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Abstract—A certain approach to solving the Wheeler-DeWitt equation in quantum cosmology, based
on a type of super-selection rule by which negative frequency solutions are discarded, is discussed. In
a preliminary analysis: we recall well-known results in relativistic quantum field theory, showing that
adopting this approach of super-selection by discarding a sector of the frequencies does not lead to
acceptable results. In the area of quantum cosmology, a qualitatively similar result is obtained: we show
that by discarding solutions with negative frequencies, which is usually done in order to demonstrate
“strong” results on the resolution of the singularity, important physical processes are lost, namely, the
existence of cyclic solutions, which, under certain reasonable assumptions, can be interpreted as processes
of creation-annihilation at the Planck scale that are typical of any relativistic quantum field theory.
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1. INTRODUCTION

The singularity problem in quantum cosmology
has been addressed since the beginning of this area
of research [1]. A long discussion on the possibility
of resolve the singularity by means of quantum effects
took place since then.In the context of the Wheeler-
DeWitt (WDW) approach [1, 2]; models have been
obtained where the singularity persists in the quan-
tum regime (see, e.g., [2–7]), and also models in
which the singularity is avoided due to quantum ef-
fects (see [8–13]). That is to say, there has been
no absolute consensus on whether in the quantum
regime the singularity is maintained as a strong result
in the WDW approach. Furthermore, there is no gen-
eral agreement on the necessary criteria for quantum
avoidance of singularities (for a clarifying analysis of
the various criteria see [13], and for the important
problem of preservation of unitarity in the course of
the evolution see [14, 15]).

In the framework of Loop Quantum Cosmology
(LQC), a series of results have been obtained, where
the big-bang singularity is avoided and substituted
by a bounce coming from solutions of the equation
of differences which is the equation that takes place
instead of the WDW equation (see [16]).1 At the same

1LQC has an important advantage over the Wheeler-DeWitt
quantum cosmology because it has its foundations in the
theory of Loop Quantum Gravity, where there are less con-
ceptual problems than in the case of the canonical quantiza-
tion that leads to the WDW equation.

time, it has been claimed that the Wheeler-DeWitt
approach to quantum cosmology does not solve the
singularity problem of classical cosmology (see, e.g.,
for example [17–21]). This general assertion was
already widely criticized in [23]. There it was shown,
firstly, that the assertion is not precise because to
address this question it is necessary to specify not
only the quantum interpretation adopted but also the
quantization scheme chosen. On the second place, it
was demonstrated that quantum bounces occur when
one considers the Bohm-de Broglie interpretation in
any of the two different usual quantization schemes:
the Schrödinger-like quantization, which essentially
takes the square-root of the resulting Klein-Gordon
equation through the restriction to positive frequen-
cies, and their associated Newton-Wigner states, or
the induced Klein-Gordon quantization that allows
both positive and negative frequencies together. We
refer the reader, interested in this study, to the last
cited reference.

The aim of this letter is to analyze and to discuss
the quantization scheme which involves the restric-
tion to a single sector of frequencies (say, discard-
ing the negative frequency solutions2) which is made
invoking a kind of super-selection rule [21]. As a
preliminary study, we analyze what happens in a basic
quantum field theory (QFT), i.e. a quantum free
scalar field, when we discard the negative-frequency

2The problem of negative frequencies in quantum cosmology
is known since the early works on the subject, see, e.g., [3].

226



IS THERE A SUPER-SELECTION RULE 227

solutions. As is well known, the fundamental Lorentz
symmetry is lost, or, in other words, we are led to
a violation of causality. We then study the WDW
approach to quantum cosmology. At the beginning,
we briefly outline the arguments of [21] for a super-
selection rule, making some discussion, and after
that we develop the central part of this letter: we
analyze the behavior of the Bohmian trajectories ob-
tained from the solutions of the WDW equation for
a Friedmann-Lemâitre-Robertson-Walker (FLRW)
model with flat spatial sections, assuming the content
of matter of the universe as given by a free, mass-
less, minimally coupled scalar field, while negative
frequencies are incorporated in the positive-frequency
initial solution. This is implemented using a super-
position of solutions modulated by two Gaussians
symmetrically located around k = 0. The Gaussian
width is varied from an initial value representing an
almost non-overlapped configuration (the Gaussians
are completely disjoint), which indicates a positive-
frequency solution, then going through several in-
creasing values representing a greater partial overlap,
indicating a greater weight of negative frequencies in
the integral, until we overcome a certain “threshold”
(see below) from which the phenomena qualitatively
different begin to occur. We were able to show that
when the negative-frequency solutions are incorpo-
rated beyond a certain value, fundamental phenom-
ena appear: the existence of cyclic universe solutions
which could be interpreted as a processes of creation-
destruction of universes at Planck scale, provided the
scalar field is assumed to play the role of time. These
phenomena are usual in any QFT, and we see that
when the negative-frequency solutions are not con-
sidered in quantum cosmology, theses processes are
lost, or, in other words, no cyclic universe solutions is
present.

This paper is organized as follows: in Section 2,
as a preliminary study, we analyze the case of a QFT,
then, in Section 3, the case of quantum cosmology is
studied. In Section 4 the BdB quantum cosmology is
discussed and our results are obtained, in Section 5
we present our conclusions.

2. DISCARDING NEGATIVE-FREQUENCY
SOLUTIONS IN KLEIN–GORDON

This section contains well-known results in quan-
tum field theory. But we wish to clarify the problem to
be studied in the next section, using a model already
known, which is a scalar field satisfying the Klein-
Gordon equation, and recreating the type of problem
that can occur when the frequencies of a sector (say,
negative) are discarded from the general solution. The
idea is to confront it qualitatively with the model of
quantum cosmology discussed in the next section.

The model of a massless scalar field, which would be
the most appropriate for comparison with a quantum
cosmological model of the next section, is subject
to the same analysis and satisfies the same results
recreated here since it can be obtained without prob-
lems by taking the limit of zero mass from a massive
field considered here (always with zero spin) [22],
Chapter 5.9.

We consider a free scalar field ψ satisfying the
usual Klein-Gordon equation

∂2ψ

∂t2
−∇2ψ +m2ψ = 0 . (1)

The general solution can be written as a sum of two
terms:

ψ =

∞∫

−∞

dpψ̃+(p)e
i
�
(px−Et)

+

∞∫

−∞

dpψ̃−(k)e
i
�
(px+Et) (2)

the first term being the “positive-frequency solution”
and the second one the “negative-frequency solu-
tion”.

As we know, the energy E satisfies (for a given
momentum p) the condition E2 = p2 +m2, i.e., it can
have two values, ±

√
(p2 +m2). In principle, only

positive values of E can have a physical significance
of free particle energy. But the negative values cannot
be simply omitted: the general solution of the wave
equation can be obtained only by superposing all its
independent particular solutions, the negative solu-
tions being reinterpreted in the second quantization
formalism. We have a complete set of commuting ob-
servables given by the energy and the momentum.3:

Ê ≡ i�
∂

∂t
, (3)

p̂ ≡ −i�
∂

∂x
. (4)

As is known, these are “even” operators, which
means that they transform positive-frequency so-
lutions to positive-frequency ones and negative-
frequency solutions to negative-frequency ones. This
feature does not allow us, in any way, to dispense
one of the sectors (say, negative). There is no
selection rule that allows us to dispense with one of
the sectors. If we did that, above all, there will be
no room for antiparticles, which means the absence
of the rich processes of creation and annihilation.
Second, it would not be possible to satisfy completely

3Indeed, we must also know the helicity, which is zero, but we
can ignore it without affecting our analysis.
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the Lorentz symmetry, more precisely, invariance
under the four-dimensional inversion (which is a
four-rotation with determinant +1) will be violated,
since its fulfillment make necessary the simultaneous
presence in Eq. (2) of terms having both signs of E
in the exponents: these signs are changed by the
substitution t → −t (see [24], Section 11). With
this, a violation of CPT invariance would be arbitrarily
introduced (see [24], section 13).

Another way to see the problem is to analyze
the process consisting in a particle propagating from
space-time point x to space-time point y. The field
ψ∗(x) creates a particle at x, and ψ(y) destroys a
particle at y. The amplitude of this process is given
by

〈0|ψ(y)ψ∗(x)|0〉 (5)

and, at spacelike separations (i.e. out of the light
cone), it must vanish because no signal can propa-
gate faster than light. Now, as we know ψ(y)|0〉 =
0, because the vacuum is annihilated by ψ, then if
the commutator [ψ(y), ψ∗(x)] vanishes for spacelike
separated regions, i.e,

[ψ(y), ψ∗(x)] = 0 for (x− y)2 < 0, (6)

then the amplitude (5) will indeed vanish at spacelike
separations. In other words, (6) is a sufficient condi-
tion for the amplitude (5) to vanish at spacelike sepa-
rations. In computing the commutator in (6), we can
use the plane wave expansion for the field operators ψ
and ψ∗. If we assume that this expansion involves a
sum over plane waves with only positive frequencies
(as in the case of nonrelativistic free fields), then it is
not mathematically possible to adjust the coefficients
of those expansions in such a way that they verify (6),
unless they commute identically in all the space-
time. It is necessary to allow negative-frequency
plane waves in the field expansions in order to sat-
isfy (6), i.e commutation at spacelike separations but
not everywhere. Thus discarding the negative fre-
quencies leads to a violation of causality [22, 25].

3. DISCARDING NEGATIVE FREQUENCY
SOLUTIONS IN QUANTUM COSMOLOGY

We have pointed out in the introduction that in
several papers the WDW approach to quantum cos-
mology has been criticized because they show that
it is not possible to solve the Big Bang singularity.
We have already noted that this strong statement has
been criticized in [23]. But there is an argument of
“superselection rule” used to arrive at that statement,
which we want to discuss now. We are going to
analyze the validity of the procedure which involves
working with a single sector of frequencies. Here we
outline the argument of [21]: That reference studied

the WDW limit of Loop Quantum Cosmology (LQC)
by working in the regime where effects of quantum
discrete geometry can be neglected. The WDW equa-
tion obtained has the same form as the Klein-Gordon
equation in static space-time:

∂2Ψ

∂φ2
+ΘΨ = 0, (7)

where the field φ plays the role of time, and Θ is the
spatial Laplacian given by Eq. (3.4) of [21]:

Θ ≡ − 16πG

3B(μ)

∂

∂μ

√
μ

∂

∂μ
, (8)

where μ is the spatial coordinate and B(μ) is an

eigenvalue of the operator ̂|μ|−3/2, within a multi-
plicative constant. A general solution is obtained as a
superposition of positive and negative frequencies:

Ψ(μ, φ) =

+∞∫

−∞

dkΨ̃+ek(μ)e
iωφ

+

+∞∫

−∞

dkΨ̃−ēk(μ)e
−iωφ

= Ψ+(μ, φ) + Ψ−(μ, φ), (9)

where ek(μ) are the eigenvectors of Θ with eigenval-
ues ω2. A complete set of Dirac observables is given
by

p̂φΨ(μ, φ) ≡ −i�
∂Ψ

∂φ
, (10)

|̂μ|φ0Ψ(μ, φ) ≡ ei
√
Θ(φ−φ0)|μ|Ψ+(μ, φ0)

+ e−i
√
Θ(φ−φ0)|μ|Ψ−(μ, φ0), (11)

and we quote verbatim from [21]: “both these op-
erators preserve the positive and negative frequency
subspaces. Since they constitute a complete family
of Dirac observables, we have superselection. In
quantum theory we can restrict ourselves to one su-
perselected sector. We focus on the positive frequency
sector, and from now on, drop the suffix +.”

The restriction to the positive-frequency sector
through a type of “superselection rule” allows one to
build a “physical” Hilbert space which is the space of
wave functions of positive frequency with finite norm
(the norm given by equation (3.15) of [21]). This may
be correct from a mathematical point of view, espe-
cially because it allows for showing that the WDW
evolution does not resolve the singularity (section III
B of [21]).

However, in addition to the fact that the issue of
singularity resolution, as presented in [21], seems to
depend on the inclusion or not inclusion of negative
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frequencies, it does not seem like a good way to
follow as this procedure causing a loss of important
physical characteristics associated with the existence
of negative-frequency solutions, as we are going to
show in section 4.

4. THE BOHM-DE BROGLIE THEORY
APPLIED TO QUANTUM COSMOLOGY

The Bohm-De Broglie quantum theory (see [26])
can be consistently implemented in quantum cos-
mology (see [27]). Considering homogeneous min-
isuperspace models, which have a finite number of
degrees of freedom, the general form of the associated
Wheeler-De Witt equation reads

−1

2
fρσ(qμ)

∂Ψ(q)

∂qρ∂qσ
+ U(qμ)Ψ(q) = 0, (12)

where fρσ(qμ) is the DeWitt minisuperspace metric
of the model, whose inverse is denoted by fρσ(qμ). By
writing the wave function in its polar form, Ψ = R eiS ,
the complex equation (12) decouples into two real
equations:

1

2
fρσ(qμ)

∂S

∂qρ

∂S

∂qσ
+ U(qμ) +Q(qμ) = 0, (13)

fρσ(qμ)
∂

∂qρ

(
R2 ∂S

∂qσ

)
= 0, (14)

where

Q(qμ) := − 1

2R
fρσ

∂2R

∂qρ∂qσ
(15)

is called the quantum potential. The Bohm-De
Broglie interpretation applied to quantum cosmology
states that the trajectories qμ(t) are real, indepen-
dently of any observations. Equation (13) represents
their Hamilton-Jacobi equation, which is the classi-
cal one added with a quantum potential term Eq. (15)
responsible for the quantum effects. This suggests to
define

πρ =
∂S

∂qρ
, (16)

where the momenta are related to the velocities in the
usual way:

πρ = fρσ 1

N

∂qσ
∂t

, (17)

N being the lapse function. To obtain quantum tra-
jectories, we have to solve the following system of
first-order differential equations, called the guidance
relations:

∂S(qρ)

∂qρ
= fρσ 1

N
q̇σ. (18)

The above equations (18) are invariant under time
re-parametrization. Therefore, even at the quantum
level, different time gauge choices of N(t) yield the
same space-time geometry for a given non-classical
solution qα(t). Indeed, there is no problem of time
in the de Broglie-Bohm interpretation for minisuper-
space quantum cosmological models [28]. However,
this is no longer true when one considers full super-
space (see [29, 30]). Notwithstanding, even with the
problem of time in the superspace, the theory can be
consistently formulated (see [31]).

Let us then apply this interpretation to our min-
isuperspace model, which is given by a spatially flat
Friedmann (FLRW) universe with a massless free
scalar field. The Wheeler-DeWitt equation reads4

−∂2Ψ

∂α2
+

∂2Ψ

∂φ2
= 0, (19)

where φ is the scalar field, and α ≡ log a, and a is the
scale factor. Comparing Eq. (19) with Eq. (12), we
obtain from Eqs. (13) and (14):

−
(
∂S

∂α

)2

+

(
∂S

∂φ

)2

+Q(qμ) = 0, (20)

∂

∂φ

(
R2∂S

∂φ

)
− ∂

∂α

(
R2 ∂S

∂α

)
= 0, (21)

where the quantum potential reads

Q(α, φ) :=
1

R

[
∂2R

∂α2
− ∂2R

∂φ2

]
. (22)

The guidance relations (18) are

∂S

∂α
= −e3αα̇

N
, (23)

∂S

∂φ
=

e3αφ̇

N
. (24)

We can write Eq. (19) in null coordinates:

vl :=
1√
2
(α+ φ) α :=

1√
2
(vl + vr)

vr :=
1√
2
(α− φ) φ :=

1√
2
(vl − vr), (25)

yielding (
− ∂2

∂vl∂vr

)
Ψ(vl, vr) = 0. (26)

The general solution is

Ψ(u, v) = F (vl) +G(vr), (27)

4It is the same model studied in [23], Sec.II and IV.
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where F and G are arbitrary functions. Using the
method of separation of variables, one can write these
solutions as Fourier transforms given by

Ψ(vl, vr) =

∞∫

−∞

dkU(k) eikvl

+

∞∫

−∞

dkV (k) eikvr , (28)

U and V also being two arbitrary functions, or, be-
cause for our purpose it is better to work in the origi-
nal coordinates α and φ, by

Ψ(α, φ) =

∞∫

−∞

dkU(k) eik(α+φ)/
√
2

+

∞∫

−∞

dkV (k) eik(α−φ)/
√
2. (29)

For our numerical analysis we take the arbitrary
functions U(k) and V (k) as the Gaussians

U(k) = e−(k−d)2/σ2
, (30)

V (k) = e−(k+d)2/σ2
, (31)

then we have

Ψ(α, φ) =

∞∫

−∞

dke−(k−d)2/σ2
eik(α+φ)/

√
2

+

∞∫

−∞

dke−(k+d)2/σ2
eik(α−φ)/

√
2. (32)

After integration and within a normalization5 con-
stant, we have

Ψ(α, φ) = |σ|
√
π exp

[
i
dφ√
2
− σ2(α2 + φ2)

8

]

×
{
exp

[ idα√
2
− σ2αφ

4

]

+ exp
[
− idα√

2
+

σ2αφ

4

]}
. (33)

To obtain the quantum trajectories, it is necessary
to calculate the phase S of the above wave function
and to substitute it into the guidance equations. We
will work in the gauge N = 1.

5In our study, the normalization of the wave function is irrel-
evant because we are going to extract information only from
its phase.
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phiphi
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Fig. 1. The field plot (α versus φ)) shows the family of
trajectories for Bohmian guidance equations (35), (36)
associated to a wave functional with positive frequencies
only. Two of them that describe their general behavior are
depicted in solid lines: the first one represents a bouncing
universe while the second one corresponds to a universe
which begins and ends in singular states (a “Big Bang–
Big Crunch” universe).

Computing the phase, we have:

S =
dφ√
2

+ arctan

[
tanh

(σ2αφ

4

)
tan

( dα√
2

)]
, (34)

which, after substitution into (23) and (24), yields a
planar system given by

α̇ =
φσ2 sin(

√
2dα) + 2

√
2d sinh

(σ2αφ

2

)

e3α4

[
cos(

√
2dα) + cosh

(σ2αφ

2

)] , (35)

φ̇ =
2
√
2d cosh

(σ2αφ

2

)
+ 2

√
2d cos(

√
2dα)

e3α4

[
cos(

√
2dα) + cosh

(σ2αφ

2

)]

− ασ2 sin(
√
2dα)

e3α4

[
cos(

√
2dα) + cosh

(σ2αφ

2

)] . (36)

Equations (35),(36) give the direction of the geo-
metrical tangents to the trajectories which solve this
planar system. By plotting the tangent direction field,
it is possible to obtain the trajectories (Fig. 1). The
line α = 0 divides the configuration space into two
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4 k20�2�4

1.0
U

0.8

0.6

0.4

0.2

Fig. 2. U(k) and V (k) are two sharply peaked Gaussians
centered at k = d and k = −d, respectively. This gives a
positive-frequency solution, equation (37).

symmetric regions, and the line φ = 0 contains all
singular points, which are nodes and centers. The
nodes arise when the denominator in the above equa-
tions, proportional to the norm of the wave function,
is zero. No trajectory passes through these points.

They happen when φ = 0 and α = (2n + 1)
π√
2d

, n

an integer, with periodicity
√
2π/d. The center points

appear when the numerators are zero. They are given
by φ = 0 and

α =
2
√
2d

σ2
cot

(√2

2
dα

)
.

In [23], the Bohmian trajectories corresponding
to the solutions of the WDW equation of positive
frequency, were obtained, such as shown in Fig/ 1.
Here it is possible to distinguish two kinds of trajecto-
ries. The upper half of the figure contains trajectories
describing bouncing universes, while the lower half
corresponds to universes that begin and end in sin-
gular states (“Big Bang—Big Crunch” universes).

4.1. Positive and Negative Frequencies

If we allow both negative and positive frequencies
in the solution, it is possible to observe the occurrence
of cyclic universes which are shown by oscillatory tra-
jectories in φ, as we will see. In this case, if one wishes
to interpret φ as time, this corresponds to creation and
annihilation of expanding and contracting universes
that exist for a very short duration.6

6At this point we must note that a continuity equation for the
ensemble of trajectories with a certain distribution function
of initial conditions, is absent. For a discussion of this point,
see [23], section IV.

4 k20�2�4

1.0
U

0.8

0.60.6

0.40.4

0.20.2

0.6

0.4

0.2

Fig. 3. U(k) and V (k) can no longer be considered as
almost disjoint ones but will begin to overlap. Negative
frequencies will begin to have an appreciable weight in the
integral.

To get an idea of how the inclusion of negative
frequencies works in the behavior of solutions, we
gradually introduce them.

We start choosing the values of σ and d in (32)
with σ � 1 and d ≥ 1. In this case, the functions
U(k) and V (k) are two sharply peaked Gaussians
centered at k = d and k = −d, respectively (Fig. 2).
Then the wave function (32) can be written very ap-
proximately as

Ψ(α, φ) ≈
∞∫

0

dke−(k−d)2/σ2
e
ik 1√

2
(α+φ)

+

0∫

−∞

dke−(k+d)2/σ2
e
ik 1√

2
(α−φ)

, (37)

which means a positive-frequency solution (note that
φ, i.e., the “time”, appears in the exponential only
with a positive sign).

If we sufficiently increase the parameter σ
(“width”), the two Gaussians can no longer be
considered almost disjoint but will begin to overlap
(Fig. 3). This means that the approximation (37) is
no longer valid, and negative frequencies will begin to
be included with a greater weight in the integral. As
we continue, to increase the parameter σ more and
more negative frequencies will have a greater weight
in the solution.

We have solved the Bohm guidance equations
(35), (36) and obtained Bohmian trajectories for sev-
eral increasing values or the parameter σ (the pa-
rameter d was kept constant) and for the same initial
conditions. The results are depicted in Figs. 4–8.
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Fig. 4. The field plot (α versus φ) shows a family of trajec-
tories for the Bohm guidance equations (35) and (36), as-
sociated to a wave functional with only positive-frequency
solutions, σ = 0.5 and d = 1.

In Fig. 4 we have practically only positive-fre-
quency solutions, in Fig. 5 negative-frequency solu-
tions begin to weigh on the integral, in Fig. 6 there
is a little more negative-frequency weight in the in-
tegral . We add more and more negative frequencies
(this is because each Gaussian has an increasingly
significant tail on the semi-axis opposite to the one
containing its center) until we see that, at a certain
point, a trajectory becomes cyclic (Fig. 7). Here there
seems to be a threshold for this particular trajectory,
which will be discussed below. At the end, in Fig. 8
positive and negative frequencies appear, in some
sense, alike, as would be in a general solution to the
WDW equation. In this last figure we observe the
occurrence of cyclic universes, where, as we said, we
can interpret that as processes of creation and de-
struction of universes if we accept φ fulfilling the role
of a time. This situation of creation and annihilation
of universes is a typical feature of relativistic quantum
field theory. After all, the Wheeler-DeWitt equation
already represents a second-quantized field theory.
As such, it is expected that creation-annihilation pro-
cesses occur naturally. These fundamental processes
are lost along the demonstrations using the “super-
selection rule”, then, in our humble understanding,
we think that such a “rule” does not exist.

4.2. A threshold for the Emergence of Cyclic
Universes?

We can ask whether there is a threshold of contri-
bution of negative frequencies, above which a certain
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3
phi
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Fig. 5. The same as in Fig. 4 but with a bit of negative
frequencies, which begin to weigh on the integral. σ =
0.7 and d = 1.
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�3

21�1�2�3

Fig. 6. The same as in Figs. 4 and 5 but with a larger
contribution of negative frequencies, σ = 0.8 and d = 1.

trajectory becomes cyclic, i.e. a threshold for the
emergence of processes of creation-annihilation7. As
a partial answer, we have found numerically that, for
example, the trajectory whose initial conditions are
α(0) = 1.4, φ(0) = 0 becomes cyclic when σ ≈ 0.9
for d = 1 (Fig. 7). This can be characterized by the
area enclosed under each Gaussian, between k = 0

7I thank Prof. Nelson Pinto-Neto from CBPF, for asking
along this line.

GRAVITATION AND COSMOLOGY Vol. 25 No. 3 2019



IS THERE A SUPER-SELECTION RULE 233

alpha
3

2

1

3
phiphi

�1

�2

�3

21�1�2�3

3

2

1

3
phi

�1

�2

�3

21�1�2�3

Fig. 7. The same as in Figs. 4–6 but with such a con-
tribution of negative frequencies that a cyclic universe is
formed (the trajectory passing through α = 1.4, φ = 0);
σ = 0.9 and d = 1.

and −∞ for the Gaussian centered at d and between
k = 0 and +∞ for the Gaussian centered at −d, the
area that we call T (Fig. 9):8: the threshold occurs for
T ≈

√
πσ(1− Erf (d/σ)) ≈ 0.185 (≈ 5.8 percent of

the total area of the Gaussians). There is another tra-
jectory, with initial conditions α(0) = 1.3, φ(0) = 0,
that becomes cyclic for σ ≈ 1 (Fig. 8), which means
a threshold T ≈ √

πσ(1 − Erf (d/σ)) ≈ 0.279 (≈ 7.9
percent of the total area of the Gaussians). We see
that the value of the threshold T strongly depends on
the initial conditions, i.e., it is different for each of this
type of trajectory.

At the point where a trajectory closes, we have
dα/dφ = 0 (the trajectory is instantaneously hori-
zontal). This derivative is obtained by dividing equa-
tions (35) and (36), leading to (with d =

√
2d)

dα

dφ
=

φσ2 sin(dα) + 2d sinh
σ2αφ

2

2d cosh
σ2αφ

2
+ 2d cos(dα) − ασ2 sin(dα)

.

(38)

In this way, knowing that at that point is φ =
0, it is observed that the numerator and then the
derivative is zero, independently of the value of σ.
This shows that there is no generic value of σ for

8In other words, it is a sum of the areas of the tails along the
semi-axis which is opposite to the one containing the center
of each Gaussian.

alpha
3

2

1

3
phiphi

�1

�2

�3

21�1�2�3

3

2

1

3
phi

�1

�2

�3

21�1�2�3

Fig. 8. The same as in Figs. 4–7 but with such a weight
of negative frequencies that more cyclic universes emerge
(note the trajectory passing through α = 1.3, φ = 0);
σ = 1 and d = 1.

which the trajectory closes, this will depend on the
dynamics, as we will outline in the next section. It
is clear that of course not every trajectory becomes a
cyclic universe by allowing all negative frequencies.
It seems it would be possible to determine the set
of trajectories that can become cycling. Note that,
for example, in the case σ = 0.9 fixed, there may be
more cyclic trajectories than indicated in Fig. 7, say,
all trajectories interior with respect to the one shown
in the figure. The same occurs for fixed σ = 1.

As we said, the lower half of the graphs contains
trajectories that describe universes of the Big-Bang
/ Big-Crunch type but now we see that, due to the
perfect symmetry with respect to the horizontal axis,
there are also cyclic trajectories, which correspond to
cyclic universes of size even smaller than the Planck
scale. However, all of them never reach a macroscopic
size.

4.3. Qualitative Physical Explanation

The transition from open to closed trajectories can
be qualitatively explained if we consider the energy
balance of the system.

An equation that represents that balance can be
obtained from Eq. (20), which is the quantum version
of the Einstein-Hamilton-Jacobi equation (see [32,
33]), and for our model is given by

−
(
∂S(φ, α)

∂α

)2
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Fig. 9. A given trajectory, potentially cyclic, becomes
effectively cyclic when the shaded area (which represents
the contribution of negative-frequency solutions) exceeds
a threshold given by T ≈

√
πσ(1− Erf (d/σ)).
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Fig. 10. The minimum of the effective potential for σ =
0.5 is at α = 1.9768. The pole is fixed at α = 2.22.

+

(
∂S(φ, α)

∂φ

)2

+Q(φ, α) = 0, (39)

from which, using the guidance equations, we obtain

0 = α̇2 − φ̇2 −Qe−6α, (40)

or equivalently, using α ≡ log a

0 =

(
ȧ

a

)2

− φ̇2 − Q

a6
. (41)

Equation (40), which is nothing else than the
quantum version of the Friedmann equation, can be
interpreted as representing a system with the total en-
ergy (given by the l.h.s., which is constant and in this
case is zero due to the assumed flat geometry) equal to
the sum of the “kinetic energy,” presented by the first
term in the r.h.s., plus the “effective potential energy”

2.22.22.01.8
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1.6 1.61.41.2

0.00020

0.00015

0.00010

5e-05

0

Fig. 11. The minimum of the effective potential for σ =
0.7 is at α = 1.795, i.e, it has moved away from the node
which remains fixed at α = 2.22.
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Fig. 12. The minimum of the effective potential for σ =
0.9 has shifted to α = 1.6104. The trajectory with the ini-
tial conditions α(0) = 1.4, φ(0) = 0 “has found a place”
to close.

given by the other terms of the r.h.s.. This resembles
a particle moving under the action of a classical po-
tential, although not exactly equivalent, since the “ef-
fective potential energy” (= −φ̇2 −Qe−6α) includes
the quantum potential, which is strongly nonlocal and
nonlinear.

We know that the singular points, i.e., centers and
nodes appear along the axis φ = 0. Then, in order
to have a qualitative idea of what is happening, we
can consider φ = const (a small but nonzero value
because otherwise the equation reduces to 0 = 0), so
we have a system depending on only one coordinate,
namely, α.

Then the local minimums of Vq ≡ −Qe−6α will
determine, as in a dynamical system, the centers,
and the poles will determine unreachable regions, that
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Fig. 13. The minimum of the effective potential for σ = 1
has shifted to α = 1.522, and another trajectory becomes
closed (the one with the initial conditions α(0) = 1.3,
φ(0) = 0.

is, the nodes. In Figs. 10–13 present a cut of the
effective potential as a function of α.

We see that as the parameter σ increases, the
position of the minimum (which, as we said, deter-
mines the centers) moves away from the node (which,
as we know, remains fixed), so that there are open
trajectories that “acquire space” to close (the node
prevented it). This could be explained as in a dynamic
system through the energy balance, but now we have
a quantum potential, which is strongly nonlinear in
the considered region and makes it difficult to obtain
an analytical result.

5. CONCLUSION

We have considered the procedure of discarding
negative-frequency solutions, usual in quantum cos-
mology, and which is made invoking a type of “su-
perselection”. Discarding negative-frequency solu-
tions in QFT brings about the absence of antiparti-
cles, which, after all, means violation of 4-inversion
symmetry (x → −x, t → −t) which is an (improper)
Lorentz transformation. As a heuristic discussion,
suppose you have a theory of quantum gravity which
lacks negative-frequency solutions. Taking some
limit in this theory in order to obtain a weak (or
null) gravitational regime, the result is a theory that
does not respect Lorentz symmetry and has no place
for antiparticles. That is, a relativistic QFT is not
obtained, as it should be.

In the case of a model of quantum cosmology, we
have shown that if we ignore negative-frequency so-
lutions, the rich processes of creation/annihilation of
universes at the Planck scale are lost. In fact, we were

able to obtain Bohmian trajectories described by so-
lutions of the Wheeler-DeWitt equation for a simple
model. We considered initially a positive-frequency
solution and studied numerically the behavior of tra-
jectories while including negative frequencies. We
have shown that when negative frequencies are con-
sidered on equal footing with positive frequencies,
as is required in the general solution to any Klein-
Gordon type equation, there emerge new processes,
previously absent: cyclic universes of Planckian size,
which can be interpreted as processes of creation-
annihilation of universes that exist for a very short
duration. This is a natural feature of any quantum
relativistic field theory. In this way our results have
led us to believe that this superselection rule can not
exist.

We have verified numerically that, for a given tra-
jectory, there is a threshold of negative-frequency
solutions, above which cyclic universes are obtained,
i.e., processes of creation-annihilation. We see that
this strongly depends on the initial conditions, i.e., it
is different for each of this type of trajectory. More-
over, it is clear that not every trajectory becomes that
of a cyclic universe by adding negative frequencies.
However it could be possible to determine the set for
which this is possible. This could be a subject of
future research. Another important point for a new
investigation would be to analyze the more general
case of a potential V (α, φ), in which null coordinates
in WDW equation are not completely separated.

ACKNOWLEDGMENTS

I wish to thank Professor Sebastião Alves Dias
from CBPF for helpful comments and clarifications
on quantum field theory.

FUNDING

I would like to thank CNEN and CBPF from
MCTI Brasil for their support.

REFERENCES
1. B. S. DeWitt, Phys. Rev. 160, 1113 (1967);

J. A. Wheeler, in Battelle Rencontres: 1967 Lec-
tures in Mathematical Physics, ed. B. DeWitt and
J. A. Wheeler (Benjamin, New York, 1968).

2. J. J. Halliwell, in Quantum Cosmology and Baby
Universes, ed. S. Coleman, J.B. Hartle, T. Piran, and
S. Weinberg (World Scientific, Singapore, 1991).

3. W. F. Blyth and C. J. Isham, Phys. Rev. 11, 768–778
(1975).

4. R. Laflamme and E. P. S Shellard, Phys. Rev. 35, 2315
(1987).

5. J. B. Hartle and S. W. Hawking, Phys. Rev. D 28,
2960 (1983).

6. S. W. Hawking, Nucl. Phys. B 239, 257–276 (1984).

GRAVITATION AND COSMOLOGY Vol. 25 No. 3 2019



236 SANTINI

7. N. A. Lemos, Phys. Rev. D 6 2364–2367 (1987).
8. S. P. Kim, Phys. Lett. A 236, 11 (1997).
9. R. Colistete Jr., J. C. Fabris, and N. Pinto-Neto,

Phys. Rev. D 62, 083507 (2000); gr-qc/0005013.
10. N. Pinto-Neto, Found. Phys. 35, 577–603 (2005).
11. N. Pinto-Neto, E. Sergio Santini, and F. T. Falciano,

Phys. Lett. A 344, 131–143 (2005); gr-qc/0505109.
12. N. Pinto-Neto, A. F. Velasco, and R. Colistete Jr.,

Phys. Lett. A 277, 194–204 (2000); gr-qc/0001074.
13. C. Kiefer, Ann. Phys. 19, 211–218 (2010); C. Kiefer,

J. Phys. Conf. Series 222, 012049 (2010).
14. S. P. Kim, Phys. Rev. D 55, 7511 (1997).
15. C. Bertoni, F. Finelli, and G. Venturi, Class. Quantum

Grav. 13, 2375 (1996).
16. M. Bojowald, Quantum Cosmology (Springer,

2011).
17. D. A. Craig and P. Singh, Phys. Rev. D 82, 123526

(2010); arXiv: 1006.3837.
18. Abhay Ashtekar and Parampreet Singh, Class.

Quantum Grav. 28, 213001 (2011).
19. A. Ashtekar, A. Corichi, and P. Singh, Phys. Rev. D

77, 024046 (2008); arXiv: 0710.3565.
20. A. Ashtekar, Gen. Rel. Grav. 41, 707–741, (2009);

arXiv: 0812.0177.
21. Abhay Ashtekar, Tomasz Pawlowski, and Parampreet

Singh, Phys. Rev. D 73, 124038 (2006).
22. S. Weinberg, The Quantum Theory of Fields, Vol I

(Cambridge University Press, 1995)

23. N. Pinto-Neto, F. T. Falciano, Roberto Pereira, and
E. Sergio Santini, Phys. Rev. D 86, 063504 (2012);
arXiv: 1206.4021.

24. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii,
Quantum Electrodynamics, Volume 4 of the
Course of Theoretical Physics, Second edition
(Pergamon press, Oxford, 1980).

25. Brian Hatfield, Quantum Field Theory of Point Par-
ticles and Strings (Addison Wesley, 1992).

26. D. Bohm, Phys. Rev. 85, 166 (1952); D. Bohm,
Phys. Rev. 85, 180 (1952); D. Bohm, B. J. Hiley,
and P. N. Kaloyerou, Phys. Rep. 144, 349 (1987);
D. Bohm and B. J. Hiley, Phys. Rep. 144, 323 (1987).

27. J. Kowalski-Glikman, in From Field Theory to
Quantum Groups: Birthday Volume Dedicated
to Jerzy Lukierski, ed. Bernard Jancewicz and Jan
Sobczyk (World Scientific, 1996); gr-qc/9511014.

28. J. A. de Barros and N. Pinto-Neto, Int. J. Mod. Phys.
D 7, 201 (1998).

29. N. Pinto-Neto and E. Sergio Santini, Phys. Rev. D
59, 123517 (1999).

30. E. Sergio Santini, PhD Thesis (CBPF-Rio de
Janeiro, May 2000); gr-qc/0005092.

31. N. Pinto-Neto and E. Sergio Santini, Gen. Rel. Grav.
34, 505 (2002).

32. Asher Peres, Nuovo Cim. 26, 53–62 (1962).
33. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Grav-

itation (Freeman, San Fransisco, 1973).

GRAVITATION AND COSMOLOGY Vol. 25 No. 3 2019


