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Abstract
A random-field Ising model that is capable of exhibiting a rich variety of multicritical
phenomena, as well as a smearing of such behavior, is investigated. The model consists of an
infinite-range-interaction Ising ferromagnet in the presence of a triple Gaussian random
magnetic field, which is defined as a superposition of three Gaussian distributions with the same
width σ , centered at H = 0 and H = ±H0, with probabilities p and (1 − p)/2, respectively.
Such a distribution is very general and recovers, as limiting cases, the trimodal, bimodal and
Gaussian probability distributions. In particular, the special case of the random-field Ising
model in the presence of a trimodal probability distribution (limit σ → 0) is able to present a
rather nontrivial multicritical behavior. It is argued that the triple Gaussian probability
distribution is appropriate for a physical description of some diluted antiferromagnets in the
presence of a uniform external field, for which the corresponding physical realization consists
of an Ising ferromagnet under random fields whose distribution appears to be well represented
in terms of a superposition of two parts, namely a trimodal and a continuous contribution. The
model is investigated by means of the replica method, and phase diagrams are obtained within
the replica-symmetric solution, which is known to be stable for the present system. A rich
variety of phase diagrams is presented, with one or two distinct ferromagnetic phases,
continuous and first-order transition lines, tricritical, fourth-order, critical end points and many
other interesting multicritical phenomena. Additionally, the present model carries the
possibility of destroying such multicritical phenomena due to an increase in the randomness, i.e.
increasing σ , which represents a very common feature in real systems.

1. Introduction

The random-field Ising model (RFIM) has become nowadays
one of the most studied problems in the area of disordered
magnetic systems [1, 2]. From the theoretical point of view [3],
its simple definition [4], together with the richness of physical
properties that emerge from its study, represent two main
motivations for the investigation of this model. On the other
hand, considerable experimental interest [5] arose after the
identification of the RFIM with diluted antiferromagnets in the

3 Author to whom any correspondence should be addressed.

presence of a uniform magnetic field [6–8]; since then, two of
the most investigated systems are the compounds FexZn1−x F2

and Fex Mg1−x Cl2 [5, 9].
In what concerns the equilibrium phase diagrams of the

RFIM, the effects of different probability distribution functions
(PDFs) for the random fields have attracted the attention
of many authors, see, e.g., [10–26], among others. At
the mean-field level, the Gaussian PDF yields a continuous
ferromagnetic–paramagnetic boundary [10], whereas discrete
PDFs may lead to elaborate phase diagrams, characterized
by a finite-temperature tricritical point followed by a first-
order phase transition at low temperatures [11–15], or even
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fourth-order and critical end points [14, 15]. For the short-
range-interaction RFIM, the existence of a low-temperature
first-order phase transition remains a very controversial
issue [16–25].

From the experimental point of view, one is certainly
concerned with physical realizations of the RFIM, of which
the most commonly known are diluted antiferromagnets in
the presence of a uniform magnetic field [5]. Hence, in
the identification of RFIMs with such real systems [6–8],
certain classes of distributions for the random fields, in the
corresponding RFIM, are more appropriate for a description
of diluted antiferromagnets in the presence of a uniform
magnetic field. In the latter systems one has local variations
in the sum of exchange couplings that connect a given
site to other sites, leading to local variations of the two-
sublattice site magnetizations and, as a consequence, one
may have local magnetizations that vary in both sign and
magnitude. In the identifications of the RFIM with diluted
antiferromagnets [6–8], the effective random field at a given
site is expressed always in terms of quantities that vary in
both sign and magnitude: (i) the local magnetization [6];
(ii) two contributions, namely the first one that assumes only
three discrete values, related to the dilution of the system
and the uniform external field, and the second one which is
proportional to the local magnetization [7]; (iii) the sum of the
exchange couplings associated with this site [8]. Therefore, for
a proper description of diluted antiferromagnets in the presence
of a uniform field, the corresponding RFIMs should always be
considered in terms of continuous PDFs for the fields.

The compound Fex Mg1−x Cl2 presents an Ising spin-
glass behavior for x < 0.55 and is considered as a typical
RFIM for higher magnetic concentrations. In the RFIM
regime, it shows some curious behavior and is considered as
a candidate for exhibiting multicritical phenomena [5, 7, 15].
As an example of this type of effect, one finds a first-order
transition turning into a continuous one due to a change in
the random fields [5, 27, 28]; the concentration at which
the first-order transition disappears is estimated to be x =
0.6. The crossover from first-order to continuous phase
transitions has been investigated through different theoretical
approaches [16, 17, 28]. One possible mechanism used to find
such a crossover, or even to suppress the first-order transition
completely, consists in introducing an additional kind of
randomness in the system, e.g. bond randomness [16, 17]. By
considering randomness in the field only, this crossover has
also been analyzed through zero-temperature studies, either
within mean-field theory [29] or numerical simulations on a
three-dimensional lattice [28, 29]. Recently an RFIM has been
proposed [26] for which the finite-temperature tricritical point,
together with the first-order line, may disappear due to an
increase in the field randomness, similar to what happens with
the first-order phase transition in the compound FexMg1−x Cl2.

However, it is possible that the diluted antiferromagnet
FexMg1−xCl2, or some other similar compound, may present
an even more complicated critical behavior, not yet verified
experimentally, to our knowledge. According to the analysis
of [7], one of its contributions for the random fields assumes
only the values 0,±√

2H (H represents the external uniform

magnetic field); motivated by this result, an RFIM was
proposed [14, 15] with the random fields described in terms
of a trimodal distribution. Such an RFIM, studied within
a mean-field approach through a model defined in the limit
of infinite-range interactions, yielded a rich critical behavior
with the occurrence of first-order phase transitions, tricritical
and high-order critical points [30] at finite temperatures, and
even the possibility of two distinct ferromagnetic phases at
low temperatures [14, 15]. These investigations suggest that
Fex Mg1−xCl2 may exhibit a rich critical behavior that goes
beyond the disappearance of a first-order phase transition
observed around x = 0.6. However, taking into account the
above criteria for the identification of the RFIM with diluted
antiferromagnets, one notices that the trimodal distribution
does not represent an appropriate choice from the physical
point of view. In fact, in the analysis of [7], a second,
continuous contribution for the random fields should be taken
into account as well. Therefore, for an adequate theoretical
description of FexMg1−x Cl2, one should consider an RFIM
defined in terms of a finite-width three-peaked distribution,
which could exhibit multicritical behavior, and in addition
to that, a crossover from such behavior to continuous phase
transitions due to an increase in the field randomness.

For that purpose, herein we introduce an RFIM that
consists of an infinite-range-interaction Ising ferromagnet in
the presence of a triple Gaussian random magnetic field. This
distribution is defined as a superposition of three Gaussian
distributions with the same width σ , centered at H = 0 and
H = ±H0, with probabilities p and (1 − p)/2, respectively.
The particular case of the RFIM in the presence of a trimodal
PDF, studied previously [14, 15], is recovered in the limit σ →
0. We show that the present model is capable of exhibiting
a rich multicritical behavior, with phase diagrams displaying
one, or even two, distinct ferromagnetic phases, continuous and
first-order critical frontiers, tricritical points and high-order
critical points, at both finite and zero temperatures. Such a
variety of phase diagrams may be obtained from this model by
varying the parameters of the corresponding PDF, e.g. p and
σ : (i) variations in p (σ fixed) lead to qualitatively distinct
multicritical phenomena; (ii) increasing σ (p fixed) yields a
smearing of a specific type of critical behavior, destroying
a possible multicritical phenomena due to an increase in
the randomness, representing a very common feature in real
systems. In section 2 we define the model, find its free energy
and equation for magnetization, by using the replica approach.
In section 3 we present several phase diagrams, characterized
by the critical behavior mentioned above. Finally, in section 4
we present our conclusions.

2. The model

The infinite-range-interaction Ising model in the presence of
an external random magnetic field is defined in terms of the
Hamiltonian

H = − J

N

∑

(i, j)

Si S j −
∑

i

Hi Si , (2.1)
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where the sum
∑

(i, j) runs over all distinct pairs of spins
Si = ±1 (i = 1, 2, . . . , N). The random fields {Hi} are
quenched variables and obey the PDF:

P(Hi) = (1 − p)

2

(
1

2πσ 2

)1/2{
exp

[
− (Hi − H0)

2

2σ 2

]

+ exp

[
− (Hi + H0)

2

2σ 2

]}

+ p

(
1

2πσ 2

)1/2

exp

[
− H 2

i

2σ 2

]
, (2.2)

which consists of a superposition of three independent
Gaussian distributions with the same width σ , centered at
Hi = 0 and Hi = ±H0, with probabilities p and (1 − p)/2,
respectively (to be called hereafter a triple Gaussian PDF). This
distribution is very general, depending on three parameters,
namely p, σ and H0, and contains as particular cases several
well-known distributions of the literature, namely the trimodal
and bimodal distributions, the double Gaussian, as well as
simple Gaussian distributions. The model defined above is
expected to be appropriate for a physical description of diluted
antiferromagnets that, in the presence of an external magnetic
field, may exhibit multicritical behavior; one candidate for this
purpose is Fex Mg1−x Cl2 [7].

From the free energy F({Hi}), associated with a given
realization of site fields {Hi}, one may calculate the quenched
average, [F({Hi})]H :

[F({Hi})]H =
∫ ∏

i

[dHi P(Hi)]F({Hi}). (2.3)

The standard procedure for carrying the average above is by
making use of the replica method [2, 31], leading to the free
energy per spin:

−β f = lim
N→∞

1

N
[ln Z({Hi})]H = lim

N→∞ lim
n→0

1

Nn
([Z n]H − 1),

(2.4)
where Z n is the partition function of n copies of the original
system defined in equation (2.1) and β = 1/(kT ). One gets
that

β f = lim
n→0

1

n
min g(mα), (2.5)

with

g(mα) = β J

2

∑

α

(mα)2 − (1 − p)

2
ln Trα exp(H+

eff)

− (1 − p)

2
ln Trα exp(H−

eff) − p ln Trα exp(H(0)

eff ), (2.6)

H±
eff = β J

∑

α

mαSα + βσ

(∑

α

Sα

)2

± β H0

∑

α

Sα, (2.7)

H(0)
eff = β J

∑

α

mα Sα + βσ

(∑

α

Sα

)2

. (2.8)

In the equations above, α represents a replica label (α =
1, 2, . . . , n) and Trα stands for a trace over the spin variables
of each replica. The extrema of the functional g(mα) leads to
the equation for the magnetization of replica α:

mα = (1 − p)

2
〈Sα〉+ + (1 − p)

2
〈Sα〉− + p〈Sα〉0, (2.9)

where 〈 〉± and 〈 〉0 denote thermal averages with respect to
the ‘effective Hamiltonians’ H±

eff and H(0)

eff in equations (2.7)
and (2.8), respectively.

If one assumes the replica-symmetry ansatz [2, 31], i.e.
mα = m (∀ α), the free energy per spin of equations (2.5)–
(2.8) and the equilibrium condition, equation (2.9), become

f = J

2
m2 − (1 − p)

2β

∫
Dz ln(2 cosh �+)

− (1 − p)

2β

∫
Dz ln(2 cosh �−)

− p

2

∫
Dz ln(2 cosh �(0)), (2.10)

m = (1 − p)

2

∫
Dz tanh �+

+ (1 − p)

2

∫
Dz tanh �− + p

∫
Dz tanh �(0), (2.11)

where

�± = β(Jm + σ z ± H0); �(0) = β(Jm + σ z);
∫

Dz (· · ·) = 1√
2π

∫ +∞

−∞
dz e−z2/2 (· · ·).

(2.12)
It should be mentioned that the instability associated with the
replica-symmetric solution [32] at low temperatures is usually
related to parameters characterized by two replica indices, like
in the spin-glass problem [2, 31]. In the present system the
order parameter mα depends on a single replica index, and so
such an instability does not occur.

In section 3 we will make use of equations (2.10)
and (2.11) in order to get several phase diagrams for the present
model. Although most critical frontiers will be achieved
numerically, some analytical results may be obtained at zero
temperature. At T = 0, the free energy and magnetization
become, respectively,

f = − J

2
m2 − H0

2
(1 − p)

[
erf

(
Jm + H0

σ
√

2

)

− erf

(
Jm − H0

σ
√

2

)]
− σ√

2π
(1 − p)

×
{

exp

[
− (Jm + H0)

2

2σ 2

]
+ exp

[
− (Jm − H0)

2

2σ 2

]}

− 2σ√
2π

p exp

[
− (Jm)2

2σ 2

]
, (2.13)

m = (1 − p)

2
erf

(
Jm + H0

σ
√

2

)

+ (1 − p)

2
erf

(
Jm − H0

σ
√

2

)
+ p erf

(
Jm

σ
√

2

)
. (2.14)

3. Phase diagrams

Usually, in the RFIM one has two phases, namely the
ferromagnetic (F) and paramagnetic (P) ones. However, for
the PDF of equation (2.2), there is a possibility of three
distinct phases: apart from the paramagnetic (m = 0), one
has two ferromagnetic phases, F1 and F2, characterized by

3
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different magnetizations (herein we will consider always F1

as the ordered phase with higher magnetization, i.e. m1 >

m2 > 0). Close to a continuous transition between the ordered
and disordered phases, m is small, so that one can expand
equation (2.11) in powers of m:

m = A1m + A3m3 + A5m5 + A7m7 + O(m9), (3.1)

where the coefficients are given by

A1 = β J {1 − (1 − p)λ1 − pλ
(0)
1 }, (3.2)

A3 = − (β J )3

3
{1 − 4[(1 − p)λ1 + pλ

(0)
1 ]

+ 3[(1 − p)λ2 + pλ
(0)
2 ]}, (3.3)

A5 = (β J )5

15
{2 − 17[(1 − p)λ1 + pλ

(0)

1 ]
+ 30[(1 − p)λ2 + pλ

(0)
2 ] − 15[(1 − p)λ3 + pλ

(0)
3 ]} (3.4)

A7 = (β J )7

315
{17 − 248[(1 − p)λ1 + pλ

(0)

1 ]
+ 756[(1 − p)λ2 + pλ

(0)

2 ] − 840[(1 − p)λ3

+ pλ
(0)
3 ] + 315[(1 − p)λ4 + pλ

(0)
4 ]}, (3.5)

with

λk = 1√
2π

∫ +∞

−∞
dz e−z2/2 tanh2k β(H0 + σ z),

λ
(0)
k = 1√

2π

∫ +∞

−∞
dz e−z2/2 tanh2k(βσ z).

(3.6)

In order to find the continuous critical frontier one sets A1 = 1,
provided that A3 < 0. If a first-order critical frontier also
occurs, the continuous line ends when A3 = 0; in such
cases, the continuous and first-order critical frontiers meet
at a tricritical point, whose coordinates may be obtained by
solving the equations A1 = 1 and A3 = 0 numerically,
provided that A5 < 0. In the present problem there is also
a possibility of a fourth-order critical point, which is obtained
from the conditions A1 = 1, A3 = A5 = 0 and A7 < 0.
In addition, when the two distinct ferromagnetic phases are
present, two other critical points may also appear (herein we
follow the classification due to Griffiths [30]): (i) the ordered
critical point, which corresponds to an isolated critical point
inside the ordered region, terminating a first-order line that
separates phases F1 and F2; (ii) the critical end point, where
all three phases coexist, corresponding to the intersection of
a continuous line that separates the paramagnetic from one of
the ferromagnetic phases with a first-order line separating the
paramagnetic and the other ferromagnetic phase. The location
of the critical points defined in (i) and (ii), as well as the
first-order critical frontiers, were determined by a numerical
analysis of the free-energy minima, e.g. two equal minima
for the free energy, characterized by two different values of
magnetization, m1 > m2 > 0, yields a point of the first-order
critical frontier separating phases F1 and F2.

Next, we show several phase diagrams of this model for
both finite and zero temperatures. Besides the notation defined
above for labeling the phases, in these phase diagrams we shall
use distinct symbols and representations for the critical points
and frontiers, as described below.

• Continuous critical frontier: continuous line;
• First-order critical frontier: dotted line;
• Tricritical point: located by a black circle;
• Fourth-order point: located by an empty square;
• Ordered critical point: located by a black asterisk;
• Critical end point: located by a black triangle.

3.1. Finite-temperature critical frontiers

We now present finite-temperature phase diagrams; these phase
diagrams will be exhibited in the plane of dimensionless
variables, (kT )/J versus H0/J , for typical values of p and
σ/J . For completeness, in each figure we also show the
forms of the corresponding PDF of equation (2.2), with the
parameters used in the phase diagrams.

In figure 1 we present some qualitatively distinct phase
diagrams of the model, for the fixed value p = 0.2 and
typical values of σ/J . In figure 1(a) we represent the PDF
of equation (2.2) for p = 0.2, (H0/J ) = 0.56 and the widths
σ/J used to obtain the phase diagrams of figures 1(c)–(f). The
particular case (σ/J ) = 0.1, used in figure 1(b), yields a three-
narrow-peaked distribution and is not represented in figure 1(a)
for a better visualization of the remaining cases; in addition to
that, the choice (H0/J ) = 0.56 corresponds to a region in the
phase diagrams where essential changes occur in the criticality
of the system at low temperatures. One notices that the critical
frontier separating the paramagnetic (P) and ferromagnetic (F1

and F2) phases exhibits significant changes with increasing
values of σ/J . For (σ/J ) = 0.1 (cf figure 1(b)), one has a
phase diagram that is qualitatively similar to the one obtained
in the case of the trimodal distribution [15], with a tricritical
point (black circle) and a critical end point (black triangle)
at a lower, but finite temperature, where the critical frontier
separating phases P and F2 meets the first-order line. However,
for increasing values of σ/J these critical points move towards
low temperatures, in such a way that for (σ/J ) = 0.16
one observes the collapse of the critical end point with the
zero-temperature axis, i.e. the ferromagnetic phase F2 occurs
only for T = 0, as shown in figure 1(c). Therefore, for
p = 0.2 the value (σ/J ) = 0.16 represents a threshold
for the existence of phase F2. One should notice from
figure 1(a) that, for p = 0.2, the existence of the phase
F2 is associated with a PDF for the fields characterized by a
three-peaked shape. For (σ/J ) = 0.3 (cf figure 1(d)), the
phase diagram is qualitatively similar to the one obtained for
the bimodal [11] or continuous two-peaked distributions [26],
where one finds a tricritical point at finite temperatures and
a first-order transition at lower temperatures. We have found
analytically through a zero-temperature analysis, which will
be discussed later, the value (σ/J ) ∼= 0.4551 for which the
tricritical point reaches the zero-temperature axis, signaling a
complete destruction of the first-order phase transition in the
case p = 0.2, as exhibited in figure 1(e). In this case, the
associated PDF presents a single flat maximum in agreement
with [11–13]. For even higher values of σ/J , as shown in
figure 1(f) for the case (σ/J ) = 0.6, the PDF presents a
single peak and the frontier ferromagnetic–paramagnetic is
completely continuous, qualitatively similar to the case of a
single Gaussian PDF [10].
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Figure 1. (a) The probability distribution of equation (2.2) for p = 0.2 and (H0/J ) = 0.56 is represented for several values of its width.
(b)–(f) Phase diagrams showing the critical frontiers separating the paramagnetic (P) and ferromagnetic (F1 and F2) phases of the
infinite-range-interaction ferromagnet in the presence of a triple Gaussian random field, for typical values of σ/J and p = 0.2. Critical
frontiers and critical points are as described in the text. All quantities are scaled in units of J .

There is an special value of p, to be denoted herein
as p∗, which represents an upper limit for the existence of
tricritical points along the paramagnetic border, characterized
by a fourth-order point at zero temperature. The value
p∗ ∼= 0.308 561, as well as its associated width, (σ ∗/J ) ∼=
0.369 294, will be determined later, within a zero-temperature
analysis. In figure 2 we show phase diagrams for p =
0.308 561 and three different values of σ/J . In figure 2(a)
we represent the PDF of equation (2.2) for p = 0.308 561,
(H0/J ) = 0.65, and the widths σ/J used to obtain the
phase diagrams of figures 2(b)–(d); the choice (H0/J ) =
0.65 has to do with a region in the phase diagrams where
interesting critical phenomena occur at low temperatures. In
figure 2(b) we present the phase diagram for (σ/J ) = 0.1,
where one sees that the border of the paramagnetic phase is
completely continuous; for lower (higher) fields this critical
frontier separates phases P and F1 (F2). However, there is
a curious first-order line separating phases F1 and F2 which
terminates in an ordered critical point (black asterisk), above
which one can pass smoothly from one of these phases to

the other. By slightly increasing the values of σ/J one
observes that the ordered critical point disappears, leading to
the emergence of both tricritical and critical end points at finite
temperatures, yielding a phase diagram that is qualitatively
similar to the one shown in figure 1(b); this type of phase
diagram occurs typically in the range 0.1 < (σ/J ) < 0.3.
However, as shown in figure 2(c) for (σ/J ) = 0.305, one has
the collapse of the critical end point with the zero-temperature
axis, with the phase F2 occurring at zero temperature only,
analogous to the one that appears in figure 1(c), but now for a
higher value of H0/J . Comparing figures 1(c) and 2(c), one
sees that, in some cases, essentially similar phase diagrams
may be obtained by increasing both p and σ/J ; however, in
the case of higher values for these parameters, the extension
of the first-order transition line gets reduced. It should be
mentioned that, in both figures, the existence of the phase
F2 is associated with a PDF for the fields characterized by
a three-peaked shape. In figure 2(d) we display the phase
diagram for (σ/J ) = 0.369 294, for which the first-order line
is totally destroyed. It should be emphasized that this effect

5
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Figure 2. (a) The probability distribution of equation (2.2), for p = 0.308 561 and (H0/J ) = 0.65, is represented for several values of its
width. (b)–(d) Phase diagrams showing the critical frontiers separating the paramagnetic (P) and ferromagnetic (F1 and F2) phases of the
infinite-range-interaction ferromagnet in the presence of a triple Gaussian random field, for typical values of σ/J and p = 0.308 561. Critical
frontiers and critical points are as described in the text. All quantities are scaled in units of J .

appears also for other values of p through a tricritical point
at T = 0 (cf figure 1(e)); however, the phase diagram of
figure 2(d) is very special, in the sense that the collapse of
the first-order frontier with the zero-temperature axis occurs
by means of a fourth-order point. For higher values of σ/J ,
the critical frontier separating phases P and F1 is completely
continuous, and one has essentially the same phase diagram
shown in figure 1(f).

Additional phase diagrams are shown in figure 3 for the
case p = 0.5. In figure 3(a) we represent the PDF of
equation (2.2) for such a value of p, (H0/J ) = 0.74, and the
widths σ/J used to obtain the phase diagrams of figures 3(b)–
(d); the choice (H0/J ) = 0.74 corresponds to a region of
the phase diagram where an ordered critical point appears
at low temperatures. In figure 3(b) we present the phase
diagram for the same σ/J value of figures 1(b) and 2(b), i.e.
(σ/J ) = 0.1; these figures suggest that the existence of phase
F2 is associated with three-peaked distributions. However,
for sufficiently small p, this phase appears together with
a critical end point, as shown in figure 1(b), whereas for
larger p the border of the paramagnetic phase is completely
continuous, and phases F1 and F2 are separated by a first-order
critical frontier that terminates in an ordered critical point.
In figure 3(b) one can go smoothly from one of these two
ferromagnetic phases to the other, through a thermodynamic
path connecting these phases above the ordered critical point.
In figure 3(c) one has the collapse of the ordered critical
point with the zero-temperature axis, which was estimated
numerically to occur for (σ/J ) = 0.20, with the phase F2

appearing at zero temperature. It is important to mention
that the phase diagram exhibited in figure 3(c) is qualitatively

distinct from those of figures 1(c) and 2(c), in the sense that the
first one is characterized by a border of the paramagnetic phase
that is completely continuous and at zero temperature, phases
F1 and F2 are separated by an ordered critical point. For the
value (σ/J ) = 0.4 shown in figure 3(d) one gets a continuous
critical frontier separating phases P and F1. However, there
is a basic difference between the phase diagrams displayed
in figures 1(f) and 3(d): as will be shown in the following
zero-temperature analysis, in the latter case there is no zero-
temperature point separating these two phases, i.e. the phase
F1 exists for all values of H0/J . In fact, for any (σ/J ) � 0.4
the border of the paramagnetic phase never touches the zero-
temperature axis, as suggested in figures 3(b)–(d); for higher
values of σ/J , this critical line meets the H0/J axis and
one has a phase diagram qualitatively similar to the one of
figure 1(f).

There are some important threshold values associated
with the existence of the above-mentioned critical points, as
described next.

(i) We found numerically that, for p � p∗, critical end points
do not occur, either in finite or zero temperatures.

(ii) We verified, also numerically, that for p � 0.93, ordered
critical points cease to exist; as a consequence, this
represents a threshold for the existence of phase F2,
which does not appear above this value (even at zero
temperature).

(iii) In the zero-temperature analysis (to be carried out below),
we find analytically that for p∗ ∼= 0.308 561 one gets a
fourth-order point at zero temperature; this value depicts
an upper bound for the existence of tricritical points.
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Figure 3. (a) The probability distribution of equation (2.2), for p = 0.5 and (H0/J ) = 0.74, is represented for several values of its width.
(b)–(d) Phase diagrams showing the critical frontiers separating the paramagnetic (P) and ferromagnetic (F1 and F2) phases of the
infinite-range-interaction ferromagnet in the presence of a triple Gaussian random field for typical values of σ/J and p = 0.5. Critical
frontiers and critical points are as described in the text. All quantities are scaled in units of J .

(iv) Fourth-order points usually delimit the existence of
tricritical points and are sometimes considered in the
literature as ‘vestigial’ tricritical points [15]. In the case of
the power expansion in equation (3.1), they exist for finite
temperatures as well, and are determined by the conditions
A1 = 1, A3 = A5 = 0 and A7 < 0, which define a line in
the four-dimensional space [(kT )/J, p, H0/J, σ/J ]. In
figure 4 we present projections of the fourth-order-point
line with the planes (kT )/J versus p (figure 4(a)) and
σ/J versus p (figure 4(b)). These projections interpolate
between the fourth-order points occurring for p = 8/33
(σ = 0, i.e. trimodal distribution [15]), and the zero-
temperature threshold value for the triple Gaussian PDF,
p∗ ∼= 0.308 561, to be determined below.

From the analysis above one concludes that it is possible to
obtain qualitatively similar phase diagrams for different pairs
of parameters (p, σ/J ). Essentially, these phase diagrams are
defined by the presence of the different types of critical points
that may appear in this model. The existence of tricritical
points was already discussed in items (iii) and (iv) above,
whereas the regions in the plane σ/J versus p associated with
ordered and critical end points are exhibited in figure 5(a).
Along the axis (σ/J ) = 0 our limits for the existence of
critical end points (0 < p � 0.24) and ordered critical points
(0.27 � p � 0.93) are in agreement with those estimated
in [15]; in between these two regimes, a small region occurs,
which is very subtle, from the numerical point of view, where
two critical end points and one ordered critical point show up.
This intermediate region gets reduced for increasing values
of σ/J and is delimited by the two dashed lines shown in

figure 5(a). A typical phase diagram inside this region is shown
in figure 5(c), which is characterized by a critical frontier
separating phases P and F1 that presents a continuous piece,
followed by a first-order line at lower temperatures, with no
tricritical point. It is important to stress that the type of phase
diagram of figure 5(c) occurs in the particular case (σ/J ) = 0
for a range of values of p right above p = 8/33 ≈ 0.24,
which represents the probability at which a fourth-order point
occurs at finite temperatures [15]. We have verified that a
similar effect occurs for finite values of σ/J , in the sense that
the narrow intermediate region of figure 5(a) corresponds to a
region of points to the right of the projection of the fourth-order
line in the plane σ/J versus p of figure 4(b). This intermediate
region occurs whenever the fourth-order point appears for
finite temperatures and it becomes essentially undiscernible,
from the computational point of view, as one approaches the
threshold p = p∗, corresponding to the fourth-order point
at zero temperature. We verified that the intermediate region
becomes extremely small at zero temperature and hard to find
numerically around the threshold p = p∗. In figure 5(d) we
present a phase diagram for p slightly larger than p∗. The
fact that the intermediate region gets reduced for increasing
values of σ is expected, since one of the effects introduced
by the parameter σ is to destroy several types of multicritical
behavior. In figure 5(a), region I is associated with phase
diagrams that present a single critical end point, like the one
of figure 5(b), whereas region II is associated with phase
diagrams presenting a single ordered critical point, as shown in
figure 5(d); one may go from region I to region II through the
sequence of phase diagrams presented in figures 5(b)–(d). The
ranges of p values associated with these two regions diminish
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Figure 4. Projections of the fourth-order-point line on two different planes: (a) the plane (kT )/J versus p, showing the critical temperatures
associated with fourth-order points that exist in the interval 8/33 � p � p∗; (b) the plane σ/J versus p. The empty squares are computed
fourth-order points, whereas the lines (guides to the eye) represent lines of fourth-order points.

Figure 5. (a) Regions, in the plane σ/J versus p, associated with qualitatively distinct phase diagrams for the present model; the empty
squares represent computed points, whereas the lines are just guides to the eye; the arrow indicates the threshold value p = p∗. In regions I
and II one has phase diagrams like those shown in (b) and (d), respectively. The two dashed lines that appear in (a) define a narrow
intermediate region, exhibiting a phase diagram characterized by two critical end points and one ordered critical point along the paramagnetic
border, as shown in (c). The type of phase diagram in the intermediate region appears when one varies the parameters of the distribution of
equation (2.2) in such a way to go from region I to region II (as shown typically in the sequence (b), (c) and (d) for (σ/J ) = 0.1) and vice
versa.

for increasing values of σ/J , as shown in figure 5(a); the
computed points along the full lines (empty squares) represent
upper limits (in σ/J ) for regions I and II, in which cases the
corresponding critical points appear at zero temperature. As
typical examples, one has the ranges for the appearance of
these points, σ/J � 0.08 (p = 0.1) and σ/J � 0.16 (p =
0.2), in region I, whereas σ/J � 0.2 (p = 0.5) and σ/J �
0.127 (p ≈ 0.6667) in region II. Therefore, for a given pair of
parameters (p, σ/J ) one may predict the qualitative form of
its corresponding phase diagram by using figure 5(a). Let us
first consider one value of p within the range 0 < p � 0.24,
where one may have both a critical end point and a tricritical
point, e.g. the case p = 0.2, discussed previously. Then, for
sufficiently low values of σ/J one has a phase diagram like the

one shown in figure 1(b), characterized by a tricritical point,
a first-order line at low temperatures and a critical end point,
associated with a phase F2; by increasing σ/J , one reaches the
upper limit of region I (represented by the continuous line in
figure 5(a)) which corresponds to a collapse of the critical end
point with the zero-temperature axis, as shown in figure 1(c).
Increasing σ/J further, in such a way that the probability
distribution for the fields still presents a minimum at H = 0,
one has a tricritical point at finite temperatures (with a typical
phase diagram exhibited in figure 1(d)), and after that, one
gets phase diagrams like those shown in figures 1(e) and (f).
This sequence of phase diagrams occurs for all values of p
within this range. Now, if one considers 0.27 � p < p∗ in
figure 5(a), by increasing σ gradually one gets first a typical
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phase diagram characterized by an ordered critical point, like
the one shown in figure 2(b), and then one may go through
the intermediate region between the two dashed lines, with
a phase diagram as presented in figure 5(c), and afterwards
one follows a similar sequence of phase diagrams like those
shown in figures 1(b)–(f). The last two steps of the previous
sequence of phase diagrams apply if one increases σ/J in the
range 0.24 < p < 0.27. By varying σ/J for p within the
range p∗ < p � 0.93 one gets phase diagrams that follow
the sequence shown in figures 3. Finally, for 0.93 � p � 1.0
one has a phase diagram typical of the Gaussian RFIM, i.e.
a continuous phase transition separating the paramagnetic and
ferromagnetic phases.

3.2. Zero-temperature critical frontiers

Some analytical results may be obtained from the investigation
of the free energy and magnetization at zero temperature, given
by equations (2.13) and (2.14), respectively. Herein, we shall
restrict ourselves to σ > 0 in equation (2.2); the case σ = 0,
i.e. a trimodal PDF, requires a separate analysis and the results
are already known [14, 15].

For that purpose, one applies the same procedure
described above for finite temperatures, starting with the
expansion of equation (2.14) in powers of m:

m = a1m + a3m3 + a5m5 + a7m7 + O(m9), (3.7)

where

a1 =
√

2

π

(
J

σ

){
p + (1 − p) exp

(
− H 2

0

2σ 2

)}
, (3.8)

a3 = 1

6

√
2

π

(
J

σ

)3{
(1 − p)

[(
H0

σ

)2

− 1

]

× exp

(
− H 2

0

2σ 2

)
− p

}
, (3.9)

a5 = 1

120

√
2

π

(
J

σ

)5{
(1 − p)

[(
H0

σ

)4

− 6

(
H0

σ

)2

+ 3

]

× exp

(
− H 2

0

2σ 2

)
+ 3p

}
(3.10)

a7 = 1

5040

√
2

π

(
J

σ

)7{
(1 − p)

[(
H0

σ

)6

− 15

(
H0

σ

)4

+ 45

(
H0

σ

)2

− 15

]
exp

(
− H 2

0

2σ 2

)
− 15p

}
. (3.11)

A continuous critical frontier occurs at zero temperature
according to the conditions a1 = 1 and a3 < 0, leading to
a relation involving H0/J , σ/J and p:

σ

J
=

√
2

π

{
p + (1 − p) exp

[
−1

2

(
H0

J

)2( J

σ

)2]}
. (3.12)

One notices that, for (H0/J ) = 0, one has (σ/J ) = √
2/π ∼=

0.7979 (∀p), yielding a continuous critical frontier for small
values of H0/J . For a3 > 0, one gets a first-order critical
frontier at zero temperature, which is usually associated with
higher-order critical points at finite temperatures. A tricritical

point appears at zero temperature, provided that a1 = 1, a3 = 0
and a5 < 0, in such a way that

H0

σ
=

[
1 −

√
2

π

(
J

σ

)
p

]−1/2

. (3.13)

Let us now analyze the coefficient a5 under the conditions
a1 = 1, a3 = 0. Substituting equations (3.12) and (3.13) in
equation (3.10), one gets

a5 = 1

120

(
J

σ

)4{[
1 −

√
2

π

(
J

σ

)
p

]−1

− 3

}
, (3.14)

leading to a5 < 0 for [1 − 2
π
( J

σ
)p]−1 < 3. One should notice

that, for p = 0, i.e. for a double Gaussian PDF [26], the
coefficient a5 is always negative; however, in the present case
one may have a5 = 0 in such a way that one has the possibility
of a fourth-order critical point. This zero-temperature point is
unique for the distribution of equation (2.2) and it occurs for a
set of parameters (p∗, H ∗

0 /J, σ ∗/J ), to be determined below.
Considering a5 = 0:

σ

J
= 3

2

√
2

π
p, (3.15)

and using this result in equation (3.13), one gets

H0

σ
= √

3. (3.16)

Taking a3 = 0 and using equations (3.15) and (3.16) leads to

p∗ = 2 (2 + e3/2)−1 ∼= 0.308 561, (3.17)

which may be substituted in equations (3.15) and (3.16) to
yield, respectively,

σ ∗

J
= 6√

2π
(2 + e3/2)−1 ∼= 0.369 294;

H ∗
0

J
= 3

√
6

π
(2 + e3/2)−1 ∼= 0.639 637.

(3.18)

Therefore, for the set of parameters of equations (3.17)
and (3.18) one has a fourth-order critical point at zero
temperature, as shown previously in figure 2(d), and also
exhibited in the zero-temperature phase diagram of figure 6. In
the present problem, the zero-temperature fourth-order critical
point may be interpreted as the threshold for the existence
of tricritical points at both finite and zero temperatures. For
p > p∗, there is no tricritical point for arbitrary values of
σ/J and H0/J , although an ordered critical point may still
occur for finite temperatures (cf figure 3(b)), as well as at
zero temperature (see figure 6). This threshold is associated
with a very flat PDF, as shown in figure 2(a), which is in
agreement with the conditions for the existence of tricritical
points [11–13].

Zero-temperature phase diagrams of the model are
presented in figure 6 for several values of p. One notices that,
besides tricritical and the above-mentioned fourth-order point,
critical end points and ordered critical points also appear at
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Figure 6. Zero-temperature phase diagrams of the
infinite-range-interaction ferromagnet in the presence of a triple
Gaussian random field for typical values of p. The critical frontiers
separate the paramagnetic (P) and ferromagnetic (F1 and F2) phases.
Critical frontiers and critical points are as described in the text.

T = 0. These two latter points were determined by an analysis
of the zero-temperature free energy of equation (2.13), similar
to what was done for finite temperatures. Comparing the phase
diagrams of figure 6 with those for finite temperatures, one
notices that the width σ produces disorder, playing a role at
T = 0 which is similar to the temperature; as examples,
one sees that the phase diagrams for p = 0, 0.2 and 0.5, in
figure 6, resemble those shown in figures 1(d), 1(b) and 3(b),
respectively, if one considers the correspondence σ ↔ T .

4. Conclusions

We have investigated a random-field Ising model that consists
of an infinite-range-interaction Ising ferromagnet in the
presence of a random magnetic field following a triple
Gaussian probability distribution. Such a distribution, which is
defined as a superposition of three Gaussian distributions with
the same width σ , centered at H = 0 and H = ±H0, with
probabilities p and (1 − p)/2, respectively, is very general and
recovers, as limiting cases, the trimodal, bimodal and Gaussian
probability distributions. We have shown that this model is
capable of exhibiting a rich variety of multicritical phenomena,
essentially all types of critical phenomena found in previous
RFIM investigations (as far as we know). We have obtained
several phase diagrams, for finite temperatures, by varying the
parameters of the corresponding probability distribution, e.g.
p and σ , with variations in p (σ fixed) leading to qualitatively
distinct multicritical phenomena, whereas increasing σ (p
fixed) yields a smearing of a specific type of critical behavior.

The random-field Ising model defined in terms of a
trimodal probability distribution [14, 15] represents, to our
knowledge, the previously investigated model that exhibits
a variety of multicritical phenomena comparable to the one
discussed above. Since the former represents a particular
case (σ = 0) of the present model, the parameter σ may
be considered as an additional parameter used herein, when
compared with the model of [14, 15]. It is important to stress
the relevance of this additional parameter for the richness of the

phase diagrams, as well as for possible physical applications.
As one illustration of the phase diagrams, one may mention
those obtained through the zero-temperature analysis of the
present model, where one gets a large variety of critical
frontiers, exhibiting all types of critical points that occur
at finite temperatures; this should be contrasted with the
much simpler zero-temperature phase diagram of the trimodal
random-field Ising model (where only an ordered critical point
is possible). In particular, some of the zero-temperature
phase diagrams presented herein resemble those for finite
temperatures, if one considers the correspondence σ ↔ T .
Therefore, σ may be identified as a parameter directly related
to the disorder in a real system in such a way that an increase in
σ in the present model should play a similar role to an increase
in the dilution for a diluted antiferromagnet [26]. It is important
to remind ourselves that in the identifications of the RFIM with
diluted antiferromagnets [6–8], the effective random field at a
given site is expressed always in terms of quantities that vary
in both sign and magnitude, and so the present distribution
for the random fields is more appropriate for this purpose.
As a direct consequence of this model, the smearing of a
specific type of critical behavior, due to an increase in the
randomness, i.e. an increase in σ , or even the destruction
of a possible multicritical phenomenon due to this increase—
which represents a very common feature in real systems—is
essentially reproduced by the present model. We have shown
that the main effects in the phase diagrams produced by an
increase in σ are: (i) for those phase diagrams presenting
two distinct ferromagnetic phases, it reduces the ferromagnetic
phase with higher magnetization and destroys the one with
lower magnetization; (ii) all critical points (tricritical, fourth-
order, ordered and critical end points) are pushed towards
lower temperatures, leading to a destruction of the first-order
critical frontiers.

We have argued that the random-field Ising model
defined in terms of a triple Gaussian probability distribution
is appropriate for a physical description of some diluted
antiferromagnets that, in the presence of a uniform external
field, may exhibit multicritical phenomena. As an example of
a candidate for a physical realization of this model, one has
the compound Fex Mg1−x Cl2, which has been modeled through
an Ising ferromagnet under random fields whose distribution
appears to be well represented by a superposition of two
parts, namely a trimodal and a continuous contribution [7].
This compound presents a first-order line that disappears due
to an increase in the randomness; such an effect has been
described recently in terms of a simpler model [26]. However,
it is possible that the diluted antiferromagnet FexMg1−x Cl2,
or another similar compound, may present an even more
complicated critical or multicritical behavior; by adjusting
properly the parameters of the random-field distribution, the
model presented herein should be able to cope with such
phenomena.
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