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Abstract

We study the crossover from two to three dimensions in Kondo lattices (KLM) using the Kondo necklace model (KNM). In order to

diagonalize the KNM, we use a representation for the localized and conduction electron spins in terms of bond operators and a

decoupling for the relevant Green’s functions. Both models have a quantum critical point at a finite value of the ratio ðJ=tÞ between the

Kondo coupling ðJÞ and the hopping ðtÞ. In 2d there is no line of finite temperature antiferromagnetic (AF) transitions while for dX3 this

line is given by, TN / jgj
1=ðd�1Þ [D. Reyes, M.A. Continentino, Phys. Rev. B 76 (2007) 075114]. The crossover from 2d to 3d is

investigated by turning on the electronic hopping ðt?Þ of conduction electrons between different planes. The phase diagram as a function

of temperature T, J=tk and x ¼ t?=tk, where tk is the hopping within the planes is calculated.
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1. Introduction

The study of low dimensional heavy fermions (HF)
magnetic systems continues to be a focus of theoretical and
experimental investigators [1–3]. Several theories were
formulated to explain their unusual properties [4–6]. In this
context the spin-density wave [5,6] (SDW) theory as well as
the local quantum critical description [7] can account for the
logarithmical divergent specific heat coefficients and quasi-
linear resistivities only if the spin fluctuations are quasi-two
dimensional. To take this into account we introduce an
inter-layer coupling t?. The idea is that turning it on leads to
magnetic long range order to finite temperatures. We use the
Kondo necklace model [8] as a simple Hamiltonian to
explore this line of reasoning. It is given by
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where ti are quantum spin-1/2 Pauli matrices representing
the conduction electrons and Si are localized spin operators.
The sum hi; ji denotes summation over the nearest-neighbor
sites. tk is the hopping within the planes and t? the hopping
between different planes. The X2Y coupling term imitates
the band energy of the conduction electrons and the third
term represents the Kondo exchange via coupling J.
At strong coupling the ground state is an aggregate of

intra-atomic Kondo singlets, the low-energy physics can be
well described by triplet excitations from the Kondo singlet
sea. To express this picture explicitly, we use the bond
operators formalism [9], in which four creation operators
are introduced to represent the four states in Hilbert space.
This basis can be created out of the vacuum by singlet jsi
and triplet jtai ¼ tyaj0i (a ¼ x; y; z) operators. In terms of
these triplet and singlet operators the localized and con-
duction electron spin operators are given by SðtÞi;a ¼
1
2
ð�s
y

i ti;a � t
y

i;asi � i�abgt
y

i;bti;gÞ, respectively. The restriction
that the physical states are either singlets or triplets leads to
the constraint sysþ

P
at
y
ata ¼ 1.

Substituting the operator representation of spins into the

original Hamiltonian (1), making hsyi i ¼ hsii ¼ s, in the

strong coupling approximation and tk;x ¼
ffiffiffiffiffi
N
p

t̄dk;Q þ gk;x
corresponding to introduce the antiferromagnetic (AF)
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Fig. 1. (Color online) Sketch of Eq. (6) for x51. We can see that turning

on x, there is a critical line of Neel that goes out from a new QCP that

depends of x. The QCPs starting in QCP-2d sketch a line that defines the

AF boundary. Outside of the AF surface it is found the paramagnetic

(PARA) phase.
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order parameter t̄, we can obtain the mean field Hamilto-
nian. Using Green’s function approach we obtain 5tk;xðyÞ;

t
y

k;xðyÞbo ¼ ð1=2pÞðoþ LkÞ=ðo2 � o2
kÞ and 5tk;z; t

y

k;zbo ¼

ð1=2pÞð1=ðo� o0ÞÞ and consequently the excitations of the
system. Above, o0 ¼ ðJ=4þ mÞ is the dispersionless long-

itudinal spectrum of the spin triplet states and ok ¼

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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k � ð2DkÞ
2

q
correspond to the excitation spectrum of

the transverse spin triplet states with two branches
ox ¼ oy. The other terms are Lk ¼ o0 þ 2Dk, lðkÞk ¼
cos kx þ cos ky, Dk ¼

1
4

tks
2lðkÞk, lðkÞ? ¼ cos kz, D0k ¼

1
4
t?s2

lðkÞz, Dk ¼ Dk þ D0k, N is the number of lattice sites. The

wave-vectors k are taken in the first Brillouin zone and the
lattice spacing was assumed to be unity.

The Gibbs free energy can be directly obtained from the
energy of the excitations given by the poles of Green’s
functions. It is given by
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being the ground state energy of the system. b ¼ 1=kBT ,
nðoÞ ¼ 1

2 ðcothðbo=2Þ � 1Þ, s and t the singlet and triplet
order parameter, respectively.

Since the parameter s is always nonzero [10] and ta0 in
the AF phase, we minimize the ground state energy with
respect to t to find, m ¼ tks

2=y� J=4 and consequently,
ok ¼
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where x ¼ t?=tk is the

anisotropy ratio and y ¼ 1=ð2þ xÞ.
Minimizing the Gibbs free energy given by Eq. (2) using
ðqe=qm; qe=qsÞ ¼ ð0; 0; 0Þ, we can easily get
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where B ¼ 1
4
ðcothðbo0=2Þ � 1Þ. Generally for x ¼ 0ð1Þ at

T ¼ 0 the results of Ref. [10] to 2dð3dÞ are recovered.
The Neel line giving the finite temperature instability of

the AF phase for J=tkoðJ=tkÞc is obtained as the line in the
T vs ðJ=tkÞ plane at which t vanishes (t ¼ 0). So for
temperatures kBT5o0 (B�0) and expanding close to the
wave-vector Q ¼ ðp; p;pÞ associated with the AF instability
we obtain
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where g ¼ jðJ=tkÞc � ðJ=tkÞj measures the distance to the
quantum critical point (QCP).
In order to analyze the quasi-two dimensional regime,

we consider x51, thereby y � 1
2
ð1� x=2Þ, so solving

Eq. (4) with this approximation we obtain
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This expression gives us the dependence between the
critical line of Neel transitions and the anisotropy ratio x
for temperatures kBT5o0, where o0 tracks J and
4kBTNo0 ¼ T . It is sketched in Fig. 1.
In summary, we have obtained analytically the expres-

sion for the Neel line close to the QCP to quasi-two
dimensional HF systems and we have shown that this line
exists for values x51.
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