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Abstract
The Dicke model describes an ensemble of N identical two-level atoms (qubits)
coupled to a single quantized mode of a bosonic field. The fermion Dicke
model should be obtained by changing the atomic pseudo-spin operators by a
linear combination of Fermi operators. The generalized fermion Dicke model is
defined introducing different coupling constants between the single mode of the
bosonic field and the reservoir, g1 and g2 for rotating and counter-rotating terms,
respectively. In the limit N → ∞, the thermodynamic of the fermion Dicke
model can be analyzed using the path integral approach with the functional
method. The system exhibits a second-order phase transition from normal to
superradiance at some critical temperature with the presence of a condensate.
We evaluate the critical transition temperature and present the spectrum of the
collective bosonic excitations for the general case (g1 �= 0 and g2 �= 0). There
is a quantum critical behavior when the coupling constants g1 and g2 satisfy
g1 + g2 = (ω0�)

1
2 , where ω0 is the frequency of the mode of the field and �

is the energy gap between the energy eigenstates of the qubits. Two particular
situations are analyzed. First, we present the spectrum of the collective bosonic
excitations, in the case g1 �= 0 and g2 = 0, recovering the well-known results.
Second, the case g1 = 0 and g2 �= 0 is studied. In this last case, it is possible
to have a superradiant phase when only virtual processes are introduced in the
interaction Hamiltonian. Here also appears a quantum phase transition at the
critical coupling g2 = (ω0�)

1
2 , and for larger values for the critical coupling,

the system enter in this superradiant phase with a Goldstone mode.

PACS numbers: 42.50.Fx, 05.30.Jp

1. Introduction

In this paper we investigate a generalization of the Dicke model [1], where a single quantized
mode of a bosonic field interacts with a reservoir of N identical two-level atoms (qubits) at
temperature β−1, using the path integral approach with the functional integration method [2].
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We consider the question of how do the counter-rotating terms of the interaction Hamiltonian
contribute to the system exhibits a phase transition from normal to superradiance at some
critical temperature β−1

c .
In order to apply the path integral approach with the functional method, first it is necessary

to change the atomic pseudo-spin operators of the model by a linear combination of Fermi
operators to define the generalized fermion Dicke model [3, 4]. Second, the thermodynamic
limit (N → ∞) where N is the number of qubits must be taken [5, 6].

We are interested in studying the nonanalytic behavior of thermodynamics quantities near
a phase transition in the generalized fermion Dicke model. Introducing different coupling
constants, g1 and g2, for rotating and counter-rotating terms, respectively, we are able to
identify the contribution of each of the processes, real ones and virtual ones in the formation
of the condensate. We evaluate the critical transition temperature of the model and present
the spectrum of the colective bosonic excitations in the general case, for the case g1 �= 0 and
g2 = 0 and also g1 = 0 and g2 �= 0. In both cases it appear a critical behavior with Goldstone
(gapless) modes. An interesting result is that in the last case, where we only consider the
counter-rotating terms in the interaction Hamiltonian, it appears a quantum phase transition
[7] at critical coupling g2 = (ω0�)

1
2 .

At this point we would like to make a summary of results concerning the thermodynamic
of the Dicke model. An important result was obtained by Hepp and Lieb [8, 9]. These
authors proved that the model presents a second-order phase transition from the normal to
the superradiant phase. Also Wang and Hioe [10] obtained some results which agree with
those of Hepp and Lieb. The generalized Dicke model, where the counter-rotating terms are
also present in the interaction Hamiltonian, was investigated by Hioe [11] and also Duncan
[12]. Employing a Holstein–Primakoff mapping [13], Emary and Brandes [14, 15] were able
to express the generalized Dicke model in terms of a two-mode bosonic field. These authors
discussed the relation between the quantum phase transition and the chaotic behavior that
appear in the model for finite N.

We would like to stress that we are not doing any distinction between the elementary unit
of quantum information, the qubit and the two-level atom. This paper is organized as follows.
In section 2, we discuss the generalized Dicke and fermion model, respectively. In section 3,
the path integral with the functional integral method is applied to study the thermodynamic of
the generalized fermion Dicke model. Conclusions are given in section 4. In the paper we use
kB = c = h̄ = 1.

2. The generalized Dicke model Hamiltonian and the fermion Dicke model

The Hamiltonian of a bosonic quantum system HS , coupled with the reservoir of qubits, with
Hamiltonian HB , in thermal equilibrium at temperature β−1 can be written as

H = IS ⊗ HB + HS ⊗ IB + HI , (1)

where IS denotes the identity in the Hilbert space of the quantized bosonic field, IB denotes
the identity in the Hilbert space of the qubit reservoir and HI is the interaction Hamiltonian.

Using the pseudo-spin operators σ +
(j), σ

−
(j) and σ z

(j) that satisfy the standard angular

momentum commutation relations corresponding to spin- 1
2 operators, the generalized Dicke

model is defined by

H = IS ⊗
N∑

j=1

�

2
σ z

(j) + ω0b
†b ⊗ IB +

g1√
N

N∑
j=1

(
bσ +

(j) + b†σ−
(j)

)
+

g2√
N

N∑
j=1

(
bσ−

(j) + b†σ +
(j)

)
.

(2)
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In the above equation g1 and g2 are coupling constants between the qubit and the single mode
of the bosonic field. The b and b† are the boson annihilation and creation operators of mode
excitations that satisfy the usual commutation relation rules.

Let us define the fermion Dicke model. Starting from the Hamiltonian of the Dicke
model, let us define the Fermi raising and lowering operators α

†
i , αi, β

†
i and βi that satisfy

the anti-commutator relations αiα
†
j + α

†
jαi = δij and βiβ

†
j + β

†
jβi = δij . We can also define

the following bilinear combination of Fermi operators α
†
i αi − β

†
i βi, α

†
i βi and finally β

†
i αi .

Since the pseudo-spin operators obey the same commutation relations as the above-presented
bilinear combination of Fermi operators, we can change the pseudo-spin operators of the Dicke
model by the bilinear combination of Fermi operators

σ z
(i) −→ (

α
†
i αi − β

†
i βi

)
(3)

σ +
(i) −→ α

†
i βi (4)

and finally

σ−
(i) −→ β

†
i αi . (5)

From now on we use the usual notation instead of the notation stressing the tensor product
space of the total Hilbert space of the system. With the substitutions that we defined in
equations (3)–(5) we shall call the resulting Hamiltonian as the fermion Dicke model, i.e., HF .
The Hamiltonian of the generalized fermion Dicke model can be written as

HF = ω0b
†b +

�

2

N∑
i=1

(
α
†
i αi − β

†
i βi

)
+

g1√
N

N∑
i=1

(
bα

†
i βi + b†β

†
i αi

)

+
g2√
N

N∑
i=1

(
b†α

†
i βi + bβ

†
i αi

)
. (6)

In the following section, we consider the problem of defining the partition function of the
fermion Dicke model defined by ZF .

3. The functional integral for the generalized fermion Dicke model

In this section, we consider the problem of defining the partition function ZF of the generalized
fermion Dicke model. First let us define the Euclidean action S of this model, which describes
a single quantized mode of the field and the ensemble of N identical qubits. The Euclidean
action S is given by

S =
∫ β

0
dτ

(
b∗(τ )

∂

∂τ
b(τ) +

N∑
i=1

(
α∗

i (τ )
∂

∂τ
αi(τ ) + β∗

i (τ )
∂

∂τ
βi(τ )

))
−

∫ β

0
dτHF (τ), (7)

where HF is the full Hamiltonian for the generalized fermion Dicke model given by

HF = ω0b
∗(τ )b(τ ) +

�

2

N∑
i=1

(α∗
i (τ )αi(τ ) − β∗

i (τ )βi(τ ))

+
g1√
N

N∑
i=1

(α∗
i (τ )βi(τ )b(τ ) + αi(τ )β∗

i (τ )b∗(τ ))

+
g2√
N

N∑
i=1

(αi(τ )β∗
i (τ )b(τ ) + α∗

i (τ )βi(τ )b∗(τ )). (8)
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Let us define the formal quotient of two functional integrals, i.e., the partition function of the
generalized fermion Dicke model and the partition function of the free fermion Dicke model.
Therefore, we are interested in calculating the following quantity:

ZF

ZF0

=
∫

[dη] eS∫
[dη] eS0

, (9)

where S = S(b, b∗, α, α†, β, β†) is the Euclidean action of the generalized fermion Dicke
model given by equation (7), S0 = S0(b, b∗, α, α†, β, β†) is the free Euclidean action for
the free single bosonic mode and the free qubits, i.e., the expression of the complete action
S taking g1 = g2 = 0 and finally [dη] is the functional measure. The functional integrals
involved in equation (9), are functional integrals with respect to the complex functions b∗(τ )

and b(τ) and Grassmann Fermi fields α∗
i (τ ), αi(τ ), β∗

i (τ ) and βi(τ ). Since we use thermal
equilibrium boundary conditions in the imaginary time formalism, the integration variables
in equation (9) obey periodic boundary conditions for the Bose field, i.e., b(β) = b(0) and
anti-periodic boundary conditions for Fermi fields i.e., αi(β) = −αi(0) and βi(β) = −βi(0).

The free action for the single-mode bosonic field S0(b) is given by

S0(b) =
∫ β

0
dτ

(
b∗(τ )

∂b(τ )

∂τ
− ω0b

∗(τ )b(τ )

)
. (10)

Then we can write the action S of the generalized fermion Dicke model, given by equation (7),
using the free action for the single-mode bosonic field S0(b) given by equation (10), plus an
additional term that can be expressed in a matrix form. Therefore, the total action S can be
written as

S = S0(b) +
∫ β

0
dτ

N∑
i=1

ρ
†
i (τ )M(b∗, b)ρi(τ ), (11)

where ρi(τ ) is a column matrix given in terms of fermion field operators

ρi(τ ) =
(

βi(τ )

αi(τ )

)

ρ
†
i (τ ) = (β∗

i (τ ) α∗
i (τ ))

(12)

and the matrix M(b∗, b) is given by

M(b∗, b) =
(

∂τ + �/2 (N)−1/2(g1b
∗(τ ) + g2b(τ))

(N)−1/2(g1b(τ) + g2b
∗(τ )) ∂τ − �/2

)
. (13)

These fields b(τ), αi(τ ) and βi(τ ) can be written as a Fourier expansion. Therefore, we have

b(τ) = β−1/2
∑

ω

b(ω) eiωτ (14)

and

ρi(τ ) = β−1/2
∑

p

ρi(p) eipτ . (15)

Since the field b(τ) obeys periodic boundary conditions, and the fields αi(τ ) and βi(τ ) obey
anti-periodic boundary conditions, we have that ω = 2πn

β
and p = (2n+1)π

β
, where they are the

boson and fermion Matsubara frequencies, respectively. Substituting the Fourier expansions
into the action given by equation (11) we get

S =
∑

ω

(iω − ω0)b
∗(ω)b(ω) +

∑
p,q

N∑
i=1

ρ
†
i (p)Mpq(b

∗, b)ρi(q), (16)
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where the matrix Mpq(b
∗, b) is given by

Mpq(b
∗, b)=

(
(ip + �/2)δpq (Nβ)−1/2(g1b

∗(q − p) + g2b(p − q))

(Nβ)−1/2(g1b(p − q) + g2b
∗(q − p)) (ip − �/2)δpq

)
.

(17)

Using the above results, the ratio between the two functional integrals Z and Z0, i.e., Z
Z0

is
given by∫

[dη(b)] exp
(∑

ω(iω − ω0)b
∗(ω)b(ω)

) ∫
[dη(ρ)] exp

(∑
p,q

∑N
i=1 ρ

†
i (p)Mpq(b

∗, b)ρi(q)
)

∫
[dη(b)] exp

(∑
ω(iω − ω0)b∗(ω)b(ω)

) ∫
[dη(ρ)] exp

(∑
p,q

∑N
i=1 ρ

†
i (p)Mpq(0, 0)ρi(q)

) ,

(18)

where the functional measures [dη(b)] and [dη(ρ)] in the above equation are defined,
respectively, by

[dη(b)] =
∏
ω

db(ω) db∗(ω) (19)

and

[dη(ρ)] =
∏
i,p

dρi(p) dρ
†
i (p). (20)

We need to impose cutoffs over the boson and fermion Matsubara frequencies on these
measures. This procedure is necessary to be sure that the ratio between the two functional
integrals given by Z

Z0
does not diverge. After all, at the end, we must take these cutoffs to

infinity. In order to define the effective action associated with the bosonic mode, we integrate
out the fermionic degrees of freedom. The integrals with respect to the Fermi fields are
Gaussian and we may integrate over these Grassmann variables. This procedure yields∫

[dη(ρ)] exp

(∑
p,q

N∑
i=1

ρ
†
i (p)Mpq(b

∗, b)ρi(q)

)
= det NM(b∗, b), (21)

where the matrix M is a block matrix of the following form:

M(b∗, b) =
(

iP + �
2 I (Nβ)−1/2Q†

(Nβ)−1/2Q iP − �
2 I

)
, (22)

where I is the identity matrix and the components of matrix P and Q are

Ppq = pδpq

Qpq = g1b(p − q) + g2b
∗(q − p).

(23)

The following change of coordinates can simplify our calculations. Let us change variables
in the following way:

b(ω) →
(

π

(ω0 − iω)

)1/2

b(ω) (24)

and

b∗(ω) →
(

π

(ω0 − iω)

)1/2

b∗(ω). (25)

We must note that equation (25) is not the conjugate of equation (24). Nevertheless, it is not
difficult to justify this transformation if we introduce polar coordinates instead of b(ω), b∗(ω) :
b(ω) = (ρ(ω))1/2 eiφ(ω), b∗(ω) = (ρ(ω))1/2 e−iφ(ω) and then perform a complex rotation of
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the integration counter when integrating with respect to ρ(ω) : ρ(ω) → ρ(ω)[π/(ω0−iω)]1/2.
It is easy to see that after these changes of variables the denominator of equation (18), turns
out to be equal to unity∫

[dη(b)] exp

(
−π

∑
ω

b∗(ω)b(ω)

)
= 1, (26)

so we can express the ratio Z
Z0

by the integral

Z

Z0
=

∫
[dη(b)] exp(Seff(b)), (27)

where Seff(b) is the effective action of the bosonic mode which is given by

Seff = −π
∑

ω

b∗(ω)b(ω) + N ln det(I + A). (28)

The determinant in the above equation is given by

det(I + A) = det(M−1/2(0, 0)M(b∗, b)M−1/2(0, 0)) (29)

and the matrix A is defined as follows:

A =
(

0 B

−C 0

)
. (30)

In the above equation the quantities B and C are matrices with the components given by

Bpq =
(

π

βN

) 1
2
(

ip +
�

2

)− 1
2
(

g1b
∗(q − p)√

ω0 − i(q − p)
+

g2b(p − q)√
ω0 − i(p − q)

)(
iq − �

2

)− 1
2

(31)

and

Cpq = −
(

π

βN

) 1
2
(

ip − �

2

)− 1
2
(

g1b(p − q)√
ω0 − i(p − q)

+
g2b

∗(q − p)√
ω0 − i(q − p)

)(
iq +

�

2

)− 1
2

.

(32)

In equation (27) we may go to the limit ωB, ωF → ∞ and instead of a formal quotient
of two infinite functional integrals we shall have only one finite functional integral. This
representation turns out to be very useful for obtaining the asymptotic formula for Z/Z0 at
large N. There exists only one stationary phase point at β−1 > β−1

c . If β−1 < β−1
c , we have

a circle of a stationary phase |b(0)|2 = ρ0, b(ω) = b∗(ω) = 0, if ω �= 0. There also exists
an interpolation formula between these asymptotes. The presence of degenerate vacua is a
feature of states with spontaneous symmetry breaking. As we will see, gapless excitation will
appear.

We shall investigate the integral given by equation (27) for temperatures that satisfy
β−1 > β−1

c . First let us show that this integral converges. We use the estimate

|det(I + A)| � exp
(
Re(tr A) + 1

2 tr(AA†)
)
. (33)

where Re(tr A) means the real part of tr A. The matrix A has the form given by equation (30).
Therefore, we find that tr A = 0 and tr(AA†) = tr(BB†) + tr(CC†). Therefore, we obtain the
estimate

Z

Z0
�

∫
[dη(b)] exp

(
−π

∑
ω

b∗(ω)b(ω) + N tr(BB†) + N tr(CC†)

)
,

�
∫

[dη(b)] exp

(
−π

∑
ω

b∗(ω)(1 − a0(ω))b(ω)

+ π
∑

ω

(b(ω)c0(ω)b(−ω) + b∗(ω)c0(ω)b∗(−ω))

)
, (34)
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where a0(ω) and c0(ω) are given, respectively, by

a0(ω) = g2
1 + g2

2

β
(
ω2

0 + ω2
)1/2

∑
p−q=ω

1(
�2

4 + q2
)1/2

1(
�2

4 + p2
)1/2 (35)

and

c0(ω) = ω0g1g2

β
(
ω2

0 + ω2
) ∑

p−q=ω

1(
�2

4 + q2
)1/2

1(
�2

4 + p2
)1/2 . (36)

Using the measure given in equation (19), we have that Z
Z0

� F , where F = F1F2 and F1 and
F2 are given by

F1 =
∫

db(0) db∗(0) exp[−πb∗(0)(1 − a0(0))b(0) + π(b(0)c0(0)b(0) + b∗(0)c0(0)b∗(0))]

(37)

and

F2 =
∫ ∏

ω>0

db(ω) db∗(ω) db(−ω) db∗(−ω)

× exp

[
−π

∑
ω>0

b∗(ω)(1 − a0(ω))b(ω) − π
∑
ω>0

b∗(−ω)(1 − a0(ω))b(−ω)

× 2π
∑
ω>0

(b(ω)c0(ω)b(−ω) + b∗(ω)c0(ω)b∗(−ω))

]
. (38)

Note that in the case of the generalized fermion Dicke model we obtained a Gaussian integral
that mixtures positive with negative frequencies. A straightforward calculation gives that the
ratio Z

Z0
obeys the following inequality:

Z

Z0
� [(1 − a0(0) + 2c0(0))(1 − a0(0) − 2c0(0))]−1/2

×
∏
ω>0

[(1 − a0(ω) + 2c0(ω))(1 − a0(ω) − 2c0(ω))]−1. (39)

In a similar way to Popov and Fedotov [6] proved, for the case of rotating-wave approximation,
we have that 0 < a0(ω) + 2c0(ω) < a0(0) + 2c0(0) and a0(0) + 2c0(0) = O(ω−2 ln ω).
Therefore if a0(0) + 2c0(0) < 1, then equation (39) guarantees convergence of the expression
Z
Z0

. The condition a0(0) + 2c0(0) = 1 is the equation for the transition temperature, then we
have

a0(0) + 2c0(0) = (g1 + g2)
2

�ω0
tanh

(
βc�

4

)
= 1. (40)

The inverse of the critical temperature βc is given by

βc = 4

�
tanh−1

(
�ω0

(g1 + g2)2

)
. (41)

Note that there is a quantum phase transition where the coupling constants g1 and g2 satisfy
g1 + g2 = (ω0�)

1
2 . For larger values for (g1 + g2) the system enters in a superradiant phase.

For the case g1 = g2 = λ, Vidal and Dusuel [16] proved that the system undergoes a

second-order phase transition at critical coupling λ = (w0�)
1
2

2 ; for this purpose they study the
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behavior for the order parameter of the transition which is the expectation value of the number
of excitations associated with the mode of the bosonic field per atom. Emary and Brandes
demonstrated that in a general case, β−1 �= 0, we have also a second-order phase transition
[15].

To calculate the asymptotic behavior of the functional integrals at temperatures that satisfy
β−1 > β−1

c , we can do the following approximation:

det N(I + A) = det N(I + BC) → exp(N tr(BC)). (42)

This substitute can be done and we can estimate the error if we divide all the functional space
into two domains C1 and C2

tr[(BC)(BC)†] � (4N)−1 �→ C1, (43)

tr[(BC)(BC)†] � (4N)−1 �→ C2. (44)

Denoting

KN = det N(I + A) − exp(N tr(BC)), (45)

for the ratio Z
Z0

, we have the following identity:

Z

Z0
=

∫
[dη(b)] exp

(
−π

∑
ω

b∗(ω)b(ω) + N tr(BC)

)

+
∫

C1

[dη(b)]KN exp
(
−π

∑
b∗(ω)b(ω)

)

+
∫

C2

[dη(b)]KN exp
(
−π

∑
b∗(ω)b(ω)

)
. (46)

The first integral of the above equation is Gaussian; let us define it by I0. We use equations (31)
and (32) in order to calculate the trace of BC, i.e., tr(BC) which is present in the expression
I0. A simple calculation gives

I0 =
∫

[dη(b)] exp

(
−π

∑
ω

b∗(ω)(1 − a(ω))b(ω)

+ π
∑

ω

(b(ω)c(ω)b(−ω) + b∗(ω)c(ω)b∗(−ω))

)
, (47)

where a(ω) and c(ω) of the above equation are given, respectively, by

a(ω) =
(

g2
1(� − iω)−1 + g2

2(� + iω)−1

(ω0 − iω)

)
tanh

(
β�

4

)
(48)

and

c(ω) =
(

g1g2�(
ω2

0 + ω2
)1/2

(�2 + ω2)

)
tanh

(
β�

4

)
. (49)

Note that to recover the result obtained by Popov and Fedotov [5, 6] we have only to assume
g2 = 0. In this case, we have that c(ω) = 0, which simplifies the integration over the mode of
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the bosonic field in equation (47). Making the integration we obtain that I0 is given by

I0 =
∏
ω

(1 − a(ω))−1. (50)

After this observation let us go back to the general case, where g1 and g2 take arbitrary values.
The expression I0 given in equation (47) is a Gaussian integral; this expression is similar to
the integral given in equation (34), so following the same steps we get that

I0 = I0(ω = 0)
∏
ω>0

[c(ω)2 − (1 − a(ω))(1 − a(−ω))]−1, (51)

where I0(ω = 0) is the contribution of the condensate given by

I0(ω = 0) = [(1 − a(0) + 2c(0))(1 − a(0) − 2c(0))]−1/2. (52)

It is possible to estimate the error of I0 which is given by the two last terms of equation (46).
For details, see [2]. The errors depend on order N−1. Therefore Z

Z0
can be written as

Z

Z0
= [(1 − a(0) + 2c(0))(1 − a(0) − 2c(0))]−1/2

×
∏
ω>0

[(1 − a(ω))(1 − a(−ω)) − c2(ω)]−1 + O(N−1). (53)

Therefore in the limit (N → ∞) the equality Z
Z0

= I0 is a good approximation. To find
the collective excitation spectrum we have to use the equation

c2(ω) − (1 − a(ω))(1 − a(−ω)) = 0, (54)

and making the analytic continuation (iω → E), we obtain the following equation:

1 = −
[

g4
1 + g4

2(
ω2

0 − E2
)
(�2 − E2)

]
tanh2

(
β�

4

)

−
[

g2
1g

2
2(

ω2
0 − E2

) (
1

(� − E)2
+

1

(� + E)2
− 4�2

(�2 − E2)2

)]
tanh2

(
β�

4

)

+

[
g2

1(� − E)−1 + g2
2(� + E)−1

(ω0 − E)
+

g2
1(� + E)−1 + g2

2(� − E)−1

(ω0 + E)

]
tanh

(
β�

4

)
.

(55)

Solving the above equation for the case β−1 = β−1
c , we find the following roots:

E1 = 0 (56)

and

E2 =
(

g1(� + ω0)
2 + g2(� − ω0)

2

(g1 + g2)

)1/2

. (57)

Its low energy state of excitation is a Goldstone mode. Now, let us present the critical
temperature and the spectrum of the collective bosonic excitations of the model with the
rotating-wave approximation, where g1 �= 0 and g2 = 0. The result obtained by Popov and
Fedotov is recovered, where the equations

a(0) = 1 (58)
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and

g2
1

ω0�
tanh

(
βc�

4

)
= 1 (59)

give the inverse of the critical temperature, βc. It is given by

βc = 4

�
tanh−1

(
ω0�

g2
1

)
. (60)

In this case also there is a quantum phase transition, i.e., at zero temperature phase transition
when g1 = (ω0�)

1
2 . It is interesting to point out that there are two different ways to analyze

the phase transition. The first one is to follow the non-analytic behavior of the thermodynamic
quantities as a function of temperature. A different way is to follow the non-analytic behavior
of the thermodynamic quantities as a function of the coupling constant strength. Working in
this second approach, we may expect that for large coupling constant g1 there is a superradiant
phase. The spectrum of the collective Bose excitations in this case is

E1 = 0 (61)

and

E2 = � + ω0. (62)

Now we will show that it is possible to have a condensate with superradiance in a system
of N qubits coupled with one mode of a Bose field where only virtual processes contribute.
In the pure counter-rotating wave case, i.e., g1 = 0 and g2 �= 0, the inverse of the critical
temperature, βc is given by

βc = 4

�
tanh−1

(
ω0�

g2
2

)
, (63)

and the spectrum of the colective Bose excitations is given by

E1 = 0, (64)

and

E2 = |� − ω0|. (65)

A comment is in order concerning the Bose excitations spectrum. In both the cases:
using or not the rotating-wave approximation, there is a phase transition. In the case of the
rotating-wave approximation g1 �= 0 and g2 = 0, there is a Goldstone mode (E = 0). In the
pure counter-rotating wave case g1 = 0 and g2 �= 0, also there is a Goldstone (gapless) mode.
The existence of Goldstone modes and the energy of the other mode was presented for both
above-mentioned cases. The spectrum in the general case is given by the Goldstone mode
and also by a nonzero energy mode given by equation (57). It is interesting to stress that we
obtained a critical behavior in both situations (g1 �= 0, g2 = 0 and g1 = 0, g2 �= 0), where the
condensate has Goldstone (gapless) modes, with a superradiant state. Therefore, we show that
it is possible to have a condensate with superradiance in a system of N qubits coupled with
one mode of a Bose field where only virtual processes contribute. It is important to realize
that the energy of the non-Goldstone mode in equation (62) is always larger than the energy
of the non-Goldstone mode of equation (65), i.e., in the system where the condensate appears
due to the virtual processes.
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4. Conclusions

In the present paper, we consider the question of how do the counter-rotating terms of the
interaction Hamiltonian contribute in the formation of the condensate with a superradiant
phase transition in the generalized Dicke model.

An important question is the way of practical realization of the generalized Dicke model
in the laboratory. As was stressed by Dimer et al [17] it remains as a challenge to provide a
physical system where the counter-rotating terms are dominant. Those authors proposed that
in cavities with the N qubits, only one mode of quantized field and classical fields (lasers), it is
possible to obtain a physical system that corresponds to the generalized Dicke model. Another
practical realization of the generalized Dicke model was presented by Wei et al [18]. Also,
it has been discussed in the literature the possibility of controling the relative importance of
the counter-rotating terms in the Jaynes–Cummings model [19], in the laboratory using a ion
trap [20]. Another mechanism to explore the importance of virtual processes was proposed by
Ford [21] and Ford and Svaiter [22, 23], where the possibility of amplification of the vacuum
fluctuations was discussed. These authors studied the renormalized vacuum fluctuations
associated with a scalar and electromagnetic field near the focus of a parabolic mirror. Using
the geometric optics approximation these authors found that the mirror geometry can produce
large vacuum fluctuations near the focus.

An evidence in favor of our results is an experiment where it is possible to control the
importance of the counter-rotating terms in the generalized model in such a way that an ideal
g1 ≈ 0 situation is achieved. Experimental observation of the superradiant phase in this
situation will improve our understanding of this phenomenon.

There are some continuations for this paper. The first one is to investigate the model
introduced by DiVicenzo [24], at a finite temperature, using also functional integral methods.
Also the model which characterizes a intensity-dependent coupling can be discussed using the
conventional technique of the path integral and the functional integration method. A similar
calculation presented in this paper could be carried out for this model, although the calculations
would be somewhat more laborious than the presented in the paper. The generalization of this
model with the introduction of the counter-rotating terms deserves further investigations.
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