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Abstract. We study diffusion of particles in large-scale simulations of one-dimensional stochastic sandpiles,
in both the restricted and unrestricted versions. The results indicate that the diffusion constant scales in the
same manner as the activity density, so that it represents an alternative definition of an order parameter.
The critical behavior of the unrestricted sandpile is very similar to that of its restricted counterpart,
including the fact that a data collapse of the order parameter as a function of the particle density is
possible, but with a narrow scaling region. We also develop a series expansion, in inverse powers of the
density, for the collective diffusion coefficient in a variant of the stochastic sandpile in which the toppling
rate at a site with n particles is n(n− 1), and compare the theoretical prediction with simulation results.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 05.50.+q Lattice theory and statistics
– 05.65.+b Self-organized systems

1 Introduction

Sandpile models are the prime example of self-organized
criticality (SOC) [1,2], or scale-invariance in the apparent
absence of control parameters [3]. In sandpiles, SOC arises
via a control mechanism that forces the system, which pos-
sesses an absorbing-state phase transition, to its critical
point [4,5]. SOC in a slowly-driven sandpile corresponds
to an absorbing-state phase transition in the conserved
sandpile, which has the same local dynamics, but a fixed
number of particles [4,6–10]. Conserved sandpiles are char-
acterized by a nonconserved order parameter (the activity
density) which is coupled to a conserved field that does not
evolve in regions devoid of activity [11]. This class, known
as conserved directed percolation (CDP), is distinct from
that of standard directed percolation [12].

In recent years considerable progress has been made in
characterizing the critical properties of conserved stochas-
tic sandpiles, although no complete, reliable theory is yet
at hand. As is often the case in critical phenomena, theo-
retical understanding of scaling and universality rests on
the analysis of a continuum field theory or Langevin equa-
tion (a nonlinear stochastic partial differential equation)
that reproduces the phase diagram and captures the fun-
damental symmetries and conservation laws of the system.
Important steps in this direction are the recent numerical
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studies of a Langevin equation [12,13] for CDP. The criti-
cal exponent values reported in reference [12] are in good
agreement with those found in simulations of conserved
lattice gas (CLG) models [18,19], which exhibit the same
symmetries and conservation laws as stochastic sandpiles.
The Langevin equation exponents are also consistent with
the best available estimates for stochastic sandpiles in two
dimensions [12]. There is now good evidence that the one-
dimensional stochastic sandpile belongs to the CDP uni-
versality class [14,15].

In this work we focus on an aspect of stochastic sand-
piles that has received relatively little attention: diffusion.
Since the dynamics in sandpile models involves hopping of
particles between neighboring sites, one expects the parti-
cle diffusion constant D to follow a scaling behavior similar
to that of the usual order parameter, namely, the activity
density, ρ. (A site is active if it bears two or more parti-
cles.) Here D is defined via the relation 〈(Δx)2〉 = 2Dt,
where Δx is the particle displacement. We determine the
scaling properties of the diffusion constant in extensive
Monte Carlo simulations.

Theoretical studies of the particle diffusion coefficient
are hampered by the fact that positions of specific parti-
cles are not accessible in the usual stochastic description;
instead the master equation describes the evolution of the
probability distribution on the set of occupation numbers
{ni}. It is however possible to determine the collective
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diffusion coefficient Dc by studying how a density pertur-
bation Δp ∝ eikx relaxes. Dc is related to the relaxation
time, τk, of this mode via τk = 1/(Dck

2), in the small-k
limit. Using the path-integral based perturbation theory
developed in [23], we calculate the first three terms in the
expansion of Dc in inverse powers of density p, for the
stochastic sandpile in which the toppling rate is n(n− 1).

The balance of this paper is organized as follows. In
Section 2 we define the three models of interest. Section 3
reports simulation results on D and ρ for two of these
models. In Section 4 we develop a series expansion for
the collective diffusion coefficient in a third model, and
compare the predictions with simulation results. We close
in Section 5 with a summary and discussion.

2 Models

We study three versions of the one-dimensional conserved
stochastic sandpile, related to Manna’s model [20]. In
these systems the configuration is defined by the set of
occupation variables n1, ..., nL, giving the number of par-
ticles residing at each site on a ring of size L. Sites with
ni ≥ 2 are active, and those with ni ≤ 1 are inactive. The
evolution consists of a series of toppling events, in which
particles are transferred from a active site to one or more
of its neighbors. All three versions are continuous-time
Markov processes, that is, only one site topples at each
event. A Markov process of this kind is defined by the
configuration space and the set of transition rates (simply
called “rates” in what follows) between pairs of configu-
rations. The particular features distinguishing the three
models are as follows.

Basic unrestricted model (I) [21]. Each active site has
a rate of unity to topple. Thus at each event, the toppling
site is chosen at random from the set of Nact currently
active sites. When site i topples, two particles are trans-
ferred from this site to its neighboring sites (i − 1 and/or
i + 1, under periodic boundary conditions). The two par-
ticles jump independently; they jump to the left or to the
right with equal probabilities. The time increment Δt cor-
responding to a given event is the reciprocal of the total
transition rate, i.e., Δt = 1/Nact.

Restricted model (II) [14,16]. The dynamics is that of
model I except that no site may have more than two par-
ticles. If, when a site topples, a particle attempts to jump
to a site bearing two particles, it returns to the toppling
site.

Modified unrestricted model (III) [23]. The dynamics is
that of model I except that the rate at which site i topples
is given by ni(ni − 1). In this case the probability that a
given (active) site is the next to topple is pi = ni(ni−1)/A,
where A ≡ ∑

j nj(nj − 1) is the total transition rate. In
this case the associated time increment is 1/A.

While somewhat less convenient for simulation,
model III is better suited to operator-based theoretical
approaches. The effective repulsion between particles in
model II is not intended to model any specific interaction
between sand grains. Rather, it was introduced so that the

system (for a given size) would have a smaller set of con-
figurations, rendering it more convenient for analysis via
cluster approximations [24]. As is usual in studies of crit-
ical phenomena, it is of interest to test whether changes
in the details of the process, such as the height restric-
tion of model II, have any effect on critical exponents.
There is clear numerical evidence that model II belongs
to the CDP universality class [14]; models I and III share
the same symmetries and conserved quantities as model II
and so are expected to belong to the CDP class as well.

In conserved sandpiles, the particle density p serves as
a temperaturelike control parameter. Below a certain criti-
cal value, pc, the system eventually falls into an absorbing
configuration (i.e., one devoid of active sites), while for
p > pc, activity continues indefinitely, in the infinite-size
limit. The order parameter associated with this absorbing-
state phase transition is the activity density ρ, given by the
stationary mean fraction of active sites in models I and II,
and the stationary average 〈ni(ni − 1)〉 in model III. Nu-
merical studies strongly support a continuous transition
at pc; best estimates for the critical density pc are 0.9488,
0.92978, and 0.9493, in models I, II, and II, respectively.
(Note that for p > 1 active sites always exist; pc, however,
is strictly less than unity.)

3 Simulation results

In this section we report simulation results for the parti-
cle diffusion rate D and the activity density ρ in models I
and II. For each particle j, let Δxj(t) = h+

j (t) − h−
j (t)

represent its displacement since time zero, where h+
j (t)

and h−
j (t) are the numbers of hops taken by particle j in

the positive (respectively, negative) directions up to time
t. (Naturally, h+

j (0) = h−
j (0) = 0.) Then the particle dif-

fusion rate is defined through the relation

〈[Δxj(t)]2〉 = 2Dt (1)

where the average is over all particles and (in principle)
all histories of the system of N = pL particles on L sites,
starting from a given initial configuration or class of con-
figurations. (In practice we generate initial configurations
by adding particles randomly to the system, with the pro-
hibition, in the case of model II, of triple or higher oc-
cupancy. We average over a set of Ns realizations of the
process.) Note that the diffusion rate D defined above de-
pends in general on the time t as well as on L and p.
Determination of D in simulations requires that we store
the particle displacements, which is not necessary if we
merely wish to study the activity density.

Each time particle j hops, Δxj changes by ±1, so that
〈[Δxj(t)]2〉 = 〈h+

j (t) + h−
j (t)〉 ≡ 〈hj(t)〉, i.e., the mean

number of jumps up to time t. Particle j must be at an
active site in order to jump, but 〈hj(t)〉 is not simply equal
to 2ρ, as would be the case if particle j were always to
jump each time the site it resides at topples. In model I,
for example, the probability of a given particle jumping
is 2/n, if it is one of n particles at the toppling site. In
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Fig. 1. (Color online) Mean-square particle displacement ver-
sus time in model I, for (left to right) p = 1.94894, 0.95568, and
0.94898. The solid lines have a slope of unity; the slope of the
broken lines is 0.86. Error bars are smaller than the symbols.

model II, the particle always tries to hop when its host
site topples, by it may be unable to move to the target
site. Finally, in model III a particle at a site with occu-
pation n hops at a rate of 2(n − 1), so that the hopping
rate actually grows with the occupation number n. Since
the occupancies of nearby sites are correlated, the waiting
times between successive displacements of a given particle
are not independent. For these reasons, the relation be-
tween the hopping rate and the activity density involves
subtle effects, different in each of the three models studied.
It is nevertheless reasonable to expect that, as p → pc, the
scaling behavior of the diffusion rate will parallel that of
the activity density. In particular, we might expect ρ and
D to be governed by the same set of critical exponents at
the transition.

We simulate models I and II on rings of L = 6250,
12 500, 25 000, and 50 000 sites, using eight independent
realizations for the smallest size, six for L = 12 500, and
four for the two largest sizes. The studies are run for 106

to 6 × 109 time units, with the longest simulation times
near the critical point. Each particle is assigned a label so
that its cumulative dislocation Δxj can be followed during
the evolution. In model II, when two particles attempt to
jump to the same site, and this site is singly occupied, one
of the two particles is chosen at random to move to the
target site, while the other remains where it is.

To begin, we verify that the mean-square particle dis-
placement indeed grows linearly with time in the station-
ary regime. This is confirmed for model I in Figure 1 for
three values of the particle density p. (These data are for
system size L = 50 000 and represent an average over
four independent runs.) The relation 〈[Δxj(t)]2〉 ∝ t is
similarly confirmed in model II. We note that in both
models I and II, near the critical point, the mean-square
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Fig. 2. (Color online) Asymptotic diffusion rate versus Δ =
p − pc in model I, system sizes as indicated. Error bars are
smaller than the symbols.
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Fig. 3. (Color online) Asymptotic diffusion rate versus Δ in
model II.

particle displacement initially grows more slowly, follow-
ing 〈[Δxj(t)]2〉 ∝ tγ , with γ = 0.86(1) (see Fig. 1).

We monitor the diffusion coefficient D(t), defined in
equation (1), and confirm that it approaches a stationary
value at long times. Figures 2 and 3 show the station-
ary value, D, as a function of Δ = p − pc, for models I
and II, respectively. Several aspects of these results are
worth commenting on. First, for the sizes considered here,
D is apparently well converged to its limiting (L → ∞)
value for Δ ≥ 0.0025. Second, even for values of Δ such
that the diffusion rate has converged, the slope of D(Δ)
on logarithmic scales changes appreciably with Δ, making
a reliable estimate of β difficult. Finally, in model II, D
drops sharply as p approaches 2: due to the height restric-
tion, most particles cannot move.
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Fig. 4. (Color online) Stationary activity density ρ versus Δ
in model I.
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Fig. 5. (Color online) Stationary activity versus Δ in model II.

The corresponding results for the activity density ρ are
shown in Figures 4 and 5, respectively. The behaviors of
D and ρ in both models appear quite similar, an impres-
sion that is confirmed in Figure 6, which compares both
quantities (in both models), for the largest system stud-
ied. Near the transition, ρ and D are virtually identical in
the unrestricted model, while in model II they appear to
be proportional. It is evident that neither ρ nor D can be
characterized as following a simple power law, an obser-
vation already made for the order parameter in model II
in [14].

Note that for the system sizes studied here, there is
no discernable finite-size effect for p − pc ≥ 0.0025. Since
D(Δ) and ρ(Δ) do not follow simple power laws in this
regime, there is no possibility of maintaining the data col-
lapse under the usual kind of FSS scaling plot, that is,

Fig. 6. (Color online) Stationary activity (open symbols) and
asymptotic diffusion rate (filled symbols) versus Δ in models I
(squares) and II (circles), system size L = 50 000.
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Fig. 7. (Color online) Scaled diffusion rate D∗ = Lβ/ν⊥D
versus scaled distance from critical point Δ∗ = L1/ν⊥Δ in
model I.

of ρ∗ = Lβ/ν⊥ρ versus Δ∗ = L1/ν⊥Δ. As noted in [14],
a data collapse can only be achieved in the regime very
near the critical point (i.e., Δ ≤ 0.0025); and example of
a data collapse for the diffusion rate data is shown in Fig-
ure 7. In model I the data collapse is best using exponent
values β = 0.289 and ν⊥ = 1.35; the corresponding values
in model II are β = 0.285 and ν⊥ = 1.355. These values
are consistent with those reported in [14]: β = 0.289(12)
and ν⊥ = 1.355(18). We may therefore affirm, with a high
degree of confidence, that models I and II belong to the
same universality class, and that the diffusion rate and the
order parameter exhibit the same critical scaling proper-
ties.
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Fig. 8. (Color online) Initial decay of activity (upper) and
diffusion rate (lower) at criticality in model I; system size L =
50 000. The slope of the straight line is –0.153.

In the paradigmatic examples of absorbing-state phase
transitions, such as the contact process [25,26], starting
from a spatially homogeneous initial distribution, the or-
der parameter exhibits an initial power-law decay, ρ ∼ t−δ,
at the critical point, before saturating at a quasistation-
ary value. (Note that the power-law portion of the evo-
lution is independent of system size.) It is of interest to
know whether the order parameter and the diffusion rate
exhibit similar behavior in the stochastic sandpile. Our
results (Fig. 8) for L = 50 000 show ρ and D decaying
with an exponent δ = 0.153(5).

We also perform simulations of the spread of activ-
ity with time. In this case, a single site is given two par-
ticles initially, while the remaining N − 2 particles are
distributed at random, one per site, over the rest of the
lattice. In the contact process at criticality, starting with
a single active site, the number of active sites grows as
n(t) ∼ tη, while the mean-square distance of active sites
from the original seed grows as R2(t) ∼ tzsp [25,26]. In the
present case we find that both D and ρ follow an approx-
imate power law with an exponent η = 0.35(1), as shown
in Figure 9. The spreading exponents δ, η, and zsp are ex-
pected to satisfy the hyperscaling relation 4δ +2η = dzsp,
which, using zsp = 2/z, with z the usual dynamic expo-
nent, can be written as η = 1/z − 2δ. Using the value of
δ cited above, and z = 1.50(4) from reference [14], this
yields η = 0.36(3), which is consistent with our numerical
estimate.

4 Collective diffusion coefficient: theory
and simulation

In this section we apply the operator formalism and per-
turbation theory derived in [23] to the evaluation of the
collective diffusion coefficient Dc of model III on a ring of
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Fig. 9. (Color online) Initial growth of activity (squares) and
diffusion rate (circles) at criticality in model II, starting with
a single active site; system size L = 50 000. The slope of the
straight line is 0.347.

N sites. We begin by writing the master equation for the
process in the form

d|Ψ〉
dt

= L|Ψ〉, (2)

where
|Ψ〉 =

∑

{n}
p({n}, t)|{n}〉 (3)

is the probability distribution. Here p({n}, t) is the prob-
ability of configuration {n}, and the state |{n}〉 is a direct
product of states |nj〉, representing exactly nj particles at
site j. These states are normalized so: 〈n′|n〉 = n!δn,n′ .

Defining creation and annihilation operators via the
relations,

ai|ni〉 = ni|ni−1〉 (4)

and
πi|ni〉 = |ni+1〉, (5)

so that [ai, πj ] = δij , the evolution operator for the one-
dimensional stochastic sandpile is

L =
∑

i

[
1
4
(πi−1 + πi+1)2 − π2

i

]

a2
i . (6)

Since the system is translation-invariant it is convenient
to introduce the discrete Fourier transform via

ak =
∑

j

e−ijkaj , (7)

with inverse

aj =
1
N

∑

k

eijkak, (8)
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(and similarly for other variables), where the allowed val-
ues of the wavevector are:

k = −π, −π+
2π

N
, . . . − 2π

N
, 0,

2π

N
, . . . , π− 2π

N
. (9)

(To avoid heavy notation, we indicate the Fourier trans-
form by the subscript k; the subscript j denotes the cor-
responding variable on the lattice). In the Fourier repre-
sentation, the evolution operator takes the form

L = −N−3
∑

k1,k2,k3

ωk1,k2πk1πk2ak3a−k1−k2−k3 , (10)

where ωk1,k2 = 1 − cos k1 cos k2. As explained in refer-
ence [23], the evolution operator may be rewritten as

L = L0 + L1 (11)

with
L0 = −N−1

∑

k �=0

γkπ−kak, (12)

and

L1 = −N−3
∑

k1,k2,k3 �=0

ωk3,−k1−k2−k3πk3π−k1−k2−k3ak1ak2

− 2pN−2
∑

k1,k2 �=0

ωk2,−k1−k2πk2π−k1−k2ak1

− 2N−2
∑

k1,k2 �=0

ω−k1−k2,0π−k1−k2ak1ak2

− p2N−1
∑

k �=0

ωk,−kπkπ−k, (13)

where
γk = 4p ωk,0 = 4p(1 − cos k). (14)

This transformation is based on the observation that, due
to particle conservation, the operator N−1

∑
j πjaj may

be equated to the particle density p. In equation (13), it is
understood that none of the wavevectors associated with
the operators a and π may be zero.

Let Pn = e−ppn/n! denote the Poisson distribution
with intensity p, and define |P 〉i =

∑
n Pn|n〉i as the

Poisson-distributed state at site i. Then the uniform
product-Poisson distribution is |P 〉 ≡ ⊗i|P 〉i. The latter
is an eigenstate of the diffusion operator with eigenvalue
zero, i.e., D|P 〉 = 0, where

D =
1
2

∑

j

[πj−1 − 2πj + πj+1] aj

= −N−1
∑

k

ωk,0π−kak, (15)

represents nearest-neighbor hopping at unit rate. (Note
that L0 = 4pD.)

To study collective diffusion, we consider an initial con-
dition in which the uniform Poisson-product is weakly per-
turbed by a density modulation with wavevector k:

|Ψ(0)〉 = N−1πk|P 〉. (16)

Introducing the notation,

〈 | ≡
∑

{n}

∏

j

1
nj !

〈nj | (17)

for the projection onto all possible configurations, the
mean number of particles at site j is given by

φj(t) = 〈nj(t)〉 = 〈 |aj|Ψ(t)〉 (18)

or equivalently, in the Fourier representation,

φk(t) = 〈 |ak|Ψ(t)〉. (19)

Note that for the initial distribution of equation (16), with
k �= 0, we have

N−1〈 |aqπk|P 〉 = δq,−k (20)

where we used the relations [aq, πk] = Nδq,−k and
〈 |πk|P 〉 = Nδk,0. Thus φ−k(t) represents the amplitude,
at time t, of the density perturbation created at time zero.

We assume that for long times and long wavelengths
the mean density φj satisfies the diffusion equation
∂φj/∂t = DcΔ

2φj with Δ2 the discrete Laplacian, lead-
ing, in the small-k limit, to φk(t)  φk(0) exp[−Dck

2t].
Letting φk(z) denote the Laplace transform, we have, in
the small-z limit, φk(z)  1/(z + Dck

2), so that,

Dc = lim
k,z→0

1
k2φk(z)

. (21)

Laplace transforming the formal solution of the master
equation we find

φ−k = N−1〈 |a−k
1

z − L
πk|P 〉. (22)

We may develop the solution in a series in powers of 1/p
using the operator identity

1
z − L0 − L1

=
1

z − L0
+

1
z − L0

L1
1

z − L0

+
1

z − L0
L1

1
z − L0

L1
1

z − L0
+ · · · (23)

Evaluation of the contributions to this series is facilitated
by use of the identities L0|P 〉 = 0, ak|P 〉 = Npδk,0|P 〉,
and,

〈 |aqπk|P 〉 = Nδq,−k + N2pδq,0δk,0. (24)

Note also that L0πk|p〉 = −γkπk|P 〉, and in general,

L0 πk1 · · ·πkn |P 〉 = −S πk1 · · ·πkn |P 〉 (25)

where S = γk1 + · · · + γkn . Thus L0 may be inverted on
the space of states of the form πk1 · · ·πkn |P 〉 provided that
not all of the wave vectors are zero: on this space L−1

0 is
simply −1/S times the identity operator.

The first term in the expansion of equation (22) is
readily evaluated as,

φ
(0)
−k = N−1〈 |a−k

1
z − L0

πk|P 〉 =
1

z + γk
, (26)
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which gives limk,z→0 k2φ−k(z) = 1/(2p)+O(1/p2). Subse-
quent terms in the expansion may be evaluated using the
diagrammatic perturbation approach developed in [23]. In
this representation each term in L1 corresponds to a ver-
tex, with operators ak corresponding to lines entering the
vertex at the right, and operators πk to lines leaving at the
left. Each line that leaves a vertex must be joined (“con-
tracted”) with a line entering some other vertex to the
left. The operator L1, equation (13), consists of four parts
or vertices, designated respectively as a crossing (two lines
in, two out), a bifurcation (one in, two out), a conjunc-
tion, and a source. We denote these contributions as La,
Lb, Lc and Ld, respectively. There are two diagrams that
contribute to φ−k(z) at order 1/p2. One arises from the
term,

N−1〈 |a−k
1

z−L0
Lc

1
z−L0

Lb
1

z−L0
πk|P 〉= 1

8Np2(1−cosk)

×
∑

q �=0

1−cos q cos(k−q)
2−cos q − cos(k−q)

=
1

16p2(1−cosk)
, (27)

while the second is,

N−1〈 |a−k
1

z−L0
Lc

1
z−L0

Lc
1

z−L0
Ld

1
z−L0

πk|P 〉 =

− 1
32p2(1−cosk)

(28)

where in both cases the limit z → 0 is taken, as required
by equation (21). At order 1/p3 there are 17 diagrams,
leading to

Dc =
2p

1 + 1
8p + 0.1088899

p2 + · · · . (29)

In [23] the stationary activity density ρ = 〈n(n − 1)〉 was
found to grow asymptotically as p2, with corrections in in-
verse powers of p; here we find that Dc grows only linearly
with p. For comparison we write the results for ρ and Dc

in the form:

ρ = p2

[

1 − 1
4p

− 0.0492525
p2

+ · · ·
]

(30)

and

Dc = 2p

[

1 − 1
8p

− 0.093265
p2

+ · · ·
]

. (31)

These expressions are reliable for 4p � 1 but cannot of
course be applied in the vicinity of the critical density,
pc  0.9493.

4.1 Comparison with simulation

We determine the collective diffusion coefficient in
model III via analysis of the projection of the configu-
ration {n(j, t)} on the initial configuration. Recalling that
〈nj(t)〉 = p, the particle density, we let fj(t) ≡ nj(t) − p

denote the excess particle number at site j and time t. Ini-
tially, the {nj} are independent, Poisson-distributed with
mean p. Consider now

Φ(t) ≡ 〈fj(t)fj(0)〉
〈fj(0)2〉 (32)

where the angular brackets denote an average over sites
and over realizations, including the random initial configu-
ration. For the set of wavevectors k defined in equation (9),
let ϕk(t) denote the discrete Fourier transform,

ϕk(t) =
N∑

j=1

fj(t)eijk. (33)

In the small-k limit we expect ϕk to follow,

ϕk(t) = ϕk(0)e−Dck2t. (34)

Using the fact that the fj(0) are independent, zero-mean
random variables with var[fj(0)] = p, it is straightforward
to show that

Φ(t) =
1
N

∑

k

e−Dck2t  1
2π

∫ π

−π

e−Dck2tdk. (35)

For times such that Dcπ
2t � 1 we may extend the limits

of integration to ±∞, yielding

Φ  1
2π

√
π

Dct
. (36)

Thus if Φ(t), as determined via simulation, can be fit for
large t with an expression of the form A/t1/2, then Dc =
1/(4πA2). In practice, however, a more reliable procedure
is to fit the simulation data to the full lattice expression

F(t) ≡ 1
N

∑

k

e−2Dc[1−cos k]t (37)

which involves the single adjustable parameter Dc, and is
capable of fitting the data at short as well as long times,
and for various system sizes.

We determine Φ(t) on rings of N =
200, 400, 800, ..., 25 600 sites, for particle densities p
in the range of 1 to 3. Figure 10 shows that as the system
size increases, Φ(t) approaches a power-law decay with an
exponent of 1/2; an example of data fit by equation (37)
is shown in Figuare 11. The estimates for Dc, obtained
by fitting F(t) to the simulation data, are compared with
the theoretical prediction, equation (29), in Figure 12;
the agreement is quite good for densities p ≥ 2. In
Figure 12, the relatively large error bars associated with
the simulation results for p = 1.1 and 1.2 reflect the fact
that the simulation results for Φ(t) are less well fit by
the theoretical expression, equation (37), than for other
particle densities. Curiously, for p = 1, despite being
nearer the critical point, the fit is again quite good.

A similar analysis can be applied to extract the value of
Dc,s from simulations in the stationary state. In this case,
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Fig. 10. (Color online) Projection Φ(t) in simulations of model
III. System sizes (lower to upper) N = 400, 800,..., 6400, par-
ticle density p = 3.0. The slope of the straight line is −1/2.

Fig. 11. (Color online) Projection Φ(t) in simulations of model
III with N = 12 800 and p = 2.0. The solid line is given by
equation (37) with Dc = 3.76.

we allow the system to relax, so that the configuration
at time zero is typical of the stationary distribution. Now,
however, the fj(0) are no longer independent, Poisson dis-
tributed variables, and the power spectrum of fluctuations
〈|ϕk(0)|2〉 is no longer constant. We therefore fit the data
for Φ(t) using the expression

Fs(t) ≡
∑

k〈|ϕk(0)|2〉e−2Dc,s[1−cos k]t

∑
k〈|ϕk(0)|2〉 (38)

Fig. 12. (Color online) Collective diffusion constant Dc ver-
sus particle density p in model III. Squares: simulation; line:
theory, equation (29). The crosses denote simulation values for
the stationary-state collective diffusion constant Dc,s.

with 〈|φk(0)|2〉 determined via simulation. The resulting
stationary values of Dc,s are close to, but slightly greater
than, those found using the Poisson initial distribution
(see Fig. 12). It is worth noting that in the stationary
state the projection Φ(t) appears to decay with a power
smaller than 1/2 (a typical exponent value is about 0.41).
This does not imply anomalous behavior as the data can
again be fit using the hypothesis ϕk(t) = ϕk(0)e−Dck2t.
For densities p < 1.2 however, the simulation data are not
well fit by the function Fs(t). In this regime the Fourier
amplitudes 〈ϕ−k(t)ϕk(0)〉 (calculated in simulations) do
not follow a simple exponential decay. (The data suggest
a crossover to stretched-exponential decay at long times).
Thus, near the critical point, we find evidence of anoma-
lous relaxation, as previously noted in stochastic sand-
piles [27].

5 Summary

We study diffusion in stochastic sandpiles. In the first part
of this work we determine the particle diffusion coefficient
in sandpiles in which all active sites share the same top-
pling rate. We find, in both the restricted and unrestricted
cases, that the diffusion constant scales in the same man-
ner as the order parameter (the activity density). Such a
proportionality between the diffusion constant and the ac-
tivity density was asserted for Abelian sandpiles by Dhar
and Pradhan [28]. Our results confirm that the restricted
and unrestricted models belong to the same universality
class, and that both models exhibit a finite-size scaling
collapse of data over an unusually narrow region of the
control parameter (that is, the particle density p).
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The second part of this study deals with a sandpile
in which the toppling rate at site i is ni(ni − 1). In this
case it is possible to derive a short series for the collective
diffusion constant, starting from a Poisson-product initial
state. The resulting expression compares well with simu-
lation for densities well above pc. The collective diffusion
constant Dc is extracted from simulations using the pro-
jection of density fluctuations at time t onto their initial
values. We expect this approach to be useful in determin-
ing Dc in other systems, such as interacting lattice gases.
We defer a detailed investigation of collective diffusion in
the critical region to future work.

We thank Alvaro Vianna Novaes de Carvalho Teixeira for help-
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was supported by CNPq and Fapemig, Brazil.
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15. J.A. Bonachela, M.A. Muñoz, Phys. Rev. E 78, 041102

(2008)
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