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Cosmology without inflation
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We propose a new cosmological paradigm in which our observed expanding phase is originated
from an initially large contracting Universe that subsequently experienced a bounce. This category
of models, being geodesically complete, is non-singular and horizon-free, and can be made to prevent
any relevant scale to ever have been smaller than the Planck length. In this scenario, one can find
new ways to solve the standard cosmological puzzles. One can also obtain scale invariant spectra for
both scalar and tensor perturbations: this will be the case, for instance, if the contracting Universe
is dust-dominated at the time at which large wavelength perturbations get larger than the curvature
scale. We present a particular example based on a dust fluid classically contracting model, where a
bounce occurs due to quantum effects, in which these features are explicit.

I. INTRODUCTION

With the recent release of Wilkinson microwave
anisotropie probe (WMAP) data [1, 2], the inflation
paradigm [3, 4, 5, 6, 7] has been set on firmer ground.
Apart from solving some of the standard cosmological
puzzles (horizon, flatness, isotropy), the simplest models
predict an almost scale invariant spectrum of long wave-
length scalar perturbations, as observed, with low am-
plitude tensor perturbations. This successful paradigm
suffers, however, from some weakening issues and omis-
sions. The existence of an initial singularity (a point
where no physics is possible) in the standard cosmolog-
ical model is not addressed by inflation [8]. There is no
consensus yet as to whether inflation really solves the ho-
mogeneity problem [9, 10] as long as one still needs spe-
cial initial conditions in a relatively large patch to initiate
inflation [10, 11, 12]. It seems that we cannot go forward
on this problem without a precise knowledge of how the
Universe leaves the Planck scale and/or a theory of ini-
tial conditions, i.e. without having an unambigous and
complete theory of quantum gravity [10]. Furthermore,
some cosmologically relevant wavelengths must, at some
early stage, have been trans-Planckian [13, 14, 15, 16];
this can cast doubts on the validity of the cosmological
perturbation predictions of inflation. Finally, the usual
and simpler models of inflation need a scalar field [17],
whose theoretical properties demanded for setting up
the inflationary phase are not obviously compatible with
those obtained from well-motivated fundamental particle
physics theory [18, 19] (a new perspective was, however,
suggested [20]). In view of these difficulties, the question
can be asked whether the inflationary solution is unique.

Mechanisms that eliminate the initial singularity be-
long to one of the following scenarios: either they as-
sume a quantum creation of a small but finite Universe
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and hence a beginning of time [21, 22], or they are based
on an eternal Universe, hence with no beginning of time.
This last possibility can itself be divided into two dis-
tinct categories: a monotonic time dependence of the
scale factor, i.e. an expansion lasting forever, or differ-
ent phases including contractions and expansions, and
therefore bounces. The first situation is realised in the
pre-big-bang (PBB) scenario [23, 24]; it requires a long
accelerated phase originating from either an asymptoti-
cally zero volume flat spacetime or from a finite but small
compact region [25, 26] before the usual decelerated ex-
pansion of the standard model. As for bouncing mod-
els, they can be embedded in many theoretical situations
[27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39], in-
cluding classically singular cases [40, 41, 42]. In a string
approach, both situations are in practice equivalent due
to the presence of the dilaton which allows for a field
reparametrization (as opposed to conformal transforma-
tion as is usually, and erroneously, stated): the PBB
evolution of the Jordan (or string) frame is turned to
a bounce in the Einstein frame.

Up to now, there is not a single observation which fa-
vors one of these three scenarios (time creation, eternal
expansion or bounce) with respect to the others, render-
ing these three possibilities susceptible to physical inves-
tigation, without prior preferences.

Bouncing models differentiates, however, very strongly
from the other two scenarios above in one important as-
pect: initial conditions may not be anymore put in a very
small region, perhaps with Planckian size, but in a very
large and almost flat Universe. In this framework, the
flatness and the homogeneity problems are viewed from
a very different perspective. Hence, bouncing models not
only solve, by construction, the singularity problem, but
they may also possibly solve, as we discuss in this work,
other important puzzles of the standard model without
the need for an inflationary phase1.

1 Note that, strictly speaking, the bounce itself could be seen as
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Note also that a transition from contraction to ex-
pansion demands non-standard or non classical physics,
and/or non standard matter in order to avoid the sin-
gularity in between. If, for having inflation, violation of
the strong energy condition is necessary and sufficient,
for bouncing models it may not be sufficient, requir-
ing also violation of the null energy condition in most
cases (i.e. Friedmann models with nonpositive spatial
hypersurface curvature [43]). This suggests that there
could possibly be observational implications to which
we shall come later. For now, we turn to the way a
bounce addresses the usual puzzles, before presenting an
actual model in which these features can be readily im-
plemented.

II. COSMOLOGICAL PUZZLES

Bouncing models lead to a new framework for uncov-
ering completely new solutions to the standard cosmo-
logical puzzles. Let us list them in what follows.

• Singularity: Bouncing universes are, by construction,
geodesically complete, and hence singularity free, so this
point, not addressed by inflation, is a non-issue here.

• Horizon: The size d
H

of the horizon is given by the

time integral d
H
(t) ≡ a(t)

∫ t

ti
a−1(τ)dτ , with ti some ini-

tial value. If the dynamics is driven by a perfect fluid
with constant equation of state ω ≡ p/ρ, with p and
ρ the pressure and energy density, respectively, of the
fluid, the scale factor behaves, for flat hypersurfaces, as
a(t) ∝ |t|2/[3(1+ω)] [here and in what follows, we assume
for simplicity that the bounce takes place at t = 0, so
that t < 0 (t > 0) represents the contracting (expand-
ing) phase].

Integrating, we obtain the horizon as

d
H

=
3 (1 + ω)

1 + 3ω

{

|ti|(1+3ω)/[3(1+ω)] − |t|2/[3(1+ω)] + t
}

.

(1)
If ω > − 1

3 , then clearly, as ti → −∞ (bouncing case), d
H

diverges. At any finite time before or after the bounce,
the horizon is infinite and remains so for all subsequent
times. Note that this solution would cease to be valid
if, as seems to be the case now, the Universe had been
dominated by some kind of dark energy (ω < − 1

3 ) in
the contracting phase. This observation thus appears to
require a non symmetric bounce.

• Flatness: The problem stems from the classical equa-
tion giving the density ρ(t) relative to the critical one
ρc(t) = 3H2(t)/(8πG

N
), with H ≡ ȧ/a the Hubble ex-

including an inflationary phase since ä > 0 near the bounce.
However, inflation is usually assumed (as we do in the present
work) to be not only a period of acceleration, but one inducing
many e-folds of expansion in a very short time. This is clearly
not the case during a bounce.

pansion rate, through

d

dt
|Ω − 1| = −2

ä

ȧ3
, (2)

where Ω ≡ ρ/ρc. As Ω is close to unity now, implying al-
most flat spatial sections (the term involving the spatial
curvature K would be negligible in the Friedmann equa-
tion), Eq. (2) implies that it must have been arbitrarily
closer in the past in the usual big-bang scenario based on
decelerated (ä < 0) expansion (ȧ > 0) since then |Ω−1| is
an ever-increasing function of time. To solve this prob-
lem, one must have had a long enough period during
which |Ω − 1| decreases. This can be accomplished ei-
ther through an inflationary expansion phase (ä > 0 and
ȧ > 0) or through a long decelerated contracting phase
(ä < 0 and ȧ < 0). In the latter framework, we would say
that the Universe is seen to be almost flat now because
it has expanded much less than it has contracted before.
• Homogeneity: This is perhaps the deepest problem

of the standard model. There are essentially two ap-
proaches to this issue. The first, exemplified here by
the Weyl curvature hypothesis [44, 45] (other examples
on this approach have been proposed [21, 22], based on
boundary conditions on the wave function of the Uni-
verse), is to provide some theory of initial conditions2.
The second possibility, of which inflation is prototypi-
cal, is to invoke a dynamical process which wipes out
any preexisting inhomogeneity and anisotropy. In both
cases, the outcome should be the outstandingly spe-
cial Friedmann-Lemâıtre-Robertson-Walker (FLRW) ge-
ometry. It is unquestionable that inflation, providing
such a mechanism, significantly alleviates the problem
[9, 10, 12], but it is not clear whether it precludes special
initial conditions [10, 11] to be imposed. It seems likely
that a combination of these two approaches will turn out
to be necessary. One expects that whenever (if ever) a
consistent theory of quantum gravity is consensually ac-
cepted, it will, once applied to cosmology, provide the
required initial conditions to homogenize the primordial
Universe.

In bouncing models, one may indeed envisage a so-
lution for this problem using a mixture of the above-
mentioned two approaches within a complete new per-
spective. In a very large and dilute Universe, the energy-
momentum tensor of matter, and hence the Ricci tensor,
should be very small. This requirement, by itself, does
not ensure that the geometry is almost flat since Ein-
stein equations do not fix the Weyl tensor. Under the

2 Based on thermodynamical considerations, the Weyl curvature
hypothesis consists in saying that the arrow of time implies the
Universe to have an initially very low total entropy. It turns out
that, if its gravitational part, the dominant one, depends only on
the Weyl tensor, as the conjecture states, then it suffices to argue
that the latter should be initially negligible. Note, however, that
this particular hypothesis is not sufficient by itself to guarantee
homogeneity as long as the conformal factor of the metric may
have non-negligible spatial gradients at the beginning.
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Weyl curvature hypothesis, however, geometry should be
almost flat at that time, which we take to be our ini-
tial condition. The question then becomes: do the initial
inhomogeneities grow?

Consider first the initial regime where the Universe is
very large, rarefied and, as discussed above, almost flat.
Then the self-gravitation of any inhomogeneity, even with
δρ/ρ & 1, is negligible, as long as ρ is very small. Note
that this would not be true if we were to take initial
conditions at a time for which the Universe is small and
dense. These original inhomogeneities therefore get dis-
sipated in much the same way as air gets rapidly homo-
geneous if perturbed (sound waves do not condense). By
assumption, neither gravity nor its entropy are relevant
in this regime. By the Hamilton theorem, the entropy of
matter grows undisturbed for a long time and thus can
reach its maximum value.

Let us now go one step forward and assume a matter-
(dust-) dominated cosmological contraction. In that case,
the dust field velocity evolves as v ∝ a−1, its number
density n ∝ a−3, and consequently its mean free path
reads λ

MFP
= (nσ)−1 ∝ a3, where σ is the dust cross

section (necessarily small for the dust approximation to
make sense).

In a very large dust-dominated Universe, the Jeans

length is λph
J = c

S
[π/(G

N
ρ)]1/2 ∝ a1/2 and can be made

larger than any large scale we see today. The dissipation
time td for a given inhomogeneity of wavelength λ smaller
than the Jeans length is given by

td =
λ

v

(

1 +
λ

λ
MFP

)

, (3)

and this time ought to be compared with the Hubble

time scale. For dust, a ∝ R
2/3
H , where we set RH = yR0

the Hubble radius at any time and R0 its present value.
Writing λ = xR0 and λ

MFP
= AR2

H, A being a constant,
Eq. (3) transforms into

td ∝ xy2/3

(

1 + C
x

y2

)

T0, (4)

where T0 is the value of the Hubble time today and
C−1 = AR0. Comparing with the Hubble time tH = yT0,
Eqs. (1) and (4) yield

td
tH

∝ x

y1/3

(

1 + C
x

y2

)

. (5)

The dependence of (5) on y obtained by the simple cal-
culation above shows that, for a sufficiently large RH =
yR0, any scale up to the size of our Universe today be-
comes homogeneous, being dissipated before gravity can
play any role. In fact, depending on the amount of time
spent in this dust contraction regime, and this time can
be fixed arbitrarily large, even infinite if one wishes, the
dissipation is so effective that only quantum fluctuations
given by the uncertainty principle survive. This provides,
as a bonus, unique initial conditions for the perturba-
tions: vacuum fluctuations.

• Dark energy: This problem is not addressed by infla-
tion, and the simplest bouncing cases also remain silent
here. However, as discussed above, although dark en-
ergy is mostly harmless as inflation proceeds, it may be
problematic (see the horizon problem above) for bounc-
ing models. Hence, either dark energy was produced near
or after the bounce, or it cannot have dominated in the
asymptotic past, as in the transient dark energy example
[46]. In this case, one could turn this potential diffi-
culty into a means of reducing the spectral index of per-
turbations: with a small amount of dark energy in the
primordial fluctuation enhancement epoch, the effective
equation of state could be made negative, thus implying
a slightly red spectrum (see below). This is something to
be investigated in more detail in the future.

III. INITIAL CONDITIONS FOR STRUCTURE

FORMATION

The main achievement of the inflation paradigm was
the realization that, due to the quantum fluctuations of
the scalar field and the metric, initial conditions for semi-
classical perturbations could be set in a natural way, de-
manding that at some stage the relevant scales had been
in a vacuum quantum state. Implementing this condi-
tion then led to the prediction that the spectral index of
scalar perturbations is close to 1 [4]. What similar initial
conditions can be imposed in bouncing models, if any,
and what do they lead to in terms of observations?

Setting vacuum initial conditions is in fact even more
natural in a bouncing case. Indeed, the Universe is sup-
posed to be very large in the far past and in fact, for
the idea to make any sense at all, much larger than any
observable scale today. This means that, for any given
scale of interest, there exists a time, sufficiently before the
bounce, for which the scale in question is much smaller
than the curvature scale. As a result, one can safely work
in the tangent Minkowski space. Furthermore, imposing
vacuum for the corresponding perturbations at that time
is then not only a plausible requirement but also a nec-
essary consequence of the homogeneity solving scenario
discussed above, where inhomogeneities are dissipated up
to quantum vacuum fluctuations in a huge and slowly
contracting Universe.

In the simple quantum cosmology background pre-
sented in the following section, stemming from action (8),
explicit calculations starting with vacuum initial condi-
tions yields, for the scalar and tensor spectral indices,
respectively [47, 48, 49, 50]

n
S

= 1 +
12ω

1 + 3ω
, (6)

and

n
T

=
12ω

1 + 3ω
. (7)

In the dust (pressureless) limit ω → 0, one can easily
get a scale invariant spectrum for both tensor and scalar
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perturbations, in agreement with observations. Further-
more, fitting the amplitude of the perturbations with cos-
mic microwave background (CMB) data leads to the nice
constraint that the curvature scale at the bounce should
be greater than roughly a thousand Planck lengths, en-
suring that the model is not spoiled by some discrete na-
ture of spacetime such as induced by string effects [47].

The above calculations might erroneously lead one to
believe that the model necessarily involves only one fluid,
and that it ought to be dust at all times. Clearly, this
would ruin the central idea. In fact, it is not manda-
tory that the fluid dominating the dynamics during the
bounce be dust. This is fortunate since densities and
temperature increase as the Universe contracts, even-
tually reaching the point above which particle masses
becomes negligible and the Universe becomes radiation-
dominated. This would also happen as time goes on if
an initial bunch of monopoles and antimonopoles were to
annihilate. In any case, a matter to radiation transition
is expected.

The reason why it is not necessary that dust dominate
also during the bounce is the following: the spectra of the
growing and constant modes of the Bardeen potential in
the contraction phase are obtained far from the bounce,
and they do not change in a transition, say, from mat-
ter to radiation domination (although amplitudes may
change [51]). The effect of the bounce is essentially to
mix these two coefficients (this also happens in other
frameworks [52, 53]): the constant mode in the expan-
sion phase is thus very likely (although this is a model-
dependent statement [54]) to acquire the scale invariant
piece previously built up. This happens whatever the
fluid dominating at the bounce [47]. Hence, the bounce
may be dominated by any other fluid, such as radiation.
In short, providing the perturbations enter the potential
during an almost dustlike epoch, one expects the spec-
trum to be almost scale invariant. We shall generally
assume this hypothesis, bearing in mind that it ought to
be checked explicitly afterwards [55].

Other bouncing representations have been discussed,
among which are purely classical fluids, one of which,
whose role is restricted to the bounce itself, is of nega-
tive energy [56, 57]. Such a negative energy classical fluid
might also be an effective fluid originated from interac-
tions among ordinary fluids in the early Universe [58].
Again, a scale invariant spectrum can be recovered pro-
vided the positive energy fluid dominating at the early
stage, when the Universe is large, has an equation of state
close to vanishing (dust), irrespective of the negative en-
ergy fluid which drives the bounce. Finally, and even
though they are not mandatory, classical scalar fields can
also lead to bouncing models with a scale invariant spec-
trum [48]. Hence this result is quite robust and not a
mere particular feature of a given specific model.

We now turn to our specific case which exemplifies all
of the basic requirements for the bounce paradigm we
wish to defend as a would-be “challenger” to inflation.
We would like to emphasize that, although it possesses all

of the features expected for a data-reproducing bounce,
its use merely serves the purpose of exhibiting how it can
practically be realized. As for inflation, many other so-
lutions can be found, each with its specificities; present
[1, 2] or future [59] observational constraints might, how-
ever, hopefully discriminate between the many possibili-
ties.

IV. A QUANTUM COSMOLOGICAL BOUNCE

What could be more simple for cosmology than to use
Einstein action sourced by a constant equation of state
perfect fluid in 4 dimensions? Amazingly enough, such an
overwhelmingly simple framework manages to reproduce
all of the cosmic data, as we want to emphasize here.
The theory we deal with is thus

S = −
∫

d4x
√−g

(

R

6ℓ2
Pl

+ ρ

)

, (8)

with R the Ricci scalar and ρ the energy density with
associated pressure p = ωρ, assuming ω to be a constant.

We restrict our attention, to begin with, to homoge-
neous and isotropic models and thus choose to consider
the subset of metrics of the FLRW form, namely,

ds2 = g(0)
µν dxµdxν = N2(τ)dτ2 − a2(τ)γijdx

idxj , (9)

with γij =
(

1 + 1
4Kx

2
)−2

δij the 3-space metric and a(τ)
the scale factor. Note that we do not assume flat spatial
sections, so the spatial curvature K is free, although nor-
malizable: K ∈ {0,±1}. Finally, the lapse function can
be chosen as N = a3ω , so that τ is identified with cosmic
time if the fluid is made of dust, and conformal time if it
is made of radiation.

Going on to perturbations around such a background,
we write the full metric as

ds2 =
(

g(0)
µν + δgµν

)

dxµdxν . (10)

This, in principle, provides a full set of quantum ob-
servables. Let us consider an arbitrary quantum state
ψ [gµν (x) , · · · ], where the dots stand for whatever other
degree of freedom is present. Consistency of the linear
quantum perturbation approach in this case might be
asserted, or at least addressed, provided that, for non
vanishing values of the background expectation values,
the constraint

〈ψ|δgµν |ψ〉 ≡ 〈δgµν〉ψ ≪ 〈g(0)
µν 〉ψ (11)

holds.
In the perturbed FLRW case in the longitudinal gauge,

considering scalar and tensor perturbations only3

ds2 = N2 (1 + 2Ψ)dτ2 − a2 [(1 − 2Φ) γij + hij ] dx
idxj ,

(12)

3 Both at classical and quantum levels, scalar, vector and tensor
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the constraint (11) amounts to (〈Ψ〉ψ , 〈Φ〉ψ, 〈hij〉ψ) ≪ 1.
Note that the tensor modes are traceless and divergence-
free, i.e. γijhij = 0 and hij;j = 0, with the covariant
derivative taken with respect to γij .

The crucial point concerning this expansion is that it
can be shown [60] that the Fourier modes of these per-
turbations, in the restricted case of a constant equation
of state perfect fluid, satisfy equations of motion that
are exactly those of the classical theory. In fact, at least
in the flat K = 0 situation, they can be obtained with-
out any appeal to the background field equations and
therefore can be used straightforwardly in the quantum
regime [47, 60, 61, 62]. A consistent Hamiltonian con-
straint H = H0 + δH was obtained, where H0 describes
the background geometry while δH is the Hamiltonian
constraint for the perturbations written in very simple
form and suitable for Dirac quantization.

The way to proceed is to go a step forward with respect
to the usual approach, where perturbations are quantized
and the background remains classical, and use the whole
Hamiltonian constraint above to Dirac quantize both the
background and the perturbations4, making a wavefunc-
tion separation into zeroth and second orders as

ψ = ψ(0) (a, τ) × ψ(2) [a,Ψ (x) ,Φ (x) , hij (x) , τ ] , (13)

and solve the zeroth order using a Bohmian approach [64,
65], where actual trajectories can be calculated. In the
case of a perfect fluid, the Bohmian quantum trajectory
for the scale factor reads [47]

a(τ) = a0

[

1 +

(

τ

T0

)2
]1/[3(1−ω)]

, (14)

where a0, the value of the scale factor at the bounce5, and
T0 are arbitrary constants to be eventually determined
by observations, and the time parameter τ is related to
conformal time η through

dη = [a(τ)]
3ω−1

dτ. (15)

perturbations decouple, and vectors are rapidly diluted away by
the expansion as ∝ a−2; they are not measurable today, so one
merely needs to ensure they never spoiled the linear approxima-
tion.

4 An attempt in this direction was done [63], which, however, could
not be taken much forward due to the complicated form of δH

they use.
5 The background wave function at the bounce, which is a Gaus-

sian centered at the singular point a = 0, gives the probability of
having a particular value for a0, and it is very low when evaluated
at sufficient big values of a0 that can describe the large Universe
in which we live. However, if one takes background wavefunc-
tions at the bounce consisted of Gaussians traveling away from
the singular point a = 0 with speed parameter u, this prob-
lem can be overcome and large Universes can be obtained with
reasonable probabilities [66]. This is an example of the fact that
the scales of the Universe are not uniquely determined by Planck
scale but also on parameters appearing in its quantum state

Note that this solution has no singularities and tends
to the classical solution when τ → ±∞6. Hence, once
an initial condition has been given, a(τ) can really be
understood as a mere function of time. This function is
henceforth plugged into the Fourier mode equations for
the perturbations, where it serves as a source for “particle
production” just as in the usual inflation calculations.
This mode equation reads [60]

v′′k +

(

ωk2 − a′′

a

)

vk = 0, (16)

where v reduces to the Mukhanov-Sasaki variable [51]
when the background satisfies the classical Einstein equa-
tions and a prime means derivative with respect to con-
formal time. The potential V = a′′/a, which yields the
scale of curvature of the bouncing quantum background
ℓ
C
≡ aV −1/2, has the same qualitative properties as the

potential for perturbations in inflation: it is negligible
when |η| → ∞ and has its maximum around η = 0. As
an explicit example, its form for a radiation fluid reads

Vrad =
1

T 2
0

(

1 +
η2

T 2
0

)2 , (17)

whereas the dust case reads

Vdust =
2a2

0

9T 2
0

3 + x2

(1 + x2)
4/3

, (18)

where we have set x ≡ τ/T0. In both cases, the poten-
tial is vanishing in the limit |τ | → ∞, i.e. far from the
bounce, and reaches its maximum at the bounce itself.
Hence, as in inflation, scales of physical perturbations
are much smaller than the curvature scale in the far past
(they are above the potential, i.e. k2 ≫ V ), where they
oscillate and can be set in quantum vacuum state. When
the bounce approaches, these scales get larger with re-
spect to the curvature scale and eventually enter the po-
tential (k2 ≪ V ), where they get amplified. Finally,
they become smaller again than the curvature scale in
the far future (exit from the potential), where they os-
cillate again, now amplified. Most of the time, i.e. far
from the bounce itself, the background scale factor thus
obtained is undistinguishable from the solution classical
Einstein (Friedmann) equation. As all of the effects dis-
cussed in the previous section take place in these regimes,
one can consistently assume Einstein gravity throughout
the relevant history of the Universe.

6 As all quantum trajectories, and hence the mean value of a, have
this same functional form, then using a probabilistic interpreta-
tion, like the Many Worlds interpretation [67], will presumably
give the same forthcoming results: we expect the explicit use
of a Bohmian interpretation for quantum mechanics to be of no
practical consequence.
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In this category of models, the index n
S

of Eq. (6) can
be tuned as close to unity as one wishes, but from above.
This means the spectrum is expected to be slightly blue,
as opposed to at least the simplest single field inflationary
models in which it is slightly red. The latest WMAP3
[1, 2] observations do not currently favor this prediction
but do not rule it out either, especially if n

S
is sufficiently

close to 1 [68].
The amplitude of the perturbations needs be calcu-

lated numerically. The free parameters of the background
must then be adjusted in order to fit observational data
and theoretical consistency and completeness constraints.
On the observational side, one must have a background
compatible with the large Universe we see today and per-
turbations which fit the CMB data. As for the theoretical
issues, one must impose that the gauge invariant vari-
ables always remain in the linear regime and, at least in
principle, that scales of cosmological interest were never
smaller than the Planck length in order to avoid any
trans-Planckian problem by construction.

Taking into account the constraints on the parameters
due to the normalization conditions and the compromise
that the model should describe our real Universe in fact
leads to imposing that the scale factor at the bounce must
be large in Planck units. Once this is done, there is no
trans-Planckian problem [13, 14] and no departure from
linearity.

Finally, we should like to emphasize a major, possi-
bly observable in the future, difference between inflation
and such bouncing models: the so-called consistency [51]
relation between the tensor-to-scalar ratio T/S and the
spectral index. While a typical inflation predication is a
linear relation, the bounce case, on the other hand, pre-
dicts [47] T/S ∝ √

n
S
− 1. In the case the scalar index is

very close to 1, which is the current best fit with WMAP
data [68], then T/S would be very small. Further im-
proved data, notably on Bmodes in the CMB, will pro-
vide a very stringent, and hopefully discriminating, test
as they will have the ability to provide a measure of T/S
up to values [69] of order 10−3.

V. CONCLUSIONS

The theory of linear quantum perturbations has been
successfully applied in the framework of a classical infla-
tionary background: only the perturbations were quan-
tized, leading to a sort of semiclassical approximation
to quantum gravity [4]. We have developed a Hamil-
tonian formalism where not only the perturbations but
also the background could be quantized [47, 60, 61, 62].
This led to a picture of quantum perturbations evolving
in a nonsingular bouncing background spacetime from
a vacuum state yielding spectral indices and amplitudes
that can be made to agree with observations provided
the dominant fluid in the background when the pertur-
bation scale becomes smaller than the curvature radius
is dust. The curvature scale at the bounce can always be

set larger than the Planck length, and hence the calcu-
lations are not spoiled by higher order quantum gravity
effects. Finally, such a model can be extended to include
a radiation-dominated decelerating phase before nucle-
osynthesis without corrupting its main features proper-
ties. This thus provides a simple theoretical framework
where only the basic principles of general relativity and
quantum mechanics, together with the assumption of the
existence of a dustlike fluid (dark matter?), yield what
can be argued to be a sensible model. Furthermore,
such behaviors can also be obtained in other nonquan-
tum bouncing models [48, 56, 57], indicating that these
are not particular properties of the specific models here
discussed.

We have also argued that general bounces provide dif-
ferent perspectives on old issues such as flatness and ho-
mogeneity. In fact, these problems may be alleviated or
solved using simple physical arguments which can be ap-
plied only in this context.

There are, however, many open questions left to be
addressed and some weak points. Let us list them below.
→ Baryogenesis and dark energy are not addressed,

but the latter could actually provide a means of obtaining
a redder spectrum.
→ Was radiation always there, or it was produced at

the bounce, e.g. through the evaporation of mini black
holes or monopolonium bound states? Does its presence
alter the amplitude of the perturbations, and if so, how?
→ As primordial perturbations are enhanced at the

bounce, similarly one could think that they also might
lead to large amounts of particle production. The relic
density of these particles needs be evaluated for each
model.
→ Although spatial curvature is expected to be negli-

gible during most of the evolution, particularly in the ex-
panding phase, it may be quite important at the bounce
itself and modify the amplitude of the perturbations.

All of the properties of bouncing models and their open
issues show that they seem to provide a robust alterna-
tive to inflation. A less ambitious role, although still
very important, should be that they can complement in-
flation by solving the singularity problem, ease the ho-
mogeneity problem and yield appropriate initial condi-
tions for it [52]. In any case, bounce cosmology leads
to numerous new, hopefully measurable [70], ideas and
effects, yet to be investigated. The tensor-to-scalar pre-
diction is already an example of such an effect rendering
the paradigm testable.

As a final remark, we would like to stress that, in con-
tradistinction with models in which time begins, there
is no point to asking what the probability is of the ap-
pearance of some particular eternal model out of nothing.
Contrary to the usual perspectives, one can as well as-
sume existence to be conceptually prior to nonexistence,
i.e. existence itself may not be deserving explanation.
This is the idea underlying our category of models: the
Universe always existed and its “appearance” is thus a
non question.
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Linde, Jérôme Martin and Slava Mukhanov. We also
would like to thank CAPES (Brazil) and COFECUB
(France) for partial financial support.

[1] D. N. Spergel, R. Bean, O. Doré, M. R. Nolta, C. L.
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