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“If we knew what it was we were doing, it
would not be called research, would it?”

Albert Einstein
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Abstract
Magnonics is an emerging research field that aims to use spin-waves to trans-

mit and process information, which can be encoded either in the amplitude or the
phase, and they have the advantage of not relying in charge transport, which might
eliminate Joule losses. Spin-wave propagation is usually performed in geometri-
cally patterned magnetic waveguides that require the continuous application of an
external magnetic field, jeopardizing the energy efficiency of the system.

Magnetic domain walls are known for either reflecting or phase shifting inci-
dent spin-waves. Recently, it has been proposed that they can be used as propa-
gation channels. As they exist in remanent magnetic states, they don’t require an
external field, and as boundary regions, domain walls act as potential wells, thus
confining the spin-waves within its nano-sized width. We have studied the use
of magnetic Néel walls as spin-waves channels for information transport through
micromagnetic simulations, and the experimental achievement of these structures
through magnetometry and magnetic domain imaging techniques.

The micromagnetic simulations of spin-wave transmission along a 180o Néel
wall, has shown that strongly confined waves are found within the wall width up
to 3 GHz, with well-defined wave vectors and above that frequency, the wave starts
to spread to the uniform domains. The dispersion relation for the confined waves
resembles a magnetostatic-dominated Damon-Eschbach mode with positive disper-
sion with group velocites up to 1.8 km/s and propagation length up to 4 µm. The
Néel wall is naturally found in Landau-domain configurations in nanostructures,
which also contains a vortex separating the wall in two. We have shown that the
vortex act as a barrier for spin-waves, except for very specific frequencies, thus, act-
ing as a frequency filter.

Experimentally, the Landau structure is very hard to achieve as small fields are
enough to irreversibly saturate the structure, as we have shown through hysteresis
simulations, SQUID and MOKE magnetometry experiments. To overcome that, we
have fabricated a 10 µm wide rectangular permalloy structure that gradually shrinks
to a constant 5 µm end on the other side by electron-beam lithography and lift-off.
An alternate exponentially decaying field is transversely applied to reproducibly
obtain the Landau configuration, as confirmed by Kerr microscopy images.

As future steps, Lorentz microscopy, along with ferromagnetic resonance exper-
iments will be performed in the samples, and also, the design of magnonic circuitry
that includes the Néel wall as waveguide are to be conceptualized and experimen-
tally achieved.
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Resumo
Magnônica é uma área de pesquisa que busca utilizar ondas de spin para trans-

mitir e processar informação, que pode ser codificada tanto na amplitude quanto na
fase. Possuem a vantagem de não dependender de tansporte de carga, o que pode
eliminar perdas por efeito Joule. A propagação de ondas de spin é geralmente feita
em guias de onda litografadas que necessitam a aplicação de um campo magnético
externo, o que prejudica a eficiência energética do sistema, além de limitar a flexibil-
idade do caminho de propagação das ondas.

Recentemente, foi proposto que paredes de domínio magnéticas podem ser us-
adas como guias de ondas de spin. Como existem em estados magnéticos rema-
nentes, não requerem aplicação de campos externos, e como regiões de interface,
agem como poços de potencial, confinando as ondas em sua largura nanométrica.
Nesta dissertação, estudamos o uso de paredes de domínios de Néel como canais de
propagação de ondas de spin através de simulações micromagnéticas, e a realização
experimental dessas estruturas através de técnincas de magnetometria e imagea-
mento de domínios magnéticos.

Simulações micromagnéticas da transmissão de ondas de spin em paredes de
Néel, mostrou que as ondas são fortemente confinadas em frequências de até 3 GHz,
com vetores de ondas bem definidos, e acima disso, as ondas perdem o caráter de
confinamento. A relação de dispersão para as ondas confinadas são do tipo magne-
tostática, com dispersão positiva, velocidades de grupo de até 1.8 km/s e compri-
mentos de propagação de até 4 µm. A parede de Néel é naturalmente encontrada
em nanoestruturas que possuem domínios de Landau, que também possuem um
vórtice separando a parede em duas partes. Foi mostrado que o vórtice age impede
a propagação das ondas de spin de um lado para o outro, exceto para frequências
específicas, agindo assim como um filtro de frequência.

Experimentalmente, a estrutura de Landau é não é facilmente obtida, pois pe-
quenos campos externos são suficiente para saturar irreversivelmente a estrutura,
como mostramos através de simulações de histerese, e experimentos de magnetome-
tria SQUID e MOKE. Estruturas retangulares de permalloy ou de CoFeB com uma
largura de 10 µm de uma lado, que gradualmente diminui até uma largura de 5 µm
do outro lado, foram fabricadas por litografia de feixe de elétrons e lift-off. A estru-
tura de Landau só é obtida reprodutivelmente através da aplicação de um campo
desmagnetizante transversal, o que foi confirmado por imagens Kerr.

Como próximos passos, microscopia Lorentz e experimentos de ressonância fer-
romagnética serão realizados nas amostras, e também o desenho de circuitos mag-
nônicos que incluam as paredes de Néel como guias de ondas devem ser idealizadas
e obtidas experimentalmente.
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Chapter 1

Introduction

1.1 Motivation

The semiconductor industry has rapidly grown from few companies in the 1960s,
when the transistor manufacturing became viable, to a worldwide 400 billion US
dollars sector in 2017 [1]. The technology revolution that accompanied that — the
world of computers, high-speed internet and smartphones — has been made possi-
ble through the exponential miniaturization of microprocessors and increasing data
processing speed. This is a consequence of the computing industry rule of thumb:
the Moore’s law, that states that the number of transistors in an integrated circuit
will double every two years or so [2].

However, as the transistors scale to a few-nanometers size range, the CMOS
technology reaches a physical constraint, the quantum mechanics limit, in which its
intrinsic uncertainties would make them hopelessly unreliable for the currently em-
ployed Boolean logic. Nevertheless, the current major drawback in keeping Moore’s
law is the substantial power consumption due to the electric current inherent Joule
heating [3]. Thus, to overcome that, several novel research fields have been propos-
ing low-dissipation information carriers as substitutes for the electron, such as pho-
tons in photonics [4], the electron spin in spintronics [5] and spin-waves, and their
quanta magnons, in magnonics [6].

Spin waves are perturbations of the microscopic magnetization vectors that
propagate in a magnetic material. They were introduced by Bloch, in 1930, in order
to explain the low-energy collective spin excitations that caused a T3/2 temperature
dependence of the spontaneous magnetization of a ferromagnet [7] at low tempera-
tures. As no charge transport is needed for spin waves, their propagation can be free
of Joule heat losses. Also, their spectrum covers the GHz range, which is currently
used in communication, and can also reach the promissing THz range [8]. Their rela-
tively low group velocities reduces their wavelength to the nanoscale, thus allowing
the miniaturization of magnon-based devices [9].
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Magnonics is the research field that aims to use spin-waves for information
transport and processing, which can be encoded either in the wave amplitude or
phase. Magnonic devices make use of the inherent wave characteristics [6], such as
spin-wave excitation and propagation [10–12], interference and diffraction [13, 14],
refraction and reflection [15], and quantization due to lateral confinement [16]. The
recent advances in nanofabrication and in micromagnetic simulations have boosted
the demonstration and realization of several magnonic devices, such as spin-wave
diodes [17], multiplexers [18], logic gates [19–21] and waveguides [22, 23].

One main building block of a magnonic device is a waveguide to transmit the
spin-wave from one physical location to a desired position. This is generally done
through a geometrically patterned microstrips with a large external magnetic field
to saturate their magnetization, in order to select specific spin-wave modes [24, 25].
Although significant progress has been made, as integration with spin-torque nan-
odevices [26] and propagation in curved geometries [22, 27, 28], the continuous ap-
plication of a magnetic field still jeopardizes the energy efficiency of the system.

One way to overcome that is the use of dipolar coupled magnetic nanostruc-
tures with well-defined uniform remanent states due to shape anisotropy [29]. These
allow different geometries without an external field, but once the system is fab-
ricated, no flexibility in the pathway can be made any further. A fundamentally
different approach that has been proposed would be the use of surfaces and bound-
aries, which naturally confine spin-waves within their width, as channels for the
wave propagation [30, 31].

The use of magnetic domain walls as spin-wave channels was firstly addressed
by a numerical study [30] for specific wall conditions. It has gained momentum after
a work [32] has shown the experimental realization of spin-wave transmission in
magnetic Néel walls. These walls are found in remanent Landau-domains states in
permalloy nanostructures, so they do not need an external magnetic field. Also, the
domain wall can be easily moved through the use of very small magnetic fields, and
charge or spin currents. All of these show the potential of using magnetic domain
walls as low-energy and flexible channels for spin-wave transmission in magnonic
devices [21, 33, 34].

1.2 Objectives

This thesis aims to computationally and experimentally evaluate the use of Néel do-
main walls as spin-wave waveguides for information transmission and processing
for magnonic applications.

Through micromagnetic simulations, we aim to analyze the nature of the spin-
waves that can be excited within a magnetic Néel wall: its confinement within the
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wall width, its dispersion characteristics and its flexibility under external magnetic
fields conditions. Also, to find the ground-state magnetic configuration for permal-
loy rectangles and compute their behaviour under an external field.

Experimentally, we aim to fabricate, through lithographic techniques, permal-
loy or CoFeB nanostructures that can contain a magnetic Landau-domain configu-
ration, and identify the conditions to reproducibly obtain the magnetic Néel wall, in
order to perform static and dynamic magnetic characterization experiments.

1.3 This Thesis

This thesis is organized in the following manner: a theoretical background, the com-
putational and experimental methods, the results and discussion, and conclusions
and future work.

In chapter 2, the micromagnetic equations are explained: the magnetic free en-
ergy terms and the Landau-Lifshitz-Gilbert equation. The equations for magnetic
domain and domain walls are derived, and the possible low-energy magnetic config-
urations for permalloy rectangles are discussed. Also, the solutions for spin-waves
in the magnetostatic regime in thin films are obtained.

In chapter 3, the micromagnetic simulation software Mumax3 [35] is described
along the static and dynamic simulations protocols. Also, the fabrication of samples
through lithography processes is explained, along with the characterization methods
of SQUID magnetometry, magneto-optic Kerr effect magnetometry and imaging and
magnetic force microscopy.

Chapter 4 shows the results and discussion for micromagnetic simulations of
spin-waves for an infinite Néel wall and for a finite Néel wall in a Landau-domain
configuration. Also, the simulations of the lowest-energy magnetic state for permal-
loy rectangles and hysteresis loops of the main states. The experimentally fabricated
structures are shown and the magnetometry experiments, along with the magnetic
domain images are shown and explained.

Chapter 5 presents the current conclusions and future work.
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Chapter 2

Theoretical Background

2.1 Magnetic Materials

The magnetic proprieties of a material arises from its electrons proprieties — for
instance, the total angular momentum (J), with the orbital (L), and electronic and
nuclear spin (S) angular momenta terms — and their interaction with each other
and with external magnetic fields [36]. The atomic magnetic moment (µ) is evaluated
through eq. 2.1, where g is the Landé g-factor, µB is the Bohr magneton and J is the
total angular momentum quantum number (J = L + S) [37].

µ = −gµB J (2.1)

Materials with no resulting atomic magnetic moment are called diamagnetic.
Those that, even though there is a resulting magnetic moment, no order is present,
are called paramagnetic (Fig. 2.1 (A)). If there are both an effective moment and a
regular arrangement, then we have magnetic materials [37].

The latter can be classified according to the relative orientation between neigh-
boring moments (Fig. 2.1): ferromagnetic (B) — with a parallel order of spins —,
antiferromagnetic (C) — antiparallel order, with zero net magnetization — , ferri-
magnetic (D) — antiparallel order with a net magnetization —.

(A) (B) (C) (D)

FIGURE 2.1: Classification of magnetic materials: (A) paramagnetic, (B) ferromagnetic,
(C) antiferromagnetic and (D) ferrimagnetic.
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The effective momentum of a material is described by the magnetization vector
( ~M, S.I. unit A m−1), eq. 2.2, which is the sum of all atomic momenta (~µ, eq. 2.1) di-
vided by its volume (V). An external magnetic field (~H, S.I. unit A m−1) may induce
a magnetization in a material, the resulting field can be described by the magnetic
induction — or magnetic flux density — vector field (~B, S.I. unit T), eq. 2.3.

~M = lim
V→0

∑~µ

V
(2.2)

~B = µ0( ~M + ~H) (2.3)

We can, then, describe the magnetic behavior of a material by how its magne-
tization changes with the application of an external magnetic field [38] through a
quantity called susceptibility (χ, dimensionless), eq. 2.4.

χ =
M
H

(2.4)

A magnetization curve is the graphical representation of the magnetization vs
the external field, fig. 2.2(A). For dia-, para- or antiferromagnets, that have no net
magnetization, the curve is linear — the former with a negative slope, and a pos-
itive slope for the other two —. For ferri- or ferromagnets, fig. 2.2(B) the curve is
non-linear, and it reaches a constant value of M at large values of H, the saturation
magnetization (MS).

Also, even when the field is removed, the ferri- or ferromagnets still retain a
finite value of magnetization, the remanence magnetizaton (MR), this behavior is
known as hysteresis. The magnetization only returns to zero when a strong enough
field is applied in the opposite direction, this magntitude is called coercive field (HC)
[38].

A hard ferromagnet needs a high field in order to achieve the saturation, whereas
a soft ferromagnet only needs a small field for that. The main material used in this
work is permalloy (Py), here taken for Ni80Fe20, which is a soft magnet — it typically
needs a field of around 1 A/m to saturate [38].

In the magnetization curve of a ferromagnet, if we travel between large enough
external fields so that the material reaches the magnetization saturation, it is the
maximum hysteresis achievable, called the major loop, Fig. 2.2(B). But if the cycling
process stops before the field needed for saturation, then we have a minor loop. If
we keep alternating the field direction and slowly decreasing the amplitude, the ma-
terial will reach smaller and smaller loops until arriving at the origin. This process
is called cyclic demagnetization [38].

The magnetization behavior as a function of the temperature is also an impor-
tant feature, usually graphed as the inverse of the susceptibility (χ−1) vs temperature
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(A)

- M R

- M S

H C  H

M

- H C

M S
M R

(B)

FIGURE 2.2: (A) Typical magnetization curve for a diamagnet (red), a paramagnet
(green) and a ferri- or ferromagnet (blue). (B) A complete magnetization curve for a

ferromagnet.
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(T). For a paramagnet, it is given by eq. 2.5, where x is given by eq. 2.6.This leads
to eq. 2.7 in the small x limit — low field and/or high temperature limit —, which
is a straight line in the χ−1 vs T curve, known as Curie Law, where C is the Curie
constant [37], Fig. 2.3(A).

M = M0

[(
1 +

1
2J

)[
coth

(
1 +

1
2J

)
x
]
− 1

2J
coth

( x
2J

)]
(2.5)

x =
gµ0µB JH

kBT
(2.6)

χ =
µ0ng2 J(J + 1)

3kBT
=

C
T

(2.7)

χ-1

T e m p e r a t u r e  [ K ]

(A) Paramagnet

Sa
tur

ati
on

 M
ag

ne
tiza

tio
n [

A/m
]

T e m p e r a t u r e  [ K ]
T C

M 0

F e r r o m a g n e t i c P a r a m a g n e t i c

(B) Ferromagnet

FIGURE 2.3: (A) Paramagnetic inverse of magnetic susceptibility vs temperature, Curie
law, eq. 2.7. (B) Ferromagnetic saturation magnetization vs temperature. The material

transitions to a paramagnetic behavior above the Curie temperature (TC).
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For a ferromagnet, the magnetization saturation is decrescent with the temper-
ature — its maximum value, M0, occours, classically, at 0 K — and it reaches a criti-
cal temperature (the Curie temperature, TC) where the magnetic order is destroyed,
and above that, the material has a paramagnetic behavior, Fig. 2.3(B). Besides the
cyclic demagnetization, another way of demagnetizing a ferromagnet is by heating
it above its Curie temperature so that it becomes paramagnetic and then cool it down
without any external fields. This is called thermal demagnetization.

2.2 Ferromagnetism

A ferromagnet is a magnetic material that, below its Curie temperature, can retain
a long-range ordering of its unpaired magnetic moments even without the presence
of an external field. The first breakthrough in understanding this behavior was the
mean field theory by Pierre Weiss (1906), which postulated that a strong internal
field — called the molecular field (HM) — allows the atomic magnetic moments to
align despite the effects of temperature [39]. This field is proportional to the material
magnetization, eq. 2.8, where λM is the molecular field constant.

HM = λM M (2.8)

In order to explain the existence of the demagnetized states, Weiss also postu-
lated the presence of magnetic domains, that are small regions within the ferromag-
net, each of which is saturated, but in different direction, allowing the net magne-
tization to be zero. Therefore, the application of a magnetic field would make the
domains rotate towards the field direction until the multi-domain state becomes a
single-domain, the saturated state.

Although Weiss did not explain the physical origin of this molecular field, and
the interaction terms that are ignored when applying a mean field theory, his two
postulates — the spontaneous magnetization and the magnetic domains — are still
accepted as the basis of understanding ferromagnetism [38]. As the local magneti-
zation magnitude has a constant value, it is handy to use the magnetization direc-
tion vector (~m) only — the reduced magnetization —, as defined in eq. 2.9, where
| ~m |2= 1.

~m =
~M

MS
(2.9)

The current understanding of the magnetic interactions in a ferromagnet, which
will ultimately be the physical cause of its behavior, can be described by the total
magnetic free energy, eq. 2.10 . It contains several interaction terms, such as the
exchange energy — the physical origin of the Weiss molecular field —, the Zeeman
energy — the tendency of the magnetization to align to an external field —, the
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long-range magnetostatic energy and the anisotropy energy, which will be further
explained in the following sections.

E = Eex + EZeeman + Ems + EA + ... (2.10)

2.2.1 Exchange Energy

The spontaneous magnetization of a ferromagnet, the Weiss molecular field, was
not elucidated until 1928 when Heisenberg introduced the quantum-mechanical ex-
change interaction, which arises from the indistinguishability of electrons [37]. This
interaction between two adjacent spins can be described by the Heisenberg hamilto-
nian, eq. 2.11.

H = −2Jex~Si · ~Sj (2.11)

Where Jex is the exchange integral, which is positive for ferromagnets — mini-
mum energy exchange occurs when all spins are parallel — and negative for antifer-
romagnets. If we introduce a continuous ~m function in the lattice position rj, we can
also write the exchange energy for a pair of spins as 2.12.

Epair
ex = −2JexS2[(~rj · ∇)~m]2 (2.12)

We can then derive the total exchange energy in a sample, eq. 2.13, where Aex

is the exchange stiffness constant, which measures how hard it is from a spin to
deviate from the parallel configuration in a ferromagnet. For example, in a cubic
system with lattice parameter a, the exchange stiffness is eq. 2.14. For permalloy,
Aex = 1.3× 10−11 J m−1.

Eex = Aex

∫
(∇~m)2dV (2.13)

Aex =
JexS2

a
(2.14)

Essentially, the exchange energy measures the non-uniformity of the magneti-
zation across the sample, eq. 2.13. It is minimum when the magnetization of the
sample is entirely uniform [37].

2.2.2 Zeeman Energy

Zeeman energy term arises from the interaction between the spins and an external
magnetic field ( ~Hext). It can be described as eq. 2.15. It has its minimum value when
the spins are parallel to the external field. For a large enough field, the sample will
become saturated in the field direction.

EZeeman = −µ0MS

∫
~m · ~HextdV (2.15)
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2.2.3 Magnetostatic Energy

Besides the interaction with an external magnetic field, the material also interacts
with its own magnetic field, the demagnetizing field or stray field ( ~Hd). The en-
ergy term derived from this interaction is the magnetostatic or stray field or dipolar
energy.

From Maxwell’s equation (eq. 2.16), we can derive an expression for the stray
field, eq. 2.17. Thus, the sinks and sources of magnetization behave as "magnetic
charges", although they never appear isolated [40]. The magnetostatic energy of a
sample is evaluated as eq. 2.18.

∇ · ~B = ∇ · µ0(~H + ~M) = 0 (2.16)

∇ · ~Hd = −∇ · ~M (2.17)

Ems =
1
2

µ0

∫
allspace

~Hd
2
dV = −1

2

∫
sample

~Hd · ~MdV (2.18)

As an example, the stray field of an ellipsoid is linearly proportional to its
magnetization, eq. 2.19, where Nd is the demagnetizing factor that is direction-
dependent. Its magnetostatic energy is, then, eq. 2.20, where θ is the angle between
the rotational symmetry direction and the magnetization [37].

~Hd = −Nd ~M (2.19)

Ems =
1
2

µ0M2
SV(N⊥sin2θ + N‖cos2θ) (2.20)

Notice that there are different values for the demagnetizing factor for a paral-
lel (N‖) to the rotational symmetry axis direction and for a perpendicular direction
(N⊥) to it. This is known as shape anisotropy, which means that the dipolar en-
ergy is minimized for specific directions of magnetization — easy and hard axes of
magnetization arise —.

For example, the needle of a compass will have an easy axis along its length,
and for a thin film, in-plane magnetization is favoured. The magnetostatic energy is
also the physical origin of the formation of magnetic domains, as we shall later see.

2.2.4 Anisotropy Energy

The anisotropy (or magnetocrystalline) energy arises from the charge distribution
of the crystal field, which can be understood as the spin-orbit coupling between the
magnetic momenta of the atoms and the crystal structure of the material, making
certain crystallographic axes more energetically favoured than others [40].
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In the simplest case, a material has an energy minimum at one specific axis:
uniaxial anisotropy. Assuming that the anisotropy energy depends only on the angle
(θ) between that axis and the magnetization direction can be written, for the two
lowest energy terms as eq. 2.21, as: [37].

EA =
∫
(Ku1 sin2θ + Ku2 sin4θ)dV (2.21)

2.3 Magnetic Domains and Domain Walls

Even though a ferromagnet presents spontaneous magnetization, a macroscopic sam-
ple can exhibit demagnetized states. This is possible because magnetic materials are
composed of magnetic domains — regions where all spins are parallel —, but as
each domain can point at a different direction, the overall magnetization can be zero
[37].

The physical origin of the division in domains comes mainly from the magne-
tostatic energy. For instance, consider a monodomain large crystal with uniaxial
anisotropy, fig. 2.4a. Free poles on the top and bottom of the sample are a large
source of demagnetizing field ( ~Hd), so the magnetostatic energy has a high value,
eq. 2.18. If the sample splits into two oppositely magnetized domains (fig. 2.4b),
the north and south poles become closer to one another, causing the energy to be
reduced to almost half of the initial value [38].

(A) Monodomain (B) Two Domains (C) Closure Domain

FIGURE 2.4: The division in domains lowers the magnetostatic energy of the sample.

We can define a single-domain critical diameter (Dcr) in which particles with
dimensions below that constant are single-domains and above that, the division in
domains is more energetically favorable. This can be done by finding the size condi-
tions that the energy for a single and a two-domain structure are equal.

For example, let’s consider an ellipsoid with two possible magnetic configura-
tion with the magnetization in the major axis: (1) monodomain (fig. 2.4a) and (2)



Chapter 2. Theoretical Background 12

two oppositely magnetized domains separated by a domain wall (fig. 2.4b). The
magnetostatic energy for the single domain state (1), with a long semi-axis a and a
short semiaxis b, and demagnetizing factor along the major axis N‖ the free energy
is: [37]

Ems(1) = −
1
2

µ0 ~Hd · ~MV =
1
2

µ0N‖M
2
S

(
4
3

πa2b
)

(2.22)

For a two domain state (2), the magnetostatic energy taken as a integral over the
whole space will have a negligible contribution at large distances, so the energy will
be lower than the single state, which we will assume that the magnetostatic term is
multiplied by a factor α < 1.

Also, the domain wall energy shall be added, which is the surface energy den-
sity γ times the cross sectional area:

Ems(2) = αEms(1) + Ewall (2.23)

Ems(2) =
1
2

αµ0N‖M
2
S

(
4
3

πa2b + γπab
)

(2.24)

By equating the two expressions, the critical single-domain diameter for an el-
lipsoid, Dcr = 2a , is

Dcr =
3γ

(1− α)N‖µ0M2
S

(2.25)

For a Bloch domain wall energy density (γ = 4
√

AKu, eq. 2.30) and assuming
α = 0.5 for a sphere, which has N‖ = 1/3, one obtains:

Dcr =
72
√

AKu

µ0M2
S

(2.26)

If the sample splits into more and more domains, the dipolar energy becomes
lower and lower, but this cannot continue indefinitely, since the transition region be-
tween one domain and its neighbours — the domain walls — increase the exchange
and anisotropy energies of the system. If the domains have magnetization directions
almost parallel to the surface of the sample, then we a have a closure-domain (fig.
2.4c), which are magnetic configurations with very low magnetostatic energy, as they
avoid the presence of magnetic poles [37].

As stated above, domain walls are transition regions between two magnetic
domains with different magnetization directions. For instance, consider a sample
with two oppositely magnetized domains at the easy axis ±y. If the transition is
abrupt, then we have antiparallel spins at the interface, which will have a large en-
ergy associated with it. The energy can, then, be lower if the 180o change take place
gradually over N spins, so the angle between neighbouring spins is φ = π/N [38].
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The exchange energy of the wall can be evaluated as:

Eex = A
(dφ

dx

)2
(2.27)

If we have a general anisotropy energy EK = g(φ), then we can evaluate the
total wall surface energy as:

γwall =
∫ ∞

−∞

[
A
(dφ

dx

)2
+ g(φ)

]
dx (2.28)

There are two main types of domain walls: if the spins of the wall rotate per-
pendicular to the plane of the domain spins — the Bloch wall, fig. 2.5a — and if the
spins of the wall rotate in the same plane of the spins of the domains — the Néel
wall, fig. 2.5b —.

(A) Bloch Wall (B) Néel Wall

FIGURE 2.5: The two main types of domain wall.

In the Bloch wall (fig. 2.5a) the magnetization rotates parallel to the wall plane,
which results in a zero global magnetic charge inside the wall. The stray field is,
then, zero, making this wall the lowest energy one for a bulk material. Consider
a 180o Bloch wall separating two domains of opposite magnetization in a material
with uniaxial anisotropy:

EK = g(φ) = Kusin2φ (2.29)

We can, then, obtain a Bloch wall total energy density (exchange and anisotropy),
through eq. 2.28, as:

γuniaxial
Bloch = 4

√
AKu (2.30)

We can define a domain wall width as the product of the number of spins in the
wall (N) multiplied by the spacing between them (a), in equilibrium, which can be
obtained as

δBloch = Na = π

√
A
Ku

(2.31)

In the Néel wall (fig. 2.5b), as the magnetization rotates in plane, uncompen-
sated magnetic charges arise, which makes the magnetostatic energy not negligible:

ems = −
1
2

µ0M2
s cosθ (2.32)
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As a consequence, the Néel surface energy density is higher than the Bloch wall:

γNeel = 4

√
A
(

K1 +
1
2

µ0M2
s

)
(2.33)

However, its wall width is lower than the Bloch wall:

δNeel = π

√
A

K1 +
1
2 µ0M2

s
(2.34)

Therefore, although the Bloch wall has a lower energy density for thick samples,
in thins film, with thicknesses in the order of magnitude of the Bloch width, the Néel
wall becomes the favoured structure.

There is also another kind of domain wall in thin films, the cross-tie wall. This
is an intermediate between the Néel and the Bloch walls and is composed of a line of
vortices and antivortices that are formed as an attempt to mix the magnetic charges
on the wall and reduce the magnetostatic energy. Basically, if the film is thin enough,
Néel walls are the lowest energy state, and, as the thickness grows, the cross-tie wall
becomes more favorable, followed by the Bloch wall [38].

2.4 Micromagnetic Equations

Micromagnetism is an approach for describing magnetic materials that, instead of
studying each spin and its interactions, considers the magnetization as a continuous
function ~M(~r). The sample is then divided in volumes that are larger than the atomic
scale but small enough so that magnetic domains and domain walls can be resolved.

2.4.1 Energy Minimization

If a sample is smaller than a critical size, the magnetization will be parallel every-
where. If it exceeds this size, it will divide into domains and the direction of ~M will
vary with the position. The magnetic configuration of the sample ~M(~r) can, then, be
obtained by the total energy (eq. 2.35) minimization of the specimen [38].

E = Eex + EA + Ems + EZeeman + ... (2.35)

We can define all the interactions that lead to energy terms (exchange, anisotropy,
stay field) as an effective field:

~He f f = −
1
V

∂E
∂M

(2.36)
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The minimization of energy leads to ~m(~r) being parallel to ~He f f . As a conse-
quence, the torque that ~He f f exerts in ~m is zero:

µ0~m× ~He f f = 0 (2.37)

For instance, we can write eq. 2.38 for a material with uniaxial anisotropy.

E =
µ0M2

S
2

∫
V

[ 2A
µ0M2

S
(∇~m)2 +

2Ku

µ0M2
S

eA(θ)−
1

MS
~m · ~Hd −

2
MS

~m · ~H
]
dV (2.38)

From this equation, the coefficient of the first term is called l2
ex, the square of

the exchange length (2.39), which is a length scale in which the exchange interaction
dominates magnetostatic effects in that material [37].

lex =

√
2A

µ0M2
S

(2.39)

2.4.2 Magnetization Dynamics

In an equilibrium condition, the torque that the effective field exerts on the magneti-
zation is null (eq. 2.37). But if the magnetization is withdrawn from equilibrium (by
applying an external magnetic field, for example) a finite torque will be exerted and
we can find an equation of motion as eq. 2.40, where γe is the electron gyromagnetic
ratio.

d ~M
dt

= −γeµ0( ~M× ~He f f ) (2.40)

This equation describes a precession of ~M around ~He f f . The system would
keep this motion endlessly if no damping mechanism existed. The damped system
precesses until it reaches a new equilibrium configuration. The relaxation mecha-
nism is described phenomenologically by the Gilbert damping term (α), through the
Landau-Lifshitz-Gilbert (LLG) equation:

d ~M
dt

= −γ ~M× ~He f f +
α

MS
~M× ( ~M× ~He f f ) (2.41)

2.5 Magnetic Configurations in Permalloy Rectangles

The magnetic ground state configuration of a sample is found out by the energy
minimization micromagnetic equation. Nevertheless, this is not a trivial issue, as it
can vary with the sample exact shape, size and its magnetic history.
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This problem became clear when NIST proposed its standard problem 1 (SD1):
the hysteresis loop of a 2µm x 1µm x 20nm permalloy rectangle, fig. 2.6. The anony-
mously submitted results presented very different coercive fields and different mag-
netic states. These discrepancies have been explained though programming prob-
lems, underdiscretization and different starting conditions [41].

FIGURE 2.6: NIST Standard problem 1.
Source: https://www.ctcms.nist.gov/ rdm/mumag.org.html

Permalloy is a soft magnetic material with low magnetocrystalline anisotropy.
In thin films, the magnetic configuration tends to be in-plane due to shape anisotropy.
The low energy magnetic states are ultimately determined by the competition be-
tween the exchange energy, which tends to align the neighbouring spins, and the
magnetostatic energy, that tends to form flux-closure states.

Several magnetic configurations are known for micron-sized permalloy rectan-
gles, between stable and metastable states, the main ones are shown in fig. 2.7. They
can be divided in basically two categories: (1) high average magnetization: the C−,
S- and flower states, and (2) low average magnetization (flux-closure): diamond,
Landau and cross-tie states.

The high average magnetization configurations are essentially uniform states.
The boundary creates a shape anisotropy in which the dipolar energy is minimized
through a rotation of the magnetic moments at the edges. This rotation characterizes
the type of state: S-, C- or flower. These states are the lower energy ones in very small
particles, in which the exchange energy dominates (typically for lengths smaller than
100 nm), and in high aspect ratio elements, as the large distance between opposite
poles decreases their magnetostatic energy [41].
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(A) C-State (B) S-State

(C) Flower State (D) Diamond State

(E) Landau State (F) Cross-Tie State

FIGURE 2.7: Magnetic configurations in thin-film permalloy rectangles. Images ob-
tained from a 2 µm x 1 µm x 5 nm permalloy rectangle simulation from the micromag-

netic simulation software Mumax3[35].

Typically, the S- and C- states are the minimum energy when the exchange inter-
action dominates over the magnetostatic one. S- or C- state transition to the flower
state often only happens in high external fields, due to the Zeeman energy contri-
bution. S- and C- states are nearly degenerate states, although the C-state is slightly
favoured for small particles [41].

The low net magnetization configurations are flux-closure states, thus they min-
imize the magnetostatic energy of the system with the division in domains and do-
main walls. If the length of a permalloy rectangle keeps increasing from a S- or
C- state, typically a transition to the Landau state will be the first to happen. The
Landau state (fig. 2.7e), consists of 4 magnetic domains that effectively closes the
flux with a relatively narrow 180o Néel wall at its center, that is separated in two
through a magnetic vortex.

Although 90o walls are energetically more favourable than 180o ones, they have
a larger width, which makes the diamond state (fig. 2.7d) the most favourable one
for higher lengths. The simpler diamond state consists of 7 domains, with 2 vortexes
with opposite circularities. At higher aspect ratios more domains and vortexes with
alternating circularities may appear.

Finally, the cross-tie state (fig. 2.7f) is an intermediate between the Néel wall,
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which is favoured in low thicknesses, and the Bloch wall, favoured in higher thick-
nesses. It consists of a Landau state, with a Néel wall with extra vortexes and an-
tivortexes between them. The energy of a 90o Néel wall is about 12% of the 180o one,
so the total energy is lowered by replacing a 180o Néel wall by the rather complex
cross-tie configuration [40]. The one shown in fig. 2.7f is a single cross-tie, but for
different aspect ratios, sizes and thicknesses, much more complex structures, with
more vortexes, might appear.

2.6 Spin Waves

A local perturbation in the magnetization can propagate across a magnetic mate-
rial in a wave-like manner, the so-called spin waves. They were first introduced in
1930 by Bloch [7] in order to explain the saturation magnetization reduction with
the increasing of temperature. At 0 K, all the spins are parallel. When the tempera-
ture rises to a finite value, although much smaller then the Curie temperature, low-
energy collective excitations of exchange-coupled spins lowers the sample’s magne-
tization in a T3/2 manner.

These excitations correspond, in a classical analogy, to a linear chain of spins
precessing around an effective field, with the same frequency, but with a small phase
change between neighbours, fig. 2.8. If the phase difference between them is large,
then the spin-wave wavelength is small, we say that the system is in the exchange
regime. If the phase difference is small, then the wavelength is large (λ � lex) and
the dipolar interaction dominates, the magnetostatic regime is achieved.

In the magnetostatic regime, in which the dipolar interaction is the main restor-
ing force, the spin-waves are typically much more dispersive than electromagnetic
waves, with eigenfrequencies in the low-GHz range, and also, they are anisotropic,
even for isotropic media, as shall be seen in the dispersion relation for an infinite
thin film. At the low wavelength exchange regime, the spin-waves tend to be more
isotropic, with frequencies that can go up to the THz range, and with group veloci-
ties that increases with the wavevector [8].

FIGURE 2.8: Pictorial representation of a spin wave.

Let’s consider a linear chain of n spins, separated by a distance a, coupled by
the exchange interaction only. The Heisenberg hamiltonian is eq. 2.42, where we
assume that only the nearest neighbours interactions are not negligible, also s = 1/2
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and Jex > 0. It can be shown [42] that the eigenvalue of the energy in that system
is eq. 2.43. In the ka � 1 limit, the dispersion relation reduces to the quadratic eq.
2.44, which was the first dispersion relation derived for a spin wave, made by Bloch
[7].

H = −2
Jex

h̄ ∑
n

~Sn · ~Sn+1 (2.42)

E = h̄ω = 2Jex(1− cos(ka)) (2.43)

ω =
Jexa2

h̄
k2 (2.44)

For a ferromagnetic material, we want to consider not only the exchange, but
also magnetostatic, Zeeman and anisotropy energies. In order to do so, we have to
use the macroscopic Landau-Lifshitz equation for the motion of the magnetization
(eq. 2.40), where we decompose the magnetization and effective field in static and
dynamical components:

~M(t) = MS ẑ + ~meiωt (2.45)

~He f f (t) = H0ẑ +~heiωt (2.46)

The magneto-quasi-static approximation of the Maxwell equations can be used
when the spin wave wavelength is much different from that of an electromagnetic
wave of the same frequency (k � ω

√
ε/c). From that, we can write the magneto-

static scalar potential~h = −∇ψ, and obtain the Walker’s equation [42]:

(1 + χ)

[
∂2ψ

∂x2 +
∂2ψ

∂y2

]
+

∂2ψ

∂z2 = 0 (2.47)

For an infinite bulk material, we may consider uniform infinite plane wave solu-
tions for~h and ~m, and, by applying them to eq. 2.47, one can arrive in the dispersion
relation [42]:

ω(k) =
√
(ω0 + ωM Ak2)(ω0 + ωM Ak2 + ωMsin2θ) (2.48)

Where A is the exchange stiffness, θ is the angle between the effective field He f f and
the wave propagation direction k, also:

ω0 = γµ0H0 (2.49)

ωM = γµ0MS (2.50)

For k = 0 we have λ → ∞, which means a uniform movement where all spins
are precessing in phase. This is the ferromagnetic resonance (FMR) mode, and it is
dominated by the long-range magnetostatic interaction. Its frequency is given by eq.
2.51. Thus, for the exchange regime (high k) we get the typical quadratic dispersion
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(eq. 2.52).

ωFMR = ω(k = 0) =
√

ω0(ω0 + ωMsin2θ) (2.51)

ω(k→ ∞) = ωM Ak2 (2.52)

For a finite body, boundary conditions must be applied at the sample surface
in the Walker’s equation. For example, this was done by Kittel [43] for a ellipsoid
with demagnetizing factors Nx, Ny and Nz, and static field in the z-direction (H0), in
which he arrived in the uniform mode:

ωFMR = γ
√
[H0 + (Ny − Nz)MS][H0 + (Nx − Nz)MS] (2.53)

2.6.1 Spin Waves in Thin Films

The spin wave dispersion curve for a saturated ( ~M ‖ ~H0) thin film with thickness d
in the magnetostatic regime was first derived by Damon and Eshbach in 1961 [44].
There are basically three possible geometries: (1) the film is magnetized perpendicu-
larly to its plane (fig. 2.9a), (2) the film is magnetized in-plane and the wave vector is
parallel to the magnetization (~k ‖ ~M, fig. 2.9b) and (3) also in-plane magnetization,
but the magnetization and wave vector are perpendicular to each other (~k⊥ ~M, fig.
2.9c).

(A) MSFVM (B) MSBVM (C) MSSM

FIGURE 2.9: Different geometries for spin waves propagating in a thin film. (A) Mag-
netostatic Forward Volume Modes (MSFVM). (B) Magnetostatic Backward Volume

Modes (MSBVM). (C) Magnetostatic Surface Modes (MSSM).

If a plane wave is excited with wave vector~k = ~k‖ +~k⊥, where these are, re-
spectively, the parallel and perpendicular to the plane components. We will apply
the Walker’s equation (eq. 2.47) inside the film, and, outside the film, as χ = 0, it
reduces to the Laplace’s equation (∇2ψ = 0).

(1) For the first geometry, a normally magnetized film, fig. 2.9a, we apply the
appropriate boundary conditions [42], the dispersion relation can be calculated for
the lowest-order mode as eq. 2.54:

ωMSFVM =

√√√√ω0

[
ω0 + ωM

(
1− 1− e−k‖d

k‖d

)]
(2.54)
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FIGURE 2.10: Typical dispersion relation for the lowest-order magnetostatic mode for
each geometry.

These waves have a positive dispersion, see fig. 2.10, (frequency increases with k),
therefore the phase (vph = ω/k) and group velocities (vg = ∂ω/∂k) are both in
the same direction, which is the definition of a forward wave. The dispersion only
depends in the magnitude and not the direction of k‖, which means that there is
a isotropic wave propagation in the film plane. Also, the amplitude is distributed
sinusoidally throughout all the volume. These waves modes are, then, called magne-
tostatic forward volume modes (MSFVM).

(2) For a tangentially magnetized film with ~k ‖ ~M (fig. 2.9b) the dispersion
relation for the lowest-order mode is:

ωMSBVM =

√√√√ω0

[
ω0 + ωM

(
1− e−k⊥d

k⊥d

)]
(2.55)

These waves have a negative slope, fig. 2.10, (frequency decreases with k), which
results in a negative group velocity, so the group and phase velocities have different
directions (backward wave). Also, the dispersion does not change by reversing the
in-plane direction of propagation and, just like for the last geometry, the amplitude
is distributed sinusoidally throughout the whole volume of the sample. These are
the magnetostatic backward volume modes (MSBVM).

(3) Finally, for the tangentially magnetized film with ~k⊥ ~M (fig. 2.9c), the fol-
lowing dispersion curve can be obtained:

ωMSSM =

√
ω0(ω0 + ωM) +

ω2
M

4
[1− e−2kd] (2.56)

In this mode, the wave amplitude decays exponentially from the surface of the film,
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and for that it is called magnetostatic surface mode (MSSM) — also known as Damon-
Eshbach (DE) mode. The phase and group velocities point in the same direction, fig.
2.10. The dispersion relation is invariant to the reversal of the propagation direction,
but the mode is not. Actually, the fields of the mode change from one surface of
the film to the other when the propagation direction is reversed, this is called field
displacement non-reciprocity [42].

These results were generalized by Kalinikos and A N Slavin in 1986 through the
use of perturbation theory [45]. They have taken in account not only the magneto-
static interaction but also the exchange energy — the dipole-exchange spin waves —
in thin films for an arbitrary polar (φ) and azimuthal (θ) angles of magnetization for
a film in the xy plane with thickness d. The derived dispersion relation:

ω(k) =
√
(ωH + ωM Ak2

‖)(ωH + ωM Ak2
‖ + ωMFnn) (2.57)

Fnn = Pnn + sin2θ

(
1− Pnn(1 + cos2φ) + ωM

Pnn(1− Pnn)sin2φ

ωH + ωM Ak2
‖

)
(2.58)

Where, the matrix element Pnn varies in the range 0 < Pnn < 1, and will have
different expressions for pinned and unpinned surfaces. For a unpinned surface, the
expression is

Pnn′ =
k2
⊥

k2
n′

δnn′ +
k4
⊥

k2
nk2

n′

[1− (−1)ne−k⊥L]

k⊥d
1 + (−1)n+n′√

(1 + δ0n)(1 + δ0n′)
(2.59)

Which, for the lowest order mode it becomes:

P00 = 1− 1− e−kd

kd
(2.60)

In summary, eq. 2.57 generalizes the spin-waves modes that can be obtained in a
thin film. In the low wavevelength limit, the exchange-dominated regime, the equa-
tion presents a quadratic relation. In the magnostatic regime, long wavelength limit,
the equations for the forward surface modes, and backward and forward volume
modes can be obtained by applying the appropriate azimuthal and polar angles.
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Chapter 3

Methods

3.1 Micromagnetic Simulations

Micromagnetic simulations are important tools for the prediction of magnetic do-
main structures and the dynamic behavior of magnetic micro- and nano-sized ele-
ments. It is suited for a length scale that is large enough so that the atomic structure
can be neglected, but small enough for domain walls to be noticeable.

MuMax3 [35] was employed for that purpose, which is an open-source GPU-
accelerated micromagnetic simulation software, written in Go language and CUDA,
that uses a finite-difference discretization method. Static simulations are executed
through the relax() command, which is an energy minimization method followed by
a torque minimization. The dynamics of magnetization is evaluated by a Runge-
Kutta (RK45) method for solving the Landau-Lifshitz torque equation (eq. 3.1), for a
specified gyromagnetic ratio (γ) and Gilbert damping parameter (α).

τ =
γ

1 + α2 (~m× ~He f f + α(~m× (~m× ~He f f ))) (3.1)

The discretization of the sample is a critical issue as a small cell size is desired for
obtaining a high resolution, but at the same time it demands computational memory
and time. On the other hand, in order do get reliable solutions, the cell length has to
be smaller than the material exchange length (eq. 2.39).

As we have simulated permalloy structures, an exchange stiffness A = 13 ×
10−12 J/m and a saturation magnetization MS = 8 × 105A/m were assumed [46].
The exchange length for permalloy is approximately lex ≈ 5.7nm. Therefore, the cell
sizes we used were L ≤ 5nm. The phenomenological Gilbert damping parameter
for the permalloy thin film structures was set to α = 0.007 [47].

The investigation of the dynamical response of a structure to an alternate ex-
ternal magnetic field was done through a sinc-function pulse, eq. 3.2 (Fig. 3.1a).
The Fourier transform (FT) of the sinc-function is a step-function (Fig. 3.1b) that
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simultaneously excites all the frequencies up to a cut-off frequency ( f0). The sam-
ple’s magnetization response to that pulse is then saved as a function of time. After
performing a The FFT-intensity peaks correspond to a ferromagnetic resonance state.

Hext(t) = H0
sin(2π f0t)

2π f0t
(3.2)

(A) Sinc-Function.

(B) Sinc-Function Fourier transform.

FIGURE 3.1: (A) The Sinc-Function with a cut-off frequency of 50 GHz and (B) its fast
Fourier transform in the frequency domain.
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3.1.1 Static Magnetization Methods

3.1.1.1 Magnetic Ground-State

In order to obtain the magnetic ground state of permalloy rectangles, the following
method was applied:

1. The length and width of the rectangle is defined;

2. An initial magnetization sate was defined between uniform (S, C or flower),
Landau or diamond states with a random noise applied in each one;

3. The relax() command is applied until a minimum energy and minimum torque
state is achieved;

4. The total energy (exchange and magnetostatic) are saved;

5. A total energy vs. size curve is plotted.

3.1.1.2 Hysteresis Curves

The method for obtaining magnetization curves are:

1. The length, width and initial magnetization state are defined;

2. The system is relaxed and the final magnetization state is saved;

3. An external magnetic field is applied in steps of δB = 0.1 mT;

4. In each step, the system is relaxed and the magnetization is saved;

5. A magnetization vs. applied field curve is plotted for a specific direction.

3.1.2 Magnetization Dynamics Methods

3.1.2.1 Magnetic Eigenmodes

The dynamic response of the system to an alternate external magnetic field is ob-
tained as:

1. The initial magnetization is defined and relaxed;

2. A sinc-pulse is applied as an external magnetic field in a specific region of the
sample (antenna) in the z-direction (out-of-plane);

3. The system is allowed to respond to the pulse and the z-magnetization is saved
until it returns to equilibrium;

4. The magnetization as a function of time is Fourier transformed;

5. A FFT intensity vs. frequency curve is plotted.
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3.1.2.2 Dispersion Relation

The dispersion relation, group velocity and propagation length of the waves is ob-
tained as:

1. The initial magnetization is defined and relaxed;

2. An out-of-plane sinusoidal pulse is applied with a specified frequency (vary-
ing in δ f = 0.25 GHz) as an external field in a specific region of the sample;

3. The magnetization components in each cell is saved as a function of time;

4. The z-magnetization is plotted against the x-component for a fixed y-position
(y = 0, at the center);

5. The curve is fitted as a damped sine wave (eq. 3.3), and the wavenumber (k)
and damping coefficient (propagation length, Λ) are obtained.

mz(x) = m0 sin(kx + φ) e−x
/

Λ (3.3)

6. A frequency vs. wavenumber (dispersion relation) and a propagation length
vs. frequency curves are plotted;

7. The dispersion relation curve is derived and multiplied by 2π in order to ob-
tain a group velocity vs. frequency curve (eq. 3.4).

vg = 2π
∂ f
∂k

(3.4)

3.2 Fabrication of Samples

Lithography and metal deposition techniques were employed for the production of
nano/micron-sized structures at LABNANO/CBPF.

Optical and electron-beam lithography are conventional methods for nano/micron-
sized structures fabrication. Optical lithography uses light to change the chemical
proprieties of a photosensitive resin (also known as resist) to create a micron-sized
pattern. In order to achieve sub-micron scale patterning, electron-beam lithography
is typically employed. It uses a collimated electron beam from a scanning electron
microscope to create the pattern on a resist.

The resist is a photosensitive or electron-sensitive polymer in a solvent. It works
as a mask, protecting some areas from etching or avoiding metal deposition to occur.
A positive resist, used in additive lithography processes, will suffer chemical bonds
breaking after being exposed, which will lower its molecular weight and make the
exposed areas more soluble to some solvents (called developers). Besides, the op-
posite happens in a negative resist, used in subtractive lithography, the exposition
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causes a local polymerization or cross-linking, which increases its molecular weight,
making the exposed areas less soluble.

In the additive process, the one used in this thesis, see fig. 3.2, a resist, spun on
a substrate, is exposed either to light or to an electron-beam, then it is developed in
order to remove only the desired areas. After, a thin film is deposited and the resist
is lifted-off and only the exposed areas remain on the substrate.

(A) Spin Coating (B) Exposition

(C) Development (D) Metal Deposition (E) Lift-off

FIGURE 3.2: Additive lithography with positive-resist steps.

In the subtractive process, the thin-film is first deposited on top of the substrate,
and only after that, a resist is spun over the film. The resist is then exposed, followed
by a developing process that removes the desired areas, leaving the film exposed.
Later on, a plasma etching process is employed to corrode the non-protected metal
until reaching the substrate. Then, either an oxigen plasma etching and/or a lift-
off step, is used to remove the remaining resist, leaving only the metallic designed
pattern.

3.2.1 Optical Lithography: Positive Resist

Optical Lithography was applied in order to achieve structures with dimension sizes
above 10 µm. An overview of the process is schematically shown in fig. 3.2.

Inside the class 1000 cleanroom at LABNANO/CBPF, a positive AZ1505 resist
from Clariant with spectral photosensitivity between 310 and 440 nm is deposited
on a Si/SiO2 substrate through a spin coating process. The substrate is fixed inside
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the spinner and resist is applied at its center. The system then starts to rotate at
4000 rpm for 40 seconds in order to spread the resist over the whole surface with
a homogeneous thickness of 0.5 µm. The substrate is then placed in a hot plate at
100oC for 60 seconds for polymer curing.

The sample is then placed inside a Heidelberg µPG 101 Laser Writer where
a pattern will be exposed on the photoresist through a laser beam with a specific
power and pixel exposure time. The pattern is designed in a computer-aided design
open-source software, Libre CAD. To determine the optimum power and exposure
time, for each design a dose test is performed.

The dose test consist in the exposing the same design several times, each of
which have a different power but the same pixel exposure time. After that, a second
dose test is done with that specific power, but with varying exposure times. The
system is again analyzed to find the best value. For our samples, we a power of 5
mW was used with a relative pixel exposure time between 40% - 60%. A Clariant
AZ 300 MIF Photoresist Developer is then applied for 60 seconds on the sample in
order to solubilize only the laser-exposed areas leaving the substrate unprotected
exclusively in these places.

Magnetron Sputtering is then used for the desired metal deposition, which will
be further explained in section 3.2.3. The whole surface of the substrate is covered
with the metal and in the last step, the lift-off, the sample is submerged in acetone,
which will dissolve the remaining resist, leaving the developed areas only, where the
metal was deposited directly to the substrate. The system is placed in a ultrasonic
bath, for at least 5 minutes, until all the resist is dissolved. The substrate is then
cleaned with isopropyl alcohol followed by deionized water, and it is dried with an
air flow so that no stains are left on the surface.

The optical lithography with positive resist process is summarized below:

1. Resist deposition: AZ1505 Clariant resist is deposited on a SiO2 substrate in a
spin coater at 4000 rpm for 40 seconds, followed by 60 seconds in a hot plate
at 100o C.

2. Exposition: The pattern is exposed in a µPG 101 Laser Writer, with a previ-
ously optimized dose and exposure time.

3. Development: the sample is submerged in a Clariant AZ 300 MIF photoresist
developer for 60 seconds.

4. Metallization: a thin-film metallic layer is deposited through magnetron sput-
tering with the desired thickness.

5. Lift-off: the sample is submerged in acetone and placed in an ultrasonic bath
until all the resist is dissolved.
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3.2.2 Electron-Beam Lithography: Positive Resist

Electron-Beam Lithography was applied for obtaining structures with dimension
sizes below 10 µm. An overview of the process is schematically shown in Fig. 3.2.

At a class 1000 cleanroom at LABNANO/CBPF, a positive AR-P 672.045 resist
from ALLRESIST, which is PMMA 950 K dissolved in anisole, is spun on a Si/SiO2

substrate at 4000 rpm for 60 seconds in order to achieve a 0.23 µm thickness. It is
then placed in a hot plate at 150oC for 3 minutes for solvent evaporation.

The sample is placed in a Raith e-LiNE lithographic system.The electron-beam
expositions have been performed at a z = 29 mm height, aperture size 30 µm, 20
kV of acceleration voltage and a write field of 100 µm. For each sample the elec-
tron microscope image has to be optimized for aperture alignment, astigmatism and
working distance.

The working distance for the samples is around 5.4 mm, and it is optimized by
burning contamination dots on the sample, which creates spots on the surface. The
smaller the spot diameter, the more collimated is the beam. The area dose applied for
this resist was between 80 - 110 µC/cm2, according to a dose test that is previously
done for optimization purposes (as the one in fig. 3.3), with a spot size around 15
nm.

FIGURE 3.3: An example of an electron-beam lithography dose test with doses varying
between 70 and 300 µC/cm2.

After the exposition, the sample is developed in a 70% isopropyil alcohol and
30% deionized water solution for 60 seconds for dissolution of the e-beam exposed
areas only. The desired metal is then deposited through a magnetron sputtering
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technique, at a base pressure around 10−8 Torr and argon working pressure of 5
mTor.

In the final lift-off step, the sample is immersed in acetone for 3 minutes, fol-
lowed by 15 seconds of ultrasonic bath, in order to dissolve all the remaining resist,
leaving only the metallic areas that were attached directly to the substrate. The sub-
strate is then cleaned with isopropyl alcohol followed by deionized water, and it
is dried with an air flow so that no stains are left on the surface. The sample is
then analyzed in an electron microscope in order to characterize its final size and
roughness.

The electron-beam lithography with positive resist process is summarized be-
low:

1. Resist deposition: ALLRESIST AR-P 672.045 950k PMMA resist is deposited
on a SiO2 substrate in a spin coater at 4000 rpm for 60 seconds, followed by 3
minutes in a hot plate at 150o C.

2. Exposition: The pattern is exposed in a Raith e-LINE lithographic microscope
at a 29 mm height, 30 µm aperture, 20 kV acceleration voltage and 100 µm
writefield, with a previously optimized dose.

3. Development: the sample is submerged in a 70% isopropyil alcohol and 30%
deionized water solution for 60 seconds.

4. Metallization: a thin-film metallic layer is deposited through magnetron sput-
tering with the desired thickness.

5. Lift-off: the sample is submerged in acetone for 3 minutes and placed in an
ultrasonic bath for 15 seconds.

3.2.3 Magnetron Sputtering

Magnetron sputtering technique is used for thin-film metal deposition, in this thesis
mainly Au, Permalloy (Ni80Fe20) and CoFeB. In a high vacuum main chamber, with
a base pressure around 10−8 Torr, a negative potential is applied to the target metal
whereas a positive bias is applied to the substrate, that is placed facing the target.

The chamber is then filled with a high purity inert gas, for instance Argon, with
working pressure of 5 mTorr. As shown in fig. 3.4, the Argon is ionized in the
presence of the electrical field and the gas ions are accelerated towards the target
metal. The high energy molecular collisions that take place forces the negatively
charged target metal atoms to be ejected into the plasma and those are accelerated
to the positively charged substrate, forming a thin film coating above the sample.

In order to enhance the adherence between the metal and the substrate, a thin
(usually less than 5 nm) buffer layer, titanium or tantalum for example, is deposited
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FIGURE 3.4: Schematic representation of plasma formation in magnetron sputtering.
The ionized argon atoms hit the surface of the target metal, ejecting atoms that are

accelerated towards the sample, that coats it.

before the target metal. On top of the metal, a thin capping layer is also deposited to
avoid oxidation, as tantalum or ruthenium.

An AJA International magnetron sputtering, see fig. 3.5 , was employed in this
thesis, with 6 guns, which are connected to 4 DC sources and 2 RF sources. A sec-
ondary load-lock chabber is used to exchange samples in order to always keep the
main chamber at high vaccum. A Phase II J AJA software allows the control of the
system, as deposition pressure and gas type, source current and power, deposition
time and layer sequence.

FIGURE 3.5: The AJA International magnetron sputtering used in this thesis, located at
LABNANO/CBPF. Photo withdrawn from [48].
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3.2.3.1 X-ray Reflectivity

To obtain a precise thickness control in magnetron sputtering, a calibration step is
performed before any sample fabrication. For each target metal a thin film is de-
posited on a Si substrate for a certain amount of time. The film thickness is obtained
by an X-Ray Reflectivity measurement.

A PANalytical X’Pert PRO X-Ray irradiates Cu Kα1 X-rays with a 1.54056 Angstrom
wavelength towards the surface of the film. Above the critical angle for total re-
flection (θC), the Fresnel reflection from the air/thin-film and the one from the thin-
film/substrate interfaces interfere generating low-angle fringes, called Kiessig fringes,
see fig. 3.6a.

The complex refractive index of the sample can be given by

η = 1− δ− iβ (3.5)

Bragg’s law can be written for reflectivity, for a film with thickness t in the nth
order as

nλ = 2t sinθ (3.6)

Considering the real part of the refractive index only, one can obtain:

sin2θ =

(
λ

2t

)2

n2 + 2δ (3.7)

By plotting sin2θ as a function of n, a quadratic function is found, in which the
film thickness can be obtained from the n2 coefficient, as shown in fig. 3.6b.

(A) (B)

FIGURE 3.6: The diffraction pattern in thin films (A) and the quadratic fitting (red line)
for obtaining the film thickness (B).
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3.3 SQUID Magnetometry

Superconducting QUantum Interference Device (SQUID) magnetometer is based on
the interference between two superconducting Joseph junctions connected in paral-
lel in a superconducting loop which is used for highly sensitive magnetic flux mea-
surements.

The magnetic flux that passes through a superconducting loop is quantized in
units of φ0 = h/2e ≈ 2.07× 10−15Tm2. A superconducting current flows through
the loop, with equal currents in each junction. Any magnetic flux change inside the
coil will modify its induction, adding a current to one junction and subtracting from
the other, due to Faraday’s law.

As the superconducting current has a wave nature, a phase difference will ap-
pear between the Josephson junctions, resulting in a periodic variation of the resis-
tance with the magnetic flux. Also, a periodic voltage drop will arise in the detection
circuit, in which each voltage drop step corresponds to the passage of one flux quan-
tum, allowing it to be a high sensitive fluxmeter [38].

A Magnetic Property Measurement System (MPMS) from Quantum Design was
employed for magnetometry measurement through a vibrating sample magnetom-
etry (VSM) technique. The system uses a superconducting magnet that can apply
magnetic fields up to 7 T [49].

In the SQUID-VSM technique, the sample vibrates around the center of the de-
tection coils at a fixed frequency ω, where the position can be described as z(t) =

B sin(ωt), where B is the amplitude of vibration. In each oscillation, there is a peak
at the detection coils, and the signal can be described, as a function of time, as eq.
3.8, where A is a scaling factor that is proportional to the sample magnetic moment.

V(t) = AB2 sin2(ωt) =
AB2

2
[1− cos(2ωt)] (3.8)

A lock-in amplifier is then used to quantify and isolate the signal that occurs at a 2ω

frequency, caused exclusively by the sample, for an appropriate choice of vibration
frequency [49].

3.4 Magneto-Optic Kerr Effect (MOKE)

The magneto-optic Kerr effect (MOKE) describes the change in polarization when
light is reflected by a magnetic medium. This effect is used for magnetometry mea-
surements (MOKE magnetometry), as for magnetic domains observation (Kerr mi-
croscopy).
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The first description of a magneto-optical phenomenon was done by Faraday,
in 1845, in which he observed that a beam of polarized light changes its polarization
angle when passing through a glass under the application of a magnetic field. This
change in angle is proportional the magnitude of the field, this is known as magneto-
optic Faraday effect. 32 years later, another magneto-optical effect was discovered by
John Kerr. He realized that the polarized light undergoes a rotation after reflection
from a polished magnetic material, later called Kerr effect [50].

The physical origin of the magneto-optic effects can be explained, in a classical
manner, as the difference in movement exerted in the electrons of the material by
the left- or right-circularly polarized light due to the Lorentz force. The linearly
polarized light can be described as the superposition of two circularly polarized
components, and the right(left) circularly polarized light will induce the motion of
the electrons in a right(left) circular path, with radius proportional to their electric
dipole moment [51].

In the absence of a field, both radii will be the same, so no net polarization
rotation take place. When the magnetic field is applied, an additional force will be
present, pointing toward from the center for one of the motions, and away for the
other, thus one radius will be bigger than the other. Different dielectric constants
for the right- and left- circularly polarized modes will take place and the reflected
light will experience a polarization rotation [51]. The quantum mechanical spin-
orbit interaction was necessary to explain the unusually large values of the magneto-
optical effect in ferromagnetic materials, as it links the electron magnetic moment to
its motion.

Three different geometries can be used to measure the magnetisation compo-
nents, longitudinal (L-MOKE), polar (P-MOKE) and transversal (T-MOKE), depicted
in fig. 3.7. While L- and T-MOKE are sensible to the rotation in the polarization
plane, the P-MOKE is only sensible to intensity changes.

(A) P-MOKE (B) L-MOKE (C) T-MOKE

FIGURE 3.7: MOKE geometries: (A) Polar, (B) Longitudinal and (C) Transversal.

3.4.1 MOKE Magnetometry

The longitudinal geometry, L-MOKE, was employed in this thesis as a focused mag-
netometer. The experimental setup is shown in fig. 3.8. The monochromatic laser
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light reached the sample surface linearly polarized in the y-direction due to the po-
larizer. The reflection will generate a small electric field in the perpendicular direc-
tion (x), due to the Kerr effect. Another polarizer, called analyzer, is placed between
the sample and the photodiode, with a variable angle φ. The Kerr signal is related
the Kerr rotation θK and also to the analyser angle, eq. 3.9 for a perfect polarizer.

Kerr Signal =
2sin(2θK)

tan(φ)
(3.9)

FIGURE 3.8: Focused magneto-optic Kerr effect magnetometry in the longitudinal ge-
ometry principle of operation.

A 635 nm and 3 mW laser beam is modulated in amplitude at a 50 kHz fre-
quency, in order to allow a synchronous detection at the lock-in, fig. 3.9. The beam
goes through the polarizer, followed by a beam splitter, which directs one splitted
beam directly to the photodiode and the other to be reflected at the sample.

The sample is placed between the poles of a magnet that can reach up to 120
mT. Before the sample, an objetive lens allows the beam to be focused only in the
desired area of the sample, which can be seen through an optical microscope. The
beam, then, goes through the analyser and reaches the photodiode, that subtracts
the intensity between the two splitted beams, thus transforming the light signal into
an electrical signal that is sent to a lock-in amplifier, which can be seen through an
oscilloscope.

A Hall sensor placed between the magnet, above the sample, is also connected
to the oscilloscope, for magnetic field measurements, which allow the magnetization
curves to be obtained in real time.
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FIGURE 3.9: Focused magneto-optic Kerr effect magnetometry in the longitudinal ge-
ometry setup. Extracted from [48]

3.4.2 Kerr Microscopy

The Magneto-optic Kerr microscopy is a polarized light microscopy that allows a
non-destructive observation of magnetic domains due to different rotation angles
due to Kerr effect in different magnetization directions.

For two domains with opposite magnetization the amplitude of the reflected
light will have opposite signs. We can decompose this reflected amplitude in the
component of the initial polarization angle (AN) and the effective Kerr amplitude
(AK). Then, A = AN ± AK, where θK = AK/AN for small angles. If the analyser is
placed at an angle φ = θK, then one domain will appear completely dark, whereas
the other will have a small brightness [40].

For an analyser angle beyond θK the contrast, given by the differece in intensity
between the dark and bright domains is given by eq. 3.10, which is linear with the
Kerr amplitude, and therefore, linear with the magnetization [40].

I2 − I1 = 2sin(φ)AK AN (3.10)
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3.5 Magnetic Force Microscopy

The magnetic force microscopy (MFM) is a variant of the atomic force microscopy
(AFM) that scans a magnetic surface and records magnetostatic forces between the
sample and the tip [40].

The AFM is based in the interaction force between a very sharp tip, that is
mounted in a mechanical lever, the cantilever, and a surface (see fig. 3.10). As the
tip gets closer of further way for the surface, attractive or respulsive forces due to
atomic interactions take place, which can be described by the Lennard-Jones poten-
tial. As the tip scans the sample, the cantilever is deflected accordingly to the surface
topography, thus creating a three-dimensional nanometric topographic map of the
surface.

The tip scans the sample, and its topography is detected due to the cantilever
deflections that happen due to atomic interactions, described by the Lennard-Jones
potential. As the deflections are very small, an optical detection method is employed
with a 4-quadrant photodiode.

FIGURE 3.10: Atomic Force Microscopy (AFM) scheme. The interaction between the
tip and the sample topography causes deflections in the cantilever that are optically

detected at a photodiode. This allows the sample surface to be mapped.

Two main modes of operation are used for AFM imaging: contact (or static) and
tapping (or AC, or intermittent) modes. In the contact mode, the tip touches the sam-
ple at a constant height, controlled by the feedback system. The z-deflection, made
by a piezoelectric material, that is needed to keep a constant tip/sample distance is
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equivalent to the sample’s topography. In the tapping mode, the cantilever oscillates
near it resonance frequency, and the feedback system keeps the amplitude constant.
The interaction with the sample surface causes amplitude and phase changes, that
are recorded and used to reconstruct the topography [40].

In the MFM, the tip has a hard magnet layer that is kept at a height in which
the magnetostatic interaction dominates, tipically a few dozens of nanometers (e.g.
60 nm). The oscillation frequency of the cantilever, even in the tapping mode, is
many orders of magnitude lower than the Larmour frequency of the electrons, so
the magnetic configuration of the sample can be considered in equilibrium in every
point. The force between the sample and the tip can be computed as the gradient of
the interaction energy, ~F = −∇Eint, which can be described by eq. 3.11, which offer
information about the stray field of the sample, known the magnetization of the tip,
or vice-versa [40].

Eint = −
∫

tip
~Mtip · ~Hsample dV = −

∫
sample

~Msample · ~Htip dV (3.11)

Constrast in the MFM image can be generated by three main mechanisms: charge,
susceptibility and hysteresis contrast. Charge contrast happens when the interaction
between the sample and the hard magnet tip is weak enough so that no modification
occurs in neither of them. The MFM image will be derived from the original charge
distribution of the sample. The image should be inverted if the magnetization direc-
tion of the sample is in the oppostite direction.

When there is interaction between the sample and the probe, the hard magnet
tip often causes reversible distortions in a soft magnet sample, which is the sus-
ceptibility contrast. The hysteresis contrast, caused by strong interactions, lead to
irreversible changes, which are source for artifacts and distorted images, and should
be avoided. This last limits the sensitivity and resolution of the technique [40].

The most common MFM imaging procedure is the so-called two-pass lift mode,
in which the sample is first scanned in tapping mode, to obtain topographic informa-
tion. Then, in a second pass, the tip is raised several nanometers above the sample,
at a constant height, typically between 60-100 nm, accordingly with its topography,
in order to detect only the magnetic interactions, through a force gradient detection
by phase or frequency changes.
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Chapter 4

Results and Discussion

4.1 Micromagnetic Simulations: Spin-Waves in Néel Walls

This section is aimed to investigate the nature of the spin-waves that can be excited
within an infinite Néel wall and to describe their suitability for magnonic applica-
tions, by means of micromagnetic simulations.

We set a 10 µm x 1 µm x 5 nm permalloy rectangle, with periodic boundary
conditions at the major length, divided in (4.88 x 3.9 x 5) nm3 cells. These values
were chosen so that the number of cells is a power or 2 in every direction (1024 x 256
x 1), which accelerates the computational time for the software.

To obtain the Néel wall, the system was split in three longitudinal regions: a 20
nm wide central region, with magnetization along the +y direction, and the other
two, below and above this central one, with +x and -x magnetization, respectively.
The system was then allowed to relax until reaching a minimum energy configura-
tion shown in fig. 4.1a.

The magnetization rotates in a counterclockwise direction from a +x at the bot-
tom domain to a -x magnetization in the top domain, and the Néel wall is the center
of this transition, where the magnetization is in the +y direction. Fig. 4.1b shows the
x-magnetization as a function of the y-component, which changes from a +1 to a -1
direction.

The magnetostatic field generated by this magnetization state across the rectan-
gle width (y-direction) is shown in fig. 4.1c. At both edges, narrow peaks can be
seen as a consequence of the minimization of the magnetostatic energy at borders.

A main peak is found at the center, as magnetic charges (∇ · ~M) arise from the
magnetization rotation from one domain to the other. The center of the peak corre-
sponds to the Néel wall center, and its width at half maximum, to the wall width,
measured to be 74 nm.
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(A) Néel wall in 10 µm x 1 µm x 5 nm permalloy rectangle with periodic boundary conditions
at the x-direction.

(B) The normalized x-component of its magnetization

(C) The magnetostatic field intensity across a transverse cross-section (y-direction), in which
the 74 nm Néel wall width was estimated by its width at half maximum.

FIGURE 4.1: Mumax3 Simulations: Néel wall with longitudinal periodic boundary
conditions.
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In order to excite spin-waves, a 1 µm x 20 nm x 5 nm region was defined trans-
versely at the center of the structure (antenna, in fig. 4.2a). An out-of-plane sinc-
function pulse was applied in that region, with 100 mT intensity and 40 GHz cut-off
frequency (eq. 4.1), and we allowed the wave to spread all over the structure until
the magnetization returned to equilibrium. The z-component of the magnetization
was Fourier-transformed in two different regions as shown in fig. 4.2a: inside the
domain wall (Region 1), and in one of the uniform domains (Region 2).

µ0Hz = 100 mT
sin[2π (40GHz)]

2π (40GHz)
(4.1)

The resulting spectrum can be seen in fig. 4.2b. Up to 2.2 GHz the excitation is
mainly inside the Néel wall (Region 1) which is an indication that the spin waves are
confined to the wall width. At 2.5 GHz the first peak inside the domain can be seen,
and, above that frequency, the magnetization main peaks are coincident inside and
outside the domain wall.

(A) The region of excitation (Antenna) and the two regions in which the z-magnetization
was saved: within the Néel wall (Region 1) and within the domain (Region 2).
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(B) Fourier transform intensity of z-magnetization of both regions.

FIGURE 4.2: Mumax3 Simulations: An out-of-plane sinc pulse was applied at the an-
tenna and the time evolution of the z-component of the magnetization was saved and

Fourier transformed.
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To further investigate the propagation, a sinusoidal pulse was applied in the
antenna in certain frequencies and let run until reaching a steady state, and then, the
magnetization was saved as a function of time. Fig. 4.3 shows the z-component of
the magnetization for several excitation frequencies.

Well defined wave-vectors can be seen within the wall, which is a necessary
precondition for many magnonic applications in information transmission and pro-
cessing that rely in wave interference [32]. Also, it can be seen that the spin-waves
are actually confined to the Néel wall at low frequencies and that it starts to spread
to the domains as the frequency increases. For frequencies above 3 GHz, complex
interference patterns start to arise due to wave reflection at the borders.

The z-component of the magnetization was obtained, for a fixed x-position, as
a function of the y-coordinate for two different frequencies, see fig. 4.4. For the 1
GHz excitation, a peak at the wall region is readily seen, with a 100 nm width at
half-maximum, which is slightly larger than the 74 nm wall width. On the other
hand, for the 4 GHz excitation, an important part of the excitation is in the uniform
domain region, and for 6 GHz the confinement effect is completely lost.

To quantify the dispersion of the waves confined within the Néel wall width
only, a 100 mT sinusoidal out-of-plane pulse was again applied, this time restricted
at a 20 nm circular region at the center of the structure to avoid wave reflection at
the borders.

Frequencies ranging from 0.5 to 4 GHz were applied, and the z-magnetization
was saved after a steady state was reached. From the images, the wavelength was
extracted for each frequency. The dispersion relation, frequency vs. wavenumber
(k = 2π/λ), was then obtained for frequencies up to 3.2 GHz, as shown in fig. ??.

For frequencies above 3.2 GHz, the modes are predominantly in the uniform
domains, which is not in the scope of this study. As the excitation is done at the
center of the rectangle, our wavelength measurement is limited half of its length, 5
µm, that corresponds to k = 1.3 µm−1. All wavenumbers below that were determined
by curve fitting, and have a high uncertainty associated.

There was no difference in wavelength for the waves propagating in the +x and
-x directions, which is an indication of the reciprocity for spin-wave propagation
within the wall [33]. Even though the spin-waves are restricted to the nano-sized
Néel wall width, the dispersion relation (fig. ??) is non-quadratic and it is in the low
wave vector range, showing that it is in the magnetostatic regime, as discussed in
section 2.6.1 and not in the exchange regime. This is a result of the dipolar energy
being the main energy responsible to domain formation, and the stray field being at
its maximum at the domain wall width center.

As the wall is in the y-direction and the wave vector in the x-direction, the
system is in the Damon-Eshbach geometry ( ~M⊥~k), which generate magnetostatic
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(A) 0.3 GHz

(B) 0.7 GHz

(C) 1.0 GHz

(D) 1.5 GHz

(E) 2.0 GHz

(F) 2.5 GHz

(G) 3.35 GHz

(H) 6.16 GHz

(I) 7.3 GHz

FIGURE 4.3: Mumax3 Simulations: The out-of-plane magnetization configuration due
to a sinusoidal excitation at a 20 nm thick antenna at the center in several frequencies.

The blue and red colors are for +z and -z magnetization, respectively.
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FIGURE 4.4: Mumax3 Simulations: The z-magnetization across the y-direction for a
fixed x-position for 1 GHz, 4 GHz and 6 GHz sinusoidal excitations.

forward surface spin-waves. Therefore, as expected, a positive dispersion, in which
phase and group velocities point at the same direction, was obtained, which is also
a basic precondition for several magnonic device concepts [18, 52].

FIGURE 4.5: Mumax3 Simulations: Dispersion relation for the spin waves confined
within a Néel wall in a 10 µm x 1 µm x 5 nm permalloy rectangle with longitudinal

periodic boundary conditions, excited at a 20 nm dot at the wall center.

However, the equation for magnetostatic forward spin-wave modes in an in-
finite thin film, eq. 2.56, did not fit well for this case, which has no bias external
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field. This is an indication that the physical model is not complete for this scenario,
and several other factors should be taken in account for obtaining an appropriate
analytical expression.

(A)

(B)

FIGURE 4.6: Mumax3 Simulations: Group velocity (A) and propagation length (B) of
the confined spin-waves as a function of frequency.

Another important feature is the group velocity of these waves, fig. 4.6a, that
was obtained by the derivative of the dispersion curve, according to the expression
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vg = 2π (∂ f / ∂k). The group velocity can exceed 1 km/s at frequencies below 1 GHz,
which is an important feature for high speed data transporting and processing.

From the images of fig. 4.3 it can be seen that, the higher the frequency, the
faster the field amplitude is attenuated. The peak of the curves were fitted in a y =

y0 e−x/x0 manner, in which x0 is the propagation length, the distance in which the
the magnetization amplitude decreases to 1/e of the initial value. The propagation
length as a function of the frequency is shown in fig. 4.6b. It has values between 1
and 4 µm, which is in the acceptable range for integrated magnonic circuits [6, 9].

One of the main features of the domain wall as a spin-wave propagation path
is its flexibility when compared geometrically confined waveguides. The position of
the domain wall in the y direction can be readily controlled through the application
of an external magnetic field, fig. 4.7a (top). We applied a longitudinal magnetic
field and allowed the system to relax. After that, a 1 GHz out-of-plane sinusoidal
excitation was applied in an antenna at the center, fig. 4.7a (bottom). The wave
intensity across the minor length is shown in fig. 4.7b.

As the field is applied, one of the domains grows and the other shrinks, and,
as a consequence, the domain wall is dislocated either up or down. Small fields, in
the 10−4 T order of magnitude, are needed for such displacements. The wall shift
as a function of the applied field follows a non-linear fashion, see fig. 4.7c. As it
gets closer to the edge, more field is needed to displace the wall, and at 7 mT, it is
completely expelled from the structure.

Hence, spin-wave propagation in Néel walls presents well-defined wavevec-
tors, which allow the propagation of information along its length, along with a
nano-sized lateral confinement in the low-GHz range. Also, the wall shows mobility
under the application of external magnetic fields, which is a very useful tool for flex-
ible magnonic devices. However, the Néel wall is naturally found in Landau-states
in magnetic nanostructures, which include more features than the model studied
here, and it will be examined in the next section.
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(A) The stable state under a 0.5 mT longitudinal field (top) and a 1 GHz spin-wave propaga-
tion in it (bottom).

(B) The normalized spin wave intensity across the minor length (y-axis) for a 1 GHz sinu-
soidal excitation with the application of a static longitudinal field (x-direction).

(C) The Néel wall dislocation in the y-direction as a function of the static longitudinal field.

FIGURE 4.7: Mumax3 Simulations: Néel wall displacement due to a transverse bias
magnetic field.
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4.2 Micromagnetic Simulations: Spin-Waves in Landau Do-
main States

This section aims to evaluate, through micromagnetic simulations, the spin-wave
propagation within a Néel domain wall of a Landau domain state in a permalloy
rectangle.

Experimentally, 180o magnetic Néel walls are found in Landau flux-closure do-
main structures, as discussed in section 2.5, which can be found in permalloy rect-
angular nanostructures due to shape anisotropy. Different from the previously ex-
amined wall, in this case, the Néel wall has a finite length, with two 90o walls in
each of its ends. Also a vortex is present in its center, which divides the wall in two
oppositely magnetized unidimensional regions, see fig. 4.8.

A 5 µm x 1 µm x 5 nm permalloy rectangle was chosen, as a proof-of-concept,
in order to allow correlations with the first article to propose this propagation [32].
The sample was divided in (1024 x 256 x 1) rectangular (4.88 nm x 3.9 nm x 5 nm)
nm3 cells.

FIGURE 4.8: Landau-domain in a 5 µm x 1 µm permalloy rectangle, obtained by setting
an initial vortex state and allowing the system to relax.

By starting with a random magnetization and allowing the sample to relax,
three final magnetic structures would randomly appear: uniform, Landau and di-
amond states. This unreproducibility lead to question of whether the Landau state
would actually be the minimum energy configuration for this size and shape. This
will be discussed in section 4.3. Finally, the Landau-state was reproducibly achieved
by setting an initial vortex state and allowing the system to relax (fig. 4.8).

Just like in the infinite Néel wall case (section 4.1), the wall can be moved in
the y-direction trough the application of a longitudinal external field. Besides, in
the Landau-state, another degree of freedom comes up: the vortex position in the
x-direction can be changed through the application of a transverse magnetic field,
see fig. 4.9a.

The vortex displacement as a function of the applied field in the y-direction is
shown in fig. 4.9b. As it approaches the edge, a more intense field is necessary for
dislocations, until a 9 mT field, in which the vortex is expelled from the structure.
However, as the vortex dislocates from the center, the Néel wall gets wider, which
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(A) The magnetic ground state when under an external transverse magnetic field.

(B) The vortex position as a function of the external transverse field.

(C) Néel wall width as a function of the external transverse field.

FIGURE 4.9: Mumax3 Simulations.
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(A) 2 GHz sinusoidal excitation.

(B) The FFT of the z-component of the magnetization after a sinc excitation in a 20 nm circle
(black dot) in two regions: at the same side of the excitation (Region 1) and at the other side

(Region 2), after the vortex.

(C) 380 MHz sinusoidal excitation.

FIGURE 4.10: Spin waves excited at one side of the Néel wall only pass through the
vortex in specific frequencies.
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is shown in fig. 4.9c, calculated as the width at half maximum of the magnetostatic
field in the y-direction. It goes from the 74 nm width, at zero-field, to a 431 nm at 8
mT. So, the higher the transverse field, the less confined the spin-waves within the
wall will be.

As the Néel wall is separated in two by the vortex, with a +y magnetization at
the right side and a -y at the left, when trying to propagate spin-wave within the
wall, one has to decide in which one of the sides the excitation will take place. As
an example, we performed a 2 GHz sinusoidal excitation inside a 20 nm circle at the
right side of the wall, see fig. 4.10a. The vortex acts as a barrier, obstructing the wave
propagation, thus limiting it to the +y side of the wall.

This is better shown by a sinc excitation performed at a 20 nm circle, 900 nm to
the right from the vortex, followed by a Fourier transform of the z-magnetization in
two different regions inside the wall: at the right (Region 1) and at the left (Region
2), see fig. 4.10b. Only at the side of the excitation (Region 1) we find non-zero FFT
intensity profiles. The exceptions are 380 and 660 MHz, fig. 4.10c, which are the
only frequencies that wave is able to overcome the vortex, hence the vortex acts as a
frequency filter.

In order to have a long Néel wall without obstacles for the spin wave propaga-
tion, we applied a small static 1 mT magnetic field in the minor length direction of
the rectangle with a Landau-domain magnetization. This results in a new equilib-
rium position to the vortex, closer to the left edge of the rectangle, fig. 4.11.

FIGURE 4.11: The equilibrium state of a Landau-domain structure in a 1 µm x 5 µm
rectangle with a 1 mT static field in the minor length direction. The black dot shows

the position where an out-of-plane pulse was applied.

We excite the Néel wall normal modes through a continuous out-of-plane sinu-
soidal pulse, with 1 mT amplitude, at a 20 nm circle located at the wall, 900 nm to the
right from the sample center, shown by the black dot in fig. 4.11. Several frequencies
were applied from 0.5 to 4 GHz, and after a steady state was achieved, the magne-
tization was saved as a function of time. The z-component of the magnetization for
several frequencies is shown in fig. 4.12.

Just like in the infinite Néel wall (section 2.5), the spin-waves have a well-
defined wavelength and are confined within the domain wall in frequencies up to
around 2.4 GHz. They start to spread to the uniform domains above that, and a
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(A) 0.5 GHz

(B) 1.2 GHz

(C) 2.4 GHz

(D) 3.3 GHz

(E) 4.6 GHz

(F) 8.0 GHz

FIGURE 4.12: Ferromagnetic resonance eigenmodes for an out-of plane excitation
within the Néel wall. The blue and red colors are for out-of-plane magnetization: +z

and -z respectively.
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series of reflections take place, resulting in a complex interference pattern, such as
the one in fig. 4.12f.

The z-component of the magnetization, along the middle line of the rectangle
(line in fig.4.13 top) was mapped as a function of the x-position, fig.4.13 is an exam-
ple. From that graph, we can extract the corresponding wavelength (λ) for each of
the frequencies. One thing to be pointed out is that the spin-wave intensity gener-
ated in response to the excitation pulse is orders of magnitude lower than the vortex
z-magnetization. So, in fig. 4.13, a high peak can be seen at the left edge of the
rectangle, which is the vortex, and its magnetization is almost not changed by the
pulse.

FIGURE 4.13: The out-of-plane magnetization across the line in the top picture as a
function of the position for a 2.4 GHz excitation. The arrows show the position of the
vortex (left peak) and the sine-excitation circle (right peak) in the graph. In between

these two features it is possible to extract the corresponding wavelength (λ).

The dispersion relation for the Néel wall confined spin waves is shown in fig.
4.14. Here, just like in section 4.1, it is qualitatively very similar to the Damon-
Eschbach forward surface spin-wave modes, with phase and group velocities point-
ing at the same direction, and at the magnetostatic regime.

In fact, the dispersion curve from the infinite wall (section 4.1) and for the wall
in the Landau domain completely overlap, see fig. 4.15, which shows that propa-
gation characteristics of the waves are much more controlled by the wall itself than
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FIGURE 4.14: The dispersion relation of propagating spin-waves excited in a 20 nm dot
within the Néel wall of a 5 µm x 1 µm x 5 nm permalloy rectangle.

to the sample dimensions. For instance, in an experimental scenario, the Néel wall
does not necessarily need to be in a rectangle, but any shape or size, which allows a
flexibility in the design for a magnonic device.

FIGURE 4.15: Comparasion between the dispersion relation in an infinite Néel wall
(with longitudinal periodic boundary conditions) and in a finite wall in a Landau state.
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4.3 Micromagnetic Simulations: Magnetic Ground-State in
Permalloy Rectangles

This section aims to find the lower energy magnetic state of permalloy rectangles for
different lengths and aspect ratios, through micromagnetic simulations.

Even though the Landau state could be created in our micromagnetic simulation
in a 5x1 µm2 permalloy rectangle, many difficulties arose from that, as irreversible
transitions to uniform or diamond configurations happened in some scenarios. This
lead to the question if we were actually dealing with a lower energy state.

We want to investigate the minimum energy structure in a permalloy rectangle
by comparing the total energy for the three main possible magnetic configurations:
uniform, Landau-domain and diamond state. By uniform, it can be either a C- or S-
state, as they are almost degenerate, but not a flower state, as it only appears as a
lower energy state in relatively high magnetic field conditions.

For that purpose, an energy minimization through the relax() command was
applied under different initial conditions, an uniform magnetization for the S- or
C- states, fig. 4.16(a). For Landau-domain state, an initial vortex magnetic state is
placed at the center of the structure, fig. 4.16(b). For the diamond state, two four
vortices, with same polarization but alternate opposite circulations, are placed side
by side inside the structure, fig. 4.16(c). A random noise is added to all the initial
conditions before relaxation.

FIGURE 4.16: The initial condition, left column, and the magnetization state after re-
laxation, right column (a) Uniform State. (b) Landau Flux-Closure State. (c) Diamond

State.

As permalloy has a negligible magnetocrystalline anisotropy, the total energy
is the sum of the exchange and magnetostatic energies. The thicknesses have been
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fixed to 5 nm. The samples were divided in cells with lengths equal or smaller than
5 nm. We have first measured the energy for a rectangle with one length fixed at 1
µm as a function of the other length, in order to evaluate the role of the aspect ratio,
see fig. 4.17. Three main regions of lower energy configurations are highlighted: A
(uniform), B(Landau) and C (uniform).

FIGURE 4.17: The total energy for a 1 µm x L µm x 5 nm permalloy rectangle as a
function of L. Three regions can be identified: A and C, where the ground state is a

uniform state, and B, where it is the Landau-state.

Regions A and C correspond to high aspect ratios, this lowers the dipolar field,
as the opposite magnetic charges are relatively far away from each other. As a conse-
quence, the magnetostatic energy becomes negligible compared to the exchange in-
teraction, allowing the formation of S- or C- uniform states. As the length increases,
above 600 nm, the Landau-domain structure becomes the ground-state. The mag-
netostatic energy becomes significant and the size of the sample is above a critical
point where the separation in domain is favourable.

As one length keeps increasing, the magnetostatic energy will tend to zero
(when opposite charges are infinitely far apart), thus above L > 2.5 µm, the exchange
energy dominates again, making the uniform state the ground state again. The di-
amond state is never a lower energy state in this simulation, as its 90o Néel walls
have a large width and the sample fixed length, 1 µm, they always appear as a local
minimum and not as global states.

We have, then, chosen two aspect ratios to further investigate, 1:5, as was the
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one previously used in this thesis, and 1:2, which is the aspect ratio of NIST 1 stan-
dard problem, that has been extensively studied in [41].

First, we have measured the total energy of a 2L x L x 5 nm permalloy rectangle
as a function of L, where it ranges from 300 nm to 5 µm, see fig. 4.18. Three lower
energy state regions can be identified. At small lengths, below 350 nm, the sample
is a single domain (uniform). Above that, flux-closure domains become the more
stable ones. The formation of the Landau domain structure lowers the magnetostatic
energy of the system by dividing it in four domains with a 180o Néel wall in its
middle. It is replaced by the diamond state above 2.7 µm as this last presents 90o

Néel walls, that are lower in energy compared to 180o ones, but they require a larger
width in order to become stable [41].

FIGURE 4.18: The total energy for a 2L µm x L µm x 5 nm permalloy rectangle as a
function of L. The lower energy state is highlighted in each region.

The same energy measurement was performed for a 5L x L x 5 nm permalloy
rectangle, fig. 4.19. This high aspect ratio makes the magnetostatic energy of the
system to be much lower than it exchange interaction. Hence, the system does not
divide into magnetic domains, and the uniform (C- or S- states) are always the lowest
energy configurations.

For instance, although the 1 µm x 5 µm permalloy rectangle has been used as
a Landau state in [32] and in our previous simulations, it is not the lower energy
state in that geometry. Even though obtaining this configuration might be easy in
a simulations, experimentally it would be very difficult and hardly reproducible, as
this size always tend to become uniformly magnetized.
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FIGURE 4.19: The total energy for a 5L µm x L µm x 5 nm permalloy rectangle as a
function of L. The lower energy state is always the uniform.

Other aspect ratios and sizes, such as 1 µm x 2 µm, would be more reliable to
obtain the Landau-domain structure. Nevertheless, experimentally, new challenges
arise, such as roughness, the exact lateral shape and the exact surface shape. All of
these jeopardize the realization of a reproducible Landau state, and an experimental
approach is needed to overcome that, as will be discussed in the next section.

4.4 Fabricated Structures

This section aims to describe and show the samples used in this theses, fabricated
by electron beam lithography.

The Néel wall naturally occurs in thin-film permalloy (or CoFeB) nanostructures
that present a magnetic Landau flux-closure configuration. Although the Landau
state is a minimum energy configuration in permalloy rectangles of certain sizes
and aspect ratios, experimentally, obtaining that configuration can be very hard to
achieve.

Edge roughness and edge inclination, which are present in any real nanostruc-
ture, give rise to an additional anisotropy of magnetostatic origin [53] that makes the
desired magnetic state not reproducible, even in arrays of identical structures [54].

To overcome that issue, Wagner et al. (2016) [32] have proposed a modification
to the structure in order to stabilize the Landau state: a 60 µm x 10 µm rectangle that
gradually narrows to a constant 5 µm width on one side.
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An array of those structures were fabricated by electron-beam lithography, with
a 40 nm thickness of either permalloy or CoFeB, as shown in fig. 4.20.

(A) Single element.

(B) Matrix of elements.

FIGURE 4.20: The nanostructures fabricated by electron-beam lithography in order to
stabilize the Landau state: a rectangle with a 10 µm width that gradually narrows to a

constant 5 µm width on one side.

Micromagnetic simulations have been performed in order to obtain the possible
magnetic states for this structure. They are very similar to the ones obtained for a
permalloy rectangle discussed in section 2.5, see fig. 4.21.
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(A) C-state

(B) Flower state.

(C) Landau state

(D) Cross-tie state

(E) Diamond

FIGURE 4.21: Several possible magnetic configurations for the nanostructure.

4.5 Hysteresis Loop

This section intends to present the magnetometry measurements either for a matrix
of elements, obtained by SQUID magnetometry, and for a single element, by MOKE
magnetometry, and to compare the results with micromagnetic simulations.

4.5.1 Micromagnetic Simulations

We have first used the 5 µm x 1 µm x 5 nm permalloy rectangle to compare the
hysteresis loop of the different magnetic configurations: Landau, uniform (either S-
or C- state) and diamond. Basically, the chosen magnetic state was set and allowed
to relax, after that an external magnetic field was applied and the system is again
allowed to relax, and this new magnetic state is saved, as a function of the field.

The external field was applied in the x-direction in the range from -100 mT to
100 mT. The x-component of the magnetization from the zero-field until the first
saturation is shown in fig. 4.22a for different initial magnetic states. The uniform
state (either S- or C- state) has already a high x-magnetization at zero field and
with an increasing external field, the area of the y-directed magnetic moments at
its edges shrinks, causing a smooth increase in x-magnetization, until a transition to
the flower-state takes place at high-fields (shown in fig. 4.22b).
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In the vortex state, a field in the +x direction increases the domain magnetized
in the +x direction and shrinks the -x domain. As a result, we see the vortex moving
to the +y-direction, until it is abruptly expelled from the rectangle, which can be
detected as a sudden jump in the hysteresis curve at 7 mT. After that the system
becomes equal to the S- or C- state, and also suffers a transition to the flower state at
a high field.

From the 4-vortexes diamond structure, the external field also increases the +x
regions and shrinks the -x ones, as a consequence, half of the vortexes move in the
+y direction and the other half to the -y direction. A very low field (less than .05
mT) is enough for the adjacent +y domains to merge, which can be seen as an abrupt
change in magnetization in fig. 4.22a, and then the expulsion of the vortexes is seen
at around 1 mT in the magnetization curve. After that, the system also behaves as a
S- or C-state, having a transition to the flower state at a high field.

The transverse hysteresis curve, the external field applied in the y-direction, has
similar features to the longitudinal one, although the shape anisotropy makes the
field needed for achieving saturating higher. The zero external field till saturation
curve can be seen in fig. 4.23a. Starting from a C-state, in which the edges are
oppositely magnetized (+y and -y), one of the edges starts propagating towards the
other edge with the increasing field, until it reaches the other end, and the -y edge is
expelled, which is seen as a small jump in the curve at 7 mT.

In the flux-closure states, the increasing field makes the +y domains grow. In
the Landau state it is seen through the movement of the vortex to the left, until it is
completely removed from the structure at 8.5 mT. In the diamond state, adjacent +y
domains grow, and the domains in the other directions shrink, which can be seen by
the vortexes getting closer to each other in pairs. These are then anihilated at 9 mT,
and the +y domain merge in a single domain.

All of the structures become a uniform structure, similar to a so-called trans-
verse S- or C-state. If we the external field keeps rising, this state transitions to a
transverse flower state. After this state is achieved, all the initial structures follow
the same hysteresis curve, as can be seen in fig. 4.23b, with a high remanence and 13
mT coercive field.

Even though the different initial magnetization states have different behaviors,
after the first saturation they all irreversibly become a uniform state, S- or C- state,
and flower at high fields. From that point, all the magnetization curves match in
a way that it is not possible to distinguish between their initial states anymore, as
shown in fig. 4.22b. Hence, after the saturation of the sample, the flux-closure do-
mains states are completely lost in that sample. If we want to return to a flux-closure
state, a demagnetizing step might be needed.
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(A) Simulated x-direction hysteresis cycle for different magnetic configurations (uniform,
Landau and diamond states from zero-field till saturation.

(B) Simulated x-direction hysteresis cycle from positive to negative saturation and back.

FIGURE 4.22: Longitudinal hysteresis cycle simulated for a 5 µm x 1µm x 5 nm permal-
loy rectangle. After the first saturating field is achieved, the information about the

initial state (uniform, Landau or diamond) is completely lost.

4.5.2 Experimental Results

A matrix of elements as fig. 4.20, made of 40 nm thickness of permalloy, was mea-
sured by SQUID magnetometry in order to compare the hysteresis loop with the
micromagnetic simulations.

The sample was first demagnetized through an alternate exponentially decay-
ing magnetic field, and then the magnetization as a function of applied field was
obtained. The result is shown in fig. 4.24.

The round curve obtained by SQUID magnetometry is due to the magnetostatic
interaction between different elements in the matrix. This makes the transition from
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(A) Simulated y-direction hysteresis cycle for different magnetic configurations (uniform,
Landau and diamond states from zero-field till saturation.

(B) Simulated y-direction hysteresis cycle from positive to negative saturation and back.

FIGURE 4.23: Transverse hysteresis cycle simulated for a 5 µm x 1µm x 5 nm permalloy
rectangle.

the saturated state in one direction to the opposite direction not an abrupt move-
ment, but rather a continuous and smooth one, and only one jump is seen from one
saturation to the other.

In the inset of fig. 4.24, it is possible to see that the initial configuration, the state
after demagnetization, undergoes an abrupt change in magnetization with only a
small field applied. As the micromagnetic simulations suggest, this demagnetized
state, which can be a Landau-state or a diamond state for example, is irreversibly
lost after the application of small magnetic fields.

In order to characterize each element individually, and not the matrix as a whole,
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FIGURE 4.24: The hysteresis loop of a matrix of the permalloy elements, measured by
SQUID magnetometry.

MOKE magnetometry was applied, with a laser beam that was focused on only one
permalloy nanostructure. the result is shown in fig. 4.25.

FIGURE 4.25: The hysteresis loop of one single permalloy element, measured by
Magneto-optic Kerr effect (MOKE) magnetometry.

This result, with only two sudden jumps in magnetization, suggest that the el-
ement presents a bi-stable magnetic configuration. As in the MOKE magnetometry
there is no demagnetizing step, any flux-closure state was lost, so the obtained hys-
teresis curve is very similar to the micromagnetic simulations of a uniform state,
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alternating between opposite directions of saturation.

The magnetometry results suggest that the zero-net magnetization configura-
tion, as the desired Landau-state, need a demagnetization step in order to be ob-
tained. Also, the application of an external magnetic field might irreversibly trans-
form it in an uniform S-state or C-state.

4.6 Magnetic Domains Imaging: MFM and Kerr Microscopy

The magnetic domain configuration in the nanostructures is a crucial step in this
work, in order to identify it two microscopy techniques were applied: magnetic
force microscopy (MFM) and Magneto-Optic Kerr Effect (MOKE) microscopy.

Initially, MFM images were obtained of a matrix of 40 nm thick permalloy el-
ements, as fabricated, in the lift mode two-pass technique at a 35 nm height. The
result can be seen in fig. 4.26a. The magnetic contrast can be seen at the edges. At
the right end of the structure, a very remarkable line contrast, but no contrast is seen
in the middle of the sample, which is what would be expected from a S- or C- state
magnetic configuration.

In order to confirm this, micromagnetic simulations of a smaller version of the
nanostructure, with a larger width of 1 µm and a smaller one of 0.5 µm, was obtained
by setting an initial uniform state and allowing the system to relax, fig. 4.26b(top). A
simulated MFM image of the relaxed structure was obtained in MuMax3 for compar-
ison, as fig. 4.26b(bottom). The contrasts are very similar, with only lateral features,
with a uniform magnetization in the center of the sample. Only the uniform states
were observed in our samples.

We wanted to investigate the effect of applying external fields in the magnetic
configuration of our samples. But due to time and equipment limitations, we strug-
gled to accomplish the adequate set-up for that in the MFM. That was overcome
through the use of MOKE microscopy. However, as permalloy presents a low con-
trast in MOKE images, the same structures were fabricated in a 40 nm thick CoFeB,
which has a more adequate contrast for Kerr imaging.

First, we apply a longitudinal field until reaching saturation, and all posterior
images are subtracted from the saturated one in order to enhance the contrast. Fig.
4.27 shows the sequence obtained for an increasing external field applied in the lon-
gitudinal direction of the structure. In fig. 4.27a we see an initial twist of magnetiza-
tion at one end, and as the field increases, it propagates towards the field direction
(fig. 4.27b), moreover, from that, an abrupt inversion of the magnetization occurs
(fig. 4.27c).

By applying a transverse magnetic field, the magnetization readily inverts from
one direction to the other. The transition is abrupt and the images have to be quickly
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(A) Topographic (top) and magnetic phase (bottom) MFM images of permalloy nanostruc-
ture with no application of an external field.

(B) Micromagnetic simulation of the permalloy nanostructure in the uniform state (top) and
its MFM image simulation at a 40 nm height (bottom).

FIGURE 4.26: Magnetic force microscopy of elements

taken. the intermediary configurations between the saturated states exhibit complex
magnetic patterns, fig. 4.28. However, a longitudinal linear structure seemed to
propagate under the inversion. This structure is similar to what would be expected
from a Néel wall with cross-ties (fig. 4.21d).

Finally, as we wanted to approach the Landau flux-closure state, from the hys-
teresis measurements, we found that a demagnetizing external field would be nec-
essary. An alternate decaying magnetic field was then applied transverse to the
structures. The sample magnetization was then analyzed for a longitudinal MOKE
contrast. Due to the demagnetizing process, it is not possible to subtract the images
from the saturated sample, so the contrast was enhanced by subtracting images of
slightly different polarization angles: the analyzer was rotated by ±3o in relation to
the polarizers.

For a transverse demagnetization and a longitudinal MOKE analysis, the ob-
tained images can be seen in fig. 4.29a. This magnetic configuration is very similar
to the 4-domain flux-closure Landau state, with a Néel wall at its center and without
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(A) (B) (C)

FIGURE 4.27: Kerr image of one CoFeB element with an increasing longitudinal exter-
nal magnetic field in the sequence (A) to (C).

FIGURE 4.28: Kerr image of CoFeB element under a transverse external field.

the cross-ties, as compared to the simulation in fig. 4.29b.

We have then confirmed the protocol in order to obtain the desired Néel wall
experimentally. Although an external magnetic field is able to completely destroy
the Landau domain state, a transverse demagnetizing field can reproducibly turn
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this structure back to the flux-closure state, which is a basic precondition for the
realization of ferromagnetic resonance experiments.

(A) Several structures after a transversal demagnetization process with longitudinal MOKE
sensibility.

(B) Micromagnetic simulation of the nanostructure with a Néel wall in its center (top), and
the longitudinal component of the magnetization in the same structure (bottom).

FIGURE 4.29: MOKE images after demagnetization.
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Chapter 5

Conclusions and Future Work

In summary, we have analyzed the suitability of a magnetic Néel wall as a spin-
wave nano-sized waveguide for magnonic applications. From an infinite Néel wall,
obtained in micromagnetic simulations through periodic boundary conditions, we
have shown that the opposite uniform domains generate a strong demagnetizing
field inside the wall, which confines the spin-wave within its width, until a fre-
quency around 3 GHz. Above that value, the waves start to spread to the domains
and the confinement effect is lost.

Well-defined wave vectors were found for this propagation, with a magnetostatic-
dominated dispersion relation with positive dispersion and group velocities up to
1.8 km/s. The attenuation constant, measured by the propagation length can be up
to 4 µm due to the narrow alley in which the waves propagate, which avoid scat-
tering at the edges of the sample. Nonetheless, a complete analytical description of
the dispersion could not be obtained, and a more complex physical model, which
includes the confinement due to the dipolar potential well, is needed.

All of this is tuned with the usual building blocks conditions for a magnonic
device design, and without the need of an external magnetic field, making this a very
energy-efficient system. Another advantage of the walls is their intrinsic flexibility
in response to spin current or magnetic fields. Very low fields are needed for the
wall movement along the sample.

The Néel wall are naturally found in Landau-domain states in permalloy nanos-
tructures. The Landau state possesses four uniform domains, and the Néel wall is
separated in two oppositely magnetized parts by a magnetic vortex. We have shown
that, propagating a spin-wave in one of the sides to the other, the vortex will act as a
blockage for the waves, only allowing very specific frequencies to pass. It, therefore,
acts as a frequency filter for spin-waves. Also, the dispersion relation is not changed
by the sample geometry, which allows a manifold of circuit designs.

One main issue for obtaining a Landau structure experimentally is to find an
ideal geometry and size for it to be a magnetic ground state in the permalloy rect-
angle. As showed, for very small structures, and for rectangles with a high aspect
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ratio, the magnetostatic energy becomes much lower than the exchange interaction,
and the uniform states tend to become the most stable ones. In order to obtain a
Landau state as a ground state, a suitable aspect ratio and a length sized have to be
simulated, as for example a 1 µm x 2 µm rectangle.

Experimentally, we have fabricated a structure, through electron-beam lithog-
raphy and lift-off, that is a 60 µm x 10 µm permalloy rectangle, that at one side the
width gradually shrinks to a constant 5 µm value. According to the literature [32],
this structure is more stable for a Landau state than the rectangle itself, which we
verified experimentally.

Magnetization curves were simulated, and they have shown that flux-closure
domain states are completely destroyed after they become saturated. This indicated
that in order to obtain a Landau or a diamond state, a demagnetizing step would
be needed for reliability. The measured magnetization curves agree with the simula-
tion, as they present a uniform-state like curve. Only after an alternate exponentially
decaying magnetic field, a near-zero net magnetization state is obtained.

Through MFM and Kerr microscopy, we could visually confirm the uniform
state obtained at the remanence. And we have seen that in order to reproducibly
obtain a Landau state, with a Néel wall in its center and without cross-ties, a demag-
netizing field has to be applied transversely to the structures. Despite obtaining a
protocol for the experimental acquisition of a Néel wall, we have not yet perform
dynamic magnetic experiments.

As next steps, micromagnetic simulations of magnonic logic gates that make use
of the walls shall be designed, and, experimentally, waveguides are being fabricated
for ferromagnetic resonance experiments. We intend to perform time-resolved Kerr
microscopy and micro-focused Brillouin light scattering experiments, to determine
the wavelength, propagation length and several other experimental parameters, in
order to make this feasible for applications in flexible and energy-efficient magnonic
devices.
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