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Abstract
Dimensional crossover in the Kondo necklace model is analyzed using the
bond-operator method at zero and finite temperatures. Explicit relations
describing quasi-two-dimensional properties are obtained by asymptotically
solving the resulting equations. The crossover from two dimensions (2d) to
three dimensions (3d) is investigated, turning on the electronic hopping (t⊥)
of conduction electrons between different planes. In order to give continuity
to our analysis, both cases of crossover, quasi-three-dimensional (q3d) and
quasi-one-dimensional (q1d), are also investigated. The phase diagram as a
function of temperature T , J/t‖ and t⊥/t‖, where t‖ is the hopping within the
planes, is calculated. Unusual reentrant behavior in the temperature-dependent
antiferromagnetic critical line is found close to two dimensions. Near the
isotropic three-dimensional quantum critical point the critical line is described
by a standard power law with a square root dependence on the distance to the
quantum critical point.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Dimensionality plays a central role in strongly correlated electron systems (SCES) [1].
For instance, explanations based on two-dimensional (2d) theories in the neighborhood
of a quantum critical point (QCP) [2–7] have been proposed to explain significant
unsolved problems in SCES, such as non-Fermi liquid (NFL) behavior and high-temperature
superconductivity. But the real materials to which these ideas have been applied are usually
rendered three dimensional (3d) by a finite electronic coupling between their component layers;
a 2d-QCP has not been experimentally observed in any bulk 3d system, and mechanisms
for dimensional reduction have remained the subject of theoretical conjecture [8, 9]. Thus
the very notion of dimensionality can be said to acquire an ‘emergent’ nature: although the
individual particles move on a three-dimensional lattice, their collective behavior occurs in
lower-dimensional space.
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Specifically in heavy-fermion (HF) materials, there have already been diverse theories
which propose that quasi-two-dimensional (q2d) systems play a central role in the
understanding of anomalous behaviors near a magnetic QCP. Several theories were formulated
to explain their unusual properties [10–12]. In this context the spin-density wave
(SDW) [11, 12] theory as well as the local quantum critical description [13] can account
for the logarithmically divergent specific heat coefficients and quasi-linear resistivities only
if the spin fluctuations are q2d. The hypothesis that HF materials involve decoupled layers
of spins motivates a search for a mechanism that can generate a q2d environment for the spin
fluctuations out of a metal that is manifestly three dimensional. One such frequently cited
mechanism is geometric anisotropy. Here, the idea is that turning on the hopping between
planes t⊥ leads magnetic long-range order (LRO) at finite temperatures. In this paper, we use
the Kondo necklace model [14] as a simple Hamiltonian to explore this line of reasoning. The
basic aim of our paper is not to examine whether inter-layer coupling is relevant or irrelevant at
the QCP but rather to examine whether anisotropy can set up an environment in which the inter-
layer coupling is sufficiently weak for us to consider the system to be quasi-two dimensional in
all its properties.

The anisotropic Kondo necklace model (AKNM) is given by

H = t‖
∑

i,δ1

(τ x
i τ

x
i+δ1

+ τ
y
i τ

y
i+δ1

)+ t⊥
∑

i,δ2

(τ x
i τ

x
i+δ2

+ τ
y
i τ

y
i+δ2

)+ J
∑

i

Si · τ i , (1)

where τi and Si are independent sets of spin-1/2 Pauli operators, representing the conduction
electron spins and localized spin operators, respectively. δ1(δ2) is the difference between
lattice vectors of the in-plane (inter-plane) nearest-neighbor sites. t‖ is the hopping within the
planes and t⊥ that between them. The last term is the magnetic interaction between conduction
electrons and localized spins via the coupling J .

The plan of the paper is the following. In section 2 we set up the bond-operator formalism.
In section 3 we describe the antiferromagnetic (AF) ordered state solving the anisotropic Kondo
necklace Hamiltonian via the Green’s function method; also we show the order parameters at
finite temperatures. Section 4 discusses the Néel line in the AKNM. Using the results obtained
in the previous section the thermodynamic phase transition and phase diagrams are discussed
in section 5 for both cases, the q2d and q3d AKNM. The case ξ � 1 that corresponds to d = 1
will be shown only to give continuity to our analysis. Also the reentrance phenomenon, i.e. two
successive transitions for certain parameter values, is analyzed. Finally, in section 6 we give
the conclusions of our paper.

2. Bond-operators formalism

The bond-operator mean-field approach [15] is basically a strong coupling approximation in
J . The spins between layers dominantly form singlets and the density of triplets is ‘low’ (this
assumption will allows one to neglect triplet–triplet interaction). For two S = 1

2 spins, Sachdev
and Bhatt [15] introduced four creation operators to represent the four states in Hilbert space.
This basis can be created out of the vacuum by singlet |s〉 and triplet |tα〉 = t†

α |0〉 (α = x, y, z)
operators. In terms of these triplet and singlet operators the localized and conduction electron
spin operators are given by

Si,α = 1
2

(
s†

i ti,α + t†
i,αsi − iεαβγ t†

i,β ti,γ

)
,

τi,α = 1
2

(
−s†

i ti,α − t†
i,αsi − iεαβγ t†

i,β ti,γ

)
,

(2)

where α, β and γ take the values x , y, z, repeated indices are summed over, and ε is the totally
antisymmetric Levi–Civita tensor. The restriction that the physical states are either singlets or
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triplets leads to the constraint s†s + ∑
α t†
α tα = 1. Moreover, the singlet and triplet operators

at each site satisfy bosonic commutation relations [s, s†] = 1, [tα, t†
β] = δα,β , [s, t†

α] = 0.
Substituting the operator representation of spins defined in equation (2) into the original
Hamiltonian equation (1) and considering the commutation relations, we obtain

H = H0 + H1 + H2

where
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(3)

Here α = x, y. H0 represents the interaction between spins S and τ in the site i and the
constraint s†s+t†

i,x ti,x +t†
i,yti,y+t†

i,z ti,z = 1 is implemented through the local chemical potentials
μi . H1, H2, are terms associated with the hopping t‖ and t⊥, respectively. As argued before,
we neglect triplet–triplet interactions [19].

3. Antiferromagnetic ordered phase

The Hamiltonian above, at half filling, can be simplified using a mean-field decoupling [20].
Relying on the nature of the strong coupling limit (t/J ) → 0 we take 〈s†

i 〉 = 〈si 〉 = s. Next,
to describe the condensation of one local Kondo spin triplet tk,x on the AF reciprocal vector
Q = (π/a, π/a, π/a), we introduce: tk,x = √

Nt̄δk,Q + ηk,x corresponding to fixing the
orientation of the localized spins along the x direction. The quantity t̄ is the mean value of the
x-component spin triplet in the ground state and ηk,x represents the fluctuations. Finally the
translation invariance of the problem implies that we may assume the local chemical potential
as a global one.

Making approximations already used in the bond-operator formalism [16, 17] and after
performing a Fourier transformation of the boson operators, we get

Hm f = N

(
−3

4
Js2 + μs2 − μ

)
+
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J

4
+ μ
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t†
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4
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)
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�kη
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†
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[
�kt†

k,ytk,y + Dk

(
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k,yt†
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)]
, (4)

with �k = ω0 + 2Dk, λ(k)‖ = cos kx + cos ky , �k = 1
4 t‖s2λ(k)‖, λ(k)⊥ = cos kz ,

�′
k = 1

4 t⊥s2λ(k)⊥, Dk = �k + �′
k, N is the number of lattice sites, Z‖ = 4 is the total
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number of the nearest neighbors in planes and Z⊥ = 2 is the number of the nearest neighbors
between planes. The wavevectors k are taken in the first Brillouin zone and the lattice spacing
was assumed to be unity. We have considered for simplicity a cubic lattice.

Now we obtain the free energy; for that, we shall employ the equation of motion method
using the Green’s functions and thus to obtain the thermal averages 〈Hm f 〉 = U . So the thermal
averages of the singlet and triplet correlation functions are obtained from

〈〈γk,α; γ †
k,α〉〉ω = 1

2π

ω +�k

ω2 − ω2
k

, 〈〈tk,z; t†
k,z〉〉ω = 1

2π

1

ω − ω0
, (5)

where γ = η, (t) for α = x, (y). The poles of the Green’s functions determine the excitation
energies of the system as ω0 = ( J

4 +μ), which is the dispersionless spectrum of the longitudinal

spin triplet states and ωk = ±
√
�2

k − (2Dk)2 that correspond to the excitation spectrum of
the transverse spin triplet states for both branches ωx = ωy . Then, we can stress that the
contribution of the term k = Q for the free energy from the bosons tk,x will depend only on the
average value t̄ in the expression and not on the energy spectrum of the bosons. Consequently
the Green’s function for both α = x and y is the same. Solving the coupled equations of motion
obtained for the Green’s function propagators we obtain

U = 〈Hm f 〉 = ε0 + ω0

2

∑
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(
coth

βω0

2
− 1

)
+
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(
coth

βωk

2
− 1

)
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where

ε0 = N
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4
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4
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2
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)
t2 +

∑
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is the ground state energy of the system, β = 1/kBT , s and t being the singlet and triplet order
parameters, respectively.

Considering the above equation (6) and that the entropy of free bosons is S =
kB

∑
k[(n(ωk)+ 1) ln(n(ωk)+ 1)− n(ωk) ln(n(ωk))], the free energy F = U − T S is trivially

obtained as

F = ε0 − 2

β

∑

k

ln[1 + n(ωk)] − N

β
ln[1 + n(ω0)], (8)

where n(ω) = 1
2 (coth βω

2 − 1) is the occupation factor for bosons. Since the parameter
s is always nonzero [19, 18] and t 
= 0 in the antiferromagnetic phase, we minimize
the ground state energy with respect to t to find μ = t‖s2/y − J/4, and consequently
ωk = 1

y t‖s2
√

1 + y(λ(k)‖ + ξλ(k)⊥) where ξ = t⊥/t‖ is the real spatial anisotropy ratio
between the hopping along different directions and y = 1/(2 + ξ). Then, we can calculate the
other parameters s2 = s2(T ) and t2 = t2

(T ) minimizing the free energy equation (8). Using
(∂ε/∂μ, ∂ε/∂s) = (0, 0), we can easily get the following saddle-point equations:

s2 = 1 + J

t‖
y

2
− 1
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coth
βωk

2
− ς,

(9)

where ς = 1
4 (coth βω0

2 − 1). Generally the equations for s and t in equation (9) should be
solved and at ξ = 0, (ξ = 1) the results of [20] for 2d (3d) are recovered. For J/t‖ > (J/t‖)c,
triplet excitations remain gapped and at J/t‖ < (J/t‖)c the ground state has both condensation
of singlets and triplets at the antiferromagnetic wavevector Q = (π, π, π). Then, the QCP at
T = 0, (J/t)c separates an antiferromagnetic long-range ordered phase from a gapped spin
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liquid phase. For finite temperatures, the condensation of singlets s occurs at a temperature
scale which, to a first approximation, tracks the exchange J . The energy scale below which
the triplet excitations condense is given by the Néel temperature (TN) which is calculated in the
next section near the AF magnetic instability.

4. Néel temperature in the AKNM

The Néel line giving the finite temperature instability of the antiferromagnetic phase for
J/t‖ < (J/t‖)c is obtained as the line in the T versus (J/t‖) plane at which t vanishes (t̄ = 0).
Thereby from equation (9) we have

J

t‖
= 2

y

(
1 − 1

2N

∑

k

1√
1 + y(λ(k)‖ + ξλ(k)⊥)

coth
βωk

2
+ ς

)
. (10)

This expression defines the boundary of the AF state. Consequently the QCP is obtained
making T = 0 in equation (10), then we get

(
J

t‖

)

c

= 2

y

(
1 − 1

2N

∑

k

1√
1 + y(λ(k)‖ + ξλ(k)⊥)

)
, (11)

where y = 1/(2 + ξ) as defined before. Because g = |(J/t‖)c − (J/t‖)| measures the distance
to the QCP we finally obtain

|g| = 1

y N

∑

k

1√
1 + y(λ(k)‖ + ξλ(k)⊥)

(
coth

βωk

2
− 1

)
+ 2ς

y
. (12)

4.1. Numerical results at T = 0

In order to find the AF boundary at T = 0 we are going to calculate as the QCP varies from 2d
to 3d, i.e. as we turn on ξ . Our numerical task consists in evaluating, at various ξ , the quantum
critical point given by equation (11). For this purpose we first consider the isotropic cases,
i.e. ξ = 1 (3d) with t‖ = t⊥ = t , and ξ = 0 (2d) where t‖ = t and t⊥ = 0. Thereby we
easily obtain J/t ≈ 1.4409 (J/t ≈ 2.6611) in 2d (3d) in agreement with previous works in
the KNM [19] as well as KLM [18]. In figure 1 we have plotted the coupling strength (J/t‖)c
versus the anisotropy at 1 − ξ for different ξ ∈ [0,1]. The inset shows the log–log plot of g
versus ξ close to d = 2 (ξ ∈ [0, 0.1], g = |(J/t‖)c − (J/t‖)c2d | and (J/t‖)c2d ≈ 1.4409). The
line fit yields g ∝ ξ 1.8.

In summary, in this section we have established the essential expression, equation (12),
for finding the Néel temperature as a function of g and ξ as well as the QCP dependence
on the anisotropy ξ . In the next section we are going to use the calculations above to
investigate analytically if there is thermodynamic phase transition when inter-plane hopping
t⊥ is turned on.

5. Analytical results for finite temperature

In this section we are going to calculate analytically the Néel critical line for both the q2d
(ξ � 1) and q3d (ξ ≈ 1) AKNM. The case ξ � 1 that corresponds to d = 1 will be
shown only to give continuity to our analysis. All the calculations will be done considering two
essential approximations: (i) the system is close to a magnetic instability; (ii) the temperature
region where the Néel line will be found will be lower than the Kondo temperature (TK).
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Figure 1. Zero temperature phase diagram showing the line of quantum phase transitions (J/t‖)c
as a function of the anisotropy parameter 1 − ξ . Also shown is the AF border (J/t‖)c at
2d (2d-QCP ≈ 1.4409) and 3d (3d-QCP ≈ 2.6611). The points were obtained by solving
equation (11). The inset shows the log–log plot of g versus ξ close to d = 2 (ξ ∈ [0, 0.1],
g = |(J/t‖)c − (J/t‖)c2d | and (J/t‖)c2d ≈ 1.4409). The line fit yields g ∝ ξ1.8.

We will start expanding k close to the wavevector Q = (π, π, π) associated with the
antiferromagnetic instability, so we get

λ(k)‖ = −2 + k2
‖

2
+ O(k4

‖),

λ(k)⊥ = −1 + k2
z

2
+ O(k4

z ).

(13)

This yields the spectrum of transverse spin triplet excitations as

ωk = ω0

√
1 + y(λ(k)‖ + ξλ(k)⊥) ≈ ω0

√
y

2
(k2

‖ + ξk2
z ), (14)

where ω0 is the z-polarized dispersionless branch of excitations. Replacing equation (14) in
equation (12), and considering that for temperatures kBT � ω0, ς goes to zero faster than the
first term of equation (12), we obtain

|g| y

2
= 1

π2

∫ π

0

∫ π

0

k‖ dk‖ dkz√
y
2 (k

2
‖ + ξk2

z )

(
coth

βωk

2
− 1

)
. (15)

For ξ = 0 the integral above diverges, excluding long-range order at finite temperatures in two
dimensions in accord with the Mermim–Wagner theorem [21]. On the other hand, when ξ = 1,
the in-plane interaction equals the inter-plane coupling (t⊥ = t‖) and we have a pure 3d KNM
with TN ∝ √|g| as found in a previous work [20].

5.1. The case ξ � 1

We now demonstrate analytically the appearance of a finite Néel line temperature when a small
hopping t⊥ between planes is turned on. Making a change of variables in equation (15) we
obtain

|g| = 1

y2π2α

∫ π

0

(∫ b

a
(coth u − 1) du

)
dkz, (16)
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Figure 2. Phase diagram between the temperature as α−1
c and J/t‖ for nonzero ξ . We observe

that Néel order arises for an arbitrarily weak inter-plane hopping t⊥ and it increases as ξ increases.
2d-QCP shows the zero temperature quantum critical point in 2d (ξ = 0). The interesting feature
of this phase diagram is the reentrant behavior for 0.002 < ξ < 0.1. As temperature is lowered, the
system passes from a disordered paramagnetic phase (with no spontaneous symmetry braking), to
the antiferromagnetic phase, and back to the disordered phase as the temperature is lowered further.

where u = 2α
√

y
2 (k

2
‖ + ξk2

z ), b = 2α
√

y(π2 + ξk2
z )/2, a = 2α

√
ξy/2kz and α = ω0/4kBT .

While each of the Kondo systems has its own energy scale Kondo temperature TK below
which the thermodynamic and transport properties are governed by the QCP [22], relevant
perturbation which is normally present in real systems introduces another energy scale Tx

where crossover to another regime occurs (for instance, the coherence temperature proposed
by Continentino and collaborators [23]). In our case we argue that the Néel temperature region
can be observed only when Tx/TK � 1. In other words, the Néel region can be observed only
for α � 1 (since ω0 tracks J ∼ TK). Thereby, solving equation (16) considering the latter and
ξ � 1 we get

|g|ξ�1 = 2
√
ξ + 4

πα

[
1 − ln

(
2π

√
ξα

)]
+ O(ξ), (17)

where we took y ≈ (1 − ξ

2 )/2 and the second term in the right-hand side takes into account
the thermal fluctuations. Equation (17) gives us the Néel line as a function of the distance to
QCP g for a small but finite anisotropy ξ and temperatures kBT � ω0, where as said before
ω0 tracks TK. We observe in equation (17) that |g| diverges for ξ = 0, then in two dimensions
there is no AF ordering above zero temperature. As soon as the dimension of the AKNM is
greater than two, there is a nonzero-temperature phase transition.

In figure 2 we show the phase diagram α−1
c = 4kBTN/ω0 as a function of J/t‖ for different

value of ξ between [2×10−3, 10−1]. α−1
c is defined as the critical line where Néel order appears.

We observe a reentrance phenomenon that will be discussed in the following subsection. Close
to the isotropic 3d-QCP the system does not display this phenomenon. At this point we can
construct the phase diagram α−1

c versus J/t‖ versus 1 − ξ for ξ � 1 considering our analytical
and numerical calculations. This is shown in figure 3, where the boundary line at T = 0 has
been calculated using equation (11) and the Néel lines using equation (17).

In summary, in this subsection we have obtained analytically the expression for the Néel
line close to the QCP in q2d and we have shown that in fact this line exists for ξ � 1 and

7
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Figure 3. Three-dimensional phase diagram
showing the critical Néel temperature as α−1

c
versus J/t‖ and 1 − ξ . The Néel temperature
increases rapidly as ξ increases for small ξ . This
shows that very weak inter-plane coupling t⊥ is
enough to destroy the 2d character of the second-
order transition. As long as the dimension of the
AKNM is greater than two, there is a nonzero-
temperature phase transition.

temperatures much smaller than the exchange interaction energy J . We now are going to
analyze the causes of the reentrance observed in figure 2.

5.1.1. Reentrance in the quasi-two-dimensional AKNM. Reentrant behavior has posed
challenges to microscopic theoretical physics in a variety of condensed matter systems [24–30].
This phenomenon is characterized by the reappearance of a less ordered phase, following a
more ordered one, as the temperature is lowered. It appears that the reentrance phenomenon
also occurs, as we report in this paper, in the phase diagram of a quasi-two dimensional AKNM,
at least as indicated from our bond-operator mean-field theory calculation. Basically the
reentrant phenomenon can be produced by the increase of entropy due to disorder or due to the
presence of additional degrees of freedom. In terms of our level scheme this can be explained
as due to the competition between singlet and triplet type ground states. There is a combined
free energy gain from the energy condensation of the singlets and the entropy associated with
the triplet states at low but finite temperatures for ξ � 1. In our case dimensional effects also
play a role in the reentrance phenomenon since at 2d there is no finite temperature transition. At
the highest temperatures uncorrelated fluctuations determine the thermodynamics. The system
is then in the disordered paramagnetic phase but with a AF bias due to the exchange interaction
ratio J/t‖ (as distinguished from spontaneous symmetry breaking). As temperature is lowered
to around TN, energy and entropy are both important, and the correlated fluctuations affect
the dominance of either phase significantly. The system enters the AF phase. At the lowest
temperatures, energy but not entropy is important and the ground-state energy of either phase
determines the dominance. To our knowledge this effect has not been observed experimentally.
Hence, we hope that our results will stimulate further experiments in this field.

5.2. The case ξ ≈ 1

We have calculated in the preceding section the q2d antiferromagnetic state for the AKNM,
which allowed us to study the effect of inter-plane hopping t⊥ on the emergence of the Néel
critical line. We now calculate it for the q3d AKNM. For our purposes, it is sufficient to
consider

ξ = 1 − ε, (18)
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Figure 4. Phase diagram between the
temperature for α−1

c versus J/t‖ for
ξ ≈ 1. We observe that the Néel line is
only renormalized when the inter-plane
hopping t⊥ ∼ t‖ . The inset shows the
log–log plot of α−1

c versus g. The Néel
line scales like TN ∼ gψ with ψ ≈ 0.5
close to the 3d-QCP.

where ε is a dimensionless parameter that controls the dimensional crossover in this case. Close
to 3d the anisotropy ratio will be ξ ≈ 1, hence ε � 1. Thereby, working in analogy with the
preceding section, using equations (15) and (18) we obtain

|g|ξ≈1 =
√

6

8

1

α2
(3 − ε + O(ε2)). (19)

The equation above shows that the Néel line of the q3d AKNM (ξ ≈ 1) is only renormalized by
the anisotropy ratio ε. Thus, for ε = 0, the in-plane interaction equals the inter-plane hopping
(t⊥ = t‖) and we recover the exact value as obtained in a previous work for the isotropic
KNM [20]. Figure 4 displays the Néel line close to 3d-QCP for ξ = 0.9, 0.99, 1. The inset
shows the log–log plot of α−1

c versus J/t‖. The Néel line scales like TN ∼ gψ with ψ ≈ 0.5.
We conclude that, in the q3d AKNM the Néel line exists and goes to zero as TN ∝ √|g|.

5.3. The case ξ � 1

In order to give continuity to our analysis we might also consider the case ξ → ∞. Since
now the coupling between planes is large (t⊥ � t‖), we may treat it using the same scheme
as before where the ratio ξ = t⊥/t‖ is taken as a huge parameter. Then we can see easily that
considering ξ → ∞ in equation (15) gives us zero, ensuring that there is no long-range order
at finite temperatures in 1d KNM [21].

In summary, in this subsection we have shown that an analytical treatment leads to an
exactly solvable and comprehensible relation between the dimension and Néel line, which can
be used to gain insight into the role of the dimensionality in SCES.

6. Conclusions

In this paper we considered the AKNM at zero and low temperatures. Our main motivation for
undertaking the present study has been to determine whether there is a well-defined crossover
region when the anisotropy ratio ξ = t⊥/t‖ varies from zero (2d) to one (3d). We have
succeeded in finding that the Néel line already exists since turning on the inter-plane hopping
t⊥, although in general, geometric anisotropy is an extremely fragile mechanism for decoupling
spin planes and will always be overcome by quantum and thermal fluctuations. Our work
was also motivated by heavy fermion systems. These are much more complex systems than
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the insulating Kondo systems at half-filling presented here. Nevertheless, we believe that
our mechanism for the formation of a q2d Néel line by means of a real spatial anisotropy
survives in the case of more complicated SCES. It emphasizes the need to consider the effects
of dimensionality in a more realistic generalization of the widely accepted views that follow
from Doniach’s Kondo necklace model. We are led to conclude that inter-plane coupling is
essential to keep 3d AF ordering at finite temperatures. Therefore there are AF phase transitions
for ξ > 0 at the Néel temperature TN > 0.

Although the transport properties related to the kinetic energy of conduction electrons are
not quantitatively represented in the Hamiltonian (1), the most essential features of Kondo
lattices, i.e. the competition between a long-range ordered state and a disordered state is clearly
retained in the model. The qualitative features regarding the stability of the AF phase are well
displayed in the model and it allows a simple physical interpretation of the phase diagram in
anisotropic Kondo lattices. It will be left to a further work to compare our theoretical results
obtained for the AKNM with both experimental data and different levels of approximation
in order to clarify to what extent the estimates of ξ from measured quantities depend on the
theoretical tools used.
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