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Abstract

We study Einstein gravity minimally coupled to a scalar field in a static, spherically sym-
metric space-time in four dimensions. Black hole solutions are shown to exist for a phantom
scalar field whose kinetic energy is negative. These “scalar black holes” have an infinite hori-
zon area and zero temperature TH and are termed “cold black holes” (CBHs). The relevant
explicit solutions are well-known in the massless case (the so-called anti-Fisher solution), and
we have found a particular example of a CBH with a nonzero potential V (φ). All CBHs
with V (φ) 6≡ 0 are shown to behave near the horizon quite similarly to those with a massless
field. The above solutions can be converted by a conformal transformation to Jordan frames
of a general class of scalar-tensor theories of gravity, but CBH horizons in one frame are in
many cases converted to singularities in the other, which gives rise to a new type of conformal
continuation.
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1 Introduction

The conventional idea of a black hole (BH) implies a space-time singularity hidden beyond an event
horizon [1], a hypersurface which separates an external region, containing spatial infinity, from an
internal region, invisible to an external observer. The well-known BH solutions of general relativity
(Schwarzschild, Reissner-Nordström, Kerr, Kerr-Newman), have been generalized in many contexts,
such as the presence of scalar fields of various nature, non-linear gravity theories, scalar-tensor
theories etc. (see, e.g., [2] and references therein). Their different properties rise the question of an
extension of the black hole notion itself. An example of “exotic” black holes are the so-called “cold
black holes”, obtained in scalar-tensor theories (STT) in general and in the Brans-Dicke theory in
particular [3–5].

The static, spherically symmetric solutions of the Brans-Dicke theory reveal a large class of
objects with black hole properties. Not all of them exhibit a singularity beyond a horizon. However,
the horizon surface has in all such cases an infinite area. Moreover, all such horizons have zero surface
gravity and hence zero Hawking temperature. It is for this reason that they have been named “cold
black holes” (CBHs).

As other STT, the Brans-Dicke theory can be re-defined using a conformal mapping to the so-
called Einstein frame, or picture, in which the nonminimal coupling between the scalar field and
the curvature, which is an essential feature of an STT, is ruled out, resulting in Einstein gravity
with a minimally coupled scalar field. The scalar field energy is positive (its kinetic term has its
usual sign) if the Brans-Dicke coupling constant ω > −3/2, and is negative if ω < −3/2. In the
latter case, the kinetic term has a “wrong” sign, and the theory is called anomalous, or phantom.
Such kind of theories have recently become quite fashionable for both theoretical and observational
reasons. The theoretical reasons are connected with the ghost condensation and tachyonic fields
that result from string theories [6,7]. From the observational viewpoint, recent analysis of the type
Ia supernova and CMB data indicates that perhaps the best fit is given by phantom fields [8–11],
of which a scalar field with the “wrong” sign of the kinetic term is the simplest example.

In the present work, we show that, as opposed to what has been believed [12], this Einstein-scalar
field system, with a massless scalar field minimally coupled to gravity, admits black hole solutions,
though this happens for a phantom scalar field only. These “scalar” black holes also have an infinite
horizon area and zero temperature. Such solutions can be interpreted as Einstein-frame solutions
of any STT and transformed to the Jordan frame by the inverse conformal mapping.

However, an interesting aspect of this procedure is the non-existence of a one-to-one correspon-
dence between black holes in the Einstein and Jordan pictures, as we shall see using the Brans-Dicke
theory as an example. The reason is that, generically, the above conformal mapping (direct or in-
verse) converts a CBH horizon to a singularity. Such a situation is an example of a conformal
continuation (CC). This phenomenon was treated in some detail in the framework of STT and
f(R) theories of gravity in Refs. [13–16]. The point is that a conformal mapping between two
manifolds M1 and M2 comprises a one-to-one correspondence between the respective points and
preserves the causal structure only if the conformal factor is everywhere smooth and finite. If,
however, the conformal factor somewhere becomes infinite or zero, the mapping, in general, links
only a portion of M1 to a portion of M2 . In some cases, a singularity in M1 may be mapped into a
regular surface in M2 , then M2 continues beyond this surface and may have more complex global
properties as compared to M1 . The new region may, in particular, contain a singularity, a horizon
or another spatial infinity.

From a more general point of view, the possible existence of CCs may mean that the observed
Universe is only a region of a real, greater Universe which should be described in another, more
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fundamental conformal frame than the one related to our measurement instruments. Detailed
discussions of the physical meaning and role of different conformal frames in the description of the
Universe may be found in Refs. [17, 18].

We shall find in this study that the appearance of CCs in the context of static, spherically
symmetric solutions of STT is closely related to the occurrence of a peculiar type of space-time
singularities, where all curvature invariants remain finite but the analyticity of the metric is lost,
which means that the manifold terminates. It is this kind of singularities that are in many cases
removed by conformal mappings, leading to a CC.

We here restrict ourselves to the search and discussion of CBH solutions in the Einstein-scalar
field system. A more general analysis of the same system with nonzero potentials V (φ) (but
without discussing infinite-area horizons) has been performed in Ref. [19], where it was shown that
phantom scalar fields with appropriate potentials can form as many as sixteen types of regular static,
spherically symmetric self-gravitating configurations, including regular black holes with nonzero
temperature.

The paper is organized as follows. In the next section, we reproduce the basic equations of a
general STT for static, spherically symmetric metrics. Sec. 3 describes the basic properties of the
static, spherically symmetric solutions to the Einstein-massless scalar field system, which simul-
taneously represent the Einstein-frame solutions to a general class of STT with zero scalar field
potential. We single out a particular discrete family of solutions corresponding to CBHs. In Sec. 4,
we compare the STT solutions in the Einstein and Jordan conformal frames, using as an example
the Brans-Dicke theory, and pay special attention to CBH solutions in both frames. We discuss
a new type of conformal continuations that appears in this context and make some remarks on
the thermodynamical properties of CBHs, e.g., concerning the conformal invariance of the Hawk-
ing temperature. Sec. 5 is devoted to scalar-vacuum configurations with nonzero potentials V (φ).
We show that the nature of CBH horizons is basically the same for both zero and nonzero V (φ)
and present a specific example of a CBH with V (φ) 6≡ 0. In Sec. 5, we formulate our conclusions,
and, finally, in the Appendix we present some general relations for static, spherically symmetric
metrics and show, in particular, that horizons with an infinite area always possess zero Hawking
temperature.

2 Scalar-tensor theory: basic equations

In the general (Bergmann-Wagoner-Nordtvedt) 4-dimensional STT, the action in the pseudo-
Riemannian manifold MJ [g] has the form

SSTT =

∫

d4x
√

g[f(ϕ)R + h(ϕ)(∂ϕ)2 − 2U(ϕ) + Lm], (1)

where gµν is the metric, R = R[g] is the scalar curvature, g = | det gµν | , f , h and U are functions
of the real scalar field ϕ , (∂ϕ)2 = gµν∂µϕ∂νϕ , and Lm is the matter Lagrangian. The manifold
MJ [g] with the metric gµν comprises the so-called Jordan conformal frame.

The standard transition to the Einstein frame ME [g] [20],

gµν = |f(ϕ)|−1gµν , (2)

dφ

dϕ
=

√

|l(ϕ)|
f(ϕ)

, l(ϕ) = fh +
3

2

( df

dϕ

)2

, (3)

removes the nonminimal scalar-tensor coupling expressed in a ϕ-dependent coefficient before R.
Putting Lm = 0 (vacuum), one can write the action (1) in terms of the new metric gµν and the
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new scalar field φ as follows (up to a boundary term):

SE =

∫

d4x
√

g
{

(sign f)[R + (sign l)(∂φ)2] − 2V (φ)
}

, (4)

where the determinant g , the scalar curvature R and (∂φ)2 are calculated using gµν and

V (φ) = |f |−2 U(ϕ). (5)

Note that ε := sign l = −1 corresponds to the so-called anomalous STT, with a wrong sign
of scalar field kinetic energy in the Einstein frame, while sign f = −1 means that the effective
gravitational constant in the Jordan frame (which can be defined as 1/f up to a constant factor)
is negative. So the normal choice of signs is sign l = sign f = 1. Nevertheless, theories admitting
ε = −1 and/or f < 0 possess many features of interest, worth studying. With f > 0, the action
(4) describes Einstein gravity minimally coupled to a self-interacting scalar field, which is called
normal for ε = +1 and phantom for ε = −1. The field equations are

Rµν = εφ;µφ;ν − gµνV (φ),

∇µ∇µφ = −εdV/dφ. (6)

Consider the general static, spherically symmetric metric in ME

ds2 = e2γdt2 − e2αdu2 − e2βdΩ2, (7)

where γ = γ(u), α = α(u) and β = β(u), u is an arbitrary radial coordinate. Let us assume f > 0
but admit ε = ±1. The field equations are

γ′′ + γ′(γ′ − α′ + 2β ′) = − e2αV (φ), (8)

γ′′ + 2β ′′ + γ′2 + 2β ′2 − α′(γ′ + 2β ′) = −εφ′2 − e2αV (φ), (9)

β ′′ + β ′(γ′ − α′ + 2β ′) − e2α−2β = − e2αV (φ), (10)

( eγ−α+2βφ′)′ = ε eγ+2β+αdV/dφ, (11)

where the prime denotes d/du . Eqs. (8)–(11) can be simplified by making a special choice of the
radial coordinate u . Thus, choosing the quasiglobal coordinate u = ρ defined by the condition
α + γ = 0 (it is particularly convenient for considering metrics with Killing horizons) and denoting

e2γ = e−2α ≡ A(ρ), eβ = r(ρ), (12)

it is straightforward to bring Eqs. (8)–(11) to the form

(A r2 φ′)′ = εr2 Vφ, (13)

(A′ r2)′ = −2V r2, (14)

2r′′/r = −ε φ′2, (15)

(r2)′′ A − A′′ r2 = 2. (16)

Eq. (16) is once integrated giving

(A/r2)′ = 2(ρ0 − ρ)/r4, ρ0 = const. (17)

Solutions to these equations with V (φ) ≡ 0 are well known [21–23]. For V (φ) 6≡ 0, a general
analysis has been performed in [19], establishing the existence of regular configurations including
BHs which can contain one or two horizons with finite area. Complete analytical solutions can only
be found for special choices of V (φ).

Given a solution to Eqs. (8)–(11) or (13)–(16), the corresponding solution in the original, Jordan
picture is easily obtained using the inverse transformation (2).
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3 Fisher and anti-Fisher solutions

Let us reproduce the well-known solutions to Eqs. (8)–(11) for zero potential, V ≡ 0. In case
ε = +1 the solution was found by I.Z. Fisher in 1947 [21] and afterwards repeatedly re-discovered.
For ε = −1 the corresponding solution was first obtained, to our knowledge, by Bergmann and
Leipnik [22]. However, these authors used the curvature coordinates [i.e., the condition u ≡ r in
terms of the metric (7)] which are not well suited for the problem, and this was maybe a reason for
the lack of a clear interpretation of the solutions.

3.1 General features

The solution can be written jointly for ε = ±1 if one uses the harmonic coordinate u in the metric
(7), corresponding to the coordinate condition α(u) = γ(u) + 2β(u) [23]:

ds2 = e−2mudt2 − e2mu

s2(k, u)

[

du2

s2(k, u)
+ dΩ2

]

, φ = Cu, (18)

where the integration constants m (the Schwarzschild mass), C (the scalar charge) and k are
related by

2k2 sign k = 2m2 + εC2, (19)

and the function s(k, u) is defined as follows:

s(k, u) =







k−1 sinh ku, k > 0
u, k = 0
k−1 sin ku, k < 0.

(20)

The coordinate u is defined in the whole range u > 0 for k ≥ 0 and in the range 0 < u < π/|k| for
k < 0. The value u = 0 corresponds to flat spatial infinity, so that at small u the spherical radius
is r(u) ≈ 1/u , and the metric is approximately Schwarzschild, with gtt ≈ 1 − 2m/r .

In case k > 0, it is helpful to pass over to the quasiglobal coordinate ρ by the transformation

e−2ku = 1 − 2k/ρ ≡ P (ρ), (21)

and the solution takes the form

ds2 = P adt2 − P−adρ2 − P 1−aρ2dΩ2, φ = − C

2k
ln P (ρ), (22)

with the constants related by

a = m/k, a2 = 1 − εC2/(2k2). (23)

Fisher’s solution [21] corresponds to ε = +1, hence according to (19), it consists of a single
branch k > 0 and, in (22), |a| < 1. It is defined in the range ρ > 2k , while ρ = 2k is a naked
central (r = 0) singularity which is attractive for m > 0 and repulsive for m < 0. The Schwarzschild
solution is restored by making C = 0, a = 1 for m > 0 and by C = 0, a = −1 for m < 0.

The solution for ε = −1 (that is, for a phantom scalar field) may be conveniently termed the
anti-Fisher solution, by analogy with de Sitter and anti-de Sitter. Its properties are more diverse
and interesting. According to three variants of the function (20), this solution splits into three
branches with the following main properties.
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(a) k > 0: the solution again has the form (22), but now |a| > 1. For m < 0, that is, a < −1, we
have, just as in the Fisher solution, a repulsive central singularity at ρ = 2k .

The situation is, however, drastically different for a > 1. Indeed, the spherical radius r then
has a finite minimum at ρ = ρth = (a + 1)k , corresponding to a throat of the size

r(ρth) = rth = k(a + 1)(a+1)/2(a − 1)(1−a)/2, (24)

and tends to infinity as ρ → 2k . Moreover, for a = 2, 3, . . . the metric exhibits a horizon of order
a at ρ = 2k and admits a continuations to smaller ρ. A peculiarity of such horizons is their infinite
area. Such horizons have been termed type B [4, 5] horizons, to distinguish them from ordinary,
“type A” horizons of finite area. The whole asymptotically flat configurations with type B horizons
were named cold black holes (CBHs) since all of them have zero Hawking temperature.

Furthermore, all Kretschmann scalar constituents Ki (see Eqs. (A.4) in the Appendix) behave
as P a−2 as ρ → 2k and P → 0. An exception is the value a = 1, in which case C = 0, φ ≡ 0, and
the Schwarzschild solution is reproduced. Hence, at ρ = 2k the metric has a curvature singularity
if a < 2 (except for a = 1), a finite curvature if a = 1 and a = 2 and zero curvature if a > 2.

For non-integer a > 2, the qualitative behavior of the metric as ρ → 2k is the same as near a
type B horizon, but a continuation beyond it is impossible due to non-analyticity of the function
P a(ρ) at ρ = 2k . Since geodesics terminate there at a finite value of the affine parameter, this
is a space-time singularity (a singular horizon as it is named in the Appendix) even though the
curvature invariants tend there to zero.

(b) k = 0: the solution is defined in the range u ∈ R+ and is rewritten in terms of the quasiglobal
coordinate ρ = 1/u as follows:

ds2 = e−2m/ρdt2 − e2m/ρ[dρ2 + ρ2dΩ2], φ = C/ρ. (25)

As before, ρ = ∞ is a flat infinity, while at the other extreme, ρ → 0, the behavior is different for
positive and negative mass. Thus, for m < 0, ρ = 0 is a singular center (r = 0 and all Ki are
infinite). On the contrary, for m > 0, r → ∞ and all Ki → 0 as ρ → 0. This is again a singular
horizon: despite the vanishing curvature, the non-analyticity of the metric in terms of ρ makes its
continuation impossible.

(c) k < 0: the solution describes a wormhole with two flat asymptotics at u = 0 and u = π/|k| .
The metric has the form

ds2 = e−2mudt2 − k2 e2mu

sin2(ku)

[ k2 du2

sin2(ku)
+ dΩ2

]

= e−2mudt2 − e2mu[dρ2 − (k2 + ρ2)dΩ2], (26)

where u is expressed in terms of the quasiglobal coordinate ρ, defined on the whole real axis R,
by |k|u = cot−1(ρ/|k|). If m > 0, the wormhole is attractive for ambient test matter at the first
asymptotic (ρ → ∞) and repulsive at the second one (ρ → −∞), and vice versa in case m < 0.
For m = 0 one obtains the simplest possible wormhole solution, called the Ellis wormhole, although
Ellis [24] actually discussed these wormhole solutions with any m.

The wormhole throat occurs at ρ = m and has the size

rth = (m2 + k2)1/2 exp
(m

k
cot−1 m

k

)

. (27)
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3.2 Cold black holes in the anti-Fisher solution

Among different branches of the anti-Fisher solution, of greatest interest for us is the case of CBHs.
Let us briefly discuss their structure and properties.

For odd a, the principal geometric and causal properties, including the Carter-Penrose diagram,
coincide with those of the Schwarzschild metric. Thus, at ρ < 2k , ρ is a temporal coordinate, t
spatial, the space-time is homogeneous and anisotropic, corresponding to the Kantowski-Sachs type
of anisotropic cosmologies. The singularity at ρ = 0 (r = 0) is spacelike (cosmological) and is
reached by all timelike geodesics in a finite time interval after crossing the horizon.

For even a, the Penrose diagram is the same as that of the extreme Reissner-Nordström space-
time; however, the physical meaning of the regions where ρ < 2k is quite different. Since g22 and
g33 change their sign at the horizon, the metric at ρ < 2k has the signature (− + + +) instead
of (+ − − −) at large ρ. The Lorentzian nature of space-time is still preserved, and one can
verify that all geodesics are continued smoothly from one region to the other (the geodesic equations
depend only on the Christoffel symbols and are invariant under the anti-isometry gµν → −gµν ).
The time coordinate in that region is ρ since gρρ < 0 while the other diagonal components of gµν

are positive. Thus, just as for odd a, we have there a Kantowski-Sachs type cosmology with a
spacelike singularity at ρ = 0 (r = 0). The direction of the arrow of time can be arbitrary there
since timelike geodesics that penetrate from the static region become there spacelike (one cannot
say for them where is the past and where is the future), and can even avoid the singularity.

The properties of the scalar field are not less exotic. According to (22), φ → ∞ as ρ → 2k ;
this, however, does not contradict the regularity of the surface ρ = 2k for a ≥ 2 since the energy
density

T 0
0 = −1

2
Aφ′2 = −C2

2

(ρ − 2k)a−2

ρa+2
, (28)

as well as the other components of T ν
µ , are finite there (recall that for a < 2 the curvature invariants

also diverge, together with T ν
µ ). Thus the infinite value of φ does not prevent the continuation of

the space-time manifold to smaller ρ, where the solution is valid with φ = −(C ln |P |)/(2k). On
the other hand, the total scalar field energy, calculated as the conserved quantity corresponding to
the timelike Killing vector, turns out to be infinite in the static region independently of a:

E =

∫

T 0
0

√
gd3x = −2πC2

∫

dρ

ρ(ρ − 2k)
, (29)

and the integral logarithmically diverges at ρ = 2k . The divergence is related to the infinite spatial
volume: the integral

∫
√

3gd3x diverges near ρ = 2k even stronger than (29).

4 Comparison with the Brans-Dicke theory. Conformal

continuations

4.1 Jordan picture in the Brans-Dicke theory

The (anti-)Fisher solution, being a solution of general relativity with a massless, minimally coupled
scalar field, is simultaneously a solution of an arbitrary STT in its Einstein picture. Let us discuss
the corresponding Jordan picture, for certainty, in the context of the simplest and most well-known
STT, namely, the Brans-Dicke theory. The latter corresponds to the choice

f(ϕ) = ϕ, h(ϕ) = ω/ϕ (30)
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in (1), ω being the Brans-Dicke coupling constant; we also take the massless version of the theory,
U(ϕ) ≡ 0, to deal with counterparts of the (anti-)Fisher solution.

Since we are only interested in CBHs, let us restrict ourselves to solutions with k > 0, given by
Eq. (22) with (21). Then, the Jordan-frame solution of the Brans-Dicke theory may be written in
the form

ds2
J = P−ξ ds2

E = P a−ξdt2 − P−a−ξdρ2 − P 1−ξ−aρ2dΩ2, (31)

ϕ = exp [φ/
√

|ω + 3/2|] = P ξ, (32)

where the parameter ξ is related to a and ω by

(3 + 2ω)ξ2 = 1 − a2. (33)

Conditions for finding black holes in this solution have been discussed in Refs. [4, 5]. Let us
briefly recall them.

As in (22), a horizon in the metric (31) can occur at ρ = 2k if a > 0. However, it has
been shown [4, 5] that CBH solutions exist only when the parameters a and ξ obey the following
“quantization” conditions:

a =
m + 1

m − n
, ξ =

m − n − 1

m − n
, (34)

where m and n are positive integers satisfying the inequalities

m − 2 ≥ n ≥ 0. (35)

The coupling constant ω should also belong to a discrete set of values,

2ω + 3 = −2m(n + 1) − n2 + 1

(m − n − 1)2
< 0. (36)

Since, for the Brans-Dicke theory, l(ϕ) = ω + 3/2 and ε = sign l (see (2)), we find that, just as
in the Einstein picture, CBHs can only exist with a phantom scalar. The same is true for similar
configurations with a nonzero electric charge [25], despite a greater number of classes of solutions.

However, the CBH existence conditions are different in the Einstein and Jordan pictures, and the
global structures of the complete space-times, continued beyond the horizons, are also different [4,5].
In particular, as follows from (A.4), all Ki turn to infinity as ρ → 0 in the solution (22). In
other words, there is always a curvature singularity in the internal region of Einstein-frame CBHs
(or, which is the same, CBHs with a minimally coupled massless phantom scalar field in general
relativity). Meanwhile, many of Brans-Dicke Jordan-frame CBHs are nonsingular, and some of
them have another flat asymptotic region beyond the horizon [4, 5].

4.2 Conformal continuations–III

By (34), the Jordan-frame CBHs form a discrete family with two integer parameters m and n
subject to (35), while the family of Einstein-frame CBHs depends on the single integer parameter
a ≥ 2. The conformal mapping (2) that connects the two frames in some cases converts black holes
into black holes, namely, when m + 1 is a multiple of a; according to (34), the parameter n is then
expressed as n = m − (m + 1)/a.

In general, however, the conformal mapping (2) converts CBHs in ME into configurations with
a singular horizon or a curvature singularity in MJ and vice versa. Let us give some examples:
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1. In case n = 0, m = 2, 3, . . ., from (34) we obtain a = (m + 1)/m, in which case the metric
(22) in ME has a curvature singularity at ρ = 2k .

2. Given m = 4, n = 2, we have a = 5/2, a singular horizon at ρ = 2k in ME .

3. Given a = 2, i.e., a CBH in ME , and m = 2, 4, 6, . . ., we obtain half-integer n, hence a
singular horizon at ρ = 2k in MJ .

In all these cases and similar ones, the mapping (2) establishes a one-to-one correspondence
between points of ME and MJ only in the region ρ > 2k , which coincides with the whole manifold
ME but only a portion of MJ in examples 1 and 2, and vice versa in example 3. By definition [14],
we are thus dealing with conformal continuations (CCs).

A conformal mapping F(Ω) : M1 7→ M2 between two (pseudo-)Riemannian manifolds M1 and
M2 , parametrized by the same coordinates xµ , is a point-to-point mapping such that the respective
metrics are related by g

(2)
µν = Ω2(xµ)g

(1)
µν , where the function Ω2(xµ) (the conformal factor) is

assumed to be smooth in a certain range of the arithmetic space of the coordinates {xµ} . Thus,
in general, F(Ω) connects only some regions of M1 and M2 rather than the whole manifolds, and
which particular regions, depends on the analytic properties of the metrics and the conformal factor
Ω2 .

Among different opportunities, a conformal continuation (CC) from M1 to M2 [14] is distin-
guished by the following circumstance: it maps a singular surface in M1 (so that M1 terminates
there) to a regular surface Strans ∈ M2 , so that M2 continues beyond Strans , to a region where the
mapping F(Ω) is not defined.

In normal STT, with ε = +1, the existence of CCs from ME to MJ in static, spherically
symmetric solutions was found to be a generic phenomenon if the function f(ϕ) in (1) has a simple
zero [14]. It was also concluded that the continued manifolds have generically the structure of
wormholes. Explicit examples of CCs are known in the case of nonminimally coupled massless
scalar fields in general relativity, treated as STT (1) with f(ϕ) = 1 − ξϕ2 (ξ = const > 0),
h(ϕ) = 1, U(ϕ) ≡ 0 [14, 23, 26].

Ref. [14] classified CCs by the nature of the transition surfaces Strans :

CC-I — Strans is an ordinary regular sphere in M2 ,

CC-II — Strans is a Killing horizon of finite area in M2 .

In our case, we have a third type of conformal continuation:

CC-III — Strans is a Killing horizon of infinite area (type B) in M2 .

One could also classify CCs by the types of singularities in M1 which are removed by the
appropriate conformal mapping. Thus, in all cases considered in [14], the preimage of Strans ∈
M2 = MJ in the manifold M1 = ME was an attracting centre, being a curvature singularity like
the one in Fisher’s solution. Unlike that, in example 1, the surface ρ = 2k is an attracting curvature
singularity of infinite radius r while in example 2 it is a singular horizon, i.e., a sphere of infinite
radius and zero curvature, where the analyticity of the metric is lost. The same is true in example
3, but there a singular horizon occurs in MJ and a regular type B horizon in ME .

To summarize, in the present study we have found CCs of a new type, which, unlike those
described in Ref. [14], (i) exist in anomalous (phantom) STT only, (ii) lead to type B (infinite-area)
horizons as transition surfaces Strans , (iii) have other types of singularities as preimages of Strans ,
and, finally, (iv) can occur not only from ME to MJ , as in examples 1 and 2, but also from MJ to
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ME , as in example 3. The latter means that a singularity in the Jordan picture corresponds to a
regular surface in Einstein’s.

In the case of odd m in example 3 and other similar cases, there are CBHs in both pictures,
the mapping (2) transfers a horizon to a horizon, but the global structures are different in different
pictures, and there is a complicated system of one-to-one correspondences between different regions
of ME and MJ , depending on the particular values of a, m and n. This issue may be a subject of
a separate study, which is beyond our scope here.

4.3 On thermodynamics of scalar black holes

The Hawking temperature of a black hole horizon is TH = (2πkB)−1κ, where kB is Boltzmann’s
constant while the surface gravity κ of the horizon is given by the expression [27]

κ =
1

2

g′
00

√

|g00g11|

∣

∣

∣

∣

u=uh

=
1

2
A′(ρh), (37)

where u = uh is the value of an arbitrary radial coordinate u at the horizon, and after the second
equality sign we give the corresponding expression in terms of the quasiglobal coordinate ρ (see the
Appendix), ρh being its value at the horizon.

The problem of conformal invariance of the Hawking temperature has been addressed in Ref. [28].
In this work, it has been stated that TH is the same for black holes obtained from conformally related
theories under the conditions of staticity and asymptotic flatness.

Indeed, after a conformal transformation gµν = Ω2g̃µν , where Ω is a function of ρ, the surface
gravity κ̃ at the surface ρ = ρh , defined in the new manifold with the metric g̃µν , is

κ̃ = κ + A(ρh)
Ω′

Ω
(ρh). (38)

We have κ̃ = κ (i.e., invariance of Hawking’s temperature under conformal mappings) if the second
term in the r.h.s. of (38) is zero. And it is really the case since A(ρh) = 0 if the conformal factor
Ω is regular at the horizon, i.e., if the conformal transformation is well defined on it.

However, for the presently discussed mapping between the anti-Fisher and Brans-Dicke CBHs,
the question of invariance of TH is either meaningless or trivial. Indeed, generically, as we have
seen above, this transformation does not map a black hole to a black hole, and the invariance issue
is meaningless. On the other hand, there is a general law saying that horizons of infinite area are
always perfectly “cold”, i.e., have zero temperature. Hence, in the cases where such black holes are
in conformal correspondence, the invariance properties of their temperature become trivial,

Finally, the infinite horizon area of the CBHs may suggest, according to the well-known relations
of black hole thermodynamics [27], that they should have infinite entropy. However, after a closer
investigation, it has been argued that such black holes must in fact have zero entropy [29], which
seems to be in a better agreement with a zero temperature state. This means that, for such objects,
the law that relates the black hole entropy with its horizon area, is violated.

5 Cold black holes with V 6≡ 0

5.1 Near-horizon behaviour of the solutions

So far we have been discussing CBHs with massless scalar fields. However, CBH solution with
self-interacting scalar fields V (φ) 6≡ 0) also exist, though under certain restrictions.
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Indeed, consider Eqs. (13)–(17), let a horizon of infinite area (r → ∞) be located at ρ = 0, and
let us approximate the metric functions A(ρ) and r(ρ) at small ρ by

A ∼ ρa, r2 ∼ ρ−b, (39)

where a = 2, 3, . . . and b > 0. Substitution into (15) results in ε = −1 (the field is necessarily
phantom) and φ′ ∼ ρ−1 , hence |φ| ∼ − log ρ → ∞ as ρ → 0.

Furthermore, from (17) one finds

(a + b)ρa+b−1 ≈ const · (ρ0ρ
2b − ρ2b+1). (40)

It follows that there can be two families of solutions,

I : ρ0 6= 0, b = a − 1, (41)

II : ρ0 = 0, b = a − 2. (42)

Substitution into (14) and (13) shows that, for family I, both V and dV/dφ behave as o(ρa−2)
(where a ≥ 2), while for family II both V and dV/dφ are of the order of ρa−2 , where a ≥ 3 (the
value a = 2 is ruled out by b > 0, see (42)). This second family is, however, of little interest from
the CBH viewpoint: an analysis of signs in Eq. (17) shows that such a horizon is only accessible
from a T region, where A(ρ) < 0, and cannot be a black hole horizon.

In both families, |φ| → ∞ at the horizon, and, since at the same time dV/dφ ∼ V → 0, the
potential behaves at large |φ| as V ∼ e−c|φ| , c = const > 0. We conclude, in particular, that only
with such potentials CBH solutions may exist.

One can verify that in all CBH solutions (they belong to family I) all functions behave near the
horizon as in the anti-Fisher solution (22) with a = 2, 3, . . . (for comparison, in (22) one should
move the origin of the ρ coordinate to the horizon, i.e., replace ρ 7→ ρ+2k ). In fact, the anti-Fisher
solution is a special case belonging to family I. The potential energy density V at small ρ is much
smaller than the kinetic energy density −Aφ′2/2, so that the system behaviour near the horizon is
dominated by the kinetic term.

(Family II, on the contrary, can only exist in systems with nonzero V (φ), and in this case the
potential and kinetic energy densities are of the same order near the horizon.)

The anti-Fisher asymptotic behavior at small ρ indicates that these solutions may be converted
to the Jordan frame of any STT in the same manner as the anti-Fisher solution. Moreover, the small-
ρ behavior of such Jordan-frame solutions in a given STT will be, in the main order of magnitude,
the same as in the massless case, V ≡ 0. Therefore, one can assert that their thermodynamic
properties and the nature of conformal continuations should also be the same as in the massless
case.

5.2 Example

To obtain an example of an asymptotically flat CBH solution with V 6≡ 0, let us use the inverse
problem method (see, e.g., [19, 30]) and suppose

r(ρ) =
ρ2

√

ρ2 − b2
, b = const. (43)

Substituting it into Eq. (17) and imposing ρ0 = 35 b/16, we obtain

A(ρ) =
(ρ − b)2(24ρ2 + 37ρb + 15b2)

24ρ3(ρ + b)
. (44)
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It is easy to verify that this expression represents an asymptotically flat CBH, with A = 0 and
A′ = 0 at the horizon, ρ = b. The potential is given, from (14), by

V =
b3(ρ − b)(7ρ + 4b)

12ρ4(ρ + b)3
. (45)

The potential is zero at the horizon and at infinity. Using Eq. (15), we find an explicit expression
for the scalar field:

φ =

√

3

2
log

x2 − 1

5 + x2 + 2
√

3(x2 + 2)
+ 2 log

√
2 +

√
x2 + 2

x
, x :=

ρ

b
. (46)

The scalar field tends to a constant at infinity and diverges logarithmically at the horizon. However,
as in the massless case, the scalar field energy density is finite at the horizon. The behavior of the
potential in terms of the scalar field φ can only be obtained implicitly due to a complicated relation
between φ and the radial coordinate ρ.

This solution is an explicit example of a CBH with a self-interacting scalar field. The behavior
of all functions confirms our general consideration in the first part of this section.

6 Conclusions

Scalar-tensor theories, which are in general characterized by a non-minimal coupling between gravity
and the scalar field, predict the existence of exotic black holes, which have an infinite horizon area
and zero Hawking temperature. A well-known conformal mapping transforms any scalar-tensor
theory from a large class (the Bergmann-Wagoner class) into general relativity minimally coupled
to a massless scalar field. It had been thought for a long time that no black hole solution exists in
this Einstein-scalar field system, at least for a massless scalar field in vacuum. We have shown here
that this is not true, and we exhibit a new class of black hole solutions. However, for their existence
the sign of the kinetic term of the scalar field must be reversed, leading to a negative-energy field. As
in the scalar-tensor case, the “scalar” black holes have infinite horizon areas and zero temperature.
However, the conditions in the parameter space for the existence of such black holes are different in
Jordan’s (non-minimal coupling) and Einstein’s (minimal coupling) conformal frames, which leads
to a new type of conformal continuations in the Einstein-frame and Jordan-frame manifolds.

The Einstein frame is common to the whole class (1) of scalar-tensor theories, whereas Jordan
frames change from theory to theory together with the nonminimal coupling functions. This means
that the discrete “quantization” conditions for the solution parameters, providing the existence of
cold black holes, will be different in similar solutions of different theories.

The absence of continuations through certain surfaces of finite (or even zero) curvature is a
peculiar property of many scalar-tensor solutions, indicating a special type of space-time singularities
related to violation of analyticity, which actually means the divergence of some invariants of the
metric tensor with derivatives of orders higher than two. Physical properties of such singularities and
their possible regularization by taking into account more general solutions or quantum corrections
may be of considerable interest.

The Hawking temperature discussed here is expressed in terms of the surface gravity κ. In
a more rigorous treatement, quantum fields around such black holes must be considered. This
is a delicate point, since all black holes studied in this work have zero temperature, which is, in
principle, a violation of the third law of thermodynamics. For cold black holes in the Jordan frame
there are anomalies in the definition of quantum fields, connected with normalization of quantum
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modes [31]. However, no complete study in this sense has been performed so far, mainly due to
technical difficulties. It would be of interest to consider this problem in the context of the “scalar”
black holes presented in this work.

Appendix

Cold black holes (CBHs) actually extend the notion of black holes to infinite horizon areas. So let
us specify what we understand by a “black hole solution”. For our comparatively simple case of
static, spherically symmetric space-times, leaving aside more general and more rigorous definitions
of horizons and black holes (see, e.g., [27]), we can rely on the following working definition. A black
hole is a space-time containing (i) a static region which may be regarded external (e.g., contains a
flat asymptotic), (ii) another region invisible for an observer at rest residing in the static region,
and (iii) a Killing horizon of nonzero area that separates the two regions and admits an analytical
extension of the metric from one region to another. This definition certainly implies that the horizon
is regular, since otherwise it would be a singularity, belonging to the boundary of the space-time
manifold, across which there cannot be a meaningful continuation.

We are dealing with the general metric (7),

ds2 = e2γ(u)dt2 − e2α(u)du2 − e2β(u)dΩ2, (A.1)

or in terms of the “quasiglobal” coordinate ρ under the condition α + γ = 0, with the notations
e2γ = e2α = A(ρ) and eβ = r(ρ),

ds2 = A(ρ)dt2 − dρ2

A(ρ)
− r2(ρ)dΩ2. (A.2)

A black hole horizon may be represented by a sphere u = uh , or ρ = ρh , at which g00 = e2γ =
A = 0 and at which all algebraic curvature invariants are finite. To check the latter, it is sufficient
to consider the behaviour of the Kretschmann invariant, given by

K = RµνλγRµνλγ = 4K2
1 + 8K2

2 + 8K2
3 + 4K2

4 , (A.3)

where

K1 = R01
01 = − e−α−γ

(

γ̇ eγ−α
)

˙= −1

2
A′′;

K2 = R02
02 = R03

03 = − e−2α β̇ γ̇ = −1

2

A′r′

r
;

K3 = R12
12 = R13

13 = − e−α−β
(

β̇ eβ−α
)

˙= A
r′′

r
+

1

2

A′r′

r
;

K4 = R23
23 = e−2β − e−2αβ̇2 =

1

r2
(Ar′2 − 1), (A.4)

where dots denote d/du and primes d/dρ.
A Killing horizon (simply a horizon for short) ρ = ρh admits a continuation to other space-time

regions if and only if the function A(ρ) behaves near it as (ρ − ρh)
a , a ∈ N, and a is then called

the order of the horizon. This restriction is related to a distinguished role of the ρ coordinate:
near ρ = ρh it varies (up to a positive constant factor) precisely as the manifestly well-behaved
Kruskal-like coordinates used for an analytic continuation of the metric [4, 5]. Hence, using this
coordinate (which was therefore termed quasiglobal [14]), one can “cross the horizons” preserving
the formally static expression for the metric. It then also follows that ρh is always finite.
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In cases when A(ρ) ∼ (ρ−ρh)
a and a is a fractional number, the space-time cannot be continued

due to non-analyticity of the metric in terms of well-behaved coordinates. The geodesics also cannot
be continued beyond the corresponding values of their canonical parameters. The sphere ρ = ρh

is thus a singularity, even if all curvature invariants are there finite. Such spheres may be referred
to as singular horizons, to distinguish them from both regular horizons (or, simply, horizons) and
curvature singularities.

In the above black hole definition, we have omitted the usual requirement that the horizon radius
r(ρh) and area 4πr2(ρh) should be finite. Admitting r(ρh) = ∞ , one can obtain quite a general
result:

Any horizon of infinite area has zero surface gravity κ (and hence zero Hawking temperature
κ/(2πkB)).

Let us prove it for arbitrary static, spherically symmetric space-times. For the metric (A.1) or
(A.2), the surface gravity (37) is expressed as [27]

κ = eγ−α|γ̇| = 1
2
A′(ρ), (A.5)

Hence, a horizon with finite surface gravity corresponds to a simple zero of A, with A′ 6= 0, at some
finite value of ρ. On the other hand, the regularity conditions require that all Ki (A.4) should be
finite at the horizon. In particular, in the same coordinates, K2 = −1

2
A′r′/r , hence, with A′ 6= 0,

|K2| < ∞ is only possible in case |r′/r| < ∞ , which in turn means that β = log r is finite at
finite ρ. Thus a horizon with finite temperature can only occur at a sphere of finite radius r = eβ .
Hence, a horizon with an infinite area can only have zero temperature, justifying the term “cold
black hole”.
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