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Abstract
In this work we calculate the magnetocaloric effect in the compounds Gd5Si4
and Tb5Si4. We use a model Hamiltonian of interacting spins, and treat
the spin–spin interaction in the Monte Carlo simulation. The theoretically
calculated isothermal entropy change and the adiabatic temperature change
upon variation of the magnetic field are in good agreement with the available
experimental data.

The magnetocaloric effect [1–4] is characterized by an isothermal entropy change upon
variation of the magnetic field, �S(T ) = S(T, hext �= 0) − S(T, hext = 0), and by a
temperature change �Tad(T ) = T2 −T1 determined under the adiabatic condition S(T2, hext �=
0) = S(T1, hext = 0). The magnetocaloric effect has been experimentally investigated in both
rare earth compounds [5–14] and in transition metal compounds [15–20]. The rare earth metals
and their alloys are the most studied materials because of their large magnetic moments and
because of their magnetic ordering temperatures, which lie in the temperature interval from
0 to 350 K. The magnetocaloric effect in the series Gd5(SixGe1−x )4 and Tb5(SixGe1−x)4

has been intensively studied [5–14]. It has been shown that for x > 0.5 the compounds
Gd5(SixGe1−x )4 have an orthorhombic phase and undergo a second-order magnetic phase
transition. In this range of concentration the maximum value of the isothermal entropy
change upon variation of the magnetic field from 0 to 5 T is about 10 J kg−1 K−1. The
compounds Gd5(SixGe1−x )4, for x < 0.5, exhibit a crystallographic transformation from
the orthorhombic to the monoclinic phase around the magnetic ordering temperature, and
undergo a first-order magnetic phase transition. As a result they exhibit large isothermal
entropy changes. The discovery of the giant magnetocaloric effect [5–7] in the compound
Gd5(Si2Ge2) at room temperature has made it a potential candidate for use as a magnetic
refrigerant in room temperature magnetic refrigerators. The magnetocaloric properties of the
series Tb5(SixGe1−x )4 are very similar [12–14] to those observed for Gd5(SixGe1−x )4. For
instance, for x = 1 the compound Tb5Si4 also crystallizes in the orthorhombic phase and
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exhibits a second-order magnetic phase transition around 223 K. The isothermal entropy change
around the magnetic ordering temperature for Tb5Si4 upon variation of the magnetic field from
0 to 5 T is about 10 J kg−1 K−1.

From the theoretical point of view, the magnetocaloric effect in rare earth based
compounds undergoing a second-order magnetic phase transition is usually described using the
Heisenberg model Hamiltonian in which the spin–spin interaction is treated in the molecular
field approximation [21–33]. In cases of rare earth compounds undergoing a first-order
magnetic phase transition it is necessary to include an extra term in the Heisenberg model
Hamiltonian, to account for the magnetoelastic coupling [29].

It is well known that around the magnetic ordering temperature the magnetic part of the
specific heat calculated within molecular field theory is in disagreement with experimental data.
This is an artefact of the mean field theory which does not consider short-range interactions.
Nevertheless, the magnetocaloric quantities for rare earth based compounds obtained within
molecular field theory are usually in good agreement with experimental data. This is because in
when calculating the magnetocaloric quantities through the integral of the heat capacity there
are some compensations so that the final results are very reasonable. Therefore, in order to
understand the real physical mechanisms behind the magnetocaloric effect in rare earth based
compounds it is very important to go beyond mean field theory to incorporate short-range
interactions.

In this work we calculate the magnetocaloric effect in the compounds R5Si4 (R = Gd, Tb)

using a model of localized interacting spins in which the spin–spin interaction is treated within
the classical Monte Carlo simulation [34, 35]. We start with the following energy:

E = −
∑

i j

λi j �Ji · �Jj +
∑

i

ζi (�ri · �Ji )
2 −

∑

i

gµB �Ji · hext (1)

where 〈i j〉 run over the first next neighbours. In the above energy the first term is the
contribution from the spin–spin interaction, where λi j is the exchange interaction parameter
and Ji is the total angular momentum of the rare earth ions. The second term is the single
ion anisotropy, where the vector �ri is the direction of the anisotropy and ζi is an anisotropic
coefficient. The third term is the Zeeman interaction of the total angular momentum with an
external magnetic field (hext). We consider the z components of the total angular momentum
(J z) as quantum quantities, which can assume discrete values in the interval [−J, J ]. For a
given J z , the transverse components J x and J y were randomly chosen under the condition
(J x)2 + (J y)2 = J 2 − (J z)2. Within this approach we restrict the number of available states so
that the upper limit of the magnetic entropy Smag = � ln(2J + 1), where � is the gas constant,
is reproduced.

To calculate the mean energy for a Monte Carlo cycle we use the following algorithm. We
randomly generate an initial configuration of total angular momentum and calculate the energy
of this initial configuration (EI) according to equation (1). Then, we select a given site ‘i ’,
change the components of the total angular momentum and calculate the energy for this new
configuration (EF) according to equation (1). If EF < EI the new configuration with energy EF

is accepted. If EF > EI, we generate a random number r such that 0 < r < 1 and calculate the
probability factor p = e−β(EF−EI), where β = 1/kBT , kB being the Boltzmann constant. If
r < p the new configuration of total angular momentum with energy EF is accepted, otherwise
the old configuration with energy EI is preserved. We move to the next site, change the value
of the components of the total angular momentum, calculate the new energy (EF) and make
the comparison between EI and EF to choose between the old and the new configuration. This
process is repeated until all the lattice sites have been swept. To obtain reasonable values of
the physical quantities, it is necessary to run thousands of Monte Carlo cycles. For a given
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temperature, the mean value of the energy 〈E〉 is calculated by:

〈E〉 = 1

(NC − N0)

NC∑

i>N0

Ei (2)

where NC represents the total number of Monte Carlo cycles and N0 is the number of Monte
Carlo cycles used for thermalization. The mean square energy 〈E2〉 is obtained by a relation
similar to equation (2). At a given temperature, the average magnetization per rare earth ion
is calculated by M/ion = gµB〈J 〉, where the mean value of the total angular momentum per
lattice site is calculated from:

〈J 〉 = 1

(NC − N0)

NC∑

i>N0

(
1

NS

NS∑

k=1

Jk

)
(3)

where the label ‘i ’ represents the Monte Carlo cycle, the label ‘k’ represents the lattice sites and
NS represents the number of lattice sites. The total heat capacity is made up of the contribution
from the conduction electrons (Cel), from the crystalline lattice (Clat) and from the magnetic
ions.

The magnetic part of the heat capacity is calculated from

Cmag(T, hext) = 〈E2〉 − 〈E〉2

kBT 2
. (4)

The contribution from the conduction electrons is taken as Cel = γ T , where γ is the
Sommerfeld coefficient. The lattice heat capacity is given, in the Debye approximation,
by [36]:

Clat(T ) = 9RNi

[
4

(
T

θD

)3 ∫ θD/T

0

x3

(ex − 1)
dx −

(
θD

T

)
1

(eθD/T − 1)

]
(5)

where Ni is the number of ions per formula unit and �D is the Debye temperature. The total
entropy is the sum of the contributions from the crystalline lattice (Slat), from the magnetic
(Smag) ions and from the electron gas (Sel). The contribution from the magnetic ions to the
total entropy is given by:

Smag(T, hext) =
∫ T

0

Cmag(T, hext)

T
dT (6)

where Cmag is the magnetic heat capacity calculated in equation (4). The contribution from
the electron gas to the total entropy is taken as Sel = γ T . The lattice contribution to the total
entropy, in the Debye approximation, is given by [31, 32]:

Slat(T ) = Ni

[
−3R ln

(
1 − e− �D

T

)
+ 12R

(
T

�D

)3 ∫ �D/T

0

x3

ex − 1
dx

]
. (7)

To apply the Monte Carlo method to calculate the magnetocaloric effect in Gd5Si4 and Tb5Si4
we use a three-dimensional cluster of 6 × 6 × 6 orthorhombic cells with eight R atoms per
cell (R = Gd or Tb). The Landé factor and the total angular momentum were taken as g = 2;
J = 7/2 for Gd and g = 1.5; J = 6 for Tb. The set of exchange interaction parameters λi j

was chosen to correctly reproduce the experimental data of the magnetic ordering temperature,
around 336 K (223 K) for Gd5Si4 (Tb5Si4). Here we take λi j = 0.294 meV for the compound
Tb5Si4 and λi j = 1.205 meV for the compound Gd5Si4. The anisotropic coefficients for Gd
and Tb ions were respectively taken as ζ = 0 and ζ = 0.0294 meV. In order to establish
the magnitude of the z components of the total angular momentum of the rare earth ions at
each lattice site we proceed as follows: we draw a random number r such that 0 < r < 1
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Figure 1. Temperature dependence of the magnetization of Gd5Si4 per Gd ion. Solid circles,
open circles, solid squares and open squares represent the Monte Carlo calculations for hext = 0,
hext = 2 T, hext = 5 T and hext = 12 T.

and fix the value of J z according to the following scheme. If the random number (r ) lies in
the interval [0, 1/(2J + 1)] we take J z = −J . If the random number (r ) lies in the interval
[1/(2J + 1), 2/(2J + 1)] we take J z = −J + 1, and so on. In the general case if the random
number lies in the interval [(n − 1)/(2J + 1), n/(2J + 1)] we take J z = −J + (n − 1), where
n is a integer number between 1 and 2J + 1. The transverse components J x and J y were
randomly established under the condition (J x)2 + (J y)2 = J 2 − (J z)2. We perform Monte
Carlo calculations, using 4000 Monte Carlo cycles to obtain thermalization of the system. After
thermalization we perform 3000 more Monte Carlo cycles to compute the average values of the
physical quantities. Once the mean values 〈E〉, 〈E2〉 and 〈J 〉 are obtained, we calculate the
magnetization, the magnetic part of the heat capacity and the magnetic entropy. The lattice
heat capacity for Gd5Si4 and Tb5Si4 was calculated from equation (5) using �D = 350 K and
the electronic heat capacity was calculated from Cel = γ T where γ = 5.4 mJ mol−1 K−2.
The parameters γ and �D are in the usual range of values found in the literature [21].

In figures 1 and 2, we respectively plot the temperature dependence of the magnetization
of the compounds Gd5Si4 and Tb5Si4 calculated for hext = 0 T (solid circles), hext = 2 T
(open circles), hext = 5 T (solid squares) and hext = 12 T (open squares). In figures 3 and 4
we respectively plot the total heat capacity (C = Cmag + Cel + Clat) of the compounds Gd5Si4
and Tb5Si4 for hext = 0 T (solid lines), hext = 2 T (dashed lines) and hext = 5 T (dotted
lines). From figure 4 we can observe a good agreement between our Monte Carlo calculations
and the available experimental data [12] of the total heat capacity for the compound Tb5Si4. In
figure 5, we plot the magnetic entropy for the compounds Gd5Si4 and Tb5Si4 obtained within
the Monte Carlo calculations for hext = 0 T (solid circles), hext = 2T (open circles), hext = 5 T
(solid squares) and hext = 12 T (open triangles). From this figure we can observe that the
calculated saturation values of the magnetic entropy, Smag = 17 J mol−1 K−1 for Gd5Si4 and
Smag = 21 J mol−1 K−1 for Tb5Si4, are consistent with the maximum expected value of the
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Figure 2. Temperature dependence of the magnetization of Tb5Si4 per Tb ion. Solid circles,
open circles, solid squares and open squares represent the Monte Carlo calculations for hext = 0,
hext = 2 T, hext = 5 T and hext = 12 T.
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Figure 3. Total heat capacity of the compound Gd5Si4. Solid, dashed and dotted lines represent the
Monte Carlo calculations for hext = 0, hext = 2 T and hext = 5 T, respectively.

magnetic entropy Smag = � ln(2J + 1). In addition, we observe that around the magnetic
ordering temperature, the magnetic entropy curves increase smoothly. This kind of behaviour
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Figure 4. Total heat capacity of the compound Tb5Si4. Solid, dashed and dotted lines represent the
Monte Carlo calculations for hext = 0, hext = 2 T and hext = 5 T, respectively. Open triangles are
experimental data [12] for hext = 0.

0 100 200 300 400 500 600
0

5

10

15

20

25

Gd
5
Si

4

Tb
5
Si

4

S
m

ag
 (

 J
 / 

m
ol

 K
 )

Temperature ( K ) 

Figure 5. Magnetic entropy of the compounds Gd5Si4 and Tb5Si4. Solid circles, open circles,
solid squares and open triangles represent the Monte Carlo calculations for hext = 0, hext = 2 T,
hext = 5 T and hext = 12 T.

in the magnetic entropy, which is usually observed in experimental data, is not observed in
theoretical calculations within the mean field approach.
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Figure 6. Isothermal entropy change in the compounds Gd5Si4 and Tb5Si4 for magnetic field
variations from 0 to 2 T (solid lines), from 0 to 5 T (dashed lines) and from 0 to 12 T (dotted
lines). Open triangles and open circles are experimental data [11, 12] for Gd5Si4 upon variation of
the magnetic field from 0 to 2 T and from 0 to 5 T. The experimental data [13] for Tb5Si4 upon
variation of the magnetic field from 0 to 2 T, from 0 to 5 T and from 0 to 12 T are respectively
represented by solid triangles, solid circles and solid squares.

From the heat capacity curves, we calculate the total entropy for hext = 0, hext = 2 T,
hext = 5 T and hext = 12 T. Using the temperature dependence of the total entropy, not shown
in this paper, we calculated both the isothermal entropy change and the adiabatic temperature
change for some magnetic field variations. In figure 6 we plot the calculated isothermal entropy
change for the compounds Gd5Si4 and Tb5Si4 upon variation of the magnetic field from 0
to 2 T (solid line); from 0 to 5 T (dashed line) and from 0 to 12 T (dotted line). From
this figure we can observe that for the compound Gd5Si4 the calculated isothermal entropy
changes upon variation of the magnetic field from 0 to 2 T and from 0 to 5 T are in very good
agreement with the available experimental data [11, 12]. From figure 6 we can observe that our
calculated isothermal entropy changes for the compound Tb5Si4 are also in good agreement
with experimental data [13]. In figure 7 we plot the calculated adiabatic temperature changes
for the compounds Gd5Si4 and Tb5Si4 upon variations of the magnetic field from 0 to 2 T (solid
line), from 0 to 5 T (dashed line) and from 0 to 12 T (dotted line). From this figure we can
observe that the adiabatic temperature change upon variation of the magnetic field from 0 to
5 T for the compound Gd5Si4 is in good agreement with the available experimental data [11]
(open triangles). Further experimental data are necessary to confirm our theoretical predictions
for the other magnetic field variations and for the compound Tb5Si4.

In conclusion, in this work we have calculated the magnetocaloric effect in the compounds
Gd5Si4 and Tb5Si4 using a model of interacting spins, where the spin–spin interaction is treated
in the Monte Carlo simulation. The calculated curves for the isothermal entropy change and the
adiabatic temperature change upon variation of the magnetic field are in good agreement with
the available experimental data. Our present Monte Carlo calculations not only provide good
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Figure 7. Adiabatic temperature change in the compounds Gd5Si4 and Tb5Si4 for variation of the
magnetic field from 0 to 2 T (solid lines), from 0 to 5 T (dashed lines) and from 0 to 12 T (dotted
lines). Open triangles are experimental data [11] for Gd5Si4 upon variation of the magnetic field
from 0 to 5 T.

values for the magnetocaloric quantities �S and �Tad over the whole range of temperature but
also provide better values of the heat capacity around the magnetic ordering temperature, as
compared with the values obtained within the mean field approximation. Therefore, the present
paper based on the Monte Carlo simulation makes an important step forward in the theoretical
description of magnetocaloric quantities in rare earth based compounds.
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