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Abstract
Bohr’s atomic model, its relationship to the radiation spectrum of the hydrogen atom and

the inherent hypotheses are revisited. It is argued that Bohr could have adopted a different
approach, focusing his analyzes on the stationary orbit of the electron and its decomposition
on two harmonic oscillators and then imposing, as actually he did, Planck’s quantization for
the oscillators’ energies. Some consequences of this procedure are examined.

1 Introduction

Niels Bohr, in 1913, set forth that the elementary quantum of action – Planck’s constant
–, originally introduced for explaining the emission of light from a black-body, should also
be necessary to ensure matter stability.1 His atomic model was probably one of the most
intriguing and fruitful conception of the inner structure of chemical elements. Moreover,
Dirac has manifested his belief “that the introduction of these ideas by Bohr was the greatest
step of all in the development of quantum mechanics.”.2 The solution of the dynamical
instability of Rutherford’s atom proposed by Bohr was in direct contradiction with what
was expected from Maxwell-Lorentz theory of accelerated charges, enlarging the crisis of
Classical Physics (extending it to matter) which had started some years before by the two
seminal papers by Planck and Einstein which shed light on both Lord Kelvin’s clouds.3

In Bohr’s own words, “[it] seems to be a general acknowledgment of the inadequacy of the
classical electrodynamics in describing the behavior of systems of atomic size.” However,
Bohr’s atomic model was very successful in describing the regularity of atomic spectra,
specially the regularities of Balmer’s spectrum for hydrogen atoms. Referring to this success,
although not yet comprehensible, James Jeans very quickly admitted in public how ingenious
were Bohr’s ideas4 and Einstein said that there should be something behind his result since
it is very hard to believe that Rydberg constant could be correctly obtained by chance.5

Indeed, spectroscopy gave the empirical basis for the development of Bohr’s atomic model
and, why not to say, to the development of quantum theory. As Scott Tanona has stressed,6

the Danish physicist
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“attempted to use well-defined phenomena as a secure starting point for the
development of theory and searched for the most general features that any atomic
theory was to have in the face of the novel introduction of quantum effects.”

It was in his paper “On the constitution of atoms and molecules”1 that Bohr, still using
Newtonian Mechanics, set the basis for a new quantum description of matter, by disclosing
the inadequacy of classical electromagnetism to describe Atomic Physics. His work had
the merit of stimulating many physicists to think about the necessity of elaborating a new
theoretical description of the microphysics. It is curious to note that it was Newtonian
Mechanics – not Electromagnetism – which was first replaced by a Quantum Theory
(Quantum Mechanics). Indeed, Bohr had a great influence on Heisenberg and Louis de
Broglie works and it is well known how Schrödinger’s early works were influenced by de
Broglie’s wave-particle duality ideas. However, Quantum Electrodynamics still had to wait
some decades to be established. It was also in this paper1 where the correspondence principle
was introduced for the first time. It is commonly accepted that this principle is a very
powerful heuristic argument that has played an important rôle on Bohr’s starting point of
view on Quantum Physics, by requiring that the classical results should follow from the
quantum results in the limit of large quantum numbers. Although counterexamples have
shown that this idea is not generally true,7 from the epistemological point of view, we rather
agree with Tanona when he says6 that

“For Bohr, the correspondence principle was not merely a heuristic tool for
the development of quantum theory; nor was it primarily concerned with the
asymptotic agreement between classical and quantum theory. Rather, its main
purpose within Bohr’s empirical approach was to bridge the epistemological
gap between empirical phenomena and the unknown atomic structure, which is
responsible for the phenomena, by associating classical properties of spectra with
atomic properties.

Within a difference of six to seven months, Bohr introduced two new postulates, in order
to save mechanical stability of atoms as reproduced here:

(i) An atomic system based on Rutherford’s model can only exist in certain stationary
states (orbits) having energies

{ε1, ε2, ε3, . . . } (1)

and can be partially described by the laws of Classical Mechanics. Subsequently, Bohr
called this “the quantum postulate”;

(ii) The emission (or absorption) of electromagnetic radiation occurs only due to transitions
between two stationary orbits, in such a way that the frequency (ν) of the emitted (or
absorbed) radiation is given by

ν =

∣∣εf − εi

∣∣
h

(2)

where h is Planck’s constant and εf and εi are, respectively, the energy values of the
two orbits involved in the transition. In other words, the energy (ε) of the emitted or
absorbed photon is given by Planck’s law

ε = hν

This is almost always what is frequently taught in a Modern Physics course. However,
there are, indeed, many other assumptions hidden in Bohr’s model. A complete list was
clearly settled by Sir Edmund Whittaker:8

1) “atoms produce spectral lines one at a time;
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2) that a single electron is the agent of the process (...);

3) the Rutherford atom provides a satisfactory basis for exact calculations of wave-lengths
of spectral lines;

4) the production of atomic spectra is a quantum phenomenon;

5) an atom of a given chemical element may exist in different states, characterized by certain
discrete values of its angular momentum and also discrete values of energy (...);

6) that in quantum-theory, angular momenta must be whole multiples of ~ [= h/2π] (...);9

7) that two distinct states of the atom are concerned in the production of a spectral line
(...);

8) that the Planck-Einstein equation E = hν connecting energy and radiation-frequency
holds for emission as well as absorption.”

To this list, Whittaker adds a last postulate which, due to its epistemological relevance,
should be detached, namely the principle that we must renounce all attempts to visualize
or to explain classically the behavior of the active electron during a transition of the atom
from one stationary state to another. This renouncement is exactly what Bohr assumed
when he attempted to build up a quantum model (mechanically stable) for the atom with
an eye kept on his electromagnetic discrete spectrum and another kept on the single electron
agent of the process, without having a real understanding of the quantum process actually
involved in radiation emission. In this sense, the correspondence principle is much more
the epistemological link between the observed electromagnetic spectra and the inferred
mechanical orbital motion of the electron than a general connection between classical and
quantum Physics.

For his project to succeed, there is still another assumption (not mentioned by Whittaker)
that Bohr should have made in the first paper1 of his famous trilogy which often deserves
no attention, although it seems quite strange. We are talking about the way Bohr saw the
mechanism of binding an electron to a nucleus and how he has related its revolution frequency
(f) to the frequency (ν) of the emitted homogeneous radiation, as will be seen in the next
Section. This was an important open question at that time.

2 Binding electrons to positive nucleus

The idea that one should abandon classical concepts to understand atomic phenomena was
almost clear to Bohr by the time of his doctorate thesis. By the end of 1911, he wrote a
letter to McLaren expressing his conviction that very little was known from the movement of
electrons in metals. In his dissertation it was already evident for him that Lorentz electron
theory was not enough to surmount some unexplained phenomena. He guessed there was
something wrong about how electrons interact with ions. In a couple of years, Bohr moved
his attention from free electrons (as in metals) to bound electrons.

Following Léon Rosenfeld’s testimony,4 by July 1912, in a memorandum addressed to
Rutherford, Bohr already expresses the kinetic energy of an electron inside the atom as
proportional to its revolution frequency, but without fixing the proportionality constant
neither relating it to Planck’s constant. In this memorandum nothing else is said about
this energy. Rosenfeld seems to accept that in 1912 Bohr already considered the argument
he used in the 1913 first paper, namely: that the bound energy of the electron is equal in
magnitude to half the mean energy in the revolution period. Let us briefly review the steps.

Starting from Rutherford’s hydrogen model, in which the atom is made of a nucleus
with very tiny dimensions of positive electric charge (+e), and of an electron with negative
charge (−e), Bohr admitted the electron to describe elliptical stationary orbits with velocity
(v) much less than that of light in the vacuum (c), and that there is no radiation loss. In
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addition, the interaction between the electron and the nucleus could be described by an
electrostatic Coulombian force (F ) given by

F = −Ze2

r2

where r is the relative distance.
In a first moment of the 1913 famous paper,1 Bohr focused his attention on how an

electron can be bound to a nucleus. In the second section of his paper, we read:

“(...) let us assume that the electron at the beginning of the interaction with the
nucleus was at a great distance apart from the nucleus, and had no sensible velocity
relative to the latter. Let us further assume that the electron after the interaction
has taken place has settled down in a stationary orbit around the nucleus.”

And he goes on saying that “let us now assume that, during the binding of the electron, a
homogeneous radiation is emitted of a frequency ν, equal to half the frequency of revolution
of the electron in its final orbit”.

In our notation, this means to admit the frequency postulate, namely that

ν =
1
2

f (3)

The relations between the electron revolution frequency (f) of mass m and the ellipse
major semi-axis (a) for a given energy (ε) are given by1

f =
1

πZe2

√
2|ε|3
m

2a =
Ze2

|ε|

(4)

When there is no restriction to the values of energy, frequency or the ellipse’s axes, the
only restriction to those values are those imposed from the previous relations. In addition,
classically, when the motion of an electron in a particular orbit (with definite frequency) is
considered to be the cause of energy emission from the atom, it should necessarily follows
that light with different frequencies – corresponding to each one of the Fourier components
of its motion – would be emitted. This is, of course, not what was observed.

Thus, according to postulate (i), the energy value set for stationary orbits is a discrete
set, namely,

{εn} (n = 1, 2, 3, . . . )

The relationship between electron orbital movement and the emitted frequency should
be determined, according to Bohr, by the correspondence principle. In fact, in another
point of the paper, Bohr admitted that the energy of each state depends on the revolution
frequency, which imposes a new condition between the energy and the revolution frequency
of a stationary state

|εn| = hfng(n) (5)

where g(n) is an unknown function. His idea was using his correspondence principle to fix
the functional dependence of g(n) in order to correctly reproduce Balmer’s formula for the
hydrogen spectrum.

Replacing the frequency given by equation (5) in the corresponding equation (4), it follows
that

|εn|
hg(n)

=
1

πZe2

√
2|εn|3

m
(6)
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which implies that 
|εn| =

π2mZ2e4

2h2

1
g2(n)

fn =
π2mZ2e4

2h3

1
g3(n)

(7)

According to postulate (ii), having emission or absorption due to the transition between
states of energies εn e εl, the frequency (ν) of the emitted or absorbed radiation is given by

ν = νln =

∣∣εl − εn

∣∣
h

=
π2mZ2e4

2h3

∣∣∣∣ 1
g2(l)

− 1
g2(n)

∣∣∣∣ (8)

Note that the frequency of the radiation is in principle different from the revolution frequency.
For the hydrogen atom (Z = 1), equation (8) is compatible with the Rydberg formula,

written as

ν = cRH

(
1
l2
− 1

n2

)
(9)

if the function g(n) = bn, where b is a constant to be fixed.
Therefore, we can write 

|εn| =
π2me4

2h2

1
b2n2

fn =
π2me4

2h3

1
b3n3

(10)

The b constant can be determined considering the transition between two states with
neighboring energy values εn and εl, so that n = l + 1, in the limit of large values of n.
In this limit, fn = fl, and Bohr considers that the frequency (νln), Eq. (8), of the emitted
radiation should be equal to the electron revolution frequency (fn). This hypothesis is known
as Bohr’s frequency correspondence principle.

Thus,

lim
n→∞

νln =
π2me4

2h3

1
b2n2

∣∣∣∣(n

l

)2

− 1
∣∣∣∣ (11)

For very large value of l, l = n, the limit becomes

lim
n→∞

νln =
π2me4

2h3

2
b2n3

(12)

and, according to the correspondence principle,

lim
n→∞

νln = lim
n→∞

fn =⇒ b = 1/2 (13)

In this case, the initial Bohr’s hypothesis, equation (5), can be expressed by

|εn| =
nhfn

2
(14)

To this result Bohr has dedicated a comment concerning the ad hoc relation between the
frequency of the emitted radiation and that of electron revolution he has assumed at the
beginning of the paper and its interpretation. Essentially he says that “from this assumption
we get exactly the same expressions as before for stationary states, and from these by help of
the principal assumptions on p. 7 the same expression for the law of the hydrogen spectrum
[see below]”. Without being able to establish a more clear interpretation of this result he
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concludes the remark by saying that the preliminary considerations, implicit in the above
derivation, should be seen “only as a simple form of representing the results of the theory”.

The atomic energy spectrum is given by

εn = −
(

2π2me4

h2

)
1
n2

(n = 1, 2, . . . ) (15)

From postulate (ii), he had obtained for the emitted or absorbed radiation Ritz’s formula:

νln = cR
H

∣∣∣∣ 1
l2
− 1

n2

∣∣∣∣ (16)

where R
H

is the Rydberg constant. Fixing l = 2 and letting n vary, one gets Balmer’s
formula.

Therefore, the frequency of the emitted radiation during the transition between the
orbit labeled by n and the next one is equal to the electron revolution frequency in the
n-orbit, just for large values of n. It is important to remember that many of Bohr’s
predecessors as Lorentz, Zeeman, Larmor and Thomson, contrary to him, used in their
classical calculations of the radiation frequency from the movement of atomic constituents,
the misleading assumption that this frequency was equal to that of electron revolution. This
was proved to be wrong for the lower energy levels. What Bohr has primarily shown, based
on the hydrogen spectra data, is that there is an asymptotic limit of the quantum result
which coincides with the classical result just in the limit of large n values.

3 Energy levels and angular momentum quantization

After having deduced Balmer’s formula from the postulate of quantization of the emitted
energy and from the correspondence principle, Bohr alternatively assumed, like Haas,10 that
an electron of charge −e and mass m describes a circular orbit of radius r under the the
Coulombian attractive force of the positive nucleus (consider hydrogen for simplicity), such
that

mv2

r
=

e2

r2
=⇒ mv2 =

e2

r
=⇒ (mvr)2 = me2r (17)

where v is the electron velocity.
The orbital angular momentum (L) of the electron in respect to the nucleus is given by

L = mvr = mωr2 (18)

The radius of the orbit and the energy could be written as a function of angular momentum
as 

r =
L2

me2

ε =
1
2
mv2 − e2

r
= − e2

2r
= −me4

2L2

(19)

From the classical point of view, since angular momentum can vary continuously, any
orbit is a possible orbit. There will be no reason in this case that the fundamental state
should have a particular radius. However, assuming a new postulate – the quantization of
angular momentum –

L = n~ (n = 1, 2, 3, ...) (20)

we get a class of possible radius rn for each orbit n,

rn = n2 ~2

me2
(21)
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Analogously, the total energy can be written as

εn = −1
2

me2

~2

e2

n2
= − e2

2a

1
n2

(22)

In this way, admitting circular orbits for the electron in the stationary states, the
correspondence principle can be substituted by the quantization of angular momentum
postulate, given rise to the energy quantization and to Balmer’s formula. So, angular
momentum quantization leads to energy quantization in an atomic transition.

4 Bohr’s atomic electron as an harmonic oscillator

In 1920, Bohr wrote:11

“On account of the general correspondence between the spectrum of an atom and
the decomposition of its motions into harmonic components, we are led to compare
the radiation emitted during the transition between two stationary states with the
radiation which would be emitted by a harmonically oscillating electron on the
basis of the classical electrodynamics.”

According to Bohr’s circular model, the energy of an electron of mass m moving with
frequency ω = 2πf , in an orbit with radius r0 and velocity v0 = ωr0 , can be written as

|εBohr| =
ωL

2
=

1
2
mω2r2

0
=

1
2
mv2

0
(23)

where L = mv0r0 is the orbital angular momentum of the electron in respect to the nucleus.
Moreover, a particle of mass m, subject to a central force of the type ~F = −mω2~r,

oscillate with a frequency ω = 2πf . The general solution for the movement of this oscillator,
at any instant t, is given by12

~r = ~r0 cos ωt +
~v0

ω
senωt (24)

where ~r0 and ~v0 are, respectively, the initial position and velocity of the particle, and ~r the
position at time t.

Supposing that ω, ~r0 and ~v0 have the same values that their correspondents in Bohr’s
circular model, the total energy of the oscillator is given by

εosc = mω2r2
0

(25)

Comparing this result with the energy of Bohr’s model, we obtain

|εBohr| =
εosc

2
=⇒ ωL = εosc (26)

Therefore, if the energy of the oscillator satisfies Planck’s quantization rule, εosc = nhf ,
the energy of Bohr’s circular model, postulated by Eq. (5), can be written – comparing to
Eq. (23) – as

εBohr =
nhf

2
(27)

and, consequently, the angular momentum is quantized:

L = n~ (n = 1, 2, 3, ...) (28)
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5 An alternative approach

Taking into account all we have just reviewed, one can now argue whether this scenario
was at that time indeed unique or, at least, whether it was really the “simplest” one.
Could Bohr avoid anyone of his postulates? Could Bohr had achieved the same results
without introducing the frequency correspondence principle – a postulate which is ultimately
connected to the unusual assumption that the frequency of the emitted radiation is equal to
half the frequency of revolution of the atomic electron in its final orbit? The answer seems
to be yes, but then, why Bohr did not adopt it?

It will be shown in this section that he could have thought in a different way, and a
sketch of why he might not will be presented. In other words, so far as the problem of
the electron orbit was concerned, it was possible at that time to exploit futher the classical
results including only two main postulates: electrons have stationary orbits inside the atom
(the quantum postulate); and the energy of any harmonic oscillator is given by Planck’s
quantization law.

Consider the classical circular movement of a charge in a plane with frequency ω = 2πf ,
as shown in figure 1.

Figure 1: Circular movement of a particle with frequency ω and radius A.

The circular movement is characterized by an acceleration a = ω2r. It was well known
from acoustic that this movement can be thought as the superposition of two harmonic
simple oscillators mutually perpendiculars with amplitudes x = A cos(ωt + θ)

y = A sin(ωt + θ)
(29)

and acceleration components ax = −ω2A = −ω2A cos(ωt + θ)

ay = −ω2A = −ω2A sin(ωt + θ)
(30)

The potential energy of one oscillator (in x-direction) is

Ep =
kx2

2
=

kA2

2
cos2(ωt + θ) (31)

with k = mω2, and the kinetics energy is

Ek =
1
2
mv2 =

1
2
kA2 sin2(ωt + θ) (32)
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Thus, the total energy of each oscillator (i = x, y) is

Ei = Ep + Ek =
1
2
kA2 (33)

and the total energy is
E = Ex + Ey = kA2 (34)

By other side, it is well known that when the circular movement of a massive and charged
particle is due to a central Coulombian attractive force, its radius A can be expressed as a
function of the angular momentum and other constants associated to the particle (mass and
charge) like

A =
L2

me2
(35)

Squaring this radius and then substituting its value and k = mω2 in the total energy we
get

E =
ω2L4

me4
(36)

The angular frequency can also be expressed in terms of the angular momentum by

ω =
me4

L3
(37)

Therefore, from Eqs. (36) and (37), a relationship between energy and angular momentum
is obtained:

E =
me4

L2
= Lω (38)

This is strictly a classical result. At this point we can introduce Planck’s quantization
for the energy of both simple harmonic oscillators, E = n~ω, obtaining

E = n1~ω + n2~ω = (n1 + n2)~ω ⇒ E = n~ω (39)

and, from Eq. (38), the quantization of orbital angular momentum

L = n~ (40)

Note that this result do not depend on any kind of consideration about the electron
transition between two orbits. We are just treating the circular motion of one stationary
orbit as a formal composition of two simple harmonic oscillators of the same frequency and
postulating that the energy of any harmonic oscillator is quantized according to Planck’s
quantization law. It seems to us that this way of treating the problem of electron movement
in Bohr’s model is at least more “economic”: the frequency postulate, given by Eq. (3), could
therefore be avoided.

Now the question: Why Bohr did not consider this possibility? First of all just because
he did not take the concept of classical orbits very seriously. Indeed, as Folse remembers,13

“The now well-known “electron orbits” were simply a pseudo-classical means
of representing these stationary states. Though the degree of seriousness with
which Bohr took this model waxed and waned throughout this period, certainly he
was only rarely tempted to take the orbiting electron as a literal spatio-temporal
description of the physical situation inside the atomic system. Furthermore, he
was alarmed by the tendency of many other physicists to do so.”
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In a certain sense, we can argue that there is a second stronger historical reason. The
fact that Bohr was not able to realize how to introduce Planck’s constant in the description
of matter until he developed his theory of atomic structure to include not one but a series
of stationary states, between which atomic transitions were discontinuous (Section 2). Such
discontinuity was essential to understand the Balmer formula, at least qualitatively. The clue
relating theory to experiment, as discussed in this paper, is the frequency correspondence
principle, which has led to a correct quantitative description of the observed spectra of
hydrogen atoms. Therefore, Bohr’s perception that the atomic system should change its state
discontinuously is a necessary consequence of his belief that the only allowed transitions are
between stationary states. Two – not just one – states are needed (point 7 of Whittaker’s list).
At this point is quite unavoidable not to remember the Dirac’s comment14 concerning the
main point of Heisenberg’s 1925 idea that theory should concentrate on observed quantities:

“Now, the things you observe are only very remotely connected with the Bohr
orbits. So Heisenberg said that the Bohr orbits are not very important. The things
that are observed, or which are connected closely with the observed quantities, are
all associated with two Bohr orbits and not with just one Bohr orbit: two instead
of one.”

The aforementioned discussion suggests that such Heisenberg’s point of view was not
so strange to Bohr twelve years later, when he based his atomic model on two hypotheses:
the frequency postulate and the frequency correspondence principle. His choice seems to
be much more dictated from philosophical than physical reasons. The reasoning presented
in this Section is an alternative way to establish the quantization of both the energy and
the angular momentum of the electron in a stationary state without going through more
states. Perhaps, an exploitation of this reasoning at that time could drive to a version of
the Wilson-Sommerfeld quantization rule, as suggested in the first talk Bohr gave in honor
of C. Christiansen, published in 1918.15 Indeed, in a nutshell, it was in this paper that Bohr
had shown the now well known result that Planck’s quantization law for the energy of an
one-dimensional harmonic oscillator is equivalent to the condition∮

pdq = nh (41)

where the integral is taken over a complete oscillation of the variable q between its limits
and p is the canonically conjugated momentum.

Bohr arrived to this conclusion after he had realized how the adiabatic hypothesis,
introduced by Ehrenfest16 and called by the former the principle of mechanical
transformability, could give support to his definition of stationary orbits or, in other words,
how he could justify to fix a number of the atomic states among the continuous multitude of
mechanically possible motions. This principle, as Bohr mentioned in 1918,

“allows us to overcome a fundamental difficulty which at first sight would seem to
be involved in the definition of the energy difference between two stationary states
which enters in the relation [E′−E′′ = hν]. In fact we have assumed that the direct
transition between two such states cannot be described by ordinary mechanics,
while on the other hand we possess no means of defining an energy difference
between two states if there exists no possibility for a continuous mechanical
connection between them.”

We have shown in Section 5 that there is an alternative through which it is possible to
fix not only the energy for the transition but rather to fix it and the angular momentum for
each stationary orbit.
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