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CrossMark
Abstract
In this paper we present a general framework to construct integrable Z3-graded
extensions of classical, two-dimensional Toda and conformal affine Toda the-
ories. The scheme is applied to define the extended Liouville and Sinh—Gordon
models; they are based on Z3-graded color Lie algebras and their fields satisfy
a parabosonic statistics. The mathematical tools here introduced are the Z3-
graded covariant extensions of the Lax pair formalism and of the Polyakov’s
soldering procedure. The Z3-graded Sinh-Gordon model is derived from an
affine Z3-graded color Lie algebra, mimicking a procedure originally intro-
duced by Babelon-Bonora to derive the ordinary Sinh—Gordon model. The
color Lie algebras under considerations are: the 6-generator Z3-graded sy,
the Z3-graded affine s/lz algebra with two central extensions, the Z3-graded
Virasoro algebra obtained from a Hamiltonian reduction.

Keywords: color Lie algebra, affine color Lie algebra, Polyakov’s soldering,
zero-curvature formulation, integrable equations

1. Introduction

This paper presents a general framework to construct integrable Z3-graded extensions (Z3 :=
Z, X 7o) of classical, two-dimensional Toda and conformal affine Toda models. The theories
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under consideration possess a Z3-graded color Lie algebra structure (see, for a definition, [1, 2]
and [3]); due to that, their component fields satisfy a parabosonic statistics.

Two mathematical tools are employed to prove the integrability: the first one is a Z3-
graded extension of the so-called Polyakov’s soldering procedure [4]; the second one is a
Z3-graded covariant extension of the Lax pair formalism introduced in [5] for ordinary simple
Lie algebras.

The above schemes are applied to construct the Z2-graded versions of:

- the Liouville equation, derived from a 6-generator Z3-graded sl, color Lie algebra and

- the Sinh-Gordon model, derived from the Z3-graded affine glz color Lie algebra with two
central extensions; the latter case mimicks the Babelon-Bonora construction [6] of deriving
the ordinary Sinh—Gordon model as a conformal affine Liouville theory with spontaneously
broken conformal invariance.

Before further commenting the issues of Z3-graded integrability, we briefly review the state
of the art about the investigations regarding the [1-3] Z3-graded color Lie algebras and super-
algebras. These extensions of ordinary Lie (super)algebras opened new areas of research which
are of interest in both physics and mathematics. Symmetries implied by Z2-graded color Lie
superalgebras appear in different physical systems, such as the de Sitter supergravity [7], the
nuclear quasi-spin [8], the equations of the nonrelativistic Lévy-Leblond spinors [9, 10]; fur-
ther applications are the construction of a para-Grassmann string model [11] and the Z3-graded
color extension of the super-Poincaré algebra [12].

Color Lie (super)algebras define different types of parastatistics, see [13—18]. Color Lie
algebras imply the presence of both bosonic and parabosonic particles, while color Lie super-
algebras introduce parafermions which obey the Pauli exclusion principle. It is natural, due
to the fact that color superalgebras generalize ordinary superalgebras and supersymmetry,
that they have been more investigated in the literature with respect to their color Lie algebra
counterparts; classical and quantum models invariant under Z3-graded color Lie superalgebras
have been constructed in [19-25]. The interest in the possibilities offered by physical theories
presenting color Lie algebra parabosons is more recent, see [18, 24, 26-28]. More mathemat-
ical topics are the investigations of graded supergeometry (see [29, 30] for a review), the color
superspace formalism, see [31-33].

The possibility to detect paraparticles gained traction in recent years. The experimentalists
learned how to simulate paraoscillators [34] and even engineer them in the laboratory [35]
by using trapped ions. On the theoretical side it has been shown, see [17, 18] and also [36,
371, that certain results implied by Z3-graded paraparticles cannot be reproduced by ordinary
Bose—Fermi statistics.

For all these reasons the field of Z3-graded physics is at present quite an active area of
investigations. Obviously, the notion of integrability in the Z3-graded context is one of the
topics which needs to be elucidated. Some papers already started to investigate this issue, see
[38, 39]. The focus of these works has been in presenting Z3-graded invariant extensions of
classical, two-dimensional integrable models. The present paper is the first one, as far as we
know, to directly address the issue of the Z3-graded integrability by the mathematical tools
mentioned before. We make some further comments about their ordinary counterparts. The
Polyakov’s soldering [4] is an effective and easy-to-implement approach (therefore, particu-
larly suited for our scopes) to perform the Drinfeld-Sokolov [40] Hamiltonian reduction. The
Lax pair formulation allows to reconstruct, see [41], the solutions of the Toda field equations
from chiral/antichiral free fields. The ordinary Toda field theories defined for a simple Lie
algebra g are obtained as Hamiltonian reductions of the free Wess—Zumino Novikov Witten
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(WZNW) models whose current algebras are chiral/antichiral copies of the affine Lie algebra
g. The [6] Conformal Affine Liouville model belongs to the general class of Conformal Affine
Toda theories which are obtained as Hamiltonian reduction of free WZNW models defined for
g. The associated current algebras (often denoted as ) are [42] ‘double Kac—Moody algebras’;
they are the classical counterparts, recovered in a limit, of the quantum toroidal algebras which
gained attention in recent years, see e.g. [43].

The formulation of Z3-graded Toda field theories shares some common properties with the
formulation of the N = 1,2 supersymmetric Toda field theories. Just like the N =1 case, the
simple roots are graded; this requires to introduce, for consistency, graded covariant derivatives
and graded space-time coordinates (the N =1 superToda models are constructed, see [44],
from superalgebras admitting odd simple roots). Just like the N =2 case, the simple roots are
split into conjugate pairs. It then follows, see [45] for the N =2 superToda theories, that the
equations of motion are not recovered from a single Lax pair, but from two, conjugated, Lax
pairs.

We postpone to the Conclusions further comments about the construction of Z3-graded
integrable systems, the results presented in the paper and the further lines of investigation
which they open.

The scheme of the paper is the following: in section 2 we recall the definition of Z3-graded
color Lie algebras and introduce a color Lie algebra extension of sl,, denoted by Z3-sl,, and
its affinization Z%—;l;. It is shown that Z%—slz has two Casimir; a quaternionic matrix present-
ation of Z3-sl, which is used extensively in the paper is also given. In section 3 the Z3-graded
Liouville equation is derived via the Polyakov’s soldering procedure. The related infinite
dimensional color Lie algebras are discussed in section 4. It will be shown that the current
algebra of the Z3-sl, case is a Z3-graded version of the affine sl, algebra with a single central
extension. As pointed out in [4], the Virasoro algebra is derived from the Hamiltonian reduction
of SL(2) gauge transformations. In the present case of Z3-sl,, we obtain a Z3-graded extension
of the Virasoro algebra. All this is formulated in the Hamiltonian mechanics at the classical
level. Section 5 presents the zero-curvature formulation of the Z3-graded Liouville equation.
Component expansions and matrix presentations of the derived equation are investigated in
some detail. In section 6 the zero-curvature formulation is also applied to Z%—s/l; in order to
obtain the Z3-graded Sinh-Gordon model. Component expansions and matrix presentations
are also discussed. Further comments about the results of the paper, the mathematical features
of the Z3-graded integrability and further lines of investigations are given in the Conclusions.

2. 72-graded color Lie algebras 72-sl, and 72-sl,

2.1 7Z3-graded color Lie algebras

Let us recall the definition of the Z3-graded color Lie algebra. Let g be a vector space and
& = [a1a,) an element of Z3. Suppose that g is a direct sum of graded components

g= @g&=g[00]€9g[10]€9g[01]@8[11]- 2.1)
aez
If g admits a bilinear operation (the graded Lie bracket), denoted by [-,-]] and satisfying the
identities
[Aa.B;] € g4 (2.2)

[4a,B;] = — (1) [B;,4a], 2.3)
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(—1)" [Aa, [B5, C:I1 + (—1) [By, [Ce Aall] + (— 1) [Ce. [Aa, B;]] = O, @4)
where A;, B;, C; are homogeneous elements of g; and

&+l;:[a1+b1,a2+b2]eZ§, &~1;:a1b2—a2b1 € 7y, 2.5)

then g is referred to as a Z3-graded color Lie algebra.
It is clear from the definition that the graded Lie brackets are realized by commutators and
anticommutators as follows

(900, 0a) »  [8a,9a), {ga.9;}, a#b#1[00]. (2.6)
As an ordinary Lie algebra, one may define the adjoint action of g on itself:
ad:gxg—g, adA (B) := [A, B]. 2.7

It follows from the Z3-graded Jacobi identity (2.4) that the adjoint action is an algebraic homo-
morphism

ad[A, B]] = [adA, adB]). (2.8)

Thus we have the adjoint representation of g by its adjoint action.

2.2. 75-sly : 73-graded extension of sl,

In the present work we consider a Z3-graded extension of s/, which is defined as follows. Its
basis and their gradings are summarized in the table below:

‘ [00] [10] [01] [11]
+1 Et DT
0| H V4
-1 E- D~

(2.9)

The first column is the eigenvalue of ad%H. The defining relations are given, in terms of
(anti)commutators, by

[H,Z] =0, [H,E*] = £2E*, [H,D*] = £2D*,
{z,E*} =2D*, {z,D*} =2E*, [EY,E"] =H,
{E*,D*} =0, {E*,D¥} =2, [DY,D7|=H.  (2.10)

We also denote the basis in the ordered form

(x',x*,...,X°) = (H,Z,E* ,E",D*,D") 2.11)
and the defining relation by

X4, X" = X, 2.12)
where here and in the following the sum over the repeated indices is understood.
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The matrices of the adjoint representation accommodate the Z3-grading according to the
position of the non-vanishing entries:

H Z . E* E- DY D~

H 00 11,10 10, 01 01
Z 11 00,01 01,10 10

"EY 710 01100 0011 11 |- (2.13)
E- 10 01100 00 11 11

DY or 10011 100 00 |

D~ 01 10111 11 100 00

The diagonal entries are [00]-graded, so one can define the trace of the adjoint matrix.
‘We now introduce two bilinear forms on Z%-Slz :

g =g (X", X") := Tr(adX" - adX”), (2.14)
0™ =1 (X, X") = Tr(adX* - M-adX’), (2.15)
where
g1 0 0
M=[0 0 o3], [adx®,M] = 0. (2.16)
0 g3 0

g% is the Killing form and ? is a [11]-graded Killing form, as it can be seen from the position
of the non-vanishing entries of the matrices (g**) and (n*) :

6 - - - . . .16
6 - - - - 16 -

§=1. . g . . | o= . g . (2.17)

The matrix M is [11]-graded; it is not difficult to verify that M is the unique matrix (up to an
overall constant) which Z3-commute with all the adjoint matrices.

The bilinear forms have some important properties. The first two properties are immediately
seen from the definition or from (2.17) (a denotes the grading of X“):

(i) g =0ifa+b +#[00], n% =0ifa+b #[11];
(i) g =g, = (=D
(iii) the non-degenerate condition
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rr .
2
Sl .
1 : 1
IR I P o
g =lw=gl. . | . . |
S
I 1
r. 1
2
o . . . .
| 1
IS  E _
o=l =g L ] (2.18)
Co
I ~1

(@iv) g([[Xavxb]]’XC> = g(Xu’ [A[X};Xlﬂ)
V) n([X%,X"],X) = (= 1)@ Py (x, [x°, X°T).

The properties (iv) and (v) are direct consequences of the facts that the trace is cyclic and
a+ b+ ¢ =100] for (iv), while it is given by [11] for (v).
In terms of the structure constants, (iv) and (v) are written as

a C C a a C a+e I; C (el
F a8 =1 g f = (*1)( 0 17 ™. (2.19)
They are equivalent to

i = g™ or e+ ()P g = 0. (2.20)

Using (2.20), one may verify that there exist two second order (graded) Casimir operators of
73-sl ; they are given by

1

Coo = 8gup XX = 3 (H*+Z*) +{E+,E_} +{Dy,D_}, (2.21)
1

Cii = 8nupX?X? = 3 {H,Z}y+ [E*,D"|+ [DT,E"], (2.22)

where the suffices indicate their gradings. They have vanishing graded Lie brackets with all
the elements:
[Co0,X] = [C11,X] =0, VX° (2.23)

Finally, we introduce a matrix presentation of Z3-sl, which is important in the present work.
In terms of the 2 x 2 Identity and the Pauli matrices

1 0 0 1 0 —i 1 0
HZ - <0 1) ) g1 = (1 0) ) 0y = (l 0 ) ) 03 = (0 71> ) (224)
one can introduce the 4 x 4 complexified quaternionic matrices
My =LL, M =L®o, M;=0KQ0, M;:=0&0;. (2.25)

They satisfy for i,j = 1,2,3 the relations (the totally antisymmetric structure constant ¢ is
normalized so that €153 = 1):

M,‘A/[j = 5,']'M0 -+ ieijkMk~ (226)



J. Phys. A: Math. Theor. 58 (2025) 055201 N Aizawa et al

Let h,e* be a basis of s, subject to the relations

[h,e®] = +2e*, [et,e”] =h. 2.27)
Then, Z%—slz is realized by the matrices My and s, as follows:

H=My®h, Ef=M @e*, D*=+4iM,oe*, Z=M;@h (228

This is due to the Z3-graded color Lie algebraic nature of the quaternions. The grading of the
matrix M, is understood from (2.28).

2.3. 72-sl, : affine extension of 72-sl,

The loop extension of Z3-sl, is an infinite dimensional Z3-graded color Lie algebra defined by
the relations

X

n’

X =r" Xy nmel. (2.29)

One may easily verify that the loop Z3-sl, algebra admits two central extensions; the first one,
o0, 1 [00]-graded while the second one, ¢y, is [11]-graded:

16, X0 =S X+ 5 (800 + 0 c11) Busmo. (2.30)
Equivalently,

[Hy, ] = 21€00 0 t-m.0 [H,,Ef] = £2EF,,,

[H,,,D,ﬂ = izDr:lt+m7 [Hy, Zn) = 2ncyy Ontm,05

(B Ey | = Huom + €00 S 0, Ex Ew] =0,
{Ef,Df} =0, {Ef D} = Zysom £ 111 Gpymy,
{Ef,z,} =2DF,,, [Df, D] =0,
(D, D, | = Hytm + 100 O gm0, {Dr.,Z,} = 2E7 .,

(Z0,Zn) = 21€00 Optm 0 (2.31)

The central elements of a Z3-graded color Lie algebra are defined as those elements having
vanishing graded Lie brackets with any element. Therefore

[co0, X)) = [coo,c11] = [e11,X3]] = 0. (2.32)

The relation (2.30) is compatible with the Z3-graded Jacobi identity (2.4). Furthermore, (2.30)
is also compatible with the graded derivations dy,d;; defined by the relations

[C()(),dl;] = 0, [d()(),XZ] = HXZ,
[dllaHn] :nZny [dthn] :I’llin7
{di,EF} = £nD,, {d1,DF} = £nEf. (2.33)

We define the affine extension of Z3-sl, by
72-sl, = C{X*) & Cego ® Ccyy @ Cdoo ® Cdy,y (2.34)
with the relations (2.30), (2.32) and (2.33).
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3. ZZ-Liouville equation by Polyakov’s soldering

We mimick the standard procedure of soldering for deriving the Z3-graded version of the
Liouville equation. We introduce the Z3-graded color Lie group Z3-SL(2) generated by the
algebra Z3-sl, defined in section 2.2. A group element of Z3-SL(2) is given by

g =exp (a10E" + a1 D) exp (BooH + B11Z) exp (yioE~ +701D7), (3.1

where the group parameters «, 3 and v are also Z3-graded and their grading is indicated by
the suffix. Throughout this article, the suffices 00, 10, 01, 11 indicate the Z%-grading of the
associated quantities. We assume that the group parameters are functions of the [10]-graded
variables

u,u, [u,u] =0. 3.2)
Alternatively, one could assume that the parameters are functions of [01]-graded variables. It
is obvious that both assumptions lead to the same equation, so we consider only the case of
[10]-graded variables. In any case, the group parameters are regarded as graded fields on the
graded coordinates.

We introduce the holomorphic and antiholomorphic WZNW-currents which are defined in
terms of the group element (3.1):

J(w):=0.g-¢"",  J(@):=g 'Oug. (3.3)
By definition, the currents J(u),J(i) are [10]-graded and take values in Z3-sl,. Employing the

matrix presentation (2.28), one may rearrange the components of the currents in terms of the
sl, generators h,e*. First, the group element (3.1) is given by

g=exp(a®e’)exp(b@h)exp(c®e ), (3.4)

where the non-graded matrix valued fields a,b and c are defined by

Oé]()EJr + O«)]D+ = (aloM] + iOzmMz) X et = a®e+,
BooH + 11 Z = (Boolz + f1iM3) ®h =b®h,
Y10E™ +701D” = (yioM1 —ivoiMy) ® €™ =c®e”. (3.5)

It follows immediately from the definition (3.3) that

Ju)=J et +lhoh+i_ e,

Ju)y=J, et +hoh+i_ e, (3.6)
where
Jy =a,—2ab, — ac,e, Jo = by +ac,e?, J_ = cuefzh7
Jy = a,;efz", Jo=by+ ca;,efzb7 J_ =cz—2ch; — a;,cze*z"7 3.7

with a, := 0,a, a; := O0za etc. The components J,Jo (and their conjugates) are also [10]-
graded and matrix valued.
The transformations of J,Jy are induced from the left action of the group element:

g8 =g,
ge=exp(ex ®eT)exp(eo@h)exp(e-®e™). (3.8)
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where e (u), €o(u) are [00]-graded chiral functions. Considering the infinitesimal transform-
ation of g, one may obtain

5€]+ = —26+J() + 2€0J+ + 0u€+7

0o =€4J_ —e_Jy + Oye€0,

OcJ_ =2e_Jy—2e0J_ + Oye_. (3.9)

According to [4] we impose constraints on the currents. Taking into account the grading
and the matrix nature of J.,Jy, the appropriate constraints will be

Jo(u):0, J,(u):Ml,

Ji (a) = —M,, Jo () = 0. (3.10)
The constraints on Jo,J_ and J, give

a=—b,M,, ag = —Me®. 3.11)
Eliminating a from these, one obtain

baMy =M%, (3.12)
Recalling the definition of b in (3.5), it follows that

DuaBoo M1 + D, B11iMy = €70 cosh23,; - M| + €*P®sinh 23, - iM,.  (3.13)
Thus we obtain the following system of equations:

OuafBoo = 2% cosh 2311, Ouaf = 2P0 sinh23,;. (3.14)

Setting 311 =0, we recover, although the coordinate variables u,u are [10]-graded, the
Liouville equation. The Z3-graded nature of the equations will be discussed in section 5.2.

4. Current algebras

In this section we consider the current algebra associated with the currents given in (3.3).
This is done in the framework of classical mechanics, i.e. making use of the Poisson brackets.
Nevertheless, we observe the existence of a central term in the Poisson Lie algebra (an example,
see [46], of a classical anomaly).

4.1, Z3-graded affine algebra
Since the current J(u) is Z%-slz valued, it is expanded as
J(u) =THET + I,\D" + TioH + T Z+ IowE~ + ;D .1

where each Z component has a Z3-grading. The components also carry the Z3-sl, charges
which are indicated by the upper suffices (no upper suffix implies charge zero). By the matrix
presentation (2.28), one may find the relations between the currents J,Jy and Z’s:

J(u) = (ZooM1 +iZiMs) ® €T + (Tiols + ZoiM3) @ h+ (ZooMy — i\ Ms) ® €™,
J+ :Z$M1 j:iIIile, Jo=Tioly +Zo1 M3. “4.2)

Similarly, the non-graded transformation parameters ¢, in (3.8) are expanded as

€4+ :E%Ml iiE(:)thg, 60=€00H4+€11M3, (43)

9
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where ¢’s are graded transformation parameters. Using these, one may read off the transform-
ation laws of the graded currents Z’s as follows:

6:Z5 =2 (eon Ty F iy Zio + ey Lot +enZis) + Oty

6T =2 (enZh e Tho — €19 Zo1 £ e00Tis) + Ouei

O0eLio = 5%1&) — EI_OZS(_) — 53‘111_1 + EO_IZH ~+ 0u€00,

5Zor = €1 T + e Lo — €101 — ero Lty + Ouctt- (4.4)

All the variables appearing in (4.4), including the coordinate u, are graded. Thus, one may
consider the matrix presentation, as in (2.28), for this system. The matrix presentation of the
coordinate u is introduced by

u=zM,, z€C. 4.5)
It follows that the derivative with respect to u is presented by
Oy =M, 0.. (4.6)

The current Z,o(u) may be expanded in a Taylor series in u:

Tio(w) = Y (Tote™ + Tpi®™*') 4.7
n=0

where the expansion coefficients have the grading: [Z,,] = [10] and [Z,,] = [00]. The [10]-
graded coefficient Z,, is also expressed, via the matrix M, and the non-graded constant /,,, as
Toy = I,My; this leads to the expression

I]() (M) = Z (12,,22" +1'2n+122n+1)M1 = I] (Z) M]7 (48)
n=0

where /;(z) is a non-graded complex function. In this way one may introduce the following
matrix presentation:

I = Iy L, I = G Ms, Zio=IiMy, Toy = ilbM,
€00 = €olly, en = e3Ms, E%ZG#MH 58‘: :ieziM% 4.9)

where all /(z)’s and €(z)’s are non-graded complex functions. The transformation laws of the
non-graded currents follow immediately from (4.4):

5610i =2 (j:eol(:)t F e?zll — E;tlz + 6313:) + azeli,

5613t =2 (531(:)t + ezill + elilz + eolg:) - azeit,

00 = eTIO_ - el_I(')" + 6;13_ - 62_12' + 0.€o,

Seh=eIy + 6 If +€[I; + €/ If — 0,65 (4.10)
The next step consists in finding the algebra which generates the transformations (4.10).

The formulas (4.10) may be replaced by the Poisson bracket:

520 = yﬁ Ay {K().Z(x)},

K(y) = Slﬁl_la_ +S262_I;— +S360[1 +S46312 +S56TIO_ +S6€;I3_, (411)

10
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where Z stands for the non-graded currents and the s; constants have to be determined. For
the complex integral we take the counterclockwise contour and use the argument of a complex
number as a variable of integration. The form of K(y) in (4.11) was determined by the following
considerations.

Itis possible to introduce Z,-gradings to the non-graded currents in a way that is compatible
with the transformation laws (4.10). There are three possible assignments of Z,-gradings:

‘ 10i I, I Igt €0 eli e2i €3
Hjo o 1 1 0 0 1 1
G|1 00 1 0 1 1 0° 4.12)
@)1 0 1 0 0 1 0 1

The grading (iii) is not independent as it is the sum of (i) and (ii). The currents also have the
sy charges:

+1 IS',I;", eT,e;
0 : 11, 12, €p, €3 . (413)
-1 : Iy, I3, €, ¢
Their scaling dimension is 1. K(y) should have [0]-grading, zero s/, charge and scaling dimen-
sion one. Therefore, if we employ the Z,-grading (i), then (4.11) is the only possible form of
K. If we employ the grading (ii) and repeat the computations given below, it turns out that the
results (the Poisson brackets of the currents) are the same as those derived from grading (i).
Thus, in the following, only the grading (i) is considered.
In order to find the Poisson brackets for the non-graded currents, by taking into account the
Z,-grading, the sl, charges and the scaling dimension we make the following Ansatz:

{Iy »).I; (%)} =0,

{15 0). Iy ()} =aili ()6 (y —x) +a20,6 (y —x),
{Iy ). (0)} =ai Iy ()6 (y—x),

{Iy ), L)} =a; L () (y—x),

{I; .55 (0} =0,

{Iy 0).0F (0)} =ash(y)d (y—x),

{0 ()} =dili(9)8(y —x) +d20,6(y —x), (4.14)
where our convention for the delta function is

S(x—a)=> ", (4.15)
nez
1 27

—ygdxé(x):ﬂ s -1, .16)
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The constants a;,b;,c;,d; and s; in (4.11) are fixed by the requirement that (4.11) and (4.14)
reproduce the current transformations (4.10). For each non-graded current, (4.11) gives the
following conditions:

Z conditions

16" Ssa; =2, ssap = —1, S3a§" =-2, s4a2' =-2, s6a;' =2
Iy sia; =2, sjap =—1, s305 =2, sqa, = =2, sas =2
I] S]Ll3+ = *1, SSCI; = 1, 8‘3b1 = 07 Y3b2 = *1, S4b3 = 07
by =1, seby =1 @.17)
L s1a4+ =1, ssay =1, sqcp =0, sqcr =1, 52c3+ =
sec; = —1
I;' S5as =2, S3bI =2, S4C;r =2, sedi = =2, sedr=1
I siad =2, ssby =2, suc; =2, sdi=-2, sd=1
Solving these conditions give the results:
a; =2, ap=—1, agt::Fl, ale, asg =2,
1
b =0, by=—3, by =0, b =+1,
1
c1 =0, o ==3, f =1, dy = -2, d =1,
S1:S2:1, S3:2, S4:*2, S5:S6:1. (418)
Therefore, the non-graded currents satisfy the relations
(I ()05 (@0} =0,
{Iy )4y (1)} =20 (y) 3 (y—x) =3, (v —x),
{I ), h @)} =FI (8 (y—x),
(L0 LM} =15 0)60—x),
{Ir 0.5 W)} =0,
{l 0). W)} =2L()6 (v ),
1
(L) i ()} =508 ~-x),
{n(y),2(x)} =0,
{h0).5 )} = =I5 ()0(y —x)
1
{20 B0} = =39,0(—),
(L), (x)} = ~LF5(y ),
{05 (0} =0,
{5 0). Iy ()} ==2L(y)3(y —x) +3,0(y —x). (4.19)
By expanding the currents into their modes
I(x) = Le™ (4.20)

neL
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we obtain the infinite dimensional Poisson—Lie algebra

(Tt =0 (B Tom } = 2Mmtn = im0,
+
{[Oi,n’[lsm} :F 0n+m’ {IO,W]L’"} [3in+m7
{I:E Igtm} = 0 {I(:)‘:nvl$ } = 212,n+m7
i
{Ilanvll,m} = _*”5n+m,0, {Il,nall,m} =0,
4 i
{Il ns } iI} n+m? {Iz,mlz,m} = _En(anrm,Ov
+ +
{127”713,m} IO n+m> {Igt,wlgtm} :()7
{r;n,l;,m} = 20\ i+ iMpmo- .21

We now restore the Z3-grading by multiplying the non-graded currents by the matrices M.
However, it is impossible to restore the original Z3-grading given in (4.9). This can be seen,
for instance, from the second relation of (4.19). The relations (4.19) or (4.21) require that

e ], has to be assigned to the [00]-grading,
. I,+ and /] (also I}L and I3) have to be assigned to the same grading.

It follows that the gradings of IF 12, 5 should respectlvely be [10] [11], [01] (or their per-
mutations). As an example, we aeslgn [10], [11], [O1] to I0 I

Toon=huls,  Tuw=hMs, I, =I5,M, Iomziilianz. (4.22)

Then, we obtain the following Z3-graded affine Poisson-Lie algebra:

{ioo > Zoo m} = _in6n+m.,07 {:ZOO,mi'll,m} =0,

{Ioo n7I]() m} +7, |0 b {ioo,njgilm} = ij—()l,n+m7
{ ilm} =- n5n+m 0 {ilnvjom} =:Fi(in+m7
{i 11 H:Z 01 m} ¥ 10 dm? {fli(r),njlj(:),m} =0,

{ T } 2T 00 — MO0, {Ilio Igg} —0,

{Z5.0 250} = 2L 0em, B T5n} =0
{I()l,mj(;,m} = —2Z00 ptm + iGntmyo- (4.23)

The main difference between (4.23) and the Z%—El; algebra introduced in section 2.3 is
that (4.23) does not have the [11]-graded central extension.
4.2. 73-graded Virasoro algebra

We impose the constraints (3.10) on the currents in (4.2) and repeat the same analysis as
section 4.1 to get a Z3-graded extension of the Virasoro algebra. The constraints on the currents

13
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are given by

Jo=TpyM —il My, =M, Jo=Tioly +Zo1M5 = 0. (4.24)
This implies that

ZO_O =14, Il_l =Ti0=2Zy1 =0. (4.25)
Then, one may obtain the following transformation laws from (4.4):

6510_0 = —2e00 + 81451_0 = ()7

0Zy; =261 +0ugg; =0,

STio =€y — 10T + g1 U+ Ougoo =0,

deLor = EJI +enT — U + 011 =0 (4.26)
and

0T =2(e00T +enld) +8usﬁ),
SeU =2(enT +eoold) + Dueyy, (4.27)

where we set T := T, U :=T}.
The first two relations in (4.26) give

1, _ 1, _
€00 = Ef)uam, 11 = —Eaué‘o] . (4.28)

Substituting these expressions into the third and fourth relations in (4.26) one obtains

_ _ 1., _
Eﬁ) =e T —eqU — 583510’
+ — — 1o —
g = —€ T +epU+ Eaufor (4.29)
With these relations we have the transformation laws of 7 and U/:

1

0T =2 (0uery) T +ero0uT — 58351‘0 —2(Ouegy) U + 0,04,
1

Sl =2(0uerg) U+ 100U + 53350*, —2(Ouegy) T +e0,0uT (4.30)

We now introduce the matrix presentation
M:Z[V[]7 T= TH47 UZUM3, €ﬂ):61M1, Egl :iezMz, (4.31)

where z,T, U and ¢, are [00]-graded. The transformation laws of the non-graded currents are
readily obtained from (4.30):

1
8. T=2(0.€/) T+ €,0.T — 58361 +2(0.6) U+ e0.U,

1
8. U=2(8.6)U+e0.U— 562362 +2(0.6)) T+ €0.T. (4.32)

We note that the non-graded currents have a Z,-grading which is compatible with the rela-
tions (4.32)

0:T, e, 1: U, e. (4.33)
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Their scaling dimension is two. Taking into account these observations, we set the following
Ansatz:

{T), T} =aiT' (y)d(y —x) +aT(y) ' (y—x) +a3d" (y—x),
{U), U@} =0T ()6 (y —x) +b2T(y) 6" (y —x) + b36"" (y—x),
{TG),Ux)}=ciU' (y)d(y—x)+cU(y)d" (y—x), (4.34)

where the prime denotes the derivative with respect to y. The constants a;, b; and ¢; are determ-
ined by the equivalence of the transformation laws (4.32) and the relation

5.Z(x) = % yﬁdy{elT(y) FeUW),Z(0)), Z=TU. 435)

This condition uniquely determines the constants:

1
a1:b1201:—17 a2:b2262:—2, a3:b3:§. (436)

We obtain the Poisson—Lie algebra of the non-graded currents:

{T0), ()} = =T/ ()5 (y —x) =27 ()5 (v ) + 36" (v ),
[U0), U} = ~T' ()5 (y —x) ~2T(0)8 (v =) + 56" (3=,
{T(y),U(x)}=-U"(3)d(y—x)=2U(y)d' (y—x). (4.37)

This algebra contains, as expected, a Virasoro subalgebra. Expanding the currents according
to (4.20), we see that the modes satisfy the algebraic relations:

3

{Tn-, Tm} = l(m - }’l) Tn+m + %(Sil+m,07
3
{Um Um} = l(m - }’l) Tn+m + %&H—m,m
{T,Upn}=i(m—n)Upim. (4.38)

The restoration of the Z3-grading is straightforward since the only non-empty sectors have
[00] and [11] grading. We set

T = T,ly, U, := U,Ms; (4.39)

then 7,,U, satisfy the same relations as (4.38). The current 7 is a Virasoro field, while I/ is
a primary field of dimension 2. The fact that the only surviving currents are [00] and [11]-
graded could have been anticipated from the (4.24) constraints. This construction, which does
not produce from Hamiltonian reduction [10] and [01]-graded currents, is a consequence of
73-sl, being a color Lie algebra. In the Conclusions we make comments about the 7Z3-graded
color Lie superalgebras Hamiltonian reductions. It should be mentioned that a Z3-graded color
Lie superalgebra extension of the Virasoro algebra has been discussed, in a different context,
in [11].
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5. Zero-curvature formulation of Z3-Liouville equation

5.1. Derivation of the Z3-Liouville equation
Let us introduce the [10] and [01]-graded coordinates
[10] u, &, [01] v, v 5.1)

and the fields @, ¥ with values in the Cartan subalgebra of Z3-s, :

O (u,it) = = (oo (u, ) H+ 11 (u,) Z) , (5.2)

[ ==

T (v,v) = 2 (Yoo (v, V) H+ 111 (v,)Z). (5.3)

We assume that the fields ¢ and ¥ are [00]-graded; it follows that the component fields have
a non-trivial grading.
Following the general construction of the Toda systems we define
L, =—0,® 4+ “?ET, Ly = 0;® 4+ e ™%E,
L,=—-0,V + "Dt Ly =00 +e "D, (5.4

where e**%X = ¢*®XeT®. We then consider the following linear system for T € Z3-SL(2):
(0,, —Lu)T: O, (0;, —LQ)T: O (55)

Similar relations for L,, L; are also introduced; we do not need to write them explicitly since the
following procedure is applied to them as well. The compatibility of the two equations in (5.5)
gives the zero-curvature condition which has the same form as in the non-graded case:

0;,Lu - BML,; + [LM,L,]} = O (56)

After straightforward computations one can see that (5.6) is equivalent to

20,a® = €*7™ (cosh2¢py; - H+sinh2¢py; - Z) (5.7)
which gives the Z3-Liouville equation

Duapoo = €*?Pcosh2p11,  Duatprr = €*#" sinh2¢y. (5.8)

These equations are identical to the ones obtained in section 3 by Polyakov’s soldering.
A similar set of equations is obtained from L,, L :

Owtpoo = €V cosh 2411, Dby = V™ sinh 24, (5.9)

5.2. Equations for the component fields

We examine the Z3-graded nature of the equations in (5.8). To this end, we expand the fields
00,11 in a power series of u, . Since y := u?, y := & are [00]-graded and commute with all
other variables, it may be natural to rearrange the power series in a linear combination of the
functions of y,y as follows:

11 (u, 1) = ayy (y,¥) + uaoi (y,y) + uboy (v,y) + uiib11 (y,y) . (5.10)

16
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We call the functions on the right hand side component fields of oo (or ¢11) and decompose
the equations in (5.8) into the ones for the components.
Noting the identities

8,, = 2M8y7 (9;, = 217{6;, 8”,; = 4Mﬁayy, (51 1)
the LHS of the equations in (5.8) yield

Ouatpoo = 4untdyzagy + 21 (0 + 2y0y5) aio + 2u (0y + 2y0,5) bio
+ (1 +2y0y + 2505 + 4y¥0y5) boo,
Ouapr1 = 4uudygary + 2u (05 + 2y0ys) aor + 2u (9y + 2ydy5) bor

These equations are simplified by introducing the [00]-graded commuting variables

xX:=./y, X:=/y. (5.13)

In terms of these variables (5.12) is a power series of ux~! and ux '
_ u _ u uu
Ouapoo = Oxx (XXboo) + —Orx (Xb10) + = Oxx (xa10) + — zaoo,
X X XX
_ u _ u uu
8,,g<,911 = a@ (xxbn) + ;a@ ()Cb()]) + gaﬁ (xam) + Eaxxa“ . (514)

The RHS of (5.10) are also expanded in the power series of ux~! and #x~!. From these, one
obtains a system of eight equations for the component fields. Before presenting the system of
equations, we take the linear combination of the component fields

fa += agy £ xxbo, fi = xayo + 7bo,
fii=an£xxby,  fi:=xag +3bo. (5.15)

Then the system of equations is presented in the following form

OufE = e [cosh2fE cosh2fE cos2fE — sinh2fE sinh2f% sin2fE] |
+

@;fﬁ) = 4%

[sinh 2f7; cosh 27 cos 2f5; — cosh2f3 sinh 2f7; sin2f3;
d

I

duf s = e [sinh2f7; sinh 2f3; cos 2f3; + cosh2fi; cosh 2f3 sin2f3;

01>

Ouf = = e cosh2fi sinh2f7; cos 2f3; + sinh 217 cosh 27 sin2f3; | (5.16)

These are the equations for Z3-graded functions whose arguments are [00]-graded commuting
coordinates.

It should be pointed out that the same set of equations is derived from the alternative Lax
pair defined by L,,L; . This is a consequence of the compatibility of the two conjugate sets
of (5.4) Lax pairs which respect the Z3-grading.

The (5.16) system of equations is reduced to the Liouville equation if all the functions
with non-trivial gradings are eliminated. Setting ¢, = 0 is equivalent to set fﬁ = ff)t1 =0.
Then (5.16) is reduced to the following equations:

Oufit = ke¥w cosh2fE,  Oufh = e sinh2fE. (5.17)

17
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The Liouville equation is recovered by further setting fio = 0. Therefore, (5.16) is a Z2-graded
extension of the Liouville equation which is, by construction, integrable.

5.3. Z2-Liouville equation in matrix presentation

The equation (5.8) admits another interpretation if we use the matrix presentation.
Let us introduce the matrix presentation of the coordinates, cf (4.5), (4.6)

MZI\/IIZ7 IZZMlz. (518)
It follows that
au = Mlaz, 6,; = Ml(‘}z Bu,; = ZZH4' (519)

This gives the matrix presentation of the component functions of @ (u, ) in (5.10), cf (4.8)

ao (y,y) = a(%,2°) Iu, ai (y,y) = o (2%,2°) My,
bOO (yay) =b (22722) ]147 blO (y7)7) = 6 (szzz) M17 (520)

where a, v, b, 8 are non-graded complex functions. Therefore, one gets
woo (i) = [a(2,2°) +za (,22) +28(2.2°) + 20 (2.77) | s = 0 (2.2) Lu. (5:2D

Similarly, one may write
en (u,1) = ¢(2,2) Ms. (5.22)

Inserting these expressions in (5.8) we obtain the system of equations without Z3-grading
Dzp = €*° cosh2¢, 0:p = €*sinh 23 (5.23)
This system is equivalent to two decoupled Liouville equations, as seen from the positions:

bri=p+@ = Ozpy =, (5.24)

The system (5.23) is also equivalent to the split-complex (C) version of the Liouville equation.
Introducing the split-complex field

Y= +j@, =1, (5.25)

then the two equations in (5.23) are combined into a single one:
Dzpe = exp (2¢¢) - (5.26)

This result requires some comments. Even if, in the matrix presentation, one can obtain
two decoupled Liouville equations from the fields ¢, ¢ which do not possess Z3-grading,
the original (5.16) system of equations is non-trivial. It consists of eight coupled Z3-graded
functions ﬁ (fori,j = 0, 1) which cannot be linearly combined, as in (5.24), without breaking
the Z% grading. The [ij] grading of the ﬁ functions plays an important physical role. The
[00] sector corresponds to ordinary bosons, while the [10], [01], [11] sectors correspond to
parabosons which obey a different type of statistics, see [18]. It is the explicit expression of
the (5.16) coupled system of equations which guarantees the compatibility of the derived Z3-
Liouville equation with the Z3-graded parastatistics.

18
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6. Zero-curvature formulation of Z3-graded Sinh—Gordon model

We construct the Toda system associated with the Z3-graded affine algebra Z%—glz introduced
in section 2.3.
Let us define the operator

G:= %Ho—i-Zdoo. 6.1)
The elements of Z%—glz have eigenvalues 0 or £1 with respect to adG, according to:
\ [00] [10] [01] [11]
+1 Ef,Ef D{,D;y
0 | Ho, doo, coo Zy, duis en ©62)
-1 Ey, EY,, Dy, DY,

We introduce, following [6], the [00]-graded fields

_ 1 1 1 1
® (u,u) = 580001‘10 + oo doo + 57100 €00 + 5@1120 +&ndn + FMmic;

_ 1 1 1 1
U (v,v) = Ei/)ooHo + Coodoo + 5P00€00 + 51#1120 +Cudn + FPucn (6.3)

and define

L,=—8,0 +e9%&, Ly = 0;® + e %,

L,=—-0,V 4+, Ly =80 +e g, (6.4)
where

& =Ey +EL,,  9.:=Dy +DI,. (6.5)

The zero-curvature condition for L, Ly, given by
8@Lu - 8ML,; + [Lm L[J - 07 (66)

is equivalent to

20,40 =[928, 28]
= (€*#® cosh2¢py; — ¢*50 =220 cosh (21 — 2¢11)) Ho
+ ¥w=20% cosh (211 — 2€11) - coo
+ (€27 sinh2¢y; + €% sinh (201 — 2611)) Zo
— X220 ginh (2011 — 2€11) - c11.- 6.7)

In terms of the graded fields on the RHS of (6.3) one obtains:

Duapoo = €9 cosh 2 — 250 =2%W cosh (21 — 2€1,),

Qw11 = €29% sinh 2¢p;| 4 X0 2P0 sinh (21, — 2614,

Qoo = €772 cosh (211 — 2£11),

Qa1 = —€* 2% sinh (201 — 2¢11),

Ouoo = Oua€nn = 0. (6.8)
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Similar equations are obtained from the zero-curvature condition for L, L;:

Dtboo = €Y cosh24py; — €290 =20 cosh (2901 — 2¢11 ),

Dywib11 = €V sinh 24hy; + X0 ~2¥0 sinh (241 — 2¢11),

Aywpoo = €20 cosh (2411 — 2(11),

dwpr1 = —* 02 W sinh (24011 — 2(11),

OywGoo = OysCi1 = 0. (6.9)
Obviously, one may set &y = &11 = (oo = (11 = 0. Then, (6.8) is reduced to

Ountpoo = 2 sinh 2 cosh 21,

Ountp11 = 2cosh2¢gg sinh 211,

Ouimoo = e~ 2¥™ cosh 21,

a1 = —e ¥ sinh 2¢p1. (6.10)
A similar reduction can be applied to (6.9).

Since the dynamics of the fields 19,711 is governed by oo, ¢11, we can focus only on the
first two equations. They contain only fields of [00] and [11]-grading. However, by expanding
oo and ¢ into component fields as we did in section 5.2, a full set of Z3-graded equations
can be obtained.

We employ the expansion (5.10) and introduce the non-graded variables x,x defined
in (5.13). After lengthy calculations, one obtains the following equations for the fields f
defined in (5.15). From (6.8)

D oy = £2sinh 2f3 cosh 2fi cosh 2f7; cos 215
F 2cosh 2 sinh 2f3 sinh 25 sin2f3:,

D3 = £2cosh2f3 sinh 2f55 cosh 2f7; cos 2f;
F 2sinhfi coshfi sinh 2f3; sin2f 6.11)

and from (6.9)

duf T; = £2cosh2fif cosh 2f3 sinh 217 cos 2f3;
+ 25sinh 2f3; sinh 2f3; cosh 2f7; sin2f3;,

Duf 3 = £2sinh 2f3 sinh 2f7; sinh 2155 cos 2f7;
+2cosh2fa cosh2f5 cosh 2T sin 2. (6.12)

Setting in (6.11) ¢1; = 0, which is equivalent tofft1 :f(jﬁ =0, we get

Duf do = +2sinh2f cosh2f5, (6.13)
Duef 1o = £2cosh2f:L sinh 215 (6.14)

Under the further position ﬁ, = 0 we recover the Sinh—Gordon equation.

We can also consider the matrix presentation of the system (6.10). As done in section 5.3,
the fields (g0, @11 can be written as a product of non-graded functions coupled with matrices,
see (5.21) and (5.22). Then, the first two equations in (6.10) yield

Ozp = 2sinh2¢ cosh2¢, 0z = 2cosh2¢p sinh 2. (6.15)

Z
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These equations are equivalent to two decoupled Sinh—Gordon equations:
pri=@ O = Ozpy =2sinh2¢4. (6.16)
The equations (6.15) are also equivalent to

pé

aqz(p@ = 25inh<p@, (6.17)

where (g is defined in (5.25) in terms of a split-complex number.

The (6.11) and (6.12) system of coupled equations for eight Z3-graded functions, obtained
from Z%—El; after setting &oo = &11 = (oo = (11 = 0, is the integrable Z3-graded extension of
the Sinh—Gordon equation. The interpretation of the results parallels what already discussed
in the construction of the Z3-Liouville model.

7. Conclusions

The paper presented integrable Z3-graded extensions of both classical Liouville and Sinh—
Gordon equations, obtained as systems of eight coupled Z3-graded functions obeying a color
Lie algebra parastatistics. Besides the obtained results, a general framework was presented
to covariantly define Lax pair formulations for Z3-graded extensions of finite semisimple
and affine Lie algebras. In this paper we solved subtle issues like the introduction of graded
coordinates and the proper formulation of the theory in terms of conjugate Lax pairs which
produce compatible equations. Even if here we only explicitly worked the Z3-graded exten-
sion of s/, these features can be easily applied to derive Toda field models induced by generic
73-graded Lie algebras; the most general construction is left for a future work. Following the
original [5] construction, the reconstruction theorem in [41] and the [6] extension to affine Lie
algebras, the introduction of the covariant Lax pair formulation guarantees the integrability of
the models. We also introduced the alternative derivation of the Liouville model in terms of a
73-graded version of the [4] Polyakov’s soldering procedure.

For the Liouville extension, the covariant Lax pair formulation was based on the finite Z3-
graded color Lie algebra Z3-s, ; for the Sinh—~Gordon extension, on the affine Z3-graded color
Lie algebra Z%-EZ\Z which admits two central charges, one of them [11]-graded.

The Z%—El; algebra plays arole in the Z3-Liouville theory as well; it generates the transform-
ations of the WZNW currents which, under Hamiltonian reduction, produce the Z%—Liouville
equation. It is interesting to note that, in this application, only one central charge appears (the
[11]-graded central charge is vanishing). By imposing the Hamiltonian reduction, the current
algebra induces a Z3-graded version of the Virasoro algebra.

The classical theories under investigation can be easily expressed in a Z3-graded Lagrangian
formulation following [19] and quantized with the prescriptions discussed in [22].

Further lines of research consist in extending the zero-curvature formulation to Z3-graded
superToda theories derived from Z3-graded color Lie superalgebras; the simplest of such type
of models is obtained from the Z3-graded osp(1]2) superalgebra whose irreps are studied in
[47]. The extra ingredient to take into account, with respect to the Z3-graded color Lie algebra
formulation, is the introduction of (para)Grassmann coordinates.

It should be finally mentioned that, quite likely, the Z3-graded Lax pair formulation could be
adapted to introduce Z3-graded non-abelian Toda field theories, mimicking the construction
presented in [48]. For these models the dynamical fields are no longer associated with the
Cartan sector of a semisimple Lie algebra g, but with a non-abelian subalgebra.

21
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