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Abstract. The first-order Lévy-Leblond differential equations (LLEs) are the non-
relativistic analogous of the Dirac equation: they are the “square roots” of the Schréodinger
equation in (1 + d) dimensions and admit spinor solutions. In this paper we show how
to extend to the Lévy-Leblond spinors the real/complex/quaternionic classification of
the relativistic spinors (which leads to the notions of Dirac, Weyl, Majorana, Majorana-
Weyl, Quaternionic spinors). Besides the free equations, we also consider the presence of
potential terms. Applied to a conformal potential, the simplest (1 + 1)-dimensional LLE
induces a new differential realization of the osp(1|2) superalgebra in terms of first-order
differential operators depending on the time and space coordinates.

1 Introduction

The Dirac equation which introduces the notion of relativistic spinors can be regarded, see [1], as
a “square root equation” of the relativistic Klein-Gordon equation. In a similar spirit, Lévy-Leblond
introduced in 1967 a 1+3-dimensional equation [2| which is the square root of the nonrelativistic (invariant
under the Galilei group) Schrodinger equation. The equation implies the presence of nonrelativistic Lévy-
Leblond spinors. Quite often the Lévy-Leblond equation (“LLE” for short) appears when taking, for the
speed of light ¢ of a relativistic system, the ¢ — oo limit. On the other hand, LLE has its own virtue; it
can be applied to investigate nonrelativistic systems, as those studied in condensed matter, which do not
necessarily arise as a limit of relativistic systems.

As a clarification note, Lévy-Leblond correctly criticized the use of the term “nonrelativistic” to
refer to theories satisfying the Galilei’s relativity principle described in Dialogo sopra i due massimi
sistemi del mondo; despite of that, in this paper we adhere to the standard terminology, the adjective
“relativistic” being exclusively applied to Einstein’s special relativity.

The theory of relativistic spinors is rather rich. Relativistic equations can be generalized to arbitrary
(s,t) spacetimes, not only the 143 Minkowski spacetime. Depending on the spacetime, different solutions
can be found. Besides complex spinors (as the original Dirac spinors), real Majorana spinors can be found,
Weyl chiral /antichiral spinors can exist which, in certain spacetimes, can be combined to give Majorana-
Weyl spinors. Spinors defined for the division algebra of quaternions produce different types of relativistic
equations. The classification of the relativistic spinors is based on the [3] classification of the associated
Clifford algebras. Relevant works (for this current paper) which present the classification of relativistic
spinors are [4-6].

Generalized Lévy-Leblond equations can be introduced as square roots of Schrodinger equations in
1 4 d-dimensions, where the number d of the space components is an arbitrary integer. The Schrédinger
equations under consideration can be free, but can also admit potential terms. The theories of LLEs and
their associated spinors have not been systematically investigated as their relativistic counterparts (see,

e.g., [7]).
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Some words should be added to justify the interest in classifying the theories of nonrelativistic spinors.
Obviously, information about relativistic theories should be recovered in the ¢ — oo nonrelativistic theory
and the mapping between the relativistic spinors and their nonrelativistic counterparts is an essential tool.
Similarly, in recent years, the opposite ¢ — 0 (so-called “Carroll") limit of relativistic theories is widely
investigated (the connection between Galilei and Carroll limits is discussed in [8]). The Galilei algebra
is not semisimple and admits the Bargmann’s central extension [9]; due to that its representation theory
is quite nontrivial. It also implies, as shown below in Section 5, a different role for the time and for
the space coordinates. Last but not least, in applications to condensed matter emergent nonrelativistic
spinors can arise in theories which do not necessarily result from the ¢ — oo limit of relativistic models.

In this paper we show how to extend, to the generalized LLEs, the methods presented in [5] and [6]
for relativistic spinors. It must be said that LLEs turned out to have surprisingly rich structures. The
dynamical symmetry of the free equations possess [10,11] Zy x Zs-graded Lie superalgebra structures,
fitting the class of superalgebras introduced by Rittenberg-Wyler in [12,13]|. Furthermore it was recently
shown [14] that, in the presence of a harmonic potential, the Zy X Z-graded Lie superalgebras act as
spectrum-generating superalgebras.

In this paper we show how to systematically classify the 1 + d-dimensional Lévy-Leblond spinors as
real (that is, of Majorana-type), complex (Dirac-type), quaternionic, chiral/antichiral (Weyl-type) and
in determining their vector dimensions. We proceed at first with the free equations; later we show how to
introduce potentials. The specialization to the inverse square potentials of the Conformal mechanics [15]
implies new differential realizations of the superconformal algebras (osp(1|2) in the simplest case) in terms
of differential operators in the time and space coordinates.

As a technical tool we introduce the convenient [16] “alphabetic presentation” of Clifford algebras
which allows to represent the four 2 x 2 building-block matrices of [6] as letters and the generic Clifford
algebras gamma-matrices as words in a 4-letter alphabet.

2 Fundamental ingredients

The Clifford algebra Cl(p, q) is the enveloping algebra produced by the n x n matrices -; which satisfy,
fori,j =1,2,...,p+ q, the anticommutation relations

%3 = 2045, (1)

where L,y is the Identity matrix and n;; is a (p + ¢) x (p + ¢) diagonal matrix with p entries +1
and ¢ entries —1. In application to relativistic theories p is the number of space-like coordinates and
¢ is the number of time-like coordinates. The irreducible representations of the Ci(p,q) algebras are
recovered [5,6] from tensoring four 2 x 2 real matrices. They can be identified with four letters according

to
e (5 %) (8 h) am (0 ) (4 8

”

By dropping the symbol “®” in the tensor products expressing the generic ; matrices entering (1), we
can associate these gamma matrices with words written in a 4-letter alphabet, see [25] for details. The
three single-letter words X, Y, A define the three gamma matrices entering the C1(2,1) Clifford algebra.
In the [6] recursive construction the five 4 x 4 gamma matrices defining C1(3,2) can be expressed as
the two-letter words X X, XY, XA, Y I, AI (the three matrices X X, XY, YT are space-like, while the two
matrices X A, AT are time-like). The general construction is presented in [6].

The length of the words defines the size of the corresponding gamma-matrices. The possibility of hav-
ing Weyl-type spinors is ensured if all gamma matrices are of block-antidiagonal form. In the alphabetic
presentation this requirement implies that all corresponding words should start with an Y or A letter.

The R/C/H real/complex/quaternionic structures of the Clifford algebras and of their associated
relativistic spinors are obtained, via Schur’s lemma, by looking at the most general matrices which, at
given p, ¢, commute with all gamma matrices:

e in the R case the most general matrix is proportional to the identity I, %,

e in the C case it is given, for a, b reals, by al,, xrn + bJ, where J? = =L, xn,

e in the H case it is given, for a, by, by, bs reals, by al,xn + >, b;J;, where the three matrices J; are
imaginary quaternions satisfying the equations J;J; = —0;;lnxn + €ijkJk-

The three above cases find an adequate description in terms of the alphabetic presentation.

The extension of the classification to the Lévy-Leblond nonrelativistic spinors requires introducing, in
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the alphabetic presentation, a “fifth letter” denoted by . It correspond to the 2 x 2 differential matrix

(0 1 s . 10
o=, o) = @=io(, 1) (3)
Essentially, @ is the square root of the time derivative entering the nonrelativistic Schrédinger equation.
An important property in the construction of LLEs is the anticommutation of the matrices associated

with the letters Q and X:

{.x3 = o (4)

3 Lévy-Leblond free equations and types of spinors

By setting h =1 and m = % the free (matrix) Schrédinger equation in 1+ d dimensions reads as
V2 -
ihoy U (t, ) = 7%\1;@, F) = i0VU(t,F) = —V2U(t, 1), (5)

where U(t,Z) is an n-component vector (for n = 1,2,3,4,...). Its simplest square root equation is
obtained for d = 1 and n = 2. By using the (2,3) notation it is written as

QYU(t,x) = X0,¥(t,z) = 0¥ =Q?¥ =QX9,V=—-X9,QV = —X202V = —92V. (6)

This construction admits generalizations. The next simplest case is the square root of the n = 4-
components d = 2 free Schrodinger equation with space coordinates x,y. By taking an alphabetic basis
of the five gamma matrices of the Clifford algebra C1(3,2), given by X X, XY, X A, Y I, AI, one can express
the square root equation as

QIV = (XX, + XY9,)U. (7)

The corresponding 4-component spinors are real (that is, they are the nonrelativistic analogues of the
Majorana spinors).
The 4-component equation

QYU(t,z) = XY3,U(tx) (8)

admits spinors which are both real and (due to the presence of the block-antidiagonal matrix Y') chiral;
they are the nonrelativistic analogues of the Majorana-Weyl spinors. Due to the chirality constraint its
fundamental components, in real counting, are % X4 =2.

The next level of square root equations is obtained for n = 8-component spinors. The building blocks
are the gamma matrices of the Cl(4,3) Clifford algebras. Two equivalent alphabetic presentations are
given by the following two sets of seven 3-letter words.

The first set is given by XXX, X XY, X XA, XY I, XAI,YII, AIl.

The second set by XY X, XYY, XY A XXI, XAI,YII AII.
Three inequivalent square root equations are obtained.

The first one is

QIIV = (XXX8,+XXYd, + XYId,)V, (9)

producing 8-component Majorana-type spinors for a 1 4+ 3-dimensional free LLE (the space coordinates
being x,y, 2).
The second equation is

QIIV = XYId,U. (10)

The ITA complex structure (which commutes with both QYT and XYI) implies complex (nonrelativistic
analogues of Dirac) spinors for an 8-component (1 + 1)-dimensional free LLE.
The third equation is

QVIV = (XYX0,+XYYd,)UV. (11)
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The presence of the Y letter in the second position implies that it describes nonrelativistic Majorana-Weyl
type spinors which, due to chirality, possess % x 8 = 4 components. The equation (11) is an 8-component
(14 2)-dimensional free LLE.

The next level is obtained for n = 16. At this level one recovers 5 inequivalent free Lévy-Leblond
equations. They are:

e the 16-component “Majorana-type” spinor for the (1 + 4)-dimensional free LLE, given by
QIIIY = (XXXX0,+XXXY0,+XXYI0,+ XYIId,)V; (12)
e the “Dirac-type” complex spinor for the (1 4 2)-dimensional free LLE with 7T A complex structure,
QIIIY = (XXYI0,+ XYII0,)¥,; (13)
e the “Majorana-Weyl-type” spinor (with 8 real components) for the (1 4 3)-dimensional free LLE
QYIIV = (XYXX0,+XYXYd,+XYYI0,)¥,; (14)
e the “Weyl-type” complex spinor for the (1 + 1)-dimensional free LLE with 7T A complex structure,
QYIIV = XYYI0,V; (15)

e the quaternionic spinor for the (1 + 1)-dimensional free LLE with I1TA, ITAX,ITAY quaternionic
structure,

QIIIV = XYII9,V. (16)

We presented here the inequivalent free LLEs for n = 2,4,8,16, that is n = 2% for k = 1,2,3,4. The
construction can be easily extended to any k. It is based on the properties of the associated Cl(p,q)
Clifford algebras. Up to k < 4 we can present the following table illustrating the Majorana-type (M),
Weyl-type (W), Majorana-Weyl-type (MW), Dirac-type (D), Quaternionic (H) nonrelativistic spinors
of the free (1 + d)-dimensional LLEs. We get

(2 x 2) matrices: M, (141, 2 real components,

(4 x 4) matrices: M, (1+2), 4 real components,

(4 x 4) matrices: MW, (1+1), 4/2 = 2 real components,

(8 x 8) matrices: M, (1+3), 8 real components,

(8 x 8) matrices: Mw,  (1+2), 8/2 = 4 real components,

(8 x 8) matrices: D, (1+1), 4¢ = 8 real components,
(16 x 16) matrices: M, (1+4), 16 real components,
(16 x 16) matrices: Mw, (1+3), 16/2 = 8 real components,
(16 x 16) matrices: D, (1+42), 8¢ = 16 real components,
(16 x 16) matrices: w, (1+1), 4¢ = 8 real components,
(16 x 16) matrices: H, (1+1), 4 = 16 real components. (17)

4 The introduction of potential terms

In this Section we show how our scheme can be enlarged to introduce Lévy-Leblond equations which
are square roots of matrix Schrédinger equations in the presence of potential terms. We illustrate the
simplest example of the nonrelativistic Majorana spinors in 1 4+ 1 dimensions.

The introduction of potential terms requires larger matrix realizations with respect to the free case.
While the free Lévy-Leblond equation in 1 4 1 dimensions can be realized by 2 x 2 matrices, we need at
least 4 X 4 matrices to include the potentials. The construction goes as follows. The basic equation is

QIV = XY0,V+ XAf(x)V, (18)
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where the “words" QI, XY, and X A represent 4 x 4 matrices; the symbol 0, denotes the derivative with
respect to the space coordinate x and the function f(x) is the prepotential which allows to reconstruct the
potential terms of the matrix Schrédinger equation. The column vector spinor W(x,t) has 4 components
(U7 = (31, 42,13, 104)). The following equations are satisfied for its 1;(z, t) components with i = 1,2, 3, 4:

3 = Optha + f(x)2,

Yo = O — f(z)¢n, (19)
together with the time-dependent equations
i0ppr = —0xtha — f(2)¢a,
i0pa = —0ub3 + f2)s. (20)
The (19) algebraic equations for 13,14 imply two independent Schrédinger equations for ¥1, 12, given by
iy = =001+ (f2(2) + f(z)) Y1,
iOpy = —0%s + (f2(x) — f(2)) P2, (21)
where f'(z) = £ f(z) and
Vi(z) = fi(a)=£f(2) (22)

are the respective potentials.
By applying the i9; derivative to 13,14 entering (19) and taking into account the (20) equations, we
obtain that the 13,4 components satisfy the Schrédinger equations

10193 — 9203 + Vi (2)1)s,
(on —02s + V(). (23)

The extension of the procedure to introduce potentials for nonrelativistic spinors in (1 + d)-dimensions,
complex structures, etc., is rather straightforward; it is based on the previously discussed construction of
the free equations.

The specialization to certain types of potentials, like the inverse square potential proportional to I%,
produces interesting differential realizations of the superalgebras associated with the Lévy-Leblond square
root of the matrix conformal mechanics. The simplest example is illustrated in the next Section.

5 The osp(1|2) superalgebra induced by a conformal potential

In 1+ 1 dimensions, the Lévy-Leblond “square root” of a matrix conformal mechanics with potential
term proportional to 1/22 is given by the 4 x 4 matrix differential equation

QU(z,t) = 0, (24)

where the U(z,t) Lévy-Leblond spinor is a 4-component column vector and the matrix differential oper-
ator 2 belongs to a 5-generator osp(1|2) superalgebra. The explicit form of the five osp(1|2) generators
is given in terms of the 2 x 2 matrices I, X,Y, A and @ introduced in (2) and (3), plus two extra 2 x 2
auxiliary matrices A and R which depend on an (arbitrary) real scaling parameter A:

() (38)

The consistent scaling assignments of the time/space coordinates t,x, of their derivatives and of the
auxiliary 2 x 2 matrices @, A, R are:

M =-1, [6t} = +1, [x] - _%7 [81] = +%7 [Q] = +%7 [A} =0, [R] = _%' (26)
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The five osp(1]2) generators (denoted as H, 2, D, =, K) are given by

2
H = 1al-(0+®-L)+10x.- 2,
X X
Q = QeI-X0Y -9, -XoA 2
X
11
D = I®I-(Z+§zc%+t6t)+A®I,
E = QoI (-i)-X9Y-J+Rel,
ZEQ
K = I®[~(—it28t+Z)—A®[~2it, (27)

where g is a dimensionless ([g] = 0) coupling constant.
The scaling dimensions of the above five generators are
[H=+1, [Q=+5 [D=0, [E=-3 [K]=-1 (28)
The three generators H, D, K are even (bosonic) and close an si(2) subalgebra having D as the Cartan
generator. The two generators €, = are odd (fermionic); they respectively correspond to the positive and
negative simple roots of osp(12).
The closure of the osp(1]|2) superalgebra is given by the following (anti)commutators:

[D,H] = —H, [D,K] =K, [H,K] =2D,

[D,Q] = -3, [D,E] = 1%,
[H,Q] =0, [K,Q] = -E, [K,Q=-E, [K,E]=0,
9,9} =2H, {Q,E}=2D, E,Z} =2K. (29)

Therefore, €2 is the square root of the 4 x 4 matrix conformal mechanics Schrodinger equation
HU(x,t) = 0. (30)

Usually, a Schrédinger equation such as (30) is split into a left part which depends on a first-order time-
derivative and a right part which depends on a second-order differential equation in x (the Hamiltonian,
which we denote in boldface as H); the (30) equation can therefore be rewritten as

2
I191-i0,9(z,t) = HU(e,t) =1 [(—9 + %) —I®X- %. (31)

Superconformal algebra realizations of first-order in time “D-module” differential realizations have been
investigated in [17]. For the free Schriodinger equation, a second-order differential realization of osp(1]2) in
terms of the space coordinate z appears naturally (see [18], which connects the [19] Wigner’s approach to
the quantization of the harmonic oscillator with the Niederer’s analysis [20-22| of the maximal kinematical
invariance group of the Schrédinger equation for various potentials).

The Lévy-Leblond equation Q¥ = 0 induces, for the conformal potential proportional to z%, a new
interesting and non-trivial differential realization of 0sp(1|2) which involves both time and space coordi-
nates.

The construction of the admissible Hilbert spaces for the conformal mechanics, depending on the
range of the coupling constant g, has been discussed in [23,24] and, in the matrix case, [25].

An open question should be pointed out. The addition in conformal mechanics of a harmonic potential
term to the I—IQ potential produces the de Alfaro-Fubini-Furlan deformed oscillator [26] having the same
conformal algebra as spectrum-generating algebra. The new Hamiltonian is the sum of H and of its
conformal partner. Concerning the (29) realization, one should note that the sum H + K does not
produce a Lévy-Leblond equation. It is an open question how to produce a de Alfaro-Fubini-Furlan
construction for the LLE.

6 Conclusions

This paper outlines the classification of the Lévy-Leblond nonrelativistic spinors and of their associated
equations using tools and methods borrowed from the classification of relativistic spinors. It further
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illustrates in simple examples how to introduce potential terms to Lévy-Leblond equations and how to
derive the “square root” of conformal mechanics with their induced superconformal algebras. This work
is part of a research program where an extended version and systematic presentation of the constructions
for real/complex/quaternionic and Weyl-type Lévy-Leblond spinors is under preparation.
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