were
based on Deep stacking of sequential layers. Different combinations of layers produced
different features and activations, thus leading to different results; while the improvement
on classification and object recognition was thought to be a matter of how these build-
ing blocks were combined together. Szegedy et al. changed that landscape in 2014 by
introducing the concept of inception layers.

An inception layer or inception module can be defined as a group of layers (usually
ConvLayers, Pool Layers and ReLU layers) that are gathered in a way such that their
operations are applied in parallel. This means that different operations (convolutions,
maxpooling, etc.) are applied to the same input data, which comes from previous layers,
and its outputs are concatenated at the end of the module so that they can be used in
further (inception or common) layers.
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Figure A.6 shows an example of an inception module used in the original version of
GoogLeNet. In this case the inception module is formed by 4 different parallel groups: a)
[1× 1] ConvLayer; b) a [1× 1] followed by a [3× 3] ConvLayers; c) a [1× 1] followed by a
[5× 5] ConvLayers; and d) a [3× 3] max–pooling layer followed by a [1× 1] ConvLayer.
At the end of the module all the responses obtained at each one of these 4 branches are
concatenated2 so that it can be used in any following layers (or inception modules).

Figure A.6 – Illustration of an inception layer. In this case this layer is formed by 4
parallel operations: a) [1× 1] ConvLayer; b) a [1× 1] followed by a [3× 3]
ConvLayers; c) a [1× 1] followed by a [5× 5] ConvLayers; and d) a [3× 3]
max–pooling layer followed by a [1× 1] ConvLayer. The results of each one
of these groups of layers are then concatenated and used in the following
structures of the net. Source: Szegedy et al. (2015).

The main purpose when using different filter sizes for the same input data coming
from the previous layer is that each one of them might enhance different features of that
data. The [1 × 1] convolutional layers act as dimension reduction units, where the size
of the input data is not modified in width, height or number of channels, but its depth
its reduced. That way it is possible to obtain a number of parameters so that the final
concatenated matrix can be feasibly used in the training process without consuming too
many resources.

The first version of GoogLeNet, which achieved a total error rate of 6.7%, was formed
by a total of 22 modules/groups of layers, which were built up with a total of 154 single
layers. Figure A.7 shows the full diagram of this version of GoogLeNet.

The main highlights of GoogLeNet were:
2When data with different sizes must be concatenated, the most common approach is to pad with

zeros the smaller data so that it becomes the same size as the data with the biggest size.
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1. Improvement in the classification and object recognition error, which was reduced
down to 6.7%.

2. Most Deep architecture created up to that date with over 150 layers in total.

3. Use of Average PoolLayers instead of FC layers to create dense layers and activations.
This feature allows the net to save a huge number of parameters (i.e., a total of 12×
less parameters than AlexNet).

4. First CNN architecture ever to use inception models as parallel processing units,
showing that complex non–stacking structures were not only possible, but also pro-
vided great results when dealing with image recognition and classification.
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A.6 Microsoft ResNet (2015) – He et al.

The ILSVR Challenge of 2015 represented a major step forward in the image processing
and CNN world because it was the first time that the error rate of an artificial system
overcame the average accuracy of human beings. The winner of that year challenge was
a CNN architecture called ResNet, developed by the Microsoft AI research time He et al.
(2016). This net achieved an incredible 3.6% error rate, much better than the average
humans error rate, which ranges from 5 to 10% depending on the level of expertise of the
user.

The main idea behind ResNet was that instead of making the net optimize the acti-
vation functions of singular data after each operational block, it would be easier for the
net to optimize the differential activation functions that each block had to add to the
previous layer result. Thus, let us image some data x coming from a previous block in
the net which suffers a certain transformation f due to the activation function of a block
(composed by convolutional, pooling and or other types of layers), after which the data
can be represented as f(x); at the end of the Residual block the original data x is added
to the transformed data, so that the output data of the ResBlock is f(x) + x instead of
x. Figure A.8 illustrates the concept of a single Residual Block.

Figure A.8 – Illustration of the concept of a Residual Block. On each one of these blocks
the data coming from the previous block x goes through some layers or
blocks, being transformed into f(x); at the end of the block, this transformed
data is added to the original input data, so that the output of the block is
f(x) + x. Source: He et al. (2016).

The complete architecture of the first version of ResNet is shown in Figure A.9. As it



156 APPENDIX A. Common Examples of Convolutional Neural Networks Architectures

can be seen in the figure, the net was formed by 50 Residual Blocks, each one composed
by 3 groups of ConvLayer + NormLayer + ReLU. He et al. argue in their paper He et al.
(2016) that it is easier for the net to optimize the residual mapping than to optimize
the original, unreferenced mapping. There they also show the different results that they
obtained for different tested architectures: a plain network inspired in VGG16 with more
layers and ResNets with different sizes. He et al. showed that simply stacking layers
on plain architectures did not necessarily mean that the error rate would decrease, while
ResNets with higher number of layers did perform better than ResNets with fewer of
them.
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APPENDIX B

Lithofacies Classification Results

The following figures display the 60 blocks with the highest prediction error, sorted
from worse (the whole block was misclassified) to better (only some samples of the block
were misclassified). The first three columns display the (a) depth, (b) ultrasonic data
and (c) resistivity data of that interval, while the forth and fifth columns show the (d)
target facies of that interval (made by geologists based not only on the borehole image
data presented here, but also in raw logs, core analysis and seismic data) and the (e)
prediction made by the model proposed in Section 5.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.3 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.6 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.9 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.12 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.15 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.18 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.21 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.24 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.27 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.30 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.33 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.36 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.39 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.42 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.45 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.48 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.51 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.54 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.57 – a) Well depth reference of the analyzed interval and respective b) ultrasonic
and c) microresistivity borehole image data, d) lithofacies target (made by
geologists) and e) classification prediction using the proposed method.
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure B.59 – a) Well Depth Reference of the analyzed interval. b) Ultrasonic and c)
Microresistivity Borehole Image Data at the specified interval. d) Target
classification of the Sedimentary Facies of the specified interval (made by
Geologists). e) Classification Prediction using the proposed method.
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