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We examine the nonlinear dynamics of a closed Friedmann-Robertson-Walker universe in the framework

of braneworld formalismwith a timelike extra dimension. In this scenario, the Friedmann equations contain

additional terms arising from the bulk-brane interaction, which provide a concrete model for nonsingular

bounces in the early phase of the Universe. We construct a nonsingular cosmological scenario sourced with

dust, radiation, and a cosmological constant. The structure of the phase space shows a nonsingular orbit with

two accelerated phases, separated by a smooth transition corresponding to a decelerated expansion. Given

observational parameters we connect such phases to a primordial accelerated phase, a soft transition to

Friedmann (where the classical regime is valid), and a graceful exit to a de Sitter accelerated phase.
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I. INTRODUCTION

Although general relativity is the most successful theory
that presently describes gravitation, it presents some intrinsic
crucial problems when we try to construct a cosmological
model in accordance with observational data. In cosmology,
the �CDM model gives us important predictions about the
evolution of the Universe and about its current state [1].
However, let us assume that the initial conditions of our
Universe were fixed when the early Universe emerged from
the semi-Planckian regime and started its classical expansion.
Evolving back such initial conditions using the Einstein field
equations, we see that our Universe is driven toward an initial
singularity where the classical regime is no longer valid [2].

Notwithstanding the cosmic censorship conjecture [3],
there is no doubt that general relativity must be properly
corrected or even replaced by a completely new theory, let us
say a quantum theory of gravity. This demand is in order to
solve the issue of the presence of the initial singularity
predicted by classical general relativity, either in the forma-
tion of a black hole or in the beginning of theUniverse.While
a full quantum gravity theory remains presently an elusive
theoretical problem, quantum gravity corrections near singu-
larities formed by gravitational collapse have been the object
of much recent research, from quantum cosmology [4,5] to
D-brane theory [6–9]. In the latter scenario, extra dimensions
are introduced constituting the bulk space. In the case of
spatially homogeneous and isotropic cosmologies, the basic
resulting distinction between the two approaches lies in the
corrections introduced in the Friedmann Hamiltonian con-
straint, leading either to modifications in the kinetic energy
terms or to extra potential energy terms. In both caseswemay
have bounces in the scale factor corresponding to the avoid-
ance of a singularity in the models. In this context, the initial
conditions from which our Universe has evolved should
depend crucially on the adopted version of the theory to
describe the dynamics around the singularity.

One of the most important characteristics of our Universe,
supported by observational data, is its large scale of homo-
geneity and isotropy. In fact, the scale of homogeneity
and isotropy is empirically well accepted for distances
above 100 Mpc. Indeed this is the main reason that makes
the geometry of Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) a powerful theoretical tool for the construction of
a cosmological scenario [1]. However, when we consider a
homogeneous and isotropic model filled with baryonic mat-
ter, we find several difficulties when we take into account the
primordial state of ourUniverse.Among such difficulties, we
can mention the horizon and flatness problems [1].
As a possible solution to these problems emerged the

so-called inflationary paradigm [1,10]. Although this fun-
damental paradigm allows us to solve the horizon and
flatness problems, inflationary cosmology does not solve
the problem of the initial singularity. Therefore, nonsingu-
lar models from a new theory that provide alternative
solutions to these problems should be strongly considered.
In this paper we adhere to the brane world scenario,

where a timelike noncompact extra dimension is intro-
duced, constituting the bulk space, and all the matter con-
tent of ourUniversewould be trapped on a four-dimensional
spacetime embedded in the bulk. At low energies general
relativity is recovered [8], but at high energy scales signifi-
cant changes are introduced into the gravitational dynamics
and the singularities can be removed [6].
While spacelike extra dimensions theories have received

more attention in the past decades [9], studies involving
extra timelike dimensions have been considered [11] despite
the fact that propagating tachyonic modes or negative norm
states may arise because of timelike extra dimensions. These
modes have been regarded as problematic since they might
violate causality [12] by considering interactions among
usual particles. Issues like the exceedingly small lower
bound on the size of timelike extra dimensions [13], the
imaginary self-energy of charged fermions induced by
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tachyonic modes—which seems to cause disappearance of
fermions into nothing—and the spontaneous decay of sta-
ble particles induced by tachyons with negative energy are
major difficulties [12]. Nevertheless, to address the cos-
mological constant problem in Kaluza-Klein theories [14]
or reconcile a solution of the hierarchy problem with the
cosmological expansion of the Universe [15], timelike
extra dimensions have been considered. On the other
hand, it has been shown in Ref. [16] that the appearance
of massless ghosts in an effective four-dimensional theory
can be avoided by considering topological criteria in
Kaluza-Klein theories with extra compactified timelike
dimensions. Moreover, avoidance of propagating ta-
chyonic or negative norm states can also be achieved by
considering a noncompact timelike extra dimension [7],
which is the case in the model of this paper.

We organize the paper as follows. In Sec. II we present a
brief review of the modified Einstein field equations in the
brane world scenario. In Sec. III, we construct a nonsingular
cosmological scenario sourced with dust, radiation, and
a cosmological constant. In Sec. IV, we show that given
the observational parameters, we can connect such phases
to a primordial accelerated expansion, a soft transition to
Friedmann (where the classical regime is valid), and a grace-
ful exit to a de Sitter accelerated phase. As our final remarks,
we discuss some of its possible imprints in the physics of
cosmological perturbations.

II. FIELD EQUATIONS

For the sake of completeness let us give a brief intro-
duction to brane world theory, making explicit the specific
assumptions used in obtaining the dynamics of the model.
We rely on Refs. [6,9], and our notation basically follows
[2]. Let us start with a four-dimensional Lorentzian brane
� with metric gab, embedded in a five-dimensional con-
formally flat bulk M with metric gAB. Capital Latin in-
dices range from 0 to 4, small Latin indices range from
0 to 3. We regard � as a common boundary of two pieces
M1 andM2 ofM, and themetric gab induced on the brane
by themetric of the two pieces should coincide although the
extrinsic curvatures of � inM1 andM2 are allowed to be
different. The action for the theory has the general form

S ¼ 1

2�2
5

�Z
M1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð5Þg

q
½ð5ÞR� 2�5 þ 2�2

5L5�d5x

þ
Z
M2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð5Þg

q
½ð5ÞR� 2�5 þ 2�2

5L5�d5x

þ 2�
Z
�

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð4Þg

q
K2d

4x� 2�
Z
�

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð4Þg

q
K1d

4x

�

þ 1

2

Z
�

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð4Þg

q �
1

2�2
4

ð4ÞR� 2�

�
d4x

þ
Z
�

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð4Þg

q
L4ðg��; �Þd4x: (1)

In the above ð5ÞR is the Ricci scalar of the Lorentzian

five-dimensional metric gAB on M, and ð4ÞR is the scalar
curvature of the induced metric gab on�. The parameter �
is denoted the brane tension. The unit vector nA normal
to the boundary � has norm �. If � ¼ �1 the signature
of the bulk space is ð�;�;þ;þ;þÞ, so that the extra
dimension is timelike. The quantity K ¼ Kabg

ab is the
trace of the symmetric tensor of extrinsic curvature Kab ¼
Y;a

CY;b
DrCnD, where Y

AðxaÞ are the embedding functions

of� inM [17]. While L4ðgab; �Þ is the Lagrangian density
of the perfect fluid [18] (with equation of state p ¼ ��),
whose dynamics is restricted to the brane �, L5 denotes
the Lagrangian of matter in the bulk. All integrations over
the bulk and the brane are taken with the natural volume

elements
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð5Þg

q
d5x and

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð4Þg

q
d4x, respectively. �5 and

�4 are Einstein constants in five and four dimensions. We
use units such that c ¼ 1.
Variations that leave the induced metric on � intact

result in the equations

ð5ÞGAB þ�5
ð5ÞgAB ¼ �2

5
ð5ÞTAB; (2)

while considering arbitrary variations of gAB and taking
into account (2) we obtain

ð4ÞGab þ �
�2
4

�2
5

ðSð1Þab þ Sð2ÞabÞ ¼ �2
4ð�ab � �gabÞ; (3)

where Sab � Kab � Kgab, and �ab is the energy momen-
tum tensor associated with L4. In the limit �4 ! 1 Eq. (3)
reduces to the Israel-Darmois junction condition [19]

ðSð1Þab þ Sð2ÞabÞ ¼ ��2
5ð�ab � �gabÞ: (4)

We impose the Z2 symmetry [9] and use the junction
conditions (4) to determine the extrinsic curvature on the
brane,

Kab ¼ � �

2
�2
5

��
�ab � 1

3
�gab

�
þ �

3
gab

�
: (5)

Now using Gauss equation

ð4ÞRabcd ¼ ð5ÞRMNRSY
M
;a Y

N
;bY

R
;cY

S
;d þ �ðKacKbd � KadKbcÞ

(6)

together with Eqs. (2) and (5) we arrive at the induced field
equations on the brane

ð4ÞGab ¼ ��4
ð4Þgab þ 8�GN�ab þ ��4

5�ab

� �Eab þ �Fab; (7)

where we define

�4 :¼ 1

2
�2
5

�
�5

�2
5

þ 1

6
��2

5�
2

�
; (8)
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GN :¼ �
�4
5�

48�
; (9)

�ab :¼ � 1

4
�ca�bc þ 1

12
��ab þ 1

8
ð4Þgab�

cd�cd

� 1

24
�2ð4Þgab; (10)

Fab :¼ 2

3
�2
5

�
�ð5ÞTBDY

B
;aY

D
;b

þ
�
ð5ÞTBDn

BnD � 1

4
�ð5ÞT

�
ð4Þgab

�
; (11)

Eab is the electric part of the Weyl tensor in the bulk
induced in the brane, TAB is the energy momentum in the
bulk, and GN defines the Newton’s constant on the brane.
For a timelike extra dimension we have that � ¼ �1
in our conventions, implying that �< 0 in accordance
with observations. We also remark that the effective four-
dimensional cosmological constant might be set to zero, or
made conveniently small, in the present case of an extra
timelike dimension by properly fixing the bulk cosmologi-
cal constant as �5 ’ 1

6�
4
5�

2. It is important to note that for

a four-dimensional brane embedded in a conformally flat
empty bulk we have the absence of the Weyl conformal
tensor projection Eab and of Fab in Eq. (8).

Accordingly, Codazzi’s equations imply that

raK �rbK
b
a ¼ � 1

2
��2

5rb�
b
a; (12)

resulting in

raEab ¼ rb�
b
a þ �4

5ra�ab þraFab; (13)

where ra is the covariant derivative with respect to
the induced metric gab. Equations (7) and (13) are the
dynamical equations of the gravitational field on the brane.

III. THE MODEL

Let us consider a FLRW geometry on the four-
dimensional brane embedded in a five-dimensional de
Sitter bulk with a timelike extra dimension (� ¼ �1) [6].
Considering comoving coordinates on the brane, the line
element is given by

ds2 ¼ �dt2 þ a2ðtÞ
�

1

1� kr2
dr2 þ r2d�2

�
; (14)

where aðtÞ is the scale factor, k is the spatial curvature, and
d�2 is the solid angle.

The matter content of the model, restricted to the
brane, is given by noninteracting perfect fluids, namely,
dust and radiation, with respective equations of state
pdust ¼ 0, prad ¼ �rad=3, and energy momentum tensor
�ab :¼�abdustþ�abrad satisfying rb�

ab
dust¼0¼rb�

ab
rad.

In this situation we have that

�00 ¼ 1

12
ð�dust þ �radÞ2;

�ij ¼
�
1

12
ð�dust þ �radÞ2

þ 1

6
ð�dust þ �radÞðpdust þ pradÞ

�
gij; (15)

and Codazzi’s equations (12) imply that ra�
a
b ¼ 0,

consistent with the contracted Bianchi’s identities in (7)
and Codazzi’s equation (13). The modified Friedmann
equations have the first integral

H2 þ k

a2
��4

3
¼ 8�GN

3
ð�dust þ �radÞ

� 4�GN

3j�j ð�dust þ �radÞ2; (16)

where H :¼ _a=a with _a � da=dt. It is worth noting that
the bounce is solely engendered because of the presence
of a timelike extra dimension that induces the minus sign
in the last term of (16). By assuming a spacelike extra
dimension, we would obtain a plus sign instead that pro-
vides a singular model.
Expressing

�dust ¼ Edust

a3
; �rad ¼ Erad

a4
; (17)

where Edust and Erad are constants of motion, the
first integral of motion (16) can be expressed as the
Hamiltonian constraint

H ¼ p2
a

2
þ VðaÞ ¼ 0; (18)

where

VðaÞ ¼ k

2
��4a

2

6
� 8�GN

6

�
Edust

a
þ Erad

a2

�

þ 8�GN

12j�j
�
Edust

a2
þ Erad

a3

�
2
: (19)

From (18) we derive the dynamical system

_a ¼ pa; _pa ¼ �dV

da
: (20)

It is worth noting that the last term in the potential (19) acts
as an infinite potential barrier and is responsible for the
avoidance of the singularity a ¼ 0. These potential correc-
tions are equivalent to fluids with negative energy den-
sities. This is in accordance with the fact that quantum
effects can violate the classical energy conditions and may
avoid curvature singularities where classical general rela-
tivity breaks down [20]. Such violations tend to occur on
short scales and/or at high curvatures, which is the case of
the present models.
The behavior of the potential VðaÞ is illustrated in Fig. 1

for k ¼ 0:8, �4 ¼ 1:5, Erad ¼ 0:1, and for Edust ¼ 0:001
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(continuous line), Edust ¼ 0:09 (dashed line). We can see
that the increase of the dust content for a fixed k excludes
the presence of perpetually bouncing solutions by driving
the maximum out of the physical space. For a sufficiently
largeEdust the potential VðaÞ presents no local maximum or
minimum [21].

The critical points in the phase space are stationary
solutions of (20), namely, the points of the phase space
(a ¼ acrit, pa ¼ 0) corresponding to the zeros of the right-
hand side of (20). Here, acrit stands for the real positive
roots of dV=da ¼ 0. By considering the case of closed
geometries (k > 0), it is not difficult to verify that, depend-
ing on the values of the parameters ð�4; j�j; Erad; EdustÞ,
there are at most two critical points associated with one
minimum and one local maximum of VðaÞ. In this case, the
minimum of the potential corresponds to a center while the
maximum corresponds to a saddle. This configuration
allows us to obtain different types of orbits that describe
the evolution of universes in this model. In Fig. 2 we
illustrate the phase space portrait of the model for �4 ¼
1:5,�¼6000, Erad¼0:15, and Edust¼0:05, and for varying
k. The value of Edust is sufficiently bounded so that VðaÞ
has a well. The critical points P1 (center) and P2 (saddle)
correspond to stable and unstable Einstein universes.
Typically the model allows for the presence of perpetually
bouncing universes (periodic orbits in region I) and one-
bounce universes (region II). Region I is bounded by the
separatrix S emerging from the saddle P2. A separatrix
also emerges from P2 toward the de Sitter attractor at
infinity, defining a graceful exit of orbits in region II to
an (inflationary) accelerated phase. From now on we will
restrict ourselves to the case of closed geometries. In the

next section we will examine what kind of orbit would be
generated when one considers the observational values of
ð�4; Erad; EdustÞ.

IV. OBSERVATIONAL COSMOLOGY

As observational cosmology asserts, the domain of
homogeneity and isotropy of our present Universe is well
accepted for scales around the present horizon, which is
given by a0 � 1028 cm (here, the subscript 0 denotes
the present epoch). In this case, we obtain the following
observational parameters:

�4 ’ 1:34� 10�56 cm�2; (21)

Edust ’ 2:6� 1054 g; (22)

Erad ’ 4� 1078 g cm; (23)

where the Hubble radius is fixed toH0�0:77�10�28 cm�1.
From Ref. [22], the brane tension has a lower bound that

corresponds to j�jmin � 1022 g cm�3. That is, a star with
the Chandrasekhar mass will not form an event horizon
if the brane tension is smaller than j�jmin . It turns out

that this value furnishes us with a curvature scale lc �
1=

ffiffiffiffiffiffi
Rb

p ¼ ð ffiffiffiffiffiffiffiffiffi
a= €a

p Þb � 1034lP at the bounce (where lP is the
Planck length and Rb is the Ricci scalar at the bounce).
To guarantee that lc at the bounce is not smaller than
103lP, the brane tension must be less than 1085 g cm�3.
Therefore, we have the following physical domain (not
spoiling the nucleosynthesis) for the brane tension

10 22 g=cm3 & j�j & 1085 g=cm3; (24)

where we have set c ¼ 1. Feeding the Hamiltonian con-
straint (18) with j�jmin and the parameters (21), we obtain
that the spatial curvature is k ’ 0:002 for j�j � j�jmin .

FIG. 1. Behavior of VðaÞ for parameters k ¼ 0:8, �4 ¼ 1:5,
Erad ¼ 0:1, and for Edust ¼ 0:001 (continuous line) Edust ¼ 0:09
(dashed line). The increase of the dust content for a fixed k
excludes the presence of perpetually bouncing solutions.
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FIG. 2. Phase portrait of the dynamics with the critical point
P1 (center) and P2 (saddle). Orbits in region II are solutions of
one-bounce universes with a graceful exit to an accelerated
(inflationary) phase along the separatrix S.
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Considering the lower bound limit for j�j, numerical
calculations show that the potential VðaÞ always has a
local minimum at a1 (corresponding to a center) and a local
maximum at a2 (corresponding to a saddle)—cf. Figs. 3(a)
and 4(a). If we increase j�j by 4 orders of magnitude, we
obtain a value of a1 decreased by 1 order of magnitude. On
the other hand, the local maximum a2 is of the order of

1028 cm [cf. Fig. 4(a)] for j�j � j�jmin (regardless of the
value of j�j). We exhibit the behavior ofVðaÞ and the phase
space ða; paÞ trajectory—for the parameters (21)–(24) and
j�j � j�jmin—in Figs. 3(a), 4(a), 3(b), and 4(b), respec-
tively. We should note that Figs. 3 and 4 display
the same potential VðaÞ and the same universe phase
space trajectory in distinct ranges of a, complementing
each other.

(a)

(b)

(c)

2 1014 4 1014 6 1014 8 1014 1 1015

3 1022

2 1022

1 1022

a

a1 1.5e 14cm

V a

1.0 1014 1.5 1014 2.0 1014 2.5 1014 3.0 1014 3.5 1014 4.0 1014

4 1011

2 1011

2 1011

4 1011

a

a1 1.5e 14cm
Pa

4 1013 5 1013 6 1013 7 1013 8 1013 9 1013

0.002

0.001

0.001

0.002
H z

0

0

z

FIG. 3. (a) The potential VðaÞ and the phase space (b) in the
region that encompasses the critical point a1, considering the
observational values (21) and (24). For j�j � j�jmin , we obtain
a1 � 1014 cm. Although this primordial accelerated phase does
not correspond to usual inflation (0.27 being the number of
e-folds), it is important to remark that as our Universe has
no beginning of time and the cosmological constant is small,
the particle horizon before the bounce was already bigger
than the scales of cosmological interest. In (c) we show the
behavior of the Hubble factor as a function of redshift in a
neighborhood of the bounce given the normalization a0 ¼ 1 and
the parameters (30).

(a)

(b)

(c)

5.0 1027 1.0 1028 1.5 1028 2.0 1028 2.5 1028

1.4

1.2

1.0

0.8

0.6

0.4

0.2

a2 5.6e 27cm

V a

5.0 1027 1.0 1028 1.5 1028 2.0 1028

1.5

1.0

0.5
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1.5
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a2 5.6e 27cm
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1 1 2 3

4. 10 28
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2. 10 28

4. 10 28

z

H z

FIG. 4. (a) The potential VðaÞ and the phase space (b) in the
region that encompasses the critical point a2 and completes
Fig. 3. This critical point is of the order of 1028 cm, coinciding
with the domain of homogeneity and isotropy of our present
Universe, regardless of the value of j�j. In (c) we show the
behavior of the Hubble factor as a function of redshift in a
neighborhood of the saddle a2 given the normalization a0 ¼ 1
and the parameters (30). The domain 0 � z >�1 of the H > 0
branch corresponds to the final acceleration phase approaching
de Sitter as z ! �1, with H ¼ const at z ¼ �1.
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Given the redshift relation

að0Þ
aðzÞ ¼ 1þ z: (25)

Equation (16) can be rewritten as

H2 ¼ H2
0

�
�0dustð1þ zÞ3 þ�0radð1þ zÞ4

þ�0� ��0kð1þ zÞ2 � 3H2
0

16�Gj�j ð1þ zÞ6

� ½�0dust þ�0radð1þ zÞ�2
�
; (26)

where

�0dust � �0dust

�cr:
0

; �0rad � �0rad

�cr:
0

; (27)

�0� � ��

�cr:
0

� �

8�G

1

�cr:
0

; (28)

�0k � k

a20H
2
0

; (29)

and �cr:
0 � 3H2

0=8�G. By fixing the normalization a0 ¼ 1,
we obtain the following parameters according to the
WMAP 7 year results [23]:

�0dust ’ 0:26; �0rad ’ 10�5; �0� ’ 0:73: (30)

Substituting these parameters in (26), we obtain �0k ’
0:004. In Figs. 3(c) and 4(c) we show the behavior of the
Hubble scale factor H with respect to the redshift z.

It is remarkable that considering the interval of 62
orders of magnitude of j�j [cf. (24)], the trajectory in
the phase space of the above observable universe belongs
to region II of the phase space (cf. Fig. 2) corresponding to
a one-single-bounce orbit. The part of the trajectory start-
ing from (a ¼ a1, pa1 < 0) is an initial acceleration phase

that leads the Universe through the bounce and ends in
(a ¼ a1, pa1 > 0), when the Universe enters in a long and

smooth decelerated expansion phase. This primordial
bouncing accelerated phase does not correspond to usual
inflation, the number of e-folds being 0.27. Note, however,
that there is no horizon problem in the model. In fact,
before the bounce, because of its cosmological constant
dominated contraction from the infinity past until a2, the
particle horizon dp is given by

dp ¼
�������� �a

Z �a

1
1

a _a
da

��������’ 1028 cm; (31)

if �a � a2. Therefore the particle horizon is already of the

order of ��1=2, which is constrained by present observa-
tions to be of the order of the Hubble radius today. Hence
there is no horizon problem for the scales of cosmological
interest. The decelerated expansion Friedmann phase ends
in the neighborhood of a2 with a graceful exit to a late de
Sitter accelerated phase.

From (8) and (21), we see that the parameter �5 of the
model must be adjusted in a very precise way. In fact, �5

must be very close to 8�GNj�j, which has the minimum
value 105 cm�2 [see Eq. (24)] and increases as j�j
increases, in order to yield the observed value of �4 given
in Eq. (21). This is the usual problematic fine-tuning of the
cosmological constant, of at least 60 orders of magnitude
as we have seen above, which the present model, at least in
this first approach, does not solve. It turns out that this is
similar to an issue contained in the Randall and Sundrum
model [24]. In this scenario the brane is embedded in
an anti–de Sitter (4þ 1) spacetime, and the fine-tuning
relation �5 ¼ ��4

5�
2=6 has to be satisfied. It was shown

in Ref. [25] that the Randall-Sundrum model is unstable
under small deviations from this fine-tuning. This is a future
investigation we will examine if the same happens in our
model.

V. CONCLUSIONS

In the framework of a Brane World formalism with
a timelike extra dimension, we have obtained a homoge-
neous and isotropic bouncing model compatible with all
observations at the background level. It starts with a de
Sitter contraction from the infinity past, experiences a
bounce at very small scales, turning to the usual standard
expanding decelerating phases of radiation and matter
domination, and has a recent transition to an accelerating
expansion. The bounce itself is caused by the appearance
of new terms coming from the extra timelike dimension of
the bulk in the four-dimensional Friedmann equation,
which become important at high curvature scales and avoid
the cosmological singularity, inducing a gravitational
repulsion owing to the timelike nature of the extra dimen-
sion. We have two free parameters: the brane tension� and
the five-dimensional cosmological constant �5. The brane
tension can assume a wide variety of values [see Eq. (24)],
but �5 must be highly fine-tuned to the value of � in
order to yield an effective four-dimensional cosmological
constant compatible with observations. Hence the model
solves the singularity problem of the standard cosmologi-
cal model, together with the horizon and flatness
puzzles, but it does not solve the cosmological constant
problem.
Our next step will be to perturb the model and investigate

the evolution of cosmological perturbations in such a cos-
mological background. Indeed, our work in progress shows
that, if one imposes an unperturbed de Sitter bulk, a numeri-
cal treatment of linear hydrodynamical perturbation in the
Universe indicates that the bounce has the effect of substan-
tially enhancing the perturbations; nonetheless these pertur-
bations remain bounded with 	�=� � 1 and 	p=p � 1.
However, a general analysis of cosmological perturbations
in this scenario demands also a perturbed de Sitter bulk. In
this case the five-dimensional scalar perturbations will in-
duce fluctuations of the Weyl tensor projected on the brane,
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which will modify the perturbed field equations. This is a
technical and conceptually involved problem that will be
investigated in future publications.
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