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Chapter 1

Introduction

Quantum theory describes the microscopic world: such as atoms, ions, elec-
trons, photons, etc. Quantum systems made of a single particle display
properties that are unknown to classical ones, such as interference, tun-
nelling or superposition of states. Furthermore, composite quantum sys-
tems can exist in a superposition of many particle states. This leads to an
intrinsic quantum correlation of the individual constituents in which mea-
surements on each part of the system can exhibit strong correlations that
cannot be achieved classically. This kind of quantum correlation is called
entanglement [24].

In realistic situations the role of the entanglement is crucial to the de-
scription of many body quantum systems. The larger the quantum sys-
tem, the more difficult it is to isolate it from the environment, resulting
in a pronounced decoherence process. That is, in the interaction system-
environment, the system loses information to the environment faster the
larger the system. In this way the quantitative description of the entangle-
ment dynamics offers a good indicator of the decoherence process. Further-
more, the entanglement is one of the resources for quantum information
[5] so that its microscopic control is necessary in many applications: from
quantum computation [26] to quantum communication protocols [31, 6].

Experimentally, the measurement of entanglement is a challenge. Real-
izations with full quantum state tomography [36] are feasible only in small
systems [37, 27], since it requires remarkable control and resources. In
larger many-body systems its presence can be inferred by macroscopic ob-
servables [3, 14, 33], but usually it is a difficult task to give a quantitative
description of the entanglement.

Currently spin systems realized with ultracold atoms in optical lattices
are a prominent well-controlled quantum system that offer the possibil-
ity of exploring local detection of entanglement [18] without performing
full state tomography. In this framework a single site detection of spin-
entanglement in a Bose-Hubbard chain can be achieved by fluorescence
imaging [39]. However, in special for this single site resolution, the ex-
perimental realizations spend high experimental resource. The local detec-
tion by fluorescence [39] requires highly accurate equipments, like high-
resolution microscopy, that can become an obstacle. In order to make the
experimental procedure simpler and more feasible, a question arises: Given
an entangled spin-system, is it possible to have a satisfactory description of
the spin-entanglement if we aren’t able to fully resolve the system?

In the first part of this work it will be shown a suitable proposal to an-
swer the above question. Inspired by the experimental situation in [18], we
will develop a proposal that describes the detection of the spin chain taking
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into account a "blurred" detector that does not have sufficient resolution to
resolve single sites in the lattice. Such idea allows us to study the entan-
glement behavior taking into account different ranges of resolution of the
spin chain. In the quantum information scheme the "blurred" detector will
be mapped by a quantum operation that takes quantum states to a lower
dimensional Hilbert space. As we will see, this kind of operation is called a
coarse-graining operation, and we relate to the "blurred" chain, as a coarse-
grained chain.

In the second part, inspired by works [43, 29, 44, 42], we will start de-
riving an equation for entanglement dynamics in 2×D systems where the
D-dimensional part undergoes a dynamical process. Such equation takes
minimal information about the initial state and the quantum channel re-
lated to the dynamical process. From this result, we consider as the dynam-
ical channel the developed coarse-graining process. Such situation illus-
trate the measurement process, where a detector (D-dimensional system)
interacts with a qubit (2-dimensional system) to be measured, and they be-
come a 2×D entangled system. So the coarse graining operation over the
d-dimensional part illustrates the fact that the experimentalist can not con-
trol all ofD degrees of freedom of the detector system. Instead, they handle
only few effective degrees d (usually d�D). So, in this approach we expect
to lose quantum information the larger is the detector size.
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Chapter 2

Features of Quantum
Mechanics and Entanglement

The purpose of this chapter is to provide a short review of the main con-
cepts and tools in quantum mechanics that will be useful for this work.

In the first section (2.1), we will show how physical systems are de-
scribed in quantum mechanics. And then, differentiate quantum states into
two categories: pure and mixed. In doing this, it will be presented a more
general formalism that describes quantum states as matrices, instead of vec-
tor states. As we shall see, this representation, called density operator (or
density matrix), is essential to describe mixed states, besides that some use-
ful operations are only feasible in this formalism.

In the second section (2.2) we will show how can we describe a gen-
eral transformation in quantum systems. In this way it will be presented
a general tool for describing transformations over quantum system, called
quantum operation formalism [31].

Finally, in the third section (2.3) an important property of composite
quantum system will be shown: the entangled states. As well in classi-
cal systems, quantum systems composed of, at least, two subsystems can
display correlations between their parts. However, if a quantum system
satisfies certain conditions, a strictly quantum correlations appear. The sys-
tems that display this "special" quantum correlations between their parts
are called entangled states.

2.1 Physical Systems in Quantum Mechanics

The way a physical system is described in a quantum approach is the target
of the first postulate of quantum mechanics. According to the first postu-
late of quantum mechanic, to every physical system, a Hilbert H (complex
vector space with inner product) is associated. So that the quantum state
of an isolated system a normalized vector |Ψ〉 ∈ H is assigned. With the
vector state |Ψ〉, we can know everything possible about the system.

2.1.1 Pure States

If the system can be described by a single space vector |ψ〉 we say that the
system is in a pure state. An usual example of pure state in quantum com-
putation is a pure qubit state, that is, the unit of quantum information (the
quantum analogue of the classical bit of information). A qubit is charac-
terized by a two-level quantum system, |ψ〉 ∈ C2. The vector |ψ〉 can be
expressed as a linear combination of orthonormal basis vectors |0〉 and |1〉
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with α, β ∈ C:
|ψ〉 = α|0〉+ β|1〉. (2.1)

The coefficients α and β are know as the probabilities amplitudes related to
|0〉 and |1〉 respectively.

Since we interpret α and β as probabilities amplitudes, thus |ψ〉must be
a normalized state vector:

〈ψ|ψ〉 = 1, (2.2)

thus
|α|2 + |β|2 = 1. (2.3)

That is, |α|2 and |β|2 are the probabilities of outcome |0〉 or |1〉 respectively
and the equation above represents the total probability of all possibles out-
comes must be 1.

As known examples of two-level quantum systems, we have the polar-
ization of a single photon, or the spin of a 1/2-spin particle.

2.1.2 Mixed States

Now, if the quantum system is an ensemble of pure states {pi, |ψi〉} (where
pi is the probability related to state |ψi〉), we say that the system is in a
mixed state. Considering a measurement, the expectation value of some
observable A on a mixed state is given by

〈A〉 =
∑
i

pi〈ψi|A|ψi〉

= tr
[(∑

i

pi|ψi〉〈ψi|
)
A
]
.

(2.4)

Notice that, the term in parentheses contains only properties of the ensem-
ble, independently of the observable in question. So it is convenient to de-
fine the density operator ψ as follows

ψ ≡
∑
i

pi|ψi〉〈ψi|, (2.5)

which satisfy the trace condition

tr(ψ) = 1 (2.6)

and the positivity condition

〈φ|ψ|φ〉 ≥ 0, (2.7)

with |φ〉 is an arbitrary vector inH. Usually the positivity condition is writ-
ten simply as ψ ≥ 0.

Pure states can also be represented by a density operator ψ, since the
density operator formalism contains the state vector formalism. A pure
state |ψ〉 is an ensemble specified by pi = 1 for a single |ψi〉 = |ψ〉 and pi = 0
for all others |ψi〉, than ψ = |ψ〉〈ψ|. A pure qubit represented by a density
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operator becomes, by (2.1):

ψ = (α|0〉+ β|1〉)(α〈0|+ β〈1|) =

(
|α|2 αβ∗

α∗β |β|2
)
. (2.8)

A question arises: given a density operator ψ, how can we determine if
the state is pure or mixed? There is a simple test, from (2.4)

ψ2 = (
∑
i

pi|ψi〉〈ψi|)(
∑
j

pj |ψj〉〈ψj |) =
∑
ij

pipj |ψi〉〈ψi|ψj〉〈ψj |. (2.9)

If ψ is given in its spectral decomposition, we identify in (2.8) the kronecker
delta 〈ψi|ψj〉 = δij , so

ψ2 =
∑
i

p2
i |ψi〉〈ψi|. (2.10)

Now we will inspect the trace of ψ2

trψ2 =
∑
i

p2
i . (2.11)

For pure states trψ2 = 1, since there is only one nonzero pi with value p = 1.
However for mixed states there is more than one pi 6= 0 with 0 < pi < 1, so
p2
i < pi and leads to trψ2 < 1. Summing up

• trψ2 = 1 if only if ψ is a pure state

• trψ2 < 1 if only if ψ is a mixed state

2.1.3 Composite Quantum systems

A composite system ofN subsystems, also referred to a multipartite system,
can be associated to a Hilbert space H given by the tensor product of the
spaces corresponding to each subsystems:

H = H1 ⊗ · · · ⊗ HN . (2.12)

This scenario can be illustrated, for example, by a system ofN spins located
on lattice sites, where each spin corresponds to a subsystem that composes
the lattice system.

In the following sections we shall focus in bipartite systems (composite
systems composed only of two subsystems), formally represented by

H = HA ⊗HB,

where HA ≡ H1 and HB ≡ H2. This simplification doesn’t prevent that we
can generalize the following results to arbitrary multipartite system.

2.1.4 Reduced Density operator

The density operator formalism provides a way to describe subsystems
from a large system. This is possible by using a basic tool called partial
trace, which map the density operator of a composite system into a reduced
density operator of the desired subsystem.
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Give a bipartite state ψ ∈ HA ⊗HB , it the partial trace over the subsys-
tem B is defined as

trB(|a1〉〈a2| ⊗ |b1〉〈b2|) ≡ |a1〉〈a2|tr(|b1〉〈b2|), (2.13)

where {|a〉1, |a〉2} ∈ HA and {|b〉1, |b〉2} ∈ HB . Reciprocally, the partial
trace over A is defined. Then the reduced density operator for system A is
defined by

ψA ≡ trBψAB. (2.14)

Analogously ψB = trAψAB .
The reduced density operator provides a way to deal with systems closer

to real systems. Quantum systems are hardly completely isolated from the
environment. The reduced density operator allows us to describe only the
desired quantum system tracing out the environment from the total system.

2.2 Quantum Operations

In quantum mechanics, the quantum operation formalism describes the set
of transformations that a quantum system can suffer. Roughly speaking,
quantum operations are linear maps that must satisfy certain criteria to get
physical sense. In this section we will see what are the properties that char-
acterizes quantum operations and then some examples of this operations.

2.2.1 Completely positive maps

Linear maps

Basically, a linear map between two vector spaces V and W , with dimen-
sions n andm respectively, is a map Λ : V→W that preserves the operations
of addition and scalar multiplication:

• Λ(A+B) = Λ(A) + Λ(B) for any matrices A and B in V

• Λ(αA) = αΛ(A) for any scalar α

If we look from the perspective of the quantum formalism, these vector
spaces, matrices and scalar in question can be identified as Hilbert spaces,
density matrices and complex scalars, respectively.

Completely positive maps

The definition of completely positive maps play an important role in quan-
tum mechanics, since a quantum operations are a completely positive maps.
As we will see ahead, the complete positivity condition, ensures a sense of
physical reality to these quantum operations.

At first let us define positive maps. A linear map Λ is a positive map
if Λ(A) ≥ 0 for every matrix A∈V that satisfies the positivity condition
A ≥ 0.

So considering another vector space Y of dimension k, any positive map
Λ can be naturally extended to another linear map Λ̃ given by

Λ̃ = Idk ⊗ Λ : Y ⊗ V → Y ⊗W. (2.15)
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If Λ̃ is positive for every matrix C ∈ Y⊗V , we say that Λ is k-positive. Then
if for all k ∈ Z+ Λ is k-positive, we say Λ is completely positive (CP) [11].
In other words, a completely positive map is a map which preserves the
positivity even if applied only to a subsystem of a whole system.

To illustrate these concepts let us see a map that is positive but is not
completely positive: the transpose operation. The transpose operation T
on a single qubit ψ is:

ψ → ψT = T (ψ), (2.16)(
|α|2 αβ∗

α∗β |β|2
)
→
(
|α|2 αβ∗

α∗β |β|2
)T

=

(
|α|2 α∗β
αβ∗ |β|2

)
,

where in the matrix representation we used the standard basis {|0〉, |1〉}.
So T (ψ) certainly preserves both trace and positivity, the result is a density
operator. The transpose operation is a positive map T (ψ) ≥ 0.

Now considering a general pure bipartite state of two qubits |ψAB〉 =∑
ij cij |i〉|j〉 in which density operator is given by

ψ =
∑
ij

cijc
∗
kl|i〉〈k| ⊗ |j〉〈l|, (2.17)

the partial transpose on first qubit A, can be defined as follows:

ψTA≡T ⊗ 1(ψ) =
∑
ij,kl

cijc
∗
kl(|i〉〈k|)T ⊗ |j〉〈l|. (2.18)

Analogously the partial trace on qubit B is ψTB = 1⊗T (ψ). Unlike the
transpose operation, the partial transpose is not always positive. Take, for
example, the partial transpose of the state ψ = (|00〉 + |11〉)(〈00| + 〈11|)/2
on the first qubit:

ψ =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

→ψTA =
1

2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


ψTA has a negative eigenvalue and thus doesn’t represent a quantum state.
So the transpose operation is an example of a positive map T (ψ) ≥ 0 which
is not completely positive.

2.2.2 Defining Quantum Operations

As previously mentioned, the quantum operation formalism is a general
tool for describing the transformations that a quantum system can undergo.

Definition: A quantum operation is a completely positive map defined as Λ :
H1 → H2, such that

ψ → Λ(ψ) (2.19)

where ψ and Λ(ψ) are density operators in Hilbert spacesH1 andH2 respectively.
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As a trivial example, any unitary evolution U must be an admissible
quantum operation

ψ → UψU † = U(ψ), (2.20)

in which U : H1 → H1.
We will now present an elegant way to represent the most general quan-

tum operation, called be the Kraus operators sum representation [31].

Theorem: LetH1 andH2 Hilbert spaces with dimensions n and m, and a quantum
operation Λ : H1 → H2, then there are a finite set of linear operators {Ki}N≤nmi=1

with Ki : H1 → H2, such that

Λ(ψ) =

N∑
i

KiψK
†
i , (2.21)

with
N∑
i

K†iKi = idn. (2.22)

The elements {Ki} is called Kraus operators.

The relation (2.21) fits the completeness relations that arise from requir-
ing that trace of Λ(ψ) to be equal one

tr(Λ(ψ)) = tr(
∑
i

KiψK
†
i ) = tr(

∑
i

K†iKiψ) = 1, (2.23)

once this relation is true for all density matrices ψ. Quantum operations
that satisfy this condition are called trace-preserving.

2.2.3 Coarse Graining Channel

In this section we will show a quantum operation that plays a crucial role
in this work, called: Coarse Graining channel. In general Coarse-grained
models aim at describing the behavior of complex systems using an simpli-
fied representation in which preserve the properties of the system that we
have access. In other words, complex systems are represented by adequate
simplified representation with less degrees of freedom that facilitates the
study of the system.

In a quantum mechanical approach, the coarse graining is a quantum
operation that can be defined as

Definition: A completely positive map ΛCG : HD → Hd is a coarse graining
operation if and only if dim(HD) > dim(Hd).

From this general definition, through this work we will explore some useful
applications for coarse graining operations.
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A Blurred Detector

As an introduction to what will follow, here we will present the main idea
about the coarse graining model that will be used in the next chapter. Con-
sider the follow experimental situation: imagine that we want to measure
the information of a number of neighboring atoms in a lattice, but our de-
tecting device doesn’t have enough resolution to resolve the light coming
from each individual atom. To describe this situation we can construct a
coarse graining model in such way that we take the information of these
multiple unsolved signals as a single effective one coming from one atom
in a coarse-grained level (such situation is pictorially illustrated in Figure
2.1).

FIGURE 2.1: A pictorially scheme of coarse graining
model. In the left the two spheres that represent a com-
posite system of two atoms. In the middle we have the
blurred detection of the system. Then in the third picture
we approximate the blurred signal as a single on related to

a single atom in a coarse graining level.

Bringing this situation to the scenario of quantum information, we can
identify each atom as a two level quantum system. In this way a system of
n atoms is described by a D-dimensional state ψ ∈ HD, with D = 2n. So we
want to construct a coarse graining map Λn→1

CG : HD → H2 such that take a
system of n atoms to an effective coarse graining level of a single atom.

The simplest case, where our detector can not resolve two neighbor-
ing atoms, the resulting signal can be related to a single atom in a coarse-
grained level. Such situation is described by a coarse graining map Λ2→1

CG :
H4 → H2. So through a composition of Λ2→1

CG , coarse graining maps of
higher dimensional cases can be achieved, like Λ4→1

CG : H16 → H2 and
Λ8→1
CG : H256 → H2:

Λ4→1
CG = Λ2→1

CG ◦ (Λ2→1
CG ⊗ Λ2→1

CG ),

Λ8→1
CG = Λ2→1

CG ◦ (Λ2→1
CG ⊗ Λ2→1

CG ) ◦ (Λ2→1
CG ⊗ Λ2→1

CG ⊗ Λ2→1
CG ⊗ Λ2→1

CG ),
(2.24)

where "◦" denotes composition of maps. This process are schematically rep-
resented in the Figure 2.2.

This approach will play an important role in the next chapter. There
we will describe an experimental realization with strong correlated cold
bosonic atoms in an optical lattice. This set up is an ideal quantum spin
system where we can investigate the dynamics of the entanglement among
its constituents. In this way the coarse graining approach that we started to
construct here will allows us to investigate this entanglement dynamics at
coarse graining levels.
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FIGURE 2.2: From a composition of Λ2→1
CG , higher dimen-

sional coarse graining operations Λ4→1
CG and Λ8→1

CG can be de-
fined.

2.3 Entangled States

Quantum composite systems display a property that is unknown for classi-
cal ones, this feature is called entanglement. As we shall see in this section,
because of the entanglement between the constituents of a system, each par-
ticle of the system can not be independently described from the others, we
have only the information of the system as a whole.

We will shown how entanglement is characterized in pure and mixed
states. Besides we will discuss possible ways of distinguishing entangled
states from non-entangled states, and also ways to quantify the entangle-
ment.

2.3.1 Entangled Pure States

Definition: Given an pure state |Ψ〉 ∈ HA ⊗ HB , we say it is separable if there
exits |ψA〉 ∈ HA and |ψB〉 ∈ HB such that |ψ〉 = |ψA〉 ⊗ |ψB〉. Otherwise the
state |ψ〉 is entangled.

As an examples of separable pure states we have {|0〉⊗|0〉; |0〉⊗|1〉; |1〉⊗
|0〉; |1〉 ⊗ |1〉} and as an example of entangled pure states we have the so
called Bell’s states:

|φ±〉 =
(|00〉 ± |11〉)√

2
and |ψ±〉 =

(|01〉 ± |10〉)√
2

. (2.25)

We will see in the following sections, when we talk about detection and
quantification of entanglement that the Bell states are maximally entangled
states.

2.3.2 Entangled Mixed States

Analogously from the definition of entanglement for pure states, we can
extend the concept of entanglement to mixed states.

Definition: A mixed state ψ ∈ HA ⊗ HB is separable if there exist local states
(ψA)i ∈ HA, (ψB)i ∈ HB and non-negative weights pi such that ψ can be ex-
pressed as a convex sum ψ =

∑
i pi(ψA)i ⊗ (ψB)i.
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2.4 Separability Criteria

As already discussed, the separability of a given state is defined by the ex-
istence of a decomposition: into product of pure states, or into a convex
sum of tensor product for mixed states. Nevertheless the failure to find a
decomposition of a state does not necessarily identify it as entangled. Per-
haps the state is separable but the appropriate decomposition could not be
identified.

We show that for pure states, using a useful tool called Schmidt decom-
position, we can easily derive a general separability criteria. However, for
mixed states, only for low-dimensional systems (2 × 2 and 2 × 3) a similar
separability criteria can be easily evaluated. This criteria is on positiveness
of the transpose operation.

2.4.1 Pure States

There are many ways of expressing a separable state into a tensor product of
two states. However there is a particular decomposition that is very useful
to entanglement characterization, called Schmidt decomposition.

Schmidt decomposition

The Schmidt decomposition is characterized by the following theorem

Theorem: LetHA andHB be Hilbert spaces with dimensionsm and nwithm≤n.
For every state |Ψ〉 ∈ HA ⊗ HB there are bases {|ui〉} ∈ HA and {|vi〉} ∈ HB
such that |Ψ〉 can be written in the form

|Ψ〉 =
m−1∑
i=0

√
λi|ui〉 ⊗ |vi〉, (2.26)

where the λi’s are non-negative real numbers.

The proof of this theorem is quite simple. Let HA and HB , be Hilbert
spaces with dimensions m and n with m≤n. An arbitrary bipartite pure
state |Ψ〉 ∈ HA ⊗HB is given by

|Ψ〉 =
m−1∑
i=0

n−1∑
j=0

cij |i〉|j〉, (2.27)

where {|i〉} and {|j〉} are arbitrary local bases in HA and HB respectively.
By singular value decomposition [19], the matrix coefficient of (2.27) given
by

C =
m−1∑
i=0

n−1∑
j=0

cij |i〉〈j| (2.28)

can be decomposed as follows

Cm×n = Um×mSm×nV
†
n×n, (2.29)
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where U =
∑m−1

i,j=0 uij |i〉〈j| and V =
∑n−1

i,j=0 vij |i〉〈j| are unitary matrices and
S =

∑m−1
i=0 si|i〉〈i| is a diagonal matrix whose diagonal elements {s0, s1, ..., sm−1}

are non-negative real numbers. The elements {sk} are called singular val-
ues of C. Then we can write the matrix elements cij of (2.28) by

cij =

m−1∑
k=0

uikskv
∗
jk =

m−1∑
k=0

〈i|U |k〉sk〈j|V ∗|k〉. (2.30)

Like eigenvalues of a matrix, also the singular values {sk} are uniquely
defined.

Rewriting (2.27) by inserting (2.30) and defining the Schmidt coefficients
of |Ψ〉 by λk≡s2

k, we have

|Ψ〉 =
m−1∑
i=0

n−1∑
j=0

(
m−1∑
k=0

〈i|U |k〉
√
λk〈j|V ∗|k〉)|i〉|j〉

=

m−1∑
k=0

√
λk(

m−1∑
i=0

|i〉〈i|U |k〉)(
n−1∑
j=0

|j〉〈j|V ∗|k〉)

= U⊗V ∗
m−1∑
k=0

√
λk|k〉|k〉

(2.31)

where in the second line we used
∑

i|i〉〈i| = 1. Also we can rewrite (2.31)
defining a new basis by the following transformations U |k〉 = |uk〉 and
V |k〉 = |vk〉:

|Ψ〉 =
m−1∑
k=0

√
λk|uk〉|vk〉. (2.32)

It is important to note that, since sk are unique, for any state |Ψ〉 its Schmidt
coefficients values also are uniquely defined.

From the Schmidt coefficients of a pure state |Ψ〉 there is an easy way to
decide about its separability. Once the Schmidt basis is given by separable
states {|uk〉|vk〉}, if there is only one non-vanishing λk, then the state |Ψ〉 can
be expressed in the form (2.27), and then the state is separable. Otherwise,
if there are at least two non-vanishing λk the state |Ψ〉 is entangled.

2.4.2 Mixed States

Unlike pure states, for mixed states does not exist an elegant criterion for
separability. In general, this is due to the fact that the degree of mixing of
the reduced density matrices related to the mixed state are not an indicator
of entanglement. Usually, separability criteria for bipartite mixed states are
feasible only for low-dimensional systems.

In the following we will show a separability criterion for bipartite sys-
tems known as Peres-Horodecki criterion. It consists of a necessary condi-
tion for separability of an arbitrary bipartite system.

Positive Maps

Positive quantum maps like ΛP : HB 7−→ HA can be used to find a neces-
sary condition of separability in bipartite systems [10]. We can extend this
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positive map on H = HA ⊗ HB locally acting in the second subsystem by
1 ⊗ ΛP . However, there are states ψ ∈ H1 ⊗ H2, such that, for some maps
ΛP , 1⊗ ΛP is not a positive operator. Given a separable state

ψ =
∑
i

pi(ψA)i ⊗ (ψB)i (2.33)

so, applying the extended map

(1⊗ ΛP )(ψ) =
∑
i

pi(ψA)i ⊗ ΛP ((ψB)i). (2.34)

Since
pi, (ψA)i,ΛP ((ψB)i) ≥ 0,

(1 ⊗ ΛP )(ψ) remains a positive operator. So we can conclude that ψ is
entangled if we can find a positive map ΛP such that (1 ⊗ ΛP )(ψ) has at
least one negative eigenvalue. Moreover, since (1 ⊗ ΛP )(ψ) ∈ HA ⊗ HA,
a state ψ is separable if and only if (1 ⊗ ΛP )(ψ) ≥ 0 for all positive maps
ΛP : HB 7−→ HA. But, such maps provide only a necessary condition for
separability. That is, if we fail to find a map ΛP , such that (1 ⊗ ΛP ) in not
a positive operator, we cannot immediately conclude that ψ is separable,
since we may failed to check all possible maps ΛP .

Peres-Horodecki criterion

The Peres-Horodecki criterion, also called PPT-criterion, gives a necessary
condition for separability of states in bipartite systems. We will use the
transpose and partial transpose operations, saw in (2.16) and (2.18). We
already know that the transpose operation is positive T (ψ) ≥ 0 but not
necessarily 1⊗T (ψ) is, since 1⊗T is not a positive map. Then for every pure
state 1⊗T (ψ) ≥ 0, and is called PPT (positive partial transpose). However
the PPT-criterion is only a necessary separability criterion, once there are
entangled states that 1⊗T ≥ 0.

The PPT-criterion becomes both necessity and sufficient if we restrict
the dimension of the system to 2×2 or 2×3. The underlying reason for this
is that any positive map ΛP : C2 7−→ C2 or ΛP : C2 7−→ C3 can be written
as

ΛP = Λ
(1)
CP + Λ

(2)
CP ◦T, (2.35)

where ΛCP are completely positive maps [23]. Then the condition (1 ⊗
ΛP )(ψ) ≥ 0 reduces to

(1⊗ ΛP )(ψ) = (1⊗ Λ
(1)
CP )(ψ) + (1⊗ Λ

(2)
CP )(1⊗T )(ψ)

= (1⊗ Λ
(1)
CP )(ψ) + (1⊗ Λ

(2)
CP )(ψTB ) ≥ 0,

(2.36)

where TB is the partial transposition of ψ related to the second subsystem.
In the above equation, the extended maps 1⊗Λ

(1,2)
CP are positive maps, since

Λ
(1,2)
CP are completely positive, thus (1 ⊗ Λ

(1)
CP )(ψ) have only non-negative

eigenvalues. And likewise a general dimensional case seen above, if ψ
is such that 1⊗T (ψ) ≥ 0, then (1 ⊗ Λ

(2)
CP )(ψTB ) ≥ 0. This implies that

(1 ⊗ ΛP )(ψ) ≥ 0 for any positive map ΛP , since the negative eigenvalues
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in these dimensions come from the transposition map. In this condition,
ψ is separable. And otherwise, ψ is entangled if 1⊗T (ψ) has at least one
negative eigenvalue. Then we found a necessary and sufficient separability
condition for 2×2 and 2×3 bipartite systems.

2.5 Entanglement Monotones and Measures

In our study of quantum entanglement, in summary, we already defined
entangled states and listed some useful tools to check on the separability of
quantum states. Concluding our approach, in this section we are interested
in quantifying the entanglement. We will introduce some of the most well
known entanglement measures: Entanglement entropy, concurrence and
Negativity. These quantities allow us to compare the amount of entangled
between different states.

The definition of an entanglement measure is a difficult task. Given
the importance of the problem, there are many proposes about entangle-
ment measures. We will present some quantifiers proposals based on an
axiomatic definition [4]. That is, functions that satisfy some reasonable pos-
tulates, and as such can be considered an entanglement quantifier.

At first, we will classify all operations that one could apply to a com-
posite quantum system, in a way that no entanglement is generated. This
is known as "entanglement resource theory". Once this is done, one can
take the decrease of correlations under all such operations a defining prop-
erty of measure on entanglement. These operations are classified as local
operations and classical communication (LOCC).

2.5.1 Local Operations and Classical Communication (LOCC )

Consider a stateψ. The most general operations that acts only on the second
subsystem is given by

ψ →
∑
i

(1⊗ εi)ψ(1⊗ ε†i ) (2.37)

in which
∑

i ε
†
i εi = 1. This operation does not induce any correlations, since

ψ = ψA ⊗ ψB → ψA ⊗ (
∑
i

εiψBε
†
i ) (2.38)

and

ψ =
∑
i

pi(ψA)i ⊗ (ψB)i →
∑
i

pi(ψA)⊗ (
∑
j

εj(ψB)iε
†
j) (2.39)

Analogously this procedure can be done performing a general operation on
first subsystem.
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Now let us increase correlations by application of local operations that
depends on the outcomes of previous operations:

ψ →
∑
i

(1⊗ εi)ψ(1⊗ ε†i )

→
∑
ij

(ζij ⊗ 1)(1⊗ εi)ψ(1⊗ ε†i )(ζ
†
ij ⊗ 1)

...

→
∑
ij...k

(1⊗ Φij...k) · · · (ζij ⊗ 1)(1⊗ εi)ψ(1⊗ ε†i )(ζ
†
ij ⊗ 1) · · · (1⊗ Φ†ij...k)

(2.40)

Such operations are called local operations and classical communication
(LOCC). We call "classical communication" the communication between
subsystems in order to know the preceding outcome associated with mea-
surement on the first subsystem, to thereby perform the measurement on
the second subsystem. Therefore LOCC operations cannot create entangle-
ment. So, it is reasonable that a potential quantifier of entanglement must
be monotone under LOCC. That is a quantity that does not increase under
LOCC.

Invariance of Entanglement Under Local Unitaries

In general, it is difficult to verify the monotonicity under LOCC. An easy al-
ternative necessary condition for monotonicity can be derived from unitary
operations.

Among all LOCC operations, the local unitary operation

ψ→U1⊗U2ψU
†
1⊗U

†
2 (2.41)

has an inverse that is again LOCC. Thus if we initially apply some local
unitary on an arbitrary state ψ, and immediately after applies your inverse,
we expect a monotoneM cannot increase after either step

M(ψ) ≥M(U1⊗U2ψU
†
1⊗U

†
2) ≥M(ψ), (2.42)

so
M(ψ) =M(U1⊗U2ψU

†
1⊗U

†
2). (2.43)

Thus we conclude that every entanglement monotone is also invariant un-
der local unitaries. In general, it is difficult to verify the monotonicity, the
necessary condition of invariance under local unitaries becomes an easier
alternative way to test a potential quantifier of entanglement.

2.5.2 Entanglement Measures

We already saw that a potential entanglement quantifier must be monotone
under LOCC (and consequently invariant under local unitaries). However,
there are additional important requirements that qualify a monotone as an
entanglement measure. The most relevant are [4]:
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• Convexity : Given two states ψ1 ∈ HA ⊗ HB and ψ2 ∈ HA ⊗ HB , an
entanglement monotoneMmust be convex inHA ⊗HB

M(pψ1 + (1− p)ψ2)≤pM(ψ1) + (1− p)M(ψ2)

where 0≤p≤1. This implies a probabilistic mix between these states
(pψ1 + (1− p)ψ2) cannot increase entanglement.

• Additivity : For n copies of a state ψ ∈ H, it is equivalent to assume
a single n-fold state ψ⊗n ∈ H⊗n. So an entanglement monotone that
fulfills

M(ψ⊗n) = nM(ψ)

is called additive.

• Subadditivity : given two states ψ1 and ψ2 in H for arbitrary two sys-
tems. An entanglement monotone that fulfilsl the inequality

M(ψ1 ⊗ ψ2) ≤M(ψ1) +M(ψ2)

is called subadditive. This implies that the product state ψ1 ⊗ ψ2 can-
not increase entanglement.

Once listed some general properties of entanglement quantifiers. We
will show the most frequently used quantifiers in the literature: Entangle-
ment entropy, concurrence and negativity.

Entanglement Entropy

Entanglement entropy is an entanglement quantifier suitable for bipartite
pure states. Initially let us define Von Neumann entropy, for arbitrary state
ψ ∈ H with dim(H) = N

S(ψ) = −tr(ψ lnψ) = −
∑
i

λi lnλi (2.44)

where λi are the eigenvalues of ψ. This quantity is useful to characterize
the state in the sense of

• S(ψ) = 0, if only if ψ is a pure state

• S(ψ) = lnN , for a maximally mixed state
1

N

Now let us look at the situation for a bipartite pure state ψ ∈ HA ⊗HB .
The state ψ is entangled if its reduced matrices are mixed, while ψ is sepa-
rable if its reduced matrices are pure. Then it is reasonable to think that the
level of lack of information for one of the subsystems is a good measure for
entanglement in the pair. Then the entanglement entropy SE(ψ) is defined
in terms of Von Neumann entropy of reduced density matrices of ψ

SE(ψ) = S(ψx) = −trψxlnψx = −
∑
i

λilnλi (2.45)

with x referring to either first or second subsystem and λi are the eigenval-
ues of ψx. The values of SE(ψx) have the following meanings
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• SE(ψx) = 0 if only if ψ is a product state, and thus separable;

• SE(ψx) = N for a maximally entanglement.

Concurrence

From Von Neumann entropy we can derive another measure of mixedness
in quantum states. By taking the Mercartor series with first order approxi-
mation ln(x)≈x− 1 (with |x− 1| < 1), (2.44) become:

S(ψ) ≈ tr(ψ(ψ − 1)) = 1− trψ2 (2.46)

Then we define the linear entropy SL(ψ) for a d-dimensional system as [ref]

SL(ψ) =
d

d− 1
(1− trψ2) (2.47)

where SL(ψ) = 0 if only if ψ is a pure state and SL(ψ) = 1 for a maxi-
mally mixed state. As we will see, this equation is quite useful for algebraic
manipulations.

In the same way that we have defined entanglement entropy SE from
Von Neumann entropy S , now in terms of lineal entropy SL we derive an-
other entanglement measure, the concurrence C [22, 47]. Considering a two
dimensional system we have SL(ψ) = 2(1−trψ2). So, taking the square root
we define the concurrence for bipartite pure state of arbitrary dimension:

C(|ψ〉) =
√

2(1− trψ2
x) (2.48)

where ψx is the reduced density matrix with x refers to either first or sec-
ond subsystem. An alternative form can be reached in terms of Schmidt
coefficients, since trψ2

x =
∑

i λ
2
i and 1 = (

∑
j λj)

2, (2.48) become

C(|Ψ〉) = 2

√∑
i<j

λiλj (2.49)

so the concurrence can be given by the square root of the product of two
different Schmidt coefficients.

The concurrence can be extended over mixed states. It is done by an
optimal decomposition of the mixed state ψ that give the lowest average
concurrence:

C(ψ) = inf
{pi,|ψi〉}

∑
i

piC(|ψi〉) with ψ =
∑
i

pi|ψi〉〈ψi| (2.50)

this definition ensure the convexity of the entanglement measure. However
for high dimensional system this optimization is quite difficult to achieve.
Actually, analytical expressions are only known for states of high symmetry
and for two qubits systems in which the minimum is obtained by:

C(ψ) = max{0,
√
a1 −

√
a2 −

√
a3 −

√
a4} (2.51)
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{ai} are the eigenvalues of the matrix R, arranged in decrescing order,
where R is

R = ψ(σy ⊗ σy)ψ∗(σy ⊗ σy) (2.52)

with σy is the Pauli matrix.

Negativity

Another frequently used monotone is negativityN [45]. Previously we saw
that given a state ψ, if its partial transpose ψTB has at least one negative
eigenvalue, ψ is entangled. Based on this result follows the definition

N (ψ) =
||ψTB ||1 − 1

2
(2.53)

where ||A||1 = tr
√

(A)†A is the trace norm. So

• N = 0 if ψTA is positive semi-definite (ψTA ≥ 0)

• N > 0 if ψTA has at least one negative eigenvalue

Therefore, as well for the PPT-criterion, negativity is completely trustwor-
thy only for 2×2 or 2×3 systems, since there are entangled states with
ψTB ≥ 0 in high dimensional systems.
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Chapter 3

Spin-Entanglement in a
Coarse-Grained Optical Lattice

Currently quantum many-body systems is one of the more productive field
in quantum physics. Especially in strongly correlated regimes, the role of
entanglement among their constituents is crucial for quantitative descrip-
tion of the quantum many-body systems. In addition, entanglement is one
of the resources for quantum information [5] so that its microscopic control
is needed for the main applications.

Since entanglement is intrinsically fragile against the action of the envi-
ronment, the microscopic control of quantum entangled system, becomes
a great experimental challenge. So, currently there are few well-controlled
physical systems that offer the possibility of exploring many body entan-
glement. A prominent one is spin systems realized with ultracold atoms in
optical lattices [9]. In this framework recent works accomplished a single
site detection of spin-entanglement in a Bose-Hubbard chain [18].

However this experimental realizations spend expensive experimental
resources. In special, for single site detection in optical lattices [39] the need
for high accurate equipments, like high-resolution microscopy, can become
an obstacle. In order to make the experimental procedure simpler and more
feasible, a question arises: Given an entangled spin-system, is it possible to
have a satisfactory description of the spin-entanglement if we are not able
to fully resolve the system?

In order to answer this question, in this chapter we will develop a suit-
able proposal. Simulating a detector with insufficient resolution, we will
take the information from a number of neighboring sites of the lattice as a
single site. Such procedure allows us to describe the entanglement behavior
taking into account different ranges of resolution of the spin chain.

In the first part of this chapter we will report an overview about the
already mentioned experimental achievement [18], highlighting the main
results that are interesting to us. Finally, in the second part, we will present
a coarse graining view of spin-entanglement dynamics in a Bose-Hubbard
chain. By applying the proposed coarse graining map, we will be able to
compare the loss of information about the entanglement dynamics in dif-
ferent degrees of the lattice sharpness.
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3.1 Spin-entanglement Dynamics in a Bose-Hubbard
Chain

The work [18] was a remarkable experimental realization in the field of
many body quantum mechanics. From confined ultracold atoms in an op-
tical lattice, the researchers were able to measure entanglement between
spins of atoms located on two lattice sites in a 1D Bose-Hubbard chain.
From an initially spin-impurity atom in the center of the chain, an outwards
propagating entanglement wave could be observed.

Focusing in the main aspects, in following sections we will present an
brief overview about the above experimental achievement. Before actually
describing the experimental procedure performed in [18], let us get some
preliminary knowledge about the creation of optical lattices, and how ma-
nipulate ultracold atoms in there. This basic description allows us, in se-
quence, to appropriately describe the realization [18]. Since the purpose is
only to provide a general picture of the main experimental features found
in [18], if necessary, references for a more detailed and technical description
will be given.

3.1.1 Storing Atoms in Optical Lattice

Ultracold atoms in optical lattices are the background physical system that
supports the experimental procedure to be described [18]. Way beyond en-
tanglement measurement, ultracold bosonic and fermionic gases in optical
lattices represent an interdisciplinary field that has been explored for a wide
variety of problems: from probing fundamental condensed-matter physics
problems [15, 20, 32, 34], up to applications in quantum optics and quantum
information processing [8], passing by the study of atomic and molecular
physics [35, 38].

This high range of applications that ultracold atoms in optical lattice of-
fer is due to its high level of control, which can be adjusted in very different
ways.

Light-atom interaction

Optical lattices are created by counter-propagating lasers beams applied on
an ultracold atomic gas . The counter-propagating lights generate a stand-
ing wave, which in turn interacts with the neutral atoms, creating a periodic
dipole potential (Figure 3.1).

In a general light-atom interaction there are both a dissipative and a con-
servative part. The dissipative one relates to the absorption of the photons
and the following spontaneous emission. However the light frequency ωL
used in optical lattices is tuned far away from the atomic resonance ω0, such
that the atomic excitation can be neglected. So arises in the atom a purely
conservative induced dipole moment d, given by [25]

d = α(ωL)E(r), (3.1)

where E(r) is the electric field amplitude at position r, ωL is the light fre-
quency and α(ωL) is the complex polarizability of the atom.
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(a) (b)

FIGURE 3.1: Creation of an optical lattice. (a) counter-
propagating laser beams create a standing wave that acts
as microscopic trap for the atoms (b) Combining more laser
beams it is possible to create a higher-dimensional lattice,
such the 2D lattice shown. Adapted with permission from

[7]

At the same time that the electric field induces a dipole moment in the
atom, it interacts with the moment, creating a trapping potential Vdip(r) for
the atoms [9]:

Vdip(r) = −d ·E(r) ≈ α(ωL)|E(r)|2 (3.2)

with the term |E(r)|2 related to the intensity of the laser light field:

I(r) =
cε0
2
|E(r)|2, (3.3)

where c is the speed of light, and ε0 is the permittivity. The trapping poten-
tial (3.2) can be attractive if ωL � ω0 (the atoms are captured in the intensity
maximum) or repulsive if ωL � ω0 (the atoms are captured in the intensity
minimum).

Therefore a 1D periodic potential can then be formed simply by interfer-
ing two counter-propagating laser beams (with wavelength λL) that forms
an optical standing wave with period λL/2. Hence generating an optical
lattice with lattice spacing alat = λL/2 that trap the atoms. The 1D poten-
tial trap is given by [9]

Vlat(x) = V0sin
2(kLx) (3.4)

where kL = 2π/λL is the wave vector of the laser light and V0 the potential
depth, see Figure 3.2. The potential depth V0 usually is given in units of
the recoil energy ER = ~2k2

L/2m = h2/8ma2
lat, in which m is the mass of

the single neutral atom. The recoil energy ER is the natural energy scale for
neutral atoms in periodic light fields.

Overlapping more laser beams, one can obtain 2D and 3D periodic po-
tentials. A simplest 3D potential trap has the approximate form (see [21]
and references therein)

Vlat(x, y, z) = Vxsin
2(kLx) + Vysin

2(kLy) + Vzsin
2(kLz). (3.5)

A schematic illustration of lattice geometries are shown in the Figure 3.3.
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(a)

(b)

FIGURE 3.2: 1D optical lattice potential. (a) A periodic po-
tential related to the light standing wave trap the atoms (b)
Actually the potential are inhomogeneous, this is due of the
residual harmonic trap associated to the gaussian beam pro-
file of the laser, which overlaps the periodic potential [9].
(b) Since is an weak residual potential, in the center of the
sample the periodic potential can be approximate to homo-

geneous. Adapted with permission from [9]

Bose-Hubbard Systems

In summary, the Bose-Hubbard model is used to describe interacting parti-
cles in a lattice. This model is described by a Hamiltonian consisting of two
principal terms: a kinetic term, allowing for tunneling of particles between
sites of the lattice and a potential term, consisting of on-site interaction. The
(single band) Bose-Hubbard Hamiltonian is given by [15]:

ĤBH = −J
∑
j

â†j âj+1 +
∑
j

U

2
n̂j(n̂j − 1) +

∑
j

εjn̂j (3.6)

where index j refer to spin site in the chain. The first term is the kinetic
term, with J the single-particle tunneling rate and â†j(âj) is the raising (low-
ering) operator for site j. The second term relates to potential energy, where
U denotes on-site interaction energy and n̂j is the number operator. Finally,
the third term represents an external confinement with εj = Vext(xj) that
describes an energy offset of each lattice site (for homogeneous systems εj
is constant).

Ultracold atoms in an optical lattice are mapped onto the Bose-Hubbard
model (3.6) when the atoms in the lattice are in a sufficiently low temper-
ature, such that any long-range-interaction can be ignored. In an experi-
mental realization, the parameters J and U in (3.6) can be easily handled
by the experimentalist, since they are directly related to the potential depth
of the optical lattice. Decreasing the potential depth, the tunneling barrier
between lattice sites is decreased and consequently the tunneling rate J in-
crease. On the other hand in a deeper lattice, the greater confinement of the
wave function results in an increase of on-site interaction U . Therefore, the
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FIGURE 3.3: Schematics of an 1D, 2D and 3D optical lattices.
Superimposing one, two or three orthogonal 1D potential
lead to diverse optical lattice geometries. Addapted with

permission from [16]

ratio U/J can be easily adjusted basically by changing the intensity of the
counter-propagating laser beams that make up the lattice.

Superfluid to Mott insulator Phase Transition

A diluted ultracold gas loaded in an optical lattice that can be described by
(3.6), may assume the superfluid state or the Mott insulating state [20]. In
the regime of weak interactions relative to the kinetic energy U/J � 1, the
system exhibit superfluid state, in which each atom is delocalized over the
lattice. In this case the whole system is described by a matter wave, Figure
3.4a, and the atom number per lattice site follows a poissonian distribu-
tion. On the other hand, for the regime of strong interactions U/J � 1, the
system become strongly correlated entering in the Mott insulator state. The
atoms are localized to single lattice sites, with a fixed particle number. Now,
perfect correlations in the particle number per site exist and the system can
no longer be described by a matter wave, Figure 3.4b.

As previously discussed, the experimentalist can continuously adjust
the ratio U/J through changing the strength potential. In fact the imple-
mentation of the quantum phase transition Superfluid-to-Mott insulator in
optical lattice has been shown feasible [20].

3.1.2 Local Detection in an atomic Mott insulator

In this section we will report two fundamental techniques to manipulate
strongly interacting bosonic Mott insulators in optical lattice. Firstly the
implementation of single-site detection, which is supported by fluorescence
imaging. And finally the single-spin addressing technique. Both achieve-
ments are key pieces in the spin-entanglement generation and detection
reported in [18]. These techniques are crucial both for the creation of the
spin-impurity at the center of the spin chain, and for detecting the experi-
mental observables that will be described later.

Fluorescence Imaging

We begin with a brief reminder of basic fluorescence process. Lets imagine
an atom as an ideal two-level system with transition frequency ω0 and de-
cay rate λ. To incite the fluorescence in the atom, let us consider a classical



24 Chapter 3. Spin-Entanglement in a Coarse-Grained Optical Lattice

(a)

(b)

FIGURE 3.4: Superfluid-to-Mott insulator (a) Superfluid
state: in the right the atoms are distributed over the sites fol-
lowing a poissonian distribution and in left a matter wave
interference pattern appear owing to the single-particle
wave functions of the N atoms are spread out over the en-
tire lattice(b) Mott Insulating state: in the right the lattice
sites are filling with a fixed particle number, in the left the
interference pattern disappear once the single-particle wave
functions are confined in the one site. Adapted with permis-

sion from [9].

light field
E(t) = E0sin(ωLt) (3.7)

where ωL is the frequency of the light and E0 is its amplitude. In this dis-
sipative process, the photon scattering rate of an atom exposed to this light
field is given by [12]

Γs =
λ

2

( Ω2/2

Ω2/2λ2/4 + δ2

)
(3.8)

where Ω = dE0/~ is the Rabi frequency, d is the dipole matrix element of
the transition and δ = ω0 − ωL is the detuning.

The fluorescence imaging is based on the spatially resolved detection of
scattered photons. The main experiment that will be reported in the follow-
ing sections [18], an ultracold gas of 87Rb are loaded in a optical lattice. In
such frame an optical molasses induces the fluorescence [39]. Optical mo-
lasses are a laser cooling based on Doppler cooling mechanism [1]. In this
technique, an additional set of counter propagating light waves that are su-
perimposed over the optical lattice. Roughly speaking, this phenomenon
rely on the fact when an atom absorbs and re-emit a photon its momentum
changes. However the important thing is that through this cooling process
the atoms isotropically emit photons with scattering rate (3.8). So during an
expose period of optical molasses a high-resolution microscope can collect
the photons performing the fluorescence imaging. A schematically illustra-
tion of the experimental setup is given in Figure 3.5.
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(a) (b)

FIGURE 3.5: Fluorescence imaging of an atomic Mott in-
sulator.(a) Experimental set-up. (b) By imaging processing
an algorithm [39] determine the centers of the lattice (white

points). .Adopted with permission from [39]
.

Single-Spin Addressing

Here we will show how the addressing of a single spin is performed at
specific site of an optical lattice (see full description in [46]). The addressing
technique is performed using the same microscope used for fluorescence
imaging. So that the already existing optical microscope is used to overlap
an additional addressing beam which is focused onto the the atomic sample
by the optical imaging system. Since we are dealing with ultracold gas
of 87Rb, a pseudo-spin 1/2 is encoded in two convenient hyperfine states:
|1〉 ≡ |F = 1,mF = −1〉 and |0〉 ≡ |F = 2,mF = −2〉. So the addressing
beam causes a localized light shift of the two hyperfine levels that tunes
the addressed atom into resonance with an external microwave field. Thus
allowing the coherent local spin flip of atoms in the lattice (see Figure 3.6).

(a) (b)

FIGURE 3.6: Addressing scheme. (a) schematic illustration
of adressing techenique in an atomic Mott insulator with
unity filling on a 2D lattice. (b) Energy diagram of atoms
with two energy states |0〉 and |1〉, the addressing beam in-
duces resonance with external microwave field by a local-
ized shift on state |1〉 that bring the atom from |0〉 to |1〉.

Adapted with permission from [46]

As mentioned, this technique plays an important role in the experimen-
tal setup of [18]. In which is used to create the spin-impurity at the center
of the spin chains performed in the experiment [18].
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3.1.3 Entanglement during spin-impurity dynamics

In this section we will describe the entanglement during spin-impurity dy-
namics in the spin-1/2 XX-chain [41, 2]. This approach will be useful to
give theoretical predictions that support the experimental procedure [18] to
be described in the next section.

Deep in the Mott-insulator regime with unity filling, a Bose-Hubbard
system described by (3.6) can be mapped to the isotropic spin-1/2 Heisen-
berg Hamiltonian [13]:

Ĥ = −Jex
∑
j

Ŝj · Ŝj+1

= −Jex
∑
j

(Ŝ+
j Ŝ
−
j+1 + Ŝ−j Ŝ

+
j+1)− Jex

∑
j

Ŝzj Ŝ
z
j+1,

(3.9)

where Ŝ±j = Ŝxj±iŜ
y
j are the spin-1/2 raising (lowering) operators. Jex is

the exchange coupling, which has a constant value Jex = 4J2/U for homo-
geneous chains (see the supplementary information of [17]).

In the case of a single spin-impurity in a 1D lattice (single excitation
subspace), the Hamiltonian (3.9) can be simplified. The term Jex

∑
j Ŝ

z
j Ŝ

z
j+1

can be neglected, since it gives rise only to an energy offset [17]. So

ĤXX = −Jex
∑
j

(Ŝ+
j Ŝ
−
j+1 + Ŝ−j Ŝ

+
j+1). (3.10)

The above Hamiltonian gives us a sufficient description of a spin-impurity
dynamic in a 1D lattice.

A spin chain of size L with a single spin-up spin-impurity on site j can
be represented by the state

|j〉 ≡ |1−L/2, · · · , 1j−1, 0j , 1j+1, · · · , 1L/2−1〉, (3.11)

where |1〉 and |0〉 refers to spin down and spin up states respectively, in
the z-basis. Choosing as initial state a single spin-up spin-impurity at the
center of the chain, (3.11) becomes

|ψ0〉 = |j = 0〉 = |1−L/2, · · · , 1−1, 00, 1+1, · · · , 1L/2−1〉. (3.12)

In this case, the spreading of this spin-impurity is given by the time evolu-
tion under (3.10), which can be described by

|ψ(t)〉 =
∑
j

φj |j〉 (3.13)

where φj = ijJj(Jext/~), in which Jj(x) is the Bessel function of the first
kind [28].

Concurrence between two sites

The next step is to quantify the entanglement between spins in two different
sites in the chain. The reduced density operator related to a pair of different
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arbitrary sites A and B is given by:

ψAB(t) = trl 6=A,B[|ψ(t)〉〈ψ(t)|]. (3.14)

Using (3.13) and the basis states |00〉, |01〉, |10〉 and |11〉 for sites A and B,
we get:

ψAB =


0 0 0 0
0 |φA|2 φAφ

∗
B 0

0 φ∗AφB |φB|2 0
0 0 0 1− |φA|2 − |φB|2

 . (3.15)

The matrix representation (3.15) of ψAB can be identified as X-matrix
form

X =


X11 0 0 X14

0 X22 X23 0
0 X32 X33 0
X41 0 0 X44

 , (3.16)

in which the concurrence C(X) can be easily calculated [48]:

C(X) = 2 max{0, |X14| −
√
X22X33, |X23| −

√
X11X44} (3.17)

Thus, the concurrence C(ψAB) between A and B sites is

C(ψAB) = 2|φAφ∗B|. (3.18)

The Figure 3.7 illustrates the entanglement dynamics between symmetric
sites with respect to the center of the spin chain.

3.1.4 Measuring a Lower Bound for Concurrence

Until this section it was reviewed the main aspects that support the realiza-
tions with ultracold atoms in optical lattices: we saw how to store, detect
and manipulate neutral cold gases in optical lattices, and we drawed a sim-
ple model to spin-impurity dynamics in 1D spin chain.

So now we are able to properly describe the experimental realization
presented in [18]. In which, following the proposal [30], it was possible,
due to the spatially resolved detection of spins, to observe entanglement
waves in Hubbard systems with ultracold atoms.

Experimental Procedure

The experimentalists In the following, we describe the realization [18] in
four principal steps:

• In the first step the experimentalists started with the preparation of an
2D sample of ultracold 170 87Rb atoms confined in a single antinode
of a vertical standing wave in the z direction with a depth of Vz =
20Er (See Figure 3.8(a)), remember that Er is the recoil energy related
to the atomic mass of 87Rb.

• Next by two counter-propagating laser beams along x and y direc-
tions arise two horizontal lattices with Vx = Vy = 40Er depth that
drove atoms in the center of the sample to the Mott insulating regime
with unity filing, forming a homogeneous grid 9× 9 (Figure 3.8(b)).
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(a)

(b)

FIGURE 3.7: Concurrence C(ψA,−A) between sites A and
−A for different sites. (a) time evolution of concurrence (b)

spatial evolution of entanglement

• The system is ready to local spin flip procedure. The atoms of the
center of the sample were prepared in the hyperfine state |1〉 ≡ |F =
1,mF = −1〉. Using single-site addressing technique, they create a
spin-impurity line (in y axis) in the center of the 9×9 lattice by chang-
ing the hyperfine state of the atoms to the state |0〉 ≡ |F = 2,mF =
−2〉. And keeping the addressing beam on, they decrease the poten-
tial depth of lattice along the x direction to Vx = 10Er, forming nine
parallel 1D chains of nine atoms with an spin-impurity in the center
(Figure 3.8(c)).

• Finally, switching off the addressing beam, the 1D spin-impurity dy-
namics get started (Figure 3.8(d)). In order to stop the dynamic, the
depth of all lattices are increased. The imaging of the |0〉 states was
performed following two steps. Firstly, using a global microwave
pulse, the entire spin population is inverted (|0〉 → |1〉 and |1〉 → |0〉).
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And then, using a laser pulse resonant with the F = 2 to F ′ = 3 tran-
sition, the states |0〉 are pushed out of the lattice. So the site-resolved
fluorescence imaging can be performed over the remaining atoms (in
which relates to the atoms in the state |1〉 that ,before the inversion of
population |0〉 → |1〉, were in the state |0〉).

(a) (b)

(c) (d)

FIGURE 3.8: Experimental procedure

Two main experimental observables are measured after the experimen-
tal procedure described above. The first is the probability P 1

j‖ to find one
atom at site j after a longitudinal (‖) measurement that corresponds to the
probability for the atom to be in the |1〉 state. And the second, the prob-
ability P 1

j⊥ to find one atom at site j in the state |1〉 after a "transverse"
measurement (⊥), in this situation we added a global π/2 rotation before
the imaging of the spins.

Lower Bound for Concurrence

To measure the entanglement between two sites, the experimentalists fol-
lowed the proposal [30], in which a measurable lower bound for the con-
currence is derived.

Experimentally, the concurrence of an unknown state can be calculated
by a full state tomography. For two spin-1/2 systems the tomography is
performed by measuring fifteen combinations of Pauli matrices [36]. The
elements can be detected in a measurement in the z-basis if we apply pulses
that rotate the individual spins before the measurement

However, for Bose-Hubbard spin systems performed in optical lattices,
the full state tomography is still a challenge. Since in this realizations in-
dividual rotations are unfeasible, only the detection of Ŝαi Ŝ

α
j with α =
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x, y, z by global pulses are achievable. Considering this limitation, the pro-
posal [30] present a measurable lower bound for the concurrence using only
global pulses:

K(ψij) = 2(2〈Ŝ⊥i Ŝ⊥j 〉 −
√
P 11
ij P

00
ij ) (3.19)

where 〈Ŝ⊥i Ŝ⊥j 〉 = (〈Ŝxi Ŝxj 〉+ 〈Ŝ
y
i Ŝ

y
j 〉)/2 and P 11

ij (P 00
ij ) is the joint probability

of the spins on sites i and j being in the state |1〉 (|0〉). Using (3.15) in this
bound equation, we find [30]

K(ψij) = C(ψij), for even distances i− j,
K(ψij) = 0, for odd distances i− j.

(3.20)

So the lower bound K(ψij) is exactly the concurrence for spins at even dis-
tances, this result reflect the fact that in this case the spins are parallel with
the x − y plane, |〈Ŝxi Ŝxj 〉| = |〈Ŝyi Ŝ

y
j 〉| > 0 and |〈Ŝxi Ŝ

y
j 〉| = |〈Ŝyi Ŝxj 〉| = 0. On

the other hand, K(ψij) = 0 for odd distances, in this case the spins have
perpendicular alignment in the sense that |〈Ŝxi Ŝxj 〉| = |〈Ŝyi Ŝ

y
j 〉| = 0 and

|〈Ŝxi Ŝ
y
j 〉| = |〈Ŝ

y
i Ŝ

x
j 〉| > 0.

Now in the experimental frame described early, we will identify the ex-
perimental observable, in which the bound (3.19) can be detected. Neglect-
ing defects in the spin chain the operator Ŝ⊥i is related to the transverse
probability P 1

i⊥ by

P 1
i⊥ = 〈Ŝ⊥i 〉+

1

2
. (3.21)

Hence
〈Ŝ⊥i Ŝ⊥j 〉 = P 11

ij⊥ −
1

4
(3.22)

So we can rewrite (3.19) as follows

K(ψij) = 2(2P 11
ij⊥ −

√
P 11
ij‖P

00
ij‖)− 1 (3.23)

where P 11
ij⊥ is the joint probability to find one atom in the state |1〉 at site i

and one at site j in the transverse measurement. Analogously, P 11
ij‖ (P 00

ij‖) is
the joint probability to find one (zero) atom n site i and j in the longitudinal
measurement, remembering that at the end of the experimental procedure
(fourth step) before the inversion of populations (|0〉 → |1〉 and |1〉 → |0〉)
only the atoms with state |0〉 remain in the lattice.

In addition to (3.23), a more efficient lower bound is derived in [18],
this one non-perfect initial Mott insulator are taken into account, resulting
in P 1

i⊥ < 0.5. In that case the perpendicular correlation (3.22) is given by
〈Ŝ⊥i Ŝ⊥j 〉 = P 11

ij⊥ − P 1
i⊥P

1
j⊥. Then (3.23) is rewritten as

K̃(ψij) = 2(2(P 11
ij⊥ − P 1

i⊥P
1
j⊥)−

√
P 11
ij‖P

00
ij‖) (3.24)

In Figure 3.9 are shows the results for both lower bounds for the con-
currence (3.23) and (3.24) for symmetric pairs around the center of the spin
chain.

Since we aimed in a brief overview about experimental realization [18]
some aspects was neglected. For a more detailed description of the exper-
imental procedure it is recommend to see [18] and the references there.
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FIGURE 3.9: Propagation of entanglement. Experimental
lower bound for the concurrence K−i, i (circles with solid
line) and the more efficient bound K̃−i, i [18] (squares with

dashes line). Adapted with permission from [18].

Issues such as inhomogeneity in the lattice potential, holes or multiple-
occupied lattice sites and their influence on entanglement detection are well
described there.

3.2 Coarse-grained Entanglement in a Spin Chain

After the description of the experimental accomplishment [18], finally we
can properly present the main proposal of this chapter. As mentioned be-
fore and supported by previous sections, we verify that realizations like [18]
spend high experimental resource. Especially in the single site detection,
using fluorescence imaging, the need for high accurate equipments, like
high-resolution microscopy, can become an impediment. In order to over-
come these experimental difficulties, is desirable to devise an approach that
dispenses this high precision, with the detection of entanglement remaining
viable.

To describe this situation we will use the coarse-graining model pro-
posed in the last chapter. Assuming the experimental adversity, where our
microscope doesn’t have enough definition to perform single site detection,
in this section we will propose a suitable coarse graining map to simulate
this blurred detection in order to study the loss of entanglement informa-
tion.

We start with the simple case, to simulate a blurred detector lets con-
sider the experimental situation: We wish measure the spin information
from two neighboring atoms, but in the fluorescence imaging our detector
doesn’t have enough resolution to resolve the light coming from each single
site in the lattice. Furthermore we consider that the amount of light in the
fluorescence of a single atom is sufficient to saturate the detector.

Thus, in this scenario, states like |01〉, |10〉 and |11〉, yield the same sig-
nal, hence we can not distinguish them. Motivated by such situations,
this loss of information can be described by a coarse graining map ΛCG :
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L(H4)→ L(H2):

ΛCG(|00〉〈00|) = |0〉〈0| ΛCG(|10〉〈00|) = 1√
3
|1〉〈0|

ΛCG(|00〉〈01|) = 1√
3
|0〉〈1| ΛCG(|10〉〈01|) = 0

ΛCG(|00〉〈10|) = 1√
3
|0〉〈1| ΛCG(|10〉〈10|) = |1〉〈1|

ΛCG(|00〉〈11|) = 1√
3
|0〉〈1| ΛCG(|10〉〈11|) = 0

ΛCG(|01〉〈00|) = 1√
3
|1〉〈0| ΛCG(|11〉〈00|) = 1√

3
|1〉〈0|

ΛCG(|01〉〈01|) = |1〉〈1| ΛCG(|11〉〈01|) = 0
ΛCG(|01〉〈10|) = 0 ΛCG(|11〉〈10|) = 0
ΛCG(|01〉〈11|) = 0 ΛCG(|11〉〈11|) = |1〉〈1|.

(3.25)

In the above coarse graining map the factor 1/
√

3 ensures the trace pre-
serving and completely positiveness of the operation. And since we cannot
distinguish the states |01〉, |10〉 and |11〉, there can be no coherence in this
subspace, so the above null terms appear.

3.2.1 Coarse-Grained Entanglement Dynamics

Once we have already constructed our coarse graining map (3.25) that plays
the role of a blurred detector, lets study how the entanglement evolves un-
der this coarse graining view. In the same way as detection performed in
[18], we will calculate the entanglement behavior between two symmetric
sites around the center of a coarse-grained chain. We will take two different
degrees of resolution: first we map two sites as an effective one, and then
four sites as a single one. So that, this approach enables us to study how
this coarse graining process affects the entanglement in the chain, giving
us the possibility to qualitatively argue for an experimental boundary in
which the experimental detection of entanglement is still possible.

Firstly we need to characterize the state that through our blurred de-
tector we don’t have complete access. To compute the first coarse graining
level where two sites will be mapped to a single one, we represent the state
in reduced density operator formalism of two arbitrary pairs of two neigh-
boring sites in the lattice ( A1-A2 and B1-B2):

ψ′ = trl 6=A1,A2,B1,B2 [|ψ(t)〉〈ψ(t)|], (3.26)

since |ψ(t)〉 is given by (3.13)

ψ′ =|φA1 |2|10〉〈10| ⊗ |00〉〈00|+ φA1φ
∗
A2
|10〉〈01| ⊗ |00〉〈00|+

+ φA1φ
∗
B1
|10〉〈00| ⊗ |00〉〈10|+ φA1φ

∗
B2
|10〉〈00| ⊗ |00〉〈01|+

+ φA2φ
∗
A1
|01〉〈10| ⊗ |00〉〈00|+ |φA2 |2|01〉〈01| ⊗ |00〉〈00|+

+ φA2φ
∗
B1
|01〉〈00| ⊗ |00〉〈10|+ φA2φ

∗
B2
|01〉〈00| ⊗ |00〉〈01|+

+ φB1φ
∗
A1
|00〉〈10| ⊗ |10〉〈00|+ φB1φ

∗
A2
|00〉〈01| ⊗ |10〉〈00|+

+ |φB1 |2|00〉〈00| ⊗ |10〉〈10|+ φB1φ
∗
B2
|00〉〈00| ⊗ |10〉〈01|+

+ φB2φ
∗
A1
|00〉〈10| ⊗ |01〉〈00|+ φB2φ

∗
A2
|00〉〈01| ⊗ |01〉〈00|+

+ φB2φ
∗
B1
|00〉〈00| ⊗ |01〉〈10|+ |φB2 |2|00〉〈00| ⊗ |01〉〈01|+

+ (1− |φA1 |2 + |φA2 |2 + |φB1 |2 + |φB2 |2)|00〉〈00| ⊗ |00〉〈00|

(3.27)
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then applying the map defined by (3.25), we can easily calculate the coarse-
grained state:

ψCG = (ΛCG ⊗ ΛCG)(ψ′)

=


ζ 0 0 0

0 |φB1 |2 + |φB2 |2
1

3
(φA1 + φA2)∗(φB1 + φB2) 0

0
1

3
(φA1 + φA2)(φB1 + φB2)∗ |φA1 |2 + |φA2 |2 0

0 0 0 0

 ,

(3.28)

where ζ = 1− |φA1 |2 + |φA2 |2 + |φB1 |2 + |φB2 |2, and ψCG is expressed using
the basis states |00〉, |01〉, |10〉 and |11〉 for the resulting two coarse-grained
sites.

For the next level of resolution, where we want map four sites as a single
one, we compute the reduced state to an arbitrary pair of four neighboring
atoms (A1-A2-A3-A4 and B1-B2-B3-B4):

ψ′ = trl 6=A1,A2,A3,A4,B1,B2,B3,B4 |ψ(t)〉〈ψ(t)|. (3.29)

To calculate the coarse-grained state in this second coarse graining level we
compose the map (3.25) and apply over (3.29):

ψCG = (ΛCG ◦ (ΛCG ⊗ ΛCG))⊗ (ΛCG ◦ (ΛCG ⊗ ΛCG))(ψ′). (3.30)

Once characterized the coarse-grained states, let us calculate their con-
currences.

Concurrence

To detect the entanglement between two coarse-grained sites we will de-
rive an equation for the concurrence analogous to that found before for two
(non-coarse-grained) sites in (3.18).

To calculate the concurrence in the first coarse graining level, where we
map two sites as one, we use the result (3.17), since ψCG in (3.28) takes the
X-matrix form. Then the concurrence is given by

C(ψCG) =
2

3
|(φA1 + φA2)(φB1 + φB2)∗|. (3.31)

At first sight this equation looks like the form of concurrence between two
sites in (3.18).

For the purpose of giving a concrete view about the consequences of
result (3.31), we will study the entanglement evolution in a chain with sev-
enteen sites in the "microscopic" level. We will plot the concurrence be-
tween the symmetric sites around the center of the chain, and compare with
their respective coarse-grained site. In this first coarse graining level we
use the equation (3.18) to calculate the concurrence between the first two
pair of sites before the coarse graining: C(ψ1−1) = 2|φ1φ

∗
−1| and C(ψ2−2) =

2|φ2φ
∗
−2|. Then, we calculate the concurrence of the resulting pair of coarse-

grained sites using the equation (3.31): C(ψCG1,−1) = (2/3)|(φ1 + φ2)(φ−1 +
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φ−2)∗|. In the same way we calculate the concurrence between others sym-
metric sites around the center both at the "microscopic" level and at coarse-
grained level. The results are shown in Figure 3.10.

From this first coarse graining level we find some interesting results. In
Figure 3.10(a), we observe that the concurrence decay in the coarse graining
level. Despite of this, a significant amount of entanglement still survives.
So even in the coarse graining description we observe an outwards propa-
gating entanglement "wave" (See 3.10(b) and 3.10(c)). In this scenario, we
can speculate that in a realistic experimental procedure the entanglement
would still be detectable.

(a) (b)

(c)

FIGURE 3.10: Concurrence C(ψA,−A). (a) Here we show
the concurrence evolution between the first eight symmetric
pairs of sites in the spin chain , C(ψA,−A), and the concur-
rence between the resulting coarse-grained sites. (b) Time
evolution of concurrence C(ψCG

ACG,−ACG
) in the CG level (c)

spatial dynamics of concurrence in the CG level.

For the next coarse graining level, in which four sites in the lattice are
mapped to one, we proceed in an analogous way. From (3.30) using the
result of concurrence of X states (3.17), we have:

C(ψCG) =
2

9
|(φA1 + φA2 + φA3 + φA4)(φB1 + φB2 + φB3 + φB4)∗|. (3.32)

Note that this result preserves the same structure as the (3.31). To see how
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the concurrence behave in this coarse graining level we consider again a
chain composed of seventeen sites with the spin-impurity starting in the
center. Since we will calculate the concurrence between pair of sites sym-
metric to the center we note that in this coarse graining level we have only
two pairs of coarse-grained sites (since the chain is composed of seventeen
sites) where each coarse-grained site comes from the blurred detection of
four sites in the "microscopic" level.

Considering again a chain with seventeen sites lets see how the entan-
glement evolves in this coarse-grained level. Analogously with the last
case, we plot the concurrence between the symmetric sites around the cen-
ter of the chain, and compare it with their respective coarse-grained sites.
We use the equation (3.18) to calculate the concurrence between the first
four pair of sites before the coarse graining: C(ψ1−1) = 2|φ1φ

∗
−1|, C(ψ2−2) =

2|φ2φ
∗
−2|, C(ψ2−3) = 2|φ2φ

∗
−3| and C(ψ4−4) = 2|φ4φ

∗
−4|. Then, we calculate

the concurrence of the resulting pair of coarse-grained sites using the equa-

tion (3.32): C(ψCG) =
2

9
|(φ1 + φ2 + φ3 + φ4)(φ−1 + φ−2 + φ−3 + φ−4)∗|. We

proceed in the same way to calculate the concurrence between the other
symmetric sites. See the results in the Figure 3.11.

Now let us analyze the results in this second resolution level, where we
have mapped four sites to one. In 3.11(a), as expected, we observe that
the concurrence becomes weak compared to the concurrence in the "micro-
scopic" level or in the first coarse graining level (saw in 3.10). Consequently
we observe an weak outwards propagating entanglement "wave", now con-
fined to only two coarse graining sites (see 3.10(b) and 3.10(c)). Therefore
in this scheme, we guess that in a realistic experimental procedure the en-
tanglement would no longer be detectable.

Negativity

Another way of studying the differences in the entanglement between the
"microscopic" level and the coarse graining level is through negativity N .
Using concurrence we are restrict to calculate only entanglement between
two qubits (two sites in the spin-chain). With the negativity we can explore
another possibilities, as we can calculate the entanglement between qudits.
What means that we can calculate entanglement between two or more spins
in the chain, no more restricted to pair of spins.

Instead of studying many situations as we did for concurrence, here we
will limit ourselves to study the negativity in a single simple case. Consid-
ering an spin-chain composed of five spins (see Figure 3.12) we calculate
the negativity between sites 1 and 2 with respect to their symmetrical sites
(−1 and−2). This can be easily calculated using the equation (2.53) for neg-
ativity defined in last chapter, and the reduced state (3.27) that describes
this situation. For the related coarse graining level, we calculate the nega-
tivity using (3.28) in (2.53). Results are shown in Figure (3.12). Beyond the
decay of entanglement also observed using the concurrence as measure of
entanglement, with negativity we can observe that the instant where the
maximum value of negativity is reached both for the "microscopic" level
and for the coarse-grained level it seems to be the same, this is an interest-
ing result.
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(a) (b)

(c)

FIGURE 3.11: Concurrence C(ψA,−A). (a) Here we show
the concurrence evolution between the first eight symmetric
pairs of sites in the spin chain , C(ψA,−A), and the concur-
rence between the resulting coarse-grained sites. (b) Time
evolution of concurrence in the CG level (c) spatial dynam-

ics of concurrence in the CG level.

So we end this chapter by giving a brief summary of what we have learned.
Firstly we saw a theoretical model that describes the entanglement dynam-
ics in a Heisenberg spin-chain due to the dynamics of an spin-impurity.
Then we described an experimental realization using ultracold atoms in an
optical lattice that accomplishes this entanglement detection in spin-chains.
And finally we constructed an coarse graining map that models an experi-
mental procedure without full resolution in the detection of the spin-chain.
As expected, since the description of the spin entangled system is taken in
a smaller dimensional space, it was verified a loss of entanglement. Despite
the amount of entanglement decay both for concurrence and for negativ-
ity, a considerable amount of entanglement still survives, mainly in the first
coarse graining level. Thus this result indicates that in an experimental pro-
cedure with lower precision, with respect to the resolution of detection than
[18], the entanglement possibly will still be detected.
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FIGURE 3.12: Negativity between the first symmetric pair
of sites in the chain both at microscopic and coarse-grained

levels, N (ψ1,2vs−1,−2) and N (ψCG) respectively.
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Chapter 4

Equation for Entanglement in
Coarse-grained Systems

4.1 Evolution Equation for Quantum Entanglement

In realistic situations, quantum systems can not be completely isolated from
their environment. In an experimental framework, for example, the inter-
action between the laboratory apparatus and the quantum system leads to
a degradation of quantum characteristics. That is, the interaction between
a quantum system and a large system (like a macroscopic object) with un-
controllable degrees of freedom leads to a decay process of the quantum
features. Thus, in this decoherence dynamics, entanglement is also led to
vanish.

Describing this entanglement decoherence process, especially in large
quantum systems, is a challenging task. The conventional way of dealing
with this problem is to follow the evolution of the system until the desired
instant, perform the full state tomography, and from the result calculate
its entanglement. However, for large systems tomography becomes diffi-
cult. Firstly because the manipulation techniques of some physical systems
are not good enough as to measure the observables that are required for
the state tomography process. Secondly, even if the tomography can be
performed, the number of necessary observables to be measured grows ex-
ponentially with the number of system components, making the full state
tomography at least an exhausting task. In this context, it is of fundamental
interest to find an equation of motion that directly describes the dynamics
of entanglement under a decoherence process.

Using the minimal information about the initial state and it dynamic
process, recent works accomplished this kind of description of entangle-
ment evolution. In [43, 29, 44], it was derived an equation for concurrence
dynamics where one of the subsystems of an initial 2× 2 pure state under-
goes a noisy channel. By rewriting the initial state in a suitable form, the
researchers have obtained a factorized equation for the concurrence. The
derived equation is composed by only two independent terms: one relates
to the entanglement of the initial state and the another encodes the chan-
nel parameters (this approach will be better clarified in the course of this
section).

Here we will look for an analogous equation relation for 2×D initial
pure states when the D-dimensional part passes through a channel. Based
on the method used in [44] for 2 × 2 case, we will try to develop an analo-
gous deterministic equation for concurrence, which contains only a single
quantity that, independently of the initial state, describes the entanglement
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evolution of the system. Of course we hope that this approach must con-
verge to the 2× 2 case when we take D = 2. Afterwards, using this derived
equation we consider the coarse-graining operation as the channel in the
equation. Doing this, the system 2×D can illustrate the measurement pro-
cess, where a macroscopic detector interacts with a qubit.

4.1.1 Entanglement Under Filtering Operations

As prerequisite for what follows, let us see how states of 2×D dimensions
vary under filtering operations. Here we call a filtering operation B as a
quantum operation that is non-tracing-preserving B†B ≤ 1. Considering
an arbitrary 2×D state

|ψ〉 =

1∑
i=0

d−1∑
j=0

aij |i〉|j〉 (4.1)

that suffers the action of a filtering operation B =
∑1

k,l=0 bkl|k〉〈l| on its first
subsystem, the resulting normalized state is

|ψ′〉 =
B ⊗ 1|ψ〉
‖B ⊗ 1|ψ〉 ‖

. (4.2)

To calculate its concurrence, we will employ some particularities of 2×D
systems. States like (4.1) have at most two non-zero Schmidt coefficients
λi, and in Schmidt representation the reduced density operator of the first
subsystem is given by ψ′A = λ0|0s〉〈0s|+ λ1|1s〉〈1s|, with {|0s〉, |1s〉} Schmidt
basis vectors. Taking these features, the equation of concurrence given by
(2.49) can be rearranged as

C(|ψ′〉) = 2
√
λ0λ1 = 2

√
detψ′A. (4.3)

From (4.2), calculating the reduced matrix ψ′A

ψ′A = trB|ψ′〉〈ψ′|

=
1

‖B ⊗ 1|ψ〉 ‖2
trB(B ⊗ 1|ψ〉〈ψ|B† ⊗ 1)

=
BψAB

†

‖B ⊗ 1|ψ〉 ‖2

(4.4)

where trB is the partial trace over the second subsystem andψA = trB|ψ〉〈ψ|.
So that applying (4.3), the concurrence of |ψ′〉 is given by

C(|ψ′〉) = 2
√

detψ′A

= 2

√√√√det

(
BψAB

†

‖B ⊗ 1|ψ〉 ‖2

)

=
|detB|

‖B ⊗ 1|ψ〉 ‖2
2
√

detψA

=
|detB|

‖B ⊗ 1|ψ〉 ‖2
C(|ψ〉),

(4.5)
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in the third line we used the properties: det(AB) = detAdetB, detB =
detB† and det(aB) = andetB for an n×n matrix. Thus filtering operations
redefine the concurrence by detB. So by an appropriate combination of
filtering operations, entanglement can be increased or decreased.

We can extend this approach to mixed states. A filtered mixed state is

ψ′ =
(B ⊗ 1)ψ(B† ⊗ 1)

tr((B ⊗ 1)ψ(B† ⊗ 1))
=
B ⊗ 1(ψ)

tr(B ⊗ 1(ψ))
(4.6)

where B is an abbreviate way to represent the action of B onto ψ. Since a
mixed state can be written as ψ =

∑
i pi|ψi〉〈ψi|, the filtered state ψ′ becomes

ψ′ =
B ⊗ 1(

∑
i pi|ψi〉〈ψi|)

tr(B ⊗ 1(ψ))

=
1

tr(B ⊗ 1(ψ))

∑
i

piB ⊗ 1(|ψi〉〈ψi|)

=
1

tr(B ⊗ 1(ψ))

∑
i

pi|ψ′i〉〈ψ′i|

(4.7)

where |ψ′i〉 = B ⊗ 1|ψi〉. Considering that B is invertible, we can also relate
any decomposition of ψ into state vectors |ψ′i〉 by |ψi〉 = B−1 ⊗ 1|ψ′i〉. This
implies that the ensembles of pure states {|ψi〉} and {|ψ′i〉} of the decom-
positions of ψ and ψ′ are related only by the filtering operation. Therefore,
considering the concurrence given by (2.50), if the infimum optimal decom-
position of ψ is given by {|ψi〉} with probabilities pi, then the optimal de-
composition of ψ′ is realized by the same probabilities pi with ensemble
{|ψ′i〉}which are the filtered form of {|ψi〉}:

C(ψ′) =
1

tr(B ⊗ 1(ψ))
inf

{pi,|ψ′
i〉}

∑
i

piC(|ψ′i〉)

=
1

tr(B ⊗ 1(ψ))
inf

{pi,|ψi〉}

∑
i

piC(B ⊗ 1(|ψi〉))
(4.8)

Thus, from (4.5), the concurrence of mixed states under filtering operation
is given by

C(ψ′) =
|detB|

tr(B ⊗ 1(ψ))
inf

{pi,|ψi〉}

∑
i

piC(|ψi〉)

=
|detB|

tr(B ⊗ 1(ψ))
C(ψ)

(4.9)

4.1.2 Evolution Equation for concurrence of 2×D systems

A general quantum evolution is described by the action of a dynamical
completely positive map Λ onto an initial state ψ:

ψ′ = Λ(ψ). (4.10)
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For an initial bipartite state ψ the action of a dynamical map Λ over the
second subsystem is described by

ψ′ = 1⊗ Λ(ψ). (4.11)

Such situation, for example, describes the following laboratory realization.
Imagine an experimental situation in which a system with two entangled
photons is prepared and subsequently one of them is sent to a distant lab
through an optical fiber. It is to be expected that the transmitted photon will
suffer the action of its environment (that can be mapped by a noisy channel
Λ), whereas the another photon remains protected in the lab.

Considering as starting point the evolution process (4.11), we aim to
develop a relation between the concurrence of the initial state C(ψ) and the
concurrence of the final state C(ψ′) in terms of the channel Λ (See Figure
4.1). This relation is known for 2 × 2 systems, from [42, 29, 44]. In this
chapter we wish to extend this result to 2×D, trying to keep the factorized
form, which the equation for entanglement evolution is independent of the
initial state, relating only to the evolution channel Λ parameters.

FIGURE 4.1: From a state evolution 1 ⊗ Λ, we want to find
a entanglement dynamics relation between the concurrence
of the initial state C(ψ) and the concurrence of the final state

C(ψ′)

In order to derive such an evolution equation, we rewrite the equation
(4.11) following some specific operations.

As first step, taking as initial 2×D state the pure state (4.1), it is conve-
nient for what follows to express it in Schmidt representation, using (2.31):

|ψ〉 = U⊗V ∗|ψs〉, (4.12)

where |ψs〉 =
∑

k

√
λk|k〉|k〉 and U and V are the unitary Schmidt operators.

In terms of density matrix

ψ = U ⊗ V∗(ψs), (4.13)

where U and V are the simplified notation for the action of the operators U
and V over density operator ψs = |ψs〉〈ψs|.

So that using (4.13) in (4.11)

ψ′ = 1⊗ Λ ◦ U ⊗ V∗(ψs). (4.14)

Next, we express the Schmidt state ψs as the result of a local filtering
operation B =

√
2
∑1

k=0

√
λk|k〉〈k| over the first subsystem of a maximally
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entangled state |φ+〉 = (|0〉|0〉+ |1〉|1〉)/
√

2:

|ψs〉 = B ⊗ 1|φ+〉. (4.15)

Defining φ+ ≡ |φ+〉〈φ+|

ψs = (B ⊗ 1)|φ+〉〈φ+|(B ⊗ 1)†

= B ⊗ 1(φ+).
(4.16)

Thus we can rewrite (4.14) as follows

ψ′ = 1⊗ Λ ◦ U ⊗ V∗ ◦ B ⊗ 1(φ+)

= U ⊗ 1 ◦ B ⊗ 1 ◦ 1⊗ ΛV∗(φ+)

= U ⊗ 1 ◦ B ⊗ 1(ψΛV),

(4.17)

where ψΛV ≡ 1 ⊗ ΛV∗(φ+) is in general a mixed state such that it encodes
the dynamic channel Λ and the parameters of the initial state by Schmidt
operator V . The operation B encodes only the parameters of the initial state
ψ. The choice of the maximally entangled state is irrelevant for our purpose
to measure entanglement. Since |φ+〉 can be mapped to another maximally
entangled state by act of a local unitary operation on the first qubit, ψΛV
changes but, as we have seen, the entanglement is invariant under local
unitary transformations.

A schematic representation of the rescale from (4.11) to (4.17) is illus-
trated in the Figure 4.2

FIGURE 4.2: Schematic of the ψ representation

Now calculating the entanglement of (4.17) by concurrence, we find

C(ψ′) = C(U ⊗ 1 ◦ B ⊗ 1(ψΛV))

= C(B ⊗ 1(ψΛV)),
(4.18)

in the second line we neglected the unitary operation U , since the entangle-
ment is invariant under local unitary operations.

Using the result (4.9), which gives the concurrence evolution under fil-
tering operation, the above equation takes the following form

C(ψ′) = C(ψ)C(1⊗ ΛV∗(φ+)), (4.19)

where we have used that detB = C(ψ). So the final and initial amount of



44 Chapter 4. Equation for Entanglement in Coarse-grained Systems

entanglement, C(ψ′) and C(ψ), are connected by the term C(1 ⊗ ΛV∗(φ+)).
Nevertheless different of we wanted, the term C(1 ⊗ ΛV∗(φ+)) depends
from the initial state, since V∗ is the Schmidt operator related to the initial
state ψ.

However, if we look the particular case with D = 2, then the initial 2×2
state in (4.11) is |ψ2×2〉 =

∑
i,j aij |i〉|j〉 and transform as

C(1⊗ Λ(ψ2×2)) = C(ψ2×2)C(1⊗ ΛV∗(φ+))

= C(ψ2×2)C(V† ⊗ Λ(φ+))

= C(ψ2×2)C(1⊗ Λ(φ+)).

(4.20)

We use the fact that for 2 × 2 states (1⊗A)|φ+
2×2〉 = (AT ⊗ 1)|ψ2×2〉, with

A a 2 × 2 matrix and T denotes the transpose operation. Considering this
particular case, we thus reach the relation obtained in [29], that is a factored
form of the concurrence for 2×2 case. In the right side of (4.20) the first term
relates to the initial state and the second one relates only to the evolution
process. This equation tell us that any 2× 2 pure state evolves qualitatively
at the same way that a maximally entangled state evolve under the same
arbitrary dynamical process.

4.1.3 A Statistical Approach of Entanglement Evolution in 2×D
Systems

In order to find a factored relation for entanglement evolution in 2×D sys-
tems, here we will make use of an statistical approach. Instead of study-
ing the entanglement behavior of a specific initial pure state which suffers
the action of a dynamical channel over its D-dimensional subsystem, now
we aim to study how the entanglement behaves when we take the average
value of the concurrence over the set of uniformly distributed pure states.
That is, we will derive from (4.19) a relation between the expectation value
of the concurrence 〈C(ψ)〉, related to this initial set of pure states {ψ}, and
the expectation value of the concurrence 〈C(ψ′)〉 of the evolved set of states
{ψ′} (See Figure 4.3).

FIGURE 4.3: From a ensemble of uniformly distributed pure
states which evolve under 1 ⊗ Λ, we want to find a entan-
glement dynamics relation between the expect value of the
concurrence of the initial ensemble of states 〈C(ψ)〉 and the
expect value of the concurrence related to the final ensem-

ble of states 〈C(ψ′)〉

Such an approach allows us to recognize some kind of typicality. The
basic idea of typicality is: considering a set of states drawn according to
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some specific distribution, there is "typicality" if there is some common fea-
ture (some observable for example) shared by this set of states, at a given
time will yield very similar values [42]. Here we intend show that in high
dimensions the vast majority of pure states share the same entanglement
behavior when they undergo the same dynamical process, that is, there is
typicality in entanglement dynamics for high dimensional cases.

We begin taking the expectation value of the derived relation (4.19)

〈C(ψ′)〉 = 〈C(1⊗ Λ(ψ))〉
= 〈C(ψ)C(1⊗ ΛV∗(φ+))〉

(4.21)

where 〈·〉 represent the expectation value. We assume that the set of pure
states {ψ} are picked randomly in a 2×D Hilbert space. So in the above
equation we identify two dependent random variables in the right-hand
side, the term C(ψ) and C(1⊗ ΛV∗(φ+)), since ψ and V are connected.

So let us see how the right-hand side of (4.21) behaves when the space
of D-dimensional part becomes large. First, consider two random variables
X and Y , the covariance is given by:

Cov(X,Y ) = 〈XY 〉 − 〈X〉〈Y 〉
⇒ 〈XY 〉 = 〈X〉〈Y 〉+ Cov(X,Y ).

(4.22)

Identifying X = C(ψ) and Y = C((1⊗ ΛV∗(φ+)) in the above equation, we
have:

〈C(ψ)C(1⊗ΛV∗(φ+))〉 = 〈C(ψ)〉〈C(1⊗ΛV∗(φ+))〉+Cov[C(ψ), C(1⊗ΛV∗(φ+))].
(4.23)

So accordingly to the above equation, (4.21) becames factored if Cov[C(ψ), C(1⊗
ΛV∗(φ+))] goes to zero such that 〈C(ψ)C(1 ⊗ ΛV∗(φ+))〉 ≈ 〈C(ψ)〉〈C(1 ⊗
ΛV∗(φ+))〉.

Let us see if this limit can be reached in large D-dimensional case using
the covariance inequality (See Appendix):

Cov[C(ψ), C(C(1⊗ ΛV∗(φ+))] ≤ σ[C(ψ)]σ[C(1⊗ ΛV∗(φ+)], (4.24)

where σ is the standard deviation (defined by σ(X) ≡ Cov(X,X)1/2). From
[42], we know that the biggerD, the more concentrated is the entanglement
distribution around its mean value. We confirm this result considering the
distribution of the concurrence of an ensemble of pure states ψ. By cumu-
lative density function and the expectation value of concurrence we note
that, for high dimensions, the concurrence concentrates around C(ψ) = 1
(See Figure 4.6). We also see that the standard deviation in high dimensions
goes quickly to zero (σ[C(ψ)] ≈ 0), such that the right-hand side of (6.3)
also goes to zero and the approximation Cov[C(ψ), C(C(1 ⊗ ΛV∗(φ+))] ≈ 0
becomes valid.

Therefore for large D-dimensional case of 2×D systems, (4.21) becomes

〈C(1⊗ Λ(ψ))〉 ≈ 〈C(ψ)〉〈C((1⊗ ΛV∗(φ+))〉. (4.25)

We can see that the Schmidt operators which compose set {V } related to the
{ψ}, exhibit an independent behavior in the high dimensional case. There-
fore we find a relation of the entanglement in which for high dimensional
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FIGURE 4.4: In the top the cumulative density function
indicates that concurrence concentrates around C(ψ) = 1.
The evolution of the expected value of the concurrence and
its standard deviation. In which we can see the values in
which the concurrence concentrates and we note, from the
standard deviation, that this fact occurs more intensely for

higher dimensions.

systems the expectations values of concurrence 〈C(ψ)〉 and 〈C(1 ⊗ Λ(ψ))〉
are connected by the independent term 〈C((1⊗ΛV∗(φ+))〉 that relates only
to the channel Λ.

4.2 Entanglement in 2×D Coarse Grained Systems

Now we will illustrate the result (4.25) where the dynamical channel is a
coarse graining channel ΛCG.

In a realistic situation such coarse graining approach can describe a
quantum measurement process in a laboratory scenario. Where in the ac-
tion of measuring, a macroscopic detector (D-dimensional state ψD) inter-
acts with a qubit (by an unitary transformation U ). In the intrinsic inter-
action related to the measuring process, the detector and the qubit become
entangled:

(α|0〉+ β|1〉)⊗ |ψD〉
U−→|ψ〉 =

1∑
i=0

D−1∑
j=0

aij |i〉|j〉. (4.26)

In a real situation we must keep in mind a crucial adversity, the experi-
mentalist can not control all the degrees of freedom of the detector system,
as it is composed by a huge number of particles. Instead, the handles only
few effective degrees of freedom. So to properly describes the entanglement
dynamics we must take into account the effective behavior of the detector.
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So that this situation can be mapped by a coarse graining channel acting on
the D-dimensional subsystem.

In this coupled system, a qubit is coupled to a qudit (D-dimensional
system), and the qudit is described by an effective qubit due to the action
of a coarse graining ΛCG : L(HD)→ L(H2) map:

ψ′ = 1⊗ ΛCG(ψ). (4.27)

And the equation of expected value of concurrence (4.25) is rewritten as

〈C(1⊗ ΛCG(ψ))〉 = 〈C(ψ)〉〈C((1⊗ ΛCGV∗(φ+))〉. (4.28)

Let us look how the entanglement behaves in this coarse graining approach
when we take different sizes of the D-dimensional part (different sizes of
the detector). We use the coarse graining map developed in the last chapter
(3.25) and its compositions (2.24). Then beyond dimension D = 2, we can
construct coarse graining maps that act on subsystem of dimensions D = 4
and D = 8. In this way we are able to study the coarse-graining in follow
situations:

ψ′2×2 = 1⊗ Λ2→1
CG (ψ2×4)

ψ′2×2 = 1⊗ Λ4→1
CG (ψ2×16)

ψ′2×2 = 1⊗ Λ8→1
CG (ψ2×256).

(4.29)

Thus from an uniformly distributed set of pure states {ψ2×4}, {ψ2×16} and
{ψ2×256}, we can calculate 〈1 ⊗ Λ2→1

CG (ψ2×4)〉, 〈1 ⊗ Λ4→1
CG (ψ2×16)〉 and 〈1 ⊗

Λ8→1
CG (ψ2×256)〉. In Figure 4.5 are shown the results. We observe that the

concurrence almost vanishes as the dimension increases.

FIGURE 4.5: We observe that the entanglement decreases as
the dimension of the detector increase. And in high dimen-

sions (D > 9) the entanglement basically disappears.

Another interesting thing that we observe is that using the left side of
(4.28), instead of using V , using random unitary operators UR the distri-
butions of C((1 ⊗ ΛCGV∗(φ+)) and C((1 ⊗ ΛCGUR(φ+)) are very similar.
Thus as consequence 〈C((1 ⊗ ΛCGV∗(φ+))〉 and 〈C((1 ⊗ ΛCGUR(φ+))〉 and
its standard deviation also are quite close, see Figure 4.6.
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FIGURE 4.6: Here, are shown that the distributions of C(1⊗
ΛCGV∗(φ+)) and C(1 ⊗ ΛCGUR(φ+)) are quite similar how
much larger is the size of the system. SV and SUR denotes
the standard deviation respectively for C(1 ⊗ ΛCGV∗φ+))
and C(1 ⊗ ΛCGUR(φ+)). To construct this histogram, we
sample over 3000 (N = 3,N = 5) or 1000 (N = 9) uniformly
distributed pure initial states of N qubits and unitary oper-

ators UR.

So from this result, the equation (4.28) can be rewritten as

〈C(1⊗ ΛCG(ψ))〉 ≈ 〈C(ψ)〉〈C((1⊗ ΛCGUR(φ+))〉. (4.30)

In this case 〈C(1 ⊗ ΛCG(ψ))〉 are written into two independent terms. So
the evolution of the set {ψ} under a coarse graining process 1 ⊗ ΛCG can
be mapped by the independent term 〈C((1 ⊗ ΛCGUR(φ+))〉. And more we
can identify the combined action of the random unitary UR preceded by the
coarse graining channel ΛCG as a kind of random coarse graining that act
on the qudit:

〈C(1⊗ ΛCG(ψ))〉 ≈ 〈C(ψ)〉〈C((1⊗ ΛRCG(φ+))〉, (4.31)

where ΛRCG ≡ ΛCGUR. So from this perspective we can conclude that the
entanglement behavior observed in Figure 4.6, using the coarse graining
map (3.25), can be extended to more general class of coarse graining chan-
nels ΛRCG.

Back to the measurement process where a detector interacts with a qubit.
The above results shows that, as expected, that the larger is the detector, the
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smaller is the amount of entanglement information that survives. That is,
systems with many degrees of freedom, the coarse-grained entanglement
quickly vanishes. Thus suggesting the decrease of the quantum features of
the system, and consequently a classical description emerges.
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Chapter 5

Conclusion and Perspectives

The present work aimed to study the entanglement dynamics behavior in
coarse-grained systems. We started by developing a convenient coarse-
graining description of the experimental realization [18]. In such experi-
ment the researchers were able to detect entanglement in a spin chain re-
alized with ultracold atoms in an optical lattice with single site detection.
Since this accomplishment demands high-resolution microscopy, we devel-
oped a coarse-graining map that describes a simpler experimental entan-
glement detection, that in principle, would dispense this high experimental
resources. Imagining a "blurred" detector that cannot resolve two sites in
the lattice, we constructed a coarse graining map that describes such situ-
ation, taking the information of two spins degrees of freedom to a single
one.

In the first part we developed such coarse-graining description of the
realization [18]. Starting the spin dynamics with an initial impurity in the
center of the chain, and using the coarse-graining map, we described how
the entanglement behaves when it is taken different ranges of resolution of
the chain. As expected, since the description of the spin entangled system is
taken in a smaller dimensional space, it was verified a loss of entanglement
information in the coarse-grained description. Both for concurrence and
for negativity the amount of entanglement information decays when we
consider the coarse-grained level of the spin-chain. Despite of this, a signif-
icant amount of entanglement still survives, such that we speculate that in
a realistic experimental procedure the entanglement will still be detectable.

Therefore from our coarse-graining proposal, we can try to point out
some future applications. From this work we hope to have contributed
to the problem of description of the entangled systems. Taking the coarse-
graining approach, in principle we can also model other physical situations.
Here we constructed a map to describe a "blurred" detection of a spin-chain
with a single impurity. However, the construction of a coarse-graining map
is free to suit others physical situations. In an experimental scenario, real-
ized with cold bosons in optical lattice, perhaps the immediate application
would be to detect entanglement using the same lower bound proposed in
[30], but now without the requirement of the single-spin detection accom-
plished in [18]. Through this experiment, we could verify how good our
coarse-graining model is. Knowing details of the detector we can improve
our coarse-graining map.

In the second part, in terms of concurrence, we derived an equation for
entanglement dynamics in 2×D systems, where the D-dimensional part
suffers the action of an arbitrary dynamical channel. We carried out this
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task using the same method used in [43, 29, 44, 42]. Making use of a statis-
tical approach, considering the average value of the concurrence for the set
of uniformly distributed pure states, we deduced a factorized equation for
quantum entanglement. We found an equation which only takes minimal
information about the initial state (the set of uniformly distributed pure
states) and the quantum channel related to the dynamical process. More
specifically, we found that this set of initial states exhibit qualitatively the
same entanglement dynamics that a maximally entangled pure state under-
goes.

Next, as an application, we considered a 2×D system where the sec-
ond subsystem undergoes the coarse-graining process developed in the
first part of this work. Such situation can illustrate the measurement pro-
cess, where a detector (D-dimensional system) interacts with a qubit (2-
dimensional system). As expected, we saw that the larger the detector is,
the smaller the amount of entanglement information survives. So, we con-
clude that maybe for few particle systems entanglement can be observed in
a coarse-grained level. However for systems with many degrees of free-
dom, like a detector, the coarse-grained entanglement quickly vanishes,
and a classical description emerges. This coarse-graining approach can
shed light on the quantum-to-classical transition. As we saw, entanglement
is hard to be observed since one would need a high control of the micro-
scopic degrees of freedom of system (at least a huge part of it).
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Chapter 6

Appendix

6.1 Probability Theory

For support, let us overview some basics results in probability theory. We
will define some measures, like covariance and variance and will show an
inequality that is equivalent to the Cauchy-Schwarz inequality.

6.1.1 Covariance and Variance

Considering X and Y as two random variables, the covariance is defined
by [40]

Cov(X,Y ) ≡ 〈(X − 〈X〉)(Y − 〈Y 〉)〉
= 〈XY 〉 − 〈X〉〈Y 〉,

(6.1)

where 〈X〉 is the expected value of X . In the second line, we use the linear-
ity property of expectations.

The covariance relationship with inner product. Considering a, b con-
stants, X,Y, Z random variables and |f〉, |g〉, |h〉 complex vectors, covari-
ance and inner product share the following similar properties:

• Bilinear: Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y,Z) and (a〈f | +
b〈g|)|h〉 = a〈f |h〉+ b〈g|h〉.

• Symetric: Cov(X,Y ) = Cov(Y,X) and 〈f |g〉 = 〈g|f〉.

• Positive semi-definite: Cov(X,X) ≥ 0.

From the covariance between a random variable X with itself, another
quantity can be defined:

Var(X) ≡ Cov(XX)

= 〈X2〉 − 〈X〉2,
(6.2)

where Var(X) is the variance of X .

6.1.2 Covariance Inequality

From the approach of covariance and variance, an important inequality can
be derived

Cov(XY ) ≤
√

Var(X)Var(Y ). (6.3)



54 Chapter 6. Appendix

To prove this equation, let us define a random variable Z of the form:

Z = X − Cov(XY )

Var(Y )
Y. (6.4)

Calculating its variance

Var(Z) = Var
(
X − Cov(XY )

Var(Y )
Y
)

= Var(X)− Cov2(XY )

Var(Y )
,

(6.5)

where we use the Var(aX + bY ) = a2Var(X) + b2Var(b). Since Var(Z) ≥ 0
we have (6.5)

Cov(XY ) ≤
√

Var(X)Var(Y ). (6.6)

From the equivalence between covariance and inner product discussed be-
fore, the covariance inequality (6.6) can be related to the Cauchy-Schwarz
inequality:

|〈f |g〉|2 ≤ 〈f |f〉〈g|g〉. (6.7)
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