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We revisit the 1967 model of heat conduction in a crystal introduced by Z. Rieder, J. L. Liebowitz
and E. Lieb. Besides its anomalous heat conduction properties, the model is also characterised by
awkward cuspids at the ends of the non-equilibrium chain, an effect that has endured the various
generalisations of the model. We show that, for a proper combination of the border and bulk pinning
values, it is possible to shift from the cuspidal behaviour of the temperature profile to an expected
monotonous local temperature evolution along the system. We find a transition regime characterised
by a perfect temperature plateau spanning the entire chain (excepting the elements in contact with
the reservoirs) separating cuspidal and monotonous behaviour. For each value of the pinning at the
border, there are two values of the bulk pinning for which the temperature profile is a straight line.
We also relate that change in the temperature profile with both heat transmission and reflection in
the chain. Among others, we learn that the first transition — corresponding to the smaller of the
two critical edge pinning — takes place when the temperature of the particle connected with the
colder reservoir reaches its maximal value as well as the heat flux.
PACS:02.50.Ey, 05.10.Gg, 05.60.-k
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I. INTRODUCTION

The problem of heat conduction is certainly
one of the best examples for illustrating the role
of statistical mechanics in the treatment of non-
equilibrium systems [1–4].

On the one hand, it is a manifestation of the laws
of thermodynamics that is synthetically defined by
Fourier’s law: the heat flux density is equal to mi-
nus the product of the thermal conductivity by the
temperature gradient [5].

On the other hand, the discontinuity of mat-
ter implies that the macroscopic effects we observe
and measure must be related to the way the ba-
sic constituents of the systems interact. As early
as the introduction of the kinetic theory by Boltz-
mann, there have been several attempts to micro-
scopically derive and explain the emergence of the
Fourier’s law and thereafter the same endeavour
was carried out within the context of condensed
matter physics [6, 7].

Although the actual microscopic understanding
of a physical system requires the application of
a quantum mechanical approach, several classi-
cal toy models were introduced — especially from
the 1950s on — aiming at studying the problem
of heat transport in crystals, namely the assump-
tion of chains of linearly coupled oscillators in con-

tact to reservoirs at different temperatures, T1 and
TN (T1 < TN ), placed at each end of the chain.
Not so surprisingly, these models reach a steady
state but do not verify Fourier’s law, i.e., they
have an infinite heat conductivity corresponding
to ballistic heat transport [8]. To achieve a finite
heat conductance in linear systems, that for the
homogeneous case can only be truly obtained for
higher dimensional non-linear systems [9], several
modifications have been introduced [10], from con-
sidering mass dispersion [11, 12], extra reservoirs
along the chain [13, 14] to effective external colli-
sions [15, 16] among other variations. Nonetheless,
when we look at the temperature profile, it is still
verified the emergence of a cusp(anticusp) close to
the colder(hotter) reservoir, a feature that has not
been explained since the introduction of the the
model by Rieder, Lebowitz and Lieb (RLL) [8], as
far as we are aware of.

At first sight, this behaviour is rather odd (the
warmer particles are closer to the colder reser-
voir, and vice versa) and already commented on
the abstract of Ref. [8]; we would expect the tem-
perature profile to change monotonously along the
chain, even when the bulk temperature is a close
to T ≡ (T1 + TN ) /2. Although the RLL model
fails to capture the actual behaviour regarding the
Fourier law, it is at the origin of a very large num-
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ber of heat conduction studies we find in the liter-
ature. Moreover, there is still a significant interest
in linear chain models [18]; thence, we deem the
original model fit to provide answers and further
insight into the following questions: Which are the
properties of heat conduction models that induce
the (in)famous cuspidal temperature profile? Is it
possible to amend this behaviour? In changing the
temperature profile to a smooth curve what other
modifications are introduced? What does happen to
the heat flux as we move from the cuspidal to the
smooth temperature profile? Concerning the first
question, we slightly lift the veil to say that this
behaviour stems from the pinning conditions of the
model. The real impact of the pinning conditions
in the temperature profile and the answers to the
remaining questions will be presented hereinafter
and constitute the main goal of this manuscript.

Explicitly, we propose an explanation for the
behavior of the local temperature profile, which
goes from the expected monotonous increase from
the cold side of the chain towards the hot side to
a quite unexpected cusp-like behavior where the
temperatures of the half-chain closer to the cold
reservoir are hotter then the local temperatures of
the other half-chain, closer to the hot reservoir. As
we found out, the factors that drive this intriguing
trnsition are the pinning intensity (bulk and sur-
face), the thermal conductance of the chain, and
the temperatures of the first and second (also the
N − 1-th and N -th) particles.

II. MODEL AND RESULTS

Our study revolves around the dynamics of a
chain of N linearly coupled oscillators ruled by the
set of equations,

md2x1

dt2 = −γ dx1

dt − k′ x1 − k1 (x1 − x2) + η1

md2xi

dt2 = −k xi − k1 (2xi − xi+1 − xi−1)

md2xN

dt2 = −γ dxN

dt − k′ xN − k1 (xN − xN−1) + ηN

,

(1)
(2 ≤ i ≤ N − 1), where η is Gaussian distributed
with,

⟨ηi (t) ηj (t′)⟩ = 2 γ Ti δij δ (t− t′) , (2)

with Ti representing the temperature of each reser-
voir (i, j = {1, N}). Our analytical approach is
made using a Stratonovich interpretation of the
noise. The seminal model treated by Rieder,
Lebowitz and Lieb corresponds to the specific case
k = 0 and k1 = k′.

Traditionally, the solution to the problem is car-
ried out assuming a multivariate Fokker-Planck
treatment, particularly by making use of the eigen-
value approach [17]. In this manuscript, we han-
dle the problem differently; instead of moving into
the probability space and using such methods, we
perform our calculations in the Fourier-Laplace
space [19]. Explicitly, for the position, we have,

x̃ (i q + ε) ≡
∫ ∞

0

x (t) e−(i q+ε) t dt, (3)

and for the velocity [considering xi (0) = 0 and
vi (0) = 0 for all i without any loss of generality],

ṽ (i q + ε) = (i q + ε) x̃ (i q + ε) . (4)

As usual, we consider that the system is in local
equilibrium and the temperature at site i, Ti, is
established by the canonical relation,

Ti ≡ m
⟨
v2i
⟩
. (5)

The equations of motion in Eq. (1) can be recast
in the form,

D (t) x (t) = η (t) , (6)

whereD (t) is aN×N operator, 1 x (t) is the vector
of the positions, x (t) ≡ {x1 (t) , . . . , xN (t)} and
η (t) ≡ {η1 (t) , 0, . . . , 0, ηN (t)} represents the mul-
tivariate stochastic variable describing the fluctua-
tions introduced by the reservoirs. Fourier-Laplace
transforming Eq. (6) we get,

D̃ (i q + ε) x̃ (i q + ε) = η̃ (i q + ε) (7)

x̃ (i q + ε) = Ã (i q + ε) η̃ (i q + ε) ,(8)

where A ≡ D−1. From Eq. (8) the position of
particle i yields,

x̃i (i q + ε) =
∑

j=1,N

Ãij (i q + ε) η̃j (i q + ε) , (9)

and the noise in the reciprocal space, η̃, is still
Gaussian with,

⟨η̃i (i q1 + ε) η̃j (i q2 + ε)⟩ = 2 γ Ti

i q1 + i q2 + 2 ε
δij .

(10)
In this non-equilibrium problem, we are mainly

interested in the steady state properties where the

1 The forms of the both operators are made explicit in the
appendix.
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ergodic equivalence between statistics over samples
and statistics over time holds. To benefit from
the Fourier-Laplace representation, instead of per-
forming the standard averaging in time of a sta-
tionary random function f ,

f ≡ lim
Ξ→∞

1

Ξ

∫ Ξ

0

f (t) dt, (11)

we resort to the final value theorem which states
that [20],

f = lim
z→0

z

∫ +∞

0

exp [−z t] f (t) dt (12)

= lim
z→0,ε→0

∫ +∞

−∞

dq

2π

z

z − (i q + ε)
f̃ (i q + ε)(13)

where the Fourier-Laplace representation of f (t)
was used.

Plugging Eqs. (5) and (4) into (13) we obtain,

Ti = m lim
z→0,ε→0

∫ +∞

−∞

dq1
2π

dq2
2π

z

z − (i q1 + i q2 + 2 ε)

×⟨ṽi (i q1 + ε) ṽi (i q2 + ε)⟩ . (14)

After some algebra based on the property given by
Eq. (10), we get the final expression,

Ti =
mγ

π

∑
j=1,N

Tj

∫ +∞

−∞
q2 Ãij (i q + ε) Ãij (−i q − ε) dq.

(15)

A. Transition in the temperature profile

As we have mentioned and originally found in
Ref. [8], when the bulk elements of the chain are
unpinned, k = 0 (and k′ = k1), the temperature
profile is that with the cusp starting at site i = 2
and the anti-cusp ending at site i = N − 1 (see
left-hand panel in Fig. 1). The absolute deviation
of the canonical temperature Ti from (T1 + TN ) /2
is known to follow an exponential decay with the
distance of the site i and one of the ends (see the
dashed blue line in Fig. 2).

Introducing the pinning for the elements of
the bulk — e.g., by the interaction between the
whole chain with the substrate — the (anti)cusps
get smoother and, for a critical value kcrit ≡
kcrit(k

′, k1), yield an exact temperature plateau at
T for all particles [except i = (1, N)] (see cen-
tral panel in Fig. 1). According to our analysis
the critical pinning of the bulk follows the size-
independent relation,

kcrit1 =
(k′ + k1)

4
, (k′ = k1) . (16)

As we continue increasing the pinning of the
bulk, the plateau is destroyed and a non-cuspidal
temperature profile in the chain is observed (see
right-hand panel in Fig. 1). In this case, we verify
the same exponential decay of the deviation as a
function of the distance to the respective ends (see
the full red line Fig. 2).
In Fig. 3, we depict the typical evolution of the

temperature of the second particle (the first bulk
particle) with respect to k (bulk pinning). For k >
kcrit, the i = 2 particle’s local temperature will
approach the temperature T from below.
Let us shed some light on this phenomenon by

having a closer look at the temperatures of the
second and penultimate particles T2 and TN−1,
respectively. Because they are those which drive
the behaviour of the temperature of the remaining
bulk particles we shall call them guiding tempera-
tures (GT). Several factors combine to set the val-
ues of GT, the most important being the thermal
conductance of the system and the temperature
of the neighbours, in special those of the particles
closest to the reservoirs, T1 and TN . Intuitively,
increasing the pinning at the edges, we would in-
sulate particles 1 and N from the bulk and make
the canonical temperatures T1 and TN approach
the temperature of the reservoirs T1 and TN .
Enlarging the space of parameters by loosing the

condition k′ = k1, we find two transitions. Increas-
ing k′ from zero, for a given pair of values (k, k1),
we find a first transition from monotonous to cus-
pidal behaviour of the profile and afterwards a sec-
ond change to a monotonous profile as depicted in
Fig. 5. For the second transition we deduced the
relation,

k′crit2 = k + k1 +
γ2

m
, (17)

whereas for the first transition, k′crit1 , we could
only find the respective critical line, as plotted in
Fig. 4, by a numerical procedure. It is worth stress-
ing that all the other results we present in this
manuscript are obtained analytically.
Early studies on Lyapunov exponents of ther-

mal conductivity models [21], namely the Toda
model [22] and the ding-a-ling model [23] have
pointed to a critical-like behaviour with finite-size
effects. In our case, we tested the critical relations
in chains of different sizes and we have found no
sensitiveness to the size of the system.

B. Maximal heat transmission

The temperature profile characterising the non-
equilibrium condition of the chain is the outcome
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FIG. 1. Temperature profile of a chain governed by Eq. (1) with m = 1, γ = 1, k′ = k1 = 1. Left: The RLL case
with k = 0; centre: the critical case k = kcrit = 1/2; right: a typical smooth profile for k = 1.
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FIG. 2. Absolute deviation from the plateau tem-
perature versus site position in log-linear scale. The
blue dashed line is for the cuspidal RLL situation
k′ = k1 = 1 and k = 0, whereas the red line repre-
sents the normal case with k = 1.

of its mechanical features that define the heat flux
along the system. To describe it, we center atten-
tion on the average flux from the reservoir onto
particle i = 1 (the colder particle),

J = lim
z→0

z

∫
exp [−z t]

⟨
η1 (t) v1 (t)− γ v21 (t)

⟩
,

(18)
that combined with a Fourier-Laplace description
of the dynamics has been used to describe the
conductance in (non-linear) thermal and athermal
problems [24]. Using Eq. (8) and the relation,
ṽ (i q + ε) = (i q + ε) x̃ (i q + ε), we recast the last
equation in reciprocal space into,

J = γ2∆T

π

∫
(i q + ε)

2 Ã1N (i q + ε) Ã1N (−i q − ε) dq,

(19)
with ∆T ≡ TN − T1.

By scanning the (k, k′, k1) sub-space of parame-
ters, and analyzing the dependence of the flux J
on them, we verified that our previous argument on
the behaviour between the canonical temperature
at the edges is only partially correct (please follow
it from Fig. 5). As a matter of fact, that qualitative
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FIG. 3. Canonical temperature of the second particle
of the chain, T2, vs bulk pinning, k. with m = 1,
γ = 1. The full blue line is for k′ = k1 = 1 and red
dot-dashed line is for k′ = k1 = 2. The critical values
of k are kcrit = 1/2 and kcrit = 1, respectively, and
concur with Eq. (16). For large values of the coupling,
k → ∞, the chain turns into an incompressible wire
and the canonical temperature naturally approaches
3/2.
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FIG. 4. Critical lines defining different behaviour for
k1 = 1. The red line indicates the first plateau, kcrit1 ,
and the blue dashed line is given by Eq. (17). Both
lines appear to run parallelly for large values of k.
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relation only holds after k′ reaches the first critical
value corresponding to the first plateau. That is to
say, there is a first regime wherein the increasing of
the pinning of the edge particles enhances the ther-
mal conductivity in the chain as though inserting
an adequate snag in the chain favours the heat flux
instead of hampering it. Accordingly, when the
flux is maximal the temperature T1 (TN ) reaches
its maximal (minimal) value. However, the tem-
perature T2 (TN−1) keeps on increasing (decreas-
ing) its value with the pinning k′, thus giving rise
to the unusual, and counterintuitive, temperature
profile between the critical plateaux. With this ob-
servation in mind we are inclined to consider that
anomalous behaviour as a sort of overshoot (under-
shoot) — characterised by the cusp and anticusp
— that after the second plateau turns into a nega-
tive overshoot(undershoot) before finally relaxing
to the T = 3/2 behaviour.2

III. CONCLUDING REMARKS

In this manuscript we studied a generalization
of a well known model of a harmonic chain in con-
tact with two heat reservoirs with different tem-
peratures T1 and TN (T1 < TN ). The model is
known to bear a ballistic regime of heat transmis-
sion with the temperature profile close to a plateau
with a cusp(anticusp) close to the colder(hotter)
reservoir. That profile is reckoned odd since it
makes the half of the bulk particles sitting closer
to the colder reservoir hotter than the other half of
the bulk particles that are sitting next to the hotter
reservoirs! By adjusting the pinning value at the
edges of the chain we were capable of transition-
ing between cuspidal and monotonous behaviour.
That transition is characterised by the emergence
of a temperature plateau with Ti = (T1 + TN )/2
(for all 2 ≥ i ≥ N−1). Fixing the value of the pin-
ning in the bulk and the value of the coupling con-
stant we identified the two of these plateaux. For
the second we managed to infer a relation between
all the mechanical parameters of the problem.

In further analysing the thermal properties of
the chain, we found that the first plateau is as-
sociated with a maximal(minimal) value of the
first(last) particle. Thus, to some extent, when
we introduce some sort of hurdle — in our case
the pinning k′ — we end up homogenizing the be-
haviour of the particles at the edge with those in

2 Phenomenona of overshooting appear in a variety of phys-
ical systems. For instance, the entropy production of the
logistic map surpasses its expected value before approach-
ing it from above (see for instance Ref. [25]).
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FIG. 5. Upper panel: Normalised values of the canon-
ical temperatures T1 (dotdashed line), T2 (full line)
and conductance κ (dotted line) vs edge pinning, k′,
with m = 1, γ = 1 and k = k1 = 1. Both T1

and κ are normalised by the respective maximal values
whereas T2 is normalised by the critical value T = 3/2.
The three lines intersect at the critical plateau value
k′
crit1 = 1.618033988749894 . . . with value 1 for all of

the three quantities. Lower panel: Normalised val-
ues of the canonical temperatures TN (dotdashed line),
TN−1 (full line) and conductance κ (dotted line) vs
edge pinning, k′, with m = 1, γ = 1 and k = k1 = 1.
Temperature TN is normalised by its minimal value, κ
by its maximal values whereas TN−1 is normalised by
the critical value T = 3/2. Again, the three lines still
intersect at the same critical plateau value k′

crit2 with
value 1 for all of the three quantities. The tempera-
tures T2 and TN−1 equal the critical value once again
for k′

crit2 = 3 as given by Eq. (17) and both tempera-
tures approach the value 3/2 as k′ → ∞.

the bulk. As we go on increasing that pinning, we
get the opposite effect, the particles at the edge of
the chain become increasingly different from the
others and thus they thwart the transmission of
heat along the system.
There are some features of the particle temper-

ature that are crucial for the understanding of the
cuspidal behaviour. The first one is the behaviour
of the temperature of the particles that are in con-
tact with the reservoirs, T1 and TN . The thermal
conductance initially increases as we increase the
surface pinning (bulk pinning fixed) and reaches
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a peak decreasing monotonically after that. We
know that the higher the thermal conductance the
higher is the thermal contact of the extremities
with the bulk. That makes the former closer in
value to the bulk temperatures. Therefore, the
peak of thermal conductivity should correspond to
the smallest difference between the temperatures
of 1 (and N) and that of the bulk. This is seen
in Fig. 5 where the peaks of T1 and the thermal
conductivity concur at the same point, but with
the peak of conductance being a sharper than that
of T1.

Another important point is the differences T2 −
T1 and TN − TN−1. The GT are influenced by
the values of the temperatures of the extremities
(ToE). If all other factors were kept constant, the
value of the GT would increase or decrease as the
ToE. Although we did not manage to find a sound
reason the conductance and T1 reach maximal val-
ues for the same k′ the temperature profile exhibits
an exact plateau, the increase of T2 might proba-
bly be due to the sharper decrease in conductivity
(less transmitted heat from 2 to 1 should help in-
crease T2, or decrease TN−1 on the other side of
the lattice) then the decrease of T1 (which has the
effect of decreasing T1).

As we further increase k′, T2 increases up to a
maximum and then it starts to decrease until it
reaches the average (T1+T2)/2 again at the second
critical value (at this point the bulk temperatures
form again an exact plateau at (T1 + T2)/2). For
larger values of k′, T2 decreases down to a mini-
mum, probably driven mostly by the decrease of
T1. However, for even larger k′, the conductance
keeps decreasing monotonically and that makes the
particles 1 and N ever more insulated from the
bulk ones. Indeed, the higher the k′, the less the

particle 2 will be influenced by particle 1 since
the last one is free to physically move very little.
Any further increase in the value k′ will only bring
T2 and the rest of the bulk temperatures mono-
tonically closer to the average (T1 + T2)/2. In
fact, for very large k′, the system behaves as an
almost trapping box for the phonons, leading to
complete thermalization at the average tempera-
ture (T1 + T2)/2.

In summary, by increasing the surface pinning
coupling k′, the local temperature distribution for
the particles goes from monotonous to cuspidal,
and to monotonous again. It might be possi-
ble that a similar qualitative behaviour of tran-
sitions between cuspidal and monotonous temper-
ature profiles, depending on the values of the me-
chanical parameters, would also be present in RLL-
inspired models yielding a finite heat conductance
(Fourier law), namely non-linear, higher dimen-
sional coupling models. The probing of that hy-
pothesis as well as a further analysis about higher-
order statistics are addressed for future work.
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APPENDIX: MATRIX FOR D(s) AND A(s)

The matrix of dynamics, D(s), in Laplace space is written as:

D(s) =

=



ms2 + γs+ k1 + k′ −k1 · · · · · · · · · 0
−k1 ms2 + 2k1 + k −k1 · · · · · · 0
0 −k1 · · · · · · · · · 0
...

...
. . . −k1 · · · 0

...
...

...
. . . · · · 0

...
...

...
. . . · · · 0

0 · · · 0 −k1 ms2 + 2k1 + k −k1
0 · · · 0 0 −k1 ms2 + γs+ k1 + k′


And its inverse is:

A(s) =
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=



A11(s) A12(s) A13(s) · · · · · · A1N (s)
A21(s) A22(s) A32(s) · · · · · · A2N (s)

...
...

. . . · · · · · ·
...

...
...

...
. . . · · ·

...
... · · · · · · · · ·

. . .
...

AN1(s) · · · · · · · · · · · · ANN (s)


The elements A(s)ij has the structure:

A(s)ij =
a0 + a1s+ a2s

2 + ...+ a2n−3s
2n−3 + a2n−2s

2n−2

Det [D(s)]

Where n represents the dimension of the chain, and the ak are different constants for each A(s)ij .
Taking the particular case N = 4 and using the parameters k′ = k = k1 = γ = m = 1, D(s) and A(s)

are written, respectively, as:

D(s) =

s2 + s+ 2 −1 0 0
−1 s2 + 3 −1 0
0 −1 s2 + 3 −1
0 0 −1 s2 + s+ 2



A(s) =
1

Det [D(s)]
×

A(s)11 A(s)12 A(s)13 A(s)14
A(s)21 A(s)22 A(s)23 A(s)24
A(s)31 A(s)32 A(s)33 A(s)34
A(s)41 A(s)42 A(s)43 A(s)44


Where Det [D(s)] is:

Det [D(s)] = s8 + 2s7 + 11s6 + 16s5 + 40s4 + 38s3 + 54s2 + 26s+ 21

And for entries we have:

A(s)11= A(s)44 = s6 + s5 + 8s4 + 6s3 + 19s2 + 8s+ 13

A(s)12= A(s)43 = s4 + s3 + 5s2 + 3s+ 5

A(s)13= A(s)42 = 2 + s+ s2

A(s)14= A(s)41 = 1

A(s)21= A(s)34 = s4 + s3 + 5s2 + 3s+ 5

A(s)22= A(s)33 = s6 + s5 + 8s4 + 6s3 + 19s2 + 8s+ 13

A(s)23= A(s)32 = s4 + 2s3 + 5s2 + 4s+ 4

A(s)24= A(s)31 = 2 + s+ s2
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